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Aedes aegypti microbiome composition 
covaries with the density of Wolbachia infection
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Abstract 

Background Wolbachia is a widespread bacterial endosymbiont that can inhibit vector competency when stably 
transinfected into the mosquito, Aedes aegypti, a primary vector of the dengue virus (DENV) and other arboviruses. 
Although a complete mechanistic understanding of pathogen blocking is lacking, it is likely to involve host immunity 
induction and resource competition between Wolbachia and DENV, both of which may be impacted by microbiome 
composition. The potential impact of Wolbachia transinfection on host fitness is also of importance given the wide-
spread release of mosquitos infected with the Drosophila melanogaster strain of Wolbachia (wMel) in wild populations. 
Here, population-level genomic data from Ae. aegypti was surveyed to establish the relationship between the density 
of wMel infection and the composition of the host microbiome.

Results Analysis of genomic data from 172 Ae. aegypti females across six populations resulted in an expanded 
and quantitatively refined, species-level characterization of the bacterial, archaeal, and fungal microbiome. This 
included 844 species of bacteria across 23 phyla, of which 54 species were found to be ubiquitous microbiome mem-
bers across these populations. The density of wMel infection was highly variable between individuals and negatively 
correlated with microbiome diversity. Network analyses revealed wMel as a hub comprised solely of negative interac-
tions with other bacterial species. This contrasted with the large and highly interconnected network of other microbi-
ome species that may represent members of the midgut microbiome community in this population.

Conclusion Our bioinformatic survey provided a species-level characterization of Ae. aegypti microbiome com-
position and variation. wMel load varied substantially across populations and individuals and, importantly, wMel 
was a major hub of a negative interactions across the microbiome. These interactions may be an inherent conse-
quence of heightened pathogen blocking in densely infected individuals or, alternatively, may result from antagonis-
tic Wolbachia-incompatible bacteria that could impede the efficacy of wMel as a biological control agent in future 
applications. The relationship between wMel infection variation and the microbiome warrants further investigation 
in the context of developing wMel as a multivalent control agent against other arboviruses.
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Background
Aedes mosquitoes are a primary vector for dengue 
(DENV) and other arboviruses, including Zika, chikun-
gunya, and yellow fever [1]. Amongst these, DENV trans-
mission poses a particularly severe risk to human health 
as it is responsible for 50–100 million infections annu-
ally across the approximately 125 countries in which it 
is endemic [2–5]. Above and beyond existing strategies 
for Aedes population control (e.g., insecticides and other 
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chemical or physical management mechanisms) alterna-
tive biological approaches can contribute to sustained 
disease reduction [6]. For example, substantial reductions 
in DENV transmission have been achieved through the 
release of mosquitoes stably infected with the bacterial 
symbiont Wolbachia [7–11], which confers resistance to 
DENV and other arboviruses (commonly referred to as 
“pathogen blocking”) [12–15].

Wolbachia pipientis is a maternally inherited gram-
negative endosymbiotic bacterium that is estimated 
to naturally infect at least two-thirds of arthropod spe-
cies [16]. Wolbachia facilitates its spread within popula-
tions through a variety of mechanisms that manipulate 
host reproduction, including cytoplasmic incompatibil-
ity, male feminization, male killing, and the induction of 
parthenogenesis [17]. The Wolbachia strain wMel, which 
naturally infects Drosophila melanogaster, has been 
developed to stably transinfect Ae. aegypti. In this host, 
wMel induces cytoplasmic incompatibly, whereby unin-
fected males can produce viable offspring with wMel-
infected females but matings between wMel-infected 
males with uninfected females result in embryonic death 
[18]. Thus, wMel can spread rapidly and then become sta-
bly maintained in populations [19, 20]. However, recent 
studies have documented fitness reductions in individu-
als harboring wMel that have the potential to slow the 
spread or reduce the persistence of transinfected individ-
uals [21, 22]. This, in turn, has led to the identification of 
locally adapted wMel strains with higher fitness that can 
be strategically deployed to improve biocontrol outcomes 
[23–25].

Two primary mechanisms are believed to form the 
basis of wMel induced pathogen blocking: (1) induc-
tion of innate host immunity and (2) resource com-
petition between microbes [26]. Pathogen blocking 
due to wMel-induced immunity is supported by sev-
eral observations. First, wMel confers a partial antivi-
ral effect against RNA viruses in D. melanogaster and 
viral inhibition in mosquito cell lines [27, 28]. Second, 
wMel infection in Ae. aegypti induces the upregula-
tion of the Toll and Imd immunity pathways that tar-
get pathogens for removal through the production of 
antimicrobial peptides [29–31]. Third, a mechanistic 
link between immunity induction and pathogen block-
ing is further supported by the fact that DENV infec-
tion in Ae. aegypti triggers a Toll pathway-mediated 
response and that Wolbachia density itself decreases 
during DENV infection [32, 33]. The second mecha-
nism implicated in pathogen blocking relates to com-
petition for host resources [34–36]. As an obligate 
endosymbiont, Wolbachia (much like viruses) relies 
on a suite of host resources. For example, neither Wol-
bachia nor DENV are able to independently synthesize 

cholesterol [35]. wMel infection in Ae. aegypti increases 
cholesterol storage in lipid droplets and inhibits viral 
replication [36]. Release of cholesterol back into the 
cytosol reverses this inhibition, and pathogen block-
ing is also reduced in other insects when raised on a 
high-cholesterol diet [34]. It is also important to note 
that the strength of pathogen blocking is variable and 
has been found to positively correlate with variation of 
Wolbachia infection density across strains [37, 38]. For 
example, the higher-density infections characteristic of 
wMelPop, relative to wMel, is particularly effective in 
reducing Ae. aegypti DENV vectoring capacity across 
DENV serotypes [39].

The density and distribution of Wolbachia infection 
across tissues may also be dependent on interactions with 
the Aedes microbiome, which in turn may impact the effi-
cacy of Wolbachia as a biological control agent. In fact, 
several commensal microbes, such as species in the gen-
era Serratia and Asaia, have already been demonstrated 
to inhibit stable Wolbachia transinfection [40–42]. As 
such, a more wholistic understanding of the tripartite 
relationships between the Ae. aegypti host, Wolbachia 
and the microbiome is therefore a priority. A previous 
investigation of wMel infection on the Ae. aegypti micro-
biome found no decrease in compositional richness, but 
did reveal a reduction in a suite of low abundance bac-
terial taxa [43]. Furthermore, no changes were observed 
among species with known wMel incompatibilities (e.g., 
Serratia and Asaia). It is important to note, however, that 
this study utilized laboratory-raised Ae. aegypti and it is 
unclear to what extent these results apply to wild popula-
tions. Here, we aim to address this uncertainty through 
the establishment of a refined understanding of Ae. 
aegypti microbiome variation in populations subject to 
previous releases of wMel infected individuals.

To assess the influence of wMel infection on micro-
biome composition, we analyzed available short-read 
genomic DNA sequence data from a previous study of 
172 Ae. aegypti females reared in standard conditions 
from eggs collected in the wild from six geographic 
locations [20]. These locations included four sites with 
historic releases of wMel-infected females (Bungalow, 
Cairns North West, Parramatta Park North and West-
court) and two sites without historic releases (Cairns 
North East and Parramatta Park South). Our approach 
(1) achieved microbiome classifications at the species-
level for 94.6% of the nearly 21 million reads that mapped 
to bacterial genomes and greatly expanded upon previ-
ous microbiome characterizations in this species, (2) 
quantified microbiome variation while also identifying 
core bacterial species at the population-level, (3) identi-
fied substantial variation in the density of wMel infec-
tion across individuals and (4) revealed that wMel was 
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a central hub of negative interactions within a larger Ae. 
aegypti microbiome interaction network.

Methods
Ae. aegypti genome sequencing data
Double digest restriction-site associated DNA sequenc-
ing data (ddRAD-seq) were utilized from a study of Ae. 
aegypti populations from six geographic locations near 
Cairns, Australia (NCBI BioProject PRJNA412140) [20]. 
Releases of Ae. aegypti transinfected with the D. mela-
nogaster strain of Wolbachia (wMel) were conducted in 
four of these locations: Parramatta Park North and West-
court (2013 releases); Bungalow and Cairns North West 
(2014 releases). Schmidt et  al. [20] conducted Illumina 
HiSeq2500 (100 bp reads) paired-end ddRADseq library 
sequencing of DNA isolated from 172 female mosquitoes 
reared using standardized conditions from eggs collected 
in the wild. We have taken advantage of the fact that 
whole mosquito genomic DNA isolation also captures 
microbiome DNA. Additional information about the 
samples can be found in the metadata for NCBI BioPro-
ject PRJNA412140.

Taxonomic classification Ae. aegypti microbiome
The Kraken2 pipeline [44] was used to assign taxo-
nomic classifications to all raw ddRAD-seq reads that 
met standard quality metrics. The Kraken2 search data-
base included all available RefSeq genomes from bacte-
ria (n = 21,333), fungi (n = 60), protozoa (n = 40), viruses 
(n = 10,388), archaea (n = 390) (NCBI RefSeq Release 
Number 200 on August 26, 2020) and the recently rean-
notated Ae. aegypti reference genome (AaegL5 [45]). The 
database was built with 512  GB of available RAM on 4 
threads using the default Kraken2 parameters for mini-
mizer length and spaces, and a conservative k-mer length 
of 31. Low complexity regions of genomes were masked 
using the DustMasker program [46]. As expected, the 
vast majority of reads (93.6% average across 172 individu-
als; SD = 2.6%) mapped to the Ae. aegypti genome. One 
percent of reads (185,811 reads on average per individ-
ual; range: 29,951 – 4,350,613) mapped to bacterial, viral, 
archaeal, fungal, or protozoan genomes.

Quantification of Ae. aegypti microbiome composition
After taxonomic classification at the species level for 
bacterial, viral, archaeal, fungal, or protozoan reads, 
Bracken [47] was used quantify species abundances per 
individual. The Bracken database was built using default 
parameters and a read length of 100. Following Bracken 
quantification, species abundance estimates were stand-
ardized to account for variation in the overall sequenc-
ing depth per individual. Additionally, we controlled for 
the number of restriction enzyme cut sites per genome 

using a script that calculated the total number of NlaIII 
(CATG/GTAC) and MluCI (AATT/TTAA) enzyme rec-
ognition sites in each reference genome (code is provided 
in Additional file  1). Standardizations were conducted 
separately in each major taxonomical group (e.g., bacte-
rial, fungi, etc.). An independent verification of quanti-
tative accuracy was conducted using the original wMel 
qPCR abundance estimates from Schmidt et al. [20]. For 
the full set of 172 individuals, abundance estimates were 
highly reproducible (r = 0.87; p < 0.0001). Additionally, we 
detected wMel, albeit at low average abundance levels, in 
individuals that were previously deemed to be uninfected 
by qPCR. After removing these datapoints, the quantita-
tive reproducibility between studies increased (r = 0.92; 
p < 0.0001).

For subsequent analyses, rare species were removed 
from the dataset if they (1) did not constitute > 1% of 
the total bacterial microbiome in any individual and (2) 
were present in fewer than 25% of individuals. We note 
that our analysis was based on DNA isolated from whole 
mosquitos. It therefore reflects the sum of DNA from 
microbial populations per individual and it does not pro-
vide direct information about tissue-specific microbiome 
composition.

Statistical analysis of bacterial microbiome composition
Microbiome complexity was assessed in R [48] using two 
alpha diversity metrics: observed species richness and 
Shannon’s diversity index [49]. A linear model was used 
to assess relationships between alpha diversity measures 
and total wMel abundance per individual. An analysis of 
variance (ANOVA) and Tukey’s Post Hoc test was used 
to compare the density of wMel across sites with histori-
cal releases. Co-occurrence and mutually-exclusive inter-
actions between bacterial species were assessed using 
Pearson’s correlations as implemented by CoNet [50] 
in Cytoscape [51] on a standardized bacterial species 
abundance matrix. The matrix was standardized using 
the Wisconsin function from the R package vegan (ver-
sion 2.5–7 [52]). Statistical significance of each pairwise 
comparison was determined using 1000 bootstrap repli-
cations and Benjamini–Hochberg multiple testing cor-
rection. The network was visualized using the Cytoscape 
GUI software [51]. Additional analysis of network com-
position was based on delineating two subnetworks. The 
first (hereafter referred to as the “wMel subnetwork”) 
includes those species with a significant edge interaction 
directly with wMel and the second (hereafter referred to 
as the “non-wMel subnetwork”) as those species without 
a direct edge interaction with wMel.

Principal Coordinate Analysis (PCoA) was then used 
to further characterize bacterial microbiome varia-
tion. A distance matrix was calculated by applying the 
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Bray–Curtis dissimilarity index [53] implemented by the 
vegdist function from the R package vegan (version 2.5–7 
[52]) to the same standardized matrix used the CoNet 
analysis (see above). The PCoA was performed using the 
pcoa function from the R package ape (version 5.5 [54]). 
Axes of variation were further investigated using lin-
ear models to assess the relationship between Principal 
Coordinate (PC) axis loading values and standardized 
species abundance estimates.

Results
Ae. aegypti microbiome composition
The overarching goal of this study was to bioinfor-
matically characterize microbiome variation, includ-
ing that of wMel, in a wild population of Ae. aegypti. 
To this end, DNA-seq reads from 172 Ae. aegypti 
females were mapped to a database containing the Ae. 
aegypti genome and the full set of RefSeq genomes 
from bacteria, fungi, viruses, archaea and protozoans 
(27,435 genomes in total). Data from each individual 

resulted in an average of 18.7 million mapped reads 
(SD = 220,395), of which the vast majority mapped to 
the Ae. aegypti reference genome (93.6%; SD = 2.6%). 
On average, 5.4% (SD = 1.1%) of reads remained 
unclassified because they were either low quality reads 
or derived from species not included in our database. 
The remaining reads (185,811 reads per individual 
on average) mapped to bacterial, viral, archaeal, fun-
gal, or protozoan genomes. Of these, the vast major-
ity (90.6%; SD = 5.9%) were derived from bacteria 
(Fig.  1A). Fungi, protozoa, and archaea were consist-
ently identified at low abundances, while viral load was 
more variable. As expected, given that our analysis was 
based on DNA sequencing data, 99.8% of all viral reads 
identified from bacteriophage (i.e., DNA viruses) and 
the observed viral load variation was due to the high 
abundance of Escherichia bacteriophages in a limited 
number of individuals. Full information regarding fun-
gal, viral, archaeal, and protozoan identifications can 
be found in Additional file 2.

Fig. 1 Population-level Ae. Aegypti microbiome characterization. A Taxonomical distribution of reads mapping to non-Ae. Aegypti genomes. B 
Taxonomical distribution of the major phyla in the bacterial microbiome. C Bacterial microbiome composition by phyla for all 172 individuals. The 
eight most abundant phyla are shown and the remaining are grouped as ‘Other’
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Bacterial microbiome composition
After removing low abundance and rare species, 843 bac-
terial species remained from 23 phyla and 396 genera 
(Additional file 3; note that wMel is not included in the 
following analysis of microbiome composition). These 
results represent a substantial increase in the size and 
taxonomical specificity of the characterized Ae. aegypti 
microbiome. Eight phyla comprised > 99.0% of total 
bacterial composition (Fig.  1B). Consistent with previ-
ous studies, all of which relied on 16S rRNA sequenc-
ing [43, 55–59], Proteobacteria (49.0% of bacterial reads) 
was identified as the predominant phylum. Firmicutes 
(36.6%), Tenericutes (5.9%), Bacteroidetes (4.7%), Act-
inobacteria (1.5%), Cyanobacteria (0.6%), Spirochaetes 
(0.5%), and Fusobacteria (0.5%) were also identified as 
substantive contributors to the microbiome (Fig.  1C). 
At the genus level, our analysis confirmed the presence 
of several previously reported groups, including (1) Aci-
netobacter and Stenotrophomonas, which have been 
identified in reproductive tissues, (2) Bacillus, Chryseo-
bacterium, Enterobacter, Klebsiella and Serratia, which 
are commonly identified in the midgut, (3) Burkholde-
ria, which has been identified specifically in the salivary 
glands and (4) a suite of six genera with more complex 
spatial distributions across multiple tissues [43, 55–58, 
60–63]. We also identified several novel species within 
the Mycoplasma, Salmonella, and Mannheimia genera 
that were either ubiquitous among individuals or highly 
abundant. Finally, several taxa (e.g., species in the Asaia, 
Spiroplasma and Serratia genera) have been demon-
strated to negatively influence Wolbachia density or 
transmission [40, 41, 64]. Our analysis did not identify 
any species in the genus Asaia, consistent with Audsley 
et al. [65], but did identify 17 species in the genera Spi-
roplasma and three in the genera Serratia. Among these 
species, a negative abundance relationship was observed 
between wMel and S. marcescens (see below).

Towards a core Ae. aegypti bacterial microbiome
Our analysis provided a unique opportunity to leverage 
intraspecific variation to assess the community com-
position of the core Ae. aegypti microbiome at a pop-
ulation level. First, we investigated core microbiome 
composition as a function of species presence across 
the population. This analysis revealed that 164 species 
were present in 95% of individuals and 54 species (here-
after referred to as the “core microbiome”) were pre-
sent consistently across the entire population (Fig. 2A; 
Additional file  4). Species present in large numbers of 
individuals also constituted a high proportion of total 
microbiome composition (Fig. 2B). Specifically, the 517 
bacterial species identified in at least 75% of individuals 

comprised 93.0% of the total bacterial microbiome. The 
remaining 7.0% of the microbiome was a combination 
of 326 additional species that were of far lower abun-
dance on average. Among the 54 species comprising the 
core microbiome, five species constituted more than 5% 
of the core microbiome on average (Fig.  2C). Bacillus 
subtilis (42.4%) had the highest average abundance by 
far, followed by Salmonella enterica (7.9%), Staphylo-
coccus aureus (6.2%), Escherichia coli (6.1%), and Ente-
rococcus faecium (5.5%). The high abundance of each of 
these species was likely due to their contribution to the 
midgut microbiome (Bacillus subtilis, Salmonella sp., 
Staphylococcus sp., Escherichia sp., and Enterococcus 
sp. have all been previously identified in the Ae. aegypti 
midgut microbiome [60, 63, 66–69]). Although it is 
noteworthy that several of these species are mammalian 
pathogens and we cannot rule out possible contamina-
tion. Species in the genera Acinetobacter, Clostridium, 
Cupriavidus, Klebsiella, Serratia were also identified as 
members of the core microbiome. These genera have 
all been previously identified in mosquitoes but were 
not associated with a particular tissue [43, 65, 70, 71]. 
Unexpectedly, 62.3% (or 34 species) of the core micro-
biome was comprised of species previously unidentified 
in the Ae. aegypti microbiome (Additional file 4).

Population distribution of wMel
Historic releases of wMel-infected females were con-
ducted in four of the six populations analyzed here, 
within which stable wMel inheritance has already been 
documented [20]. Based on recent observations from 
controlled releases, which revealed very limited geo-
graphic dispersal of transinfected individuals [8], we 
predicted a substantively higher prevalence of wMel in 
locations with historic releases. This was confirmed by 
an ANOVA that showed significant variation between 
the wMel across all sites (p = 0.0006; Fig.  3A), includ-
ing significantly higher abundance levels in the popu-
lations with historic releases relative to those without 
historic releases (p = 1.45 ×  10–5; Fig.  3B). Neverthe-
less, a substantial amount of intraspecific variation 
in wMel abundance was also observed in populations 
with historic releases. Overall, average wMel abun-
dance across all populations was 460,458 (coefficient 
of variance = 1.05) and ranking individuals by wMel 
abundance revealed a largely continuous gradient of 
infection density with the highest density infections 
exceeding 1.5 million reads (Fig.  3C). Given that the 
strength of pathogen blocking is dependent on the 
density of Wolbachia infection [38], we next sought 
to assess the relationship between such variation and 
bacterial microbiome composition.
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wMel was a hub of mutually exclusive relationships 
with other microbiome species
wMel abundance did not correlate with either total bac-
terial abundance (p = 0.66) or observed species rich-
ness (p = 0.89). However, there was a significant inverse 
relationship between wMel abundance and Shannon’s 
Index (p = 0.02). Thus, as wMel abundance increased, 

the relative abundance of other bacterial species in the 
microbiome became less uniform. A previous investiga-
tion of wMel-infected Ae. aegypti revealed a reduction 
in several low abundance genera across the microbiome, 
but did not report information about wMel infection 
variation [43]. To specifically explore the effect of wMel 
abundance, we constructed an interaction network to 

Fig. 2 Ae. Aegypti core microbiome. A Number of bacterial species is plotted in relation to the proportion of individuals in which each species 
was identified. B Percent of microbiome composition is plotted in relation to the proportion of individuals in which each species was identified. 
Those species present in 75% or more individuals comprised 93% of total microbiome composition. Fifty-four species were identified in all 
172 individuals. C Contribution of the 54 ubiquitously present microbiome species to core microbiome composition. Species that do not 
constitute > 5% of the core microbiome have been grouped as ‘Other.’
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assess patterns of co-occurrence and mutual exclusion 
within the microbiome. This approach revealed a net-
work of 71 species, which was significantly enriched 
for core microbiome species (obs. = 42; exp. = 4.6; 
χ2 = 355.7; p = 2.4 ×  10–79) and comprised two predomi-
nant subnetworks (Fig.  4a; Additional file  5). The first 
subnetwork (hereafter referred to as the “wMel subnet-
work”) comprised 35 mutually-exclusive bacterial rela-
tionships specifically with wMel and had a low relative 
level of connectivity (average of 1.5 edges per node). 
The second, larger subnetwork (hereafter referred to as 
the “non-wMel subnetwork”) comprised 56 species and 
was notable for a higher average level of connectivity 
(2.2 edges per node), and both co-occurrence (n = 66) 
and mutually exclusive (n = 58) interaction edges. Three 
additional characteristics further distinguished these 
subnetworks. First, the wMel subnetwork comprised 
species identified at significantly lower abundances than 
those in the non-wMel subnetwork (Fig.  4B) despite 
the proportion of core microbiome species being 

indistinguishable between the two (χ2 = 0.45; p = 0.50). 
Second, interaction edges in the wMel subnetwork were 
significantly weaker in their absolute magnitude than 
those in the larger network (Fig.  4C; p = 8.38 ×  10–6). 
Third, the larger network included B. subtilis, a con-
firmed Ae. aegypti midgut microbe and the highest 
abundance species in this study, as well as numerous 
other high abundance taxa previously identified in the 
Ae. aegypti midgut (e.g., B. cereus/thuringiensis, E. fae-
cium, E.  coli, S. aureus/simulans/cohnii, S. enterica). 
Thus, the larger subnetwork was more robustly inter-
connected and contained a diversity of abundant taxa 
from the midgut microbiome. In contrast, wMel serves 
as a hub of negative pairwise relationships with rela-
tively low abundance species, even though many of 
these are part of the core microbiome. We propose that 
this structure may derive from more direct interactions 
between wMel and members of the reproductive micro-
biome, given the higher abundance of wMel in repro-
ductive tissues relative to somatic tissues [72].

Fig. 3 wMel variation across population and individuals. A wMel abundance (normalized read count) per individual for each collection site 
(status and date of previous wMel release is indicated): Bungalow (BN), Cairns North West (CNW), Cairns North East (CNE), Parramatta Park North 
(PPN), Parramatta Park South (PPS) and Westcourt (WC) [20]. ANOVA revealed significant variation between the wMel abundance across sites, 
p = 0.0006. A post hoc Tukey test revealed that wMel in CNE was significantly less than those from PPN (p = 0.005) and CNW (p = 0.001) and in PPS 
was significantly less than those from PPN (p = 0.049). B wMel abundance (normalized read count) per individual comparing sites with and without 
historic releases. Wilcoxon test revealed significantly higher wMel abundance in sites with historic releases (p = 1.45e-05). C Individuals from all 
populations ranked by total wMel abundance
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Microbiome independent and dependent components 
of wMel variation
To assess overall patterns of variation within the micro-
biome, we utilized a Principal Coordinate Analysis and 
observed three main axes that captured 76.34% of the 
total variation (Fig. 5). The first axis (58.73% of variation) 
included wMel as the eigenvector with the largest mag-
nitude (Fig.  5A). The contribution of wMel variation to 
this axis was supported by the fact that Axis 1 loadings 
exhibited a significant correlation with wMel abundance 
across individuals (r = -0.90; t = -26.78, p = 4.60 ×  10–63; 

Fig. 5B). Thus, Axis 1 largely captures variation in wMel 
and this variation was largely orthogonal to the other 
main eigenvectors. However, we note that, of the 10 spe-
cies with the highest positive loadings on Axis 1 (i.e., 
those with loadings opposite to wMel), five participate 
in direct negative interactions with wMel in the wMel 
subnetwork (Fig.  4A). Axis 2 also identified wMel as a 
large negative eigenvector but, in contrast to Axis 1, it 
included two species with large positive eigenvectors (i.e., 
M. haemolytica and B. subtilis; Fig. 5C). The relationship 
with these species was further supported by a significant 

Fig. 4 wMel forms a negative interaction hub within the Ae. Aegypti microbiome network. A Microbiome interaction network analysis using 
Wisconsin normalized read counts resulted in a network of 71 species and 159 edges. Red edges represent mutual exclusion interactions 
(significant negative Pearson’s correlation coefficient) and green edges represent co-occurrence interactions (significant positive Pearson’s 
correlation coefficient). Core microbiome species are highlighted in purple. wMel was involved exclusively in negative pairwise interactions with 35 
species. B Density plot displaying the strength of interactions edges with wMel (orange) and the remaining edges in the network not involving 
wMel (grey). C Density plot displaying the mean read count for species included in the network. Species with mutually exclusive interactions 
with wMel are shown in orange and have a significantly lower average read count (t = 2.43; p-value = 0.02) than all other species in the network 
(grey)



Page 9 of 13Pascar et al. Microbiome          (2023) 11:255  

positive correlation between Axis 2 loadings and the 
abundance of wMel (r = -0.24; t = -3.21, p = 0.0016), and 
a significant negative correlation with M. haemolytica 
(r = 0.72; t = 13.49, p < 2.2 ×  10–16) and B. subtilis (r = 0.48; 
t = 7.08, p = 3.61 ×  10–11; Fig.  5D). Notably, both species 
were present in our network analysis (Fig. 4A) and their 
interaction connections to wMel were consistent with the 
identified PCoA relationships. In summary, Axis 1 cap-
tured wMel variation and its weak, mutually-exclusive 
interaction with a suite of species identified in the wMel 
network, and Axis 2 captured stronger, but indirect, 
wMel covariation with two of the most abundant spe-
cies in the microbiome, including the midgut microbe B. 
subtilis. Lastly, we explored whether microbiome com-
position varied by collection site by PCoA and observed 

limited evidence of clustering above and beyond the vari-
ation between sites with and without releases associated 
with wMel (Additional file 6).

Discussion
The release of Ae. aegypti mosquitoes transinfected 
with the wMel strain of Wolbachia has proven to be an 
effective strategy to limit the spread of DENV [12, 73]. 
However, less is known about the long-term dynamics 
of infection within populations and how these dynam-
ics might influence the multivalent utility of wMel more 
broadly as a biological control agent for arboviruses. 
Given the mechanisms responsible for pathogen block-
ing (i.e., immune priming and resource competition), 
it is reasonable to assume that wMel infection stability 

Fig. 5 Covariance between microbiome composition and wMel abundance. A PCoA analysis of microbiome variation identified a primary axis 
of variation (PC1: 58.73%) that corresponded with the eigenvector for wMel which was the largest observed vector. Other large eigenvectors 
representing highly abundant taxa were largely orthogonal to Axis 1. B Axis 1 loadings were significantly correlated with wMel abundance 
across individuals but not other microbiome species. C PCoA analysis of microbiome variation identified a secondary axis of variation (PC2: 10.19%) 
which corresponded with the eigenvectors for B. subtilis, M. haemolytica, and to a lesser extent wMel. D Axis 2 loadings were significantly correlated 
with B. subtilis and M. haemolytica abundance and anticorrelated with wMel abundance across individuals
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and density may be dependent on interactions with the 
remainder of the microbiome. Here, we explore this pos-
sibility through a population-level Ae. aegypti microbi-
ome survey using a bioinformatic approach that leverages 
available genomic sequencing data. In addition to achiev-
ing a species-level Ae. aegypti microbiome characteri-
zation from a wild population, our analyses revealed 
substantial intraspecific variation in wMel density that 
covaried with microbiome composition. This variation is 
of potential relevance to the efficacy of pathogen blocking 
and the implementation of Wolbachia-based pathogen 
control strategies against DENV and other arboviruses.

Towards an Ae. aegypti population‑level core microbiome
Interactions between bacterial components of the micro-
biome and their mosquito host impact important aspects 
of fitness, including fertility, longevity, and immunity 
[14, 40, 59]. As such, the identification of a population-
level, core microbiome – those bacterial species present 
across many or all individuals – has the potential to pro-
vide unique insights into taxa that support host develop-
ment and function [74]. Importantly, and unlike previous 
studies that have relied on laboratory populations [56, 62, 
75, 76] or utilized 16S sequencing [56, 57, 65, 71, 75] on 
wild populations, our survey provides a unique species-
level perspective into microbiome structure in an Ae. 
aegypti population. Our analysis was also successful in 
identifying a relatively large repertoire of core microbi-
ome species. Whereas functional analyses will ultimately 
be required for a refined understanding of core microbi-
ome-host dynamics [77], several observations are worthy 
of discussion.

The 54 bacterial species ubiquitously present across all 
individuals comprised only 24% of the total microbiome. 
However, when the criteria for inclusion was relaxed 
(to presence in ≥ 75% of individuals), this group of com-
mon species comprised 93% of the total microbiome. As 
such, the vast majority of the microbiome is comprised 
of common species at the population level. This observa-
tion cannot be accounted for by a possible identification 
bias towards highly abundant species. Whereas many 
core species were indeed highly abundant, such as B. 
subtilis that comprises 11.2% of the microbiome on aver-
age, the abundance of core species varied by over 1,100-
fold (Fig.  4C). Thus, many core species were quite low 
in relative abundance. This variation is almost certainly 
explained, at least in part, by the absolute size of tissue-
specific microbiomes. We therefore predict that the low 
average abundance of species in the wMel subnetwork 
is likely due to their restricted presence in the reproduc-
tive microbiome. Similarly, the high average abundance 
of species in the non-wMel subnetwork, which includes 
B. subtilis, suggests that they may be representatives 

of a larger midgut microbiome. Overall, the significant 
enrichment of core microbiome species (of both high 
and low abundance) in our network analysis supports the 
presence of concerted functional assemblages within the 
microbial community. Furthermore, the topology of the 
network, including the presence of delineated subnet-
works, suggests compartmentalization between tissues 
that may inform tissue-specific microbiome functional-
ity. Some of core species identified here have also been 
identified in laboratory colonies derived from wide-
spread global populations (e.g., Brazil, Grenada, and India 
[62, 68, 69, 78]). Surveys across addition natural and lab 
populations will further refine our understanding of the 
functional core microbiome and, additionally, the pro-
cess by which natural microbiomes experience composi-
tional shifts or diversity-decay when reared in laboratory 
settings.

Variation in wMel infection density and the microbiome
As a reproductive endosymbiont, Wolbachia was con-
ventionally believed to be concentrated within the host’s 
reproductive tissues. However, it is now well-established 
that Wolbachia can be present at variable levels across 
many non-reproductive tissues [13, 37]. The density and 
spatiotemporal distribution of Wolbachia varies among 
host species and strains of Wolbachia [37, 79]. However, 
there is limited information about the spatiotemporal 
dynamics of wMel in wild Ae. aegypti populations despite 
its relevance to pathogen blocking [38]. Despite wMel 
being stably established in the populations surveyed 
here [20], we observed a high level of variation in infec-
tion density across individuals and a robust covariation 
between wMel abundance and specific sets of species 
with the microbiome. Several facets of these relationships 
are worth highlighting. First, we observed a significant 
negative relationship between wMel density and Shan-
non’s Index, indicating a decrease in the compositional 
evenness in the microbiome. Previous studies comparing 
alpha diversity metrics in Wolbachia-infected hosts have 
reported contradicting results [43, 80–82]. Our results, 
based on a large survey of individuals, suggest that the 
impact of wMel on the Ae. aegypti microbiome is more 
nuanced than a simple reduction in species richness or 
load, as previously suggested [43, 80, 81]. Second, wMel 
served as a hub of consistently mutually-exclusive, but 
weak, interactions and these interactions were generally 
with lower abundance species. This pattern is consistent 
with results reported by Audsley et al. [65]. Based on the 
composition of the subnetworks revealed in our analy-
sis, we speculate that this pattern may reflect a suite of 
direct interactions with other members of the reproduc-
tive microbiome. It is also important to emphasize that, 
although these species were generally low in abundance, 
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they were significantly enriched for members of the core 
microbiome. Third, our PCoA analysis revealed robust 
covariation between wMel and several of the most abun-
dant species in the microbiome, including the midgut 
microbe B. subtilis. Given the importance of the midgut 
microbiome on immune system function [83], the effect 
of wMel (either direct or indirect) on the midgut micro-
biome is worthy of further investigation.

Conclusion
We demonstrate the underappreciated value of existing 
whole-organism DNA-seq data in relation to microbiome 
characterization. Our analysis achieved a high coverage, 
species-level characterization of the Ae. aegypti microbi-
ome, including the delineation of a population-level, core 
microbiome. Despite the absence of information about 
tissue-specific microbiome composition, network analy-
ses revealed wMel as a hub of interactions with species 
likely to be of the reproductive microbiome and a small 
set of robust, indirect interactions with likely members of 
the midgut microbiome. Intraspecific variation in wMel 
infection density, in conjunction with diverse interactions 
with the native microbiome, may have the potential to 
impact vector competency. The specific interactions iden-
tified here could be leveraged to potentially enhance wMel 
infection density and identify species that may be antago-
nistic or incompatible with Wolbachia or third-party play-
ers that mediate pathways underlying pathogen blocking.
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