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Tree and shrub richness modifies subtropical 
tree productivity by regulating the diversity 
and community composition of soil bacteria 
and archaea
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Abstract 

Background  Declines in plant biodiversity often have negative consequences for plant community productivity, 
and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, 
the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. 
However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosys-
tem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects 
stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used 
a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub rich-
ness (0, 2, 4, 8 species) were modified.

Results  Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased 
from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we 
observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree 
species richness. The increase in tree species richness greatly reduced the variability in bacterial community compo-
sition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub 
species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial 
community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios.

Conclusions  Our findings provide insight into the importance of bacterial and archaeal communities in driving 
the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better 
understanding of prokaryotic communities in forest soils.
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Background
Anthropogenic activities have resulted in the loss of bio-
diversity worldwide [1, 2], in altered ecosystem function-
ing [3] and services [4]. This has fostered a large research 
field that aims at understanding the relationship between 
biodiversity and ecosystem functioning [5]. Much of the 
work originates from grassland systems [6–9], where 
it has been found that plant species diversity gener-
ally increases plant community productivity, and that 
this relationship is driven by shifts in the soil microbial 
community [10]. Although recent studies found simi-
lar biodiversity-ecosystem functioning (BEF) relation-
ships in forests [11–14], it is still poorly understood how 
changes in soil biodiversity contribute to increased pro-
ductivity in diverse tree stands. Moreover, the presence 
of shrubs in forests can interfere with the diversity effects 
of trees. In general, shrubs in the understory may reduce 
tree productivity [15, 16], but these effects may be weak-
ened at higher levels of shrub richness [16]. Therefore, to 
fully understand BEF relationships in forests it will be of 
importance to test how tree and shrub diversity in forest 
ecosystems drive soil community composition, and con-
sequently influence tree productivity.

Microbial diversity may underlie positive effects of 
plant diversity on productivity, since higher plant species 
richness may lead to an increased availability of plant-
derived resources, resulting in improved niche optimi-
zation and complementary use of subsistence resources 
[17, 18]. As a result, the diversity across multiple trophic 
levels is enhanced [19–21], ultimately improving eco-
system functioning [20–22]. Evidence from long-term 
diversity experiments in grassland support the idea [23, 
24] that plant diversity drives the structure and function-
ing of soil microbial communities through the bottom-up 
(resource control) effects [7, 23]. Forests host a diverse 
array of microbial communities, including fungi, which 
often form symbiotic relationships with plants in forest 
soils [25–27]. The composition of fungal communities 
has been shown to be closely linked to tree species rich-
ness [28–31]. In addition, forest soils also harbor abun-
dant prokaryotic communities [32], with certain groups, 
such as bacteria and archaea, playing important roles in 
carbon fluxes, nutrient cycling, and decomposition [33–
40]. However, the extent to which shifts in bacterial and 
archaeal diversity, community composition, and com-
plexity (e.g., network structure, connectedness) underlie 
BEF relationships in forests remains unclear. In addition, 
there is limited information on whether the mycorrhi-
zal types of the focal tree species shape soil prokaryote 
communities in the context of changing tree and shrub 
species richness levels, although there has been extensive 
research demonstrating that it has a significant effect on 
fungal communities [31, 41, 42].

As plant diversity increases, it leads to the develop-
ment of complex interactions among plants, which 
subsequently increases the complexity of interactions 
among plants and associated microbes [43–45]. Given 
that non-random community assembly may be a general 
characteristic for microorganisms [46], a correlation-
based network of cooccurring microorganisms based 
on strong and significant correlations (non-parametric 
Spearman’s) [47] was widely used to reveal microbial 
co-occurrences and the connectivity among community 
members [48–53]. A pioneer research in experimental 
grassland ecosystems observed that microbial network 
complexity positively influences multiple ecosystem 
functions [22]. It would be of great interest to examine 
whether changes in plant diversity could influence the 
microbiome complexity, such as diversity and intercon-
nectedness among co-occurring microbes, and whether 
it could have an impact on the way in which microbe 
communities influence ecosystem function. To inves-
tigate how soil prokaryotic community composition, 
diversity, and cooccurrence networks respond to tree and 
shrub species richness and how this in turn affects tree 
productivity, we conducted an experiment in BEF-China 
platform: a subtropical forest in southeast China where 
tree and shrub diversity are experimentally varied [54]. 
We used Illumina amplicon sequencing of small subunit 
ribosomal RNA markers to determine the communities 
of bacteria and archaea in bulk soils under the canopy of 
focal trees. Along the three tree species richness levels (1, 
2, 4) with four shrub species richness levels (0, 2, 4, 8), 
we investigated the relationships between plant diversity 
with bacterial and archaeal diversity, composition, and 
co-occurrence relationships, furthermore, how microbes 
respond to changes in aboveground plant diversity and 
thus regulate stand-level tree productivity. We hypoth-
esized that (H1) the diversity, composition, and network 
complexity of bacterial and archaeal communities would 
be positively influenced by tree species richness due to 
resource complementarity and microenvironments [55]. 
(H2) the impact of shrub species richness on bacterial 
and archaeal communities would vary depending on 
the level of tree species richness due to the interactions 
between tree and shrub species richness [16]; (H3) plant 
species richness would have a cascading effect on com-
munity-level plant productivity by regulating the bacte-
rial and archaeal communities.

Methods
Study area
The BEF-China platform (https://​bef-​china.​com/) has 
been set up to investigate the relationship between 
subtropical plant diversity and ecosystem functioning 
in Xingangshan, Jiangxi Province in southeast China 

https://bef-china.com/
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(29°08′–29°11′ N, 117°90′– 117°93′ E) [54]. The main 
experimental sites of the BEF-China platform were estab-
lished over a two-year period from 2009 to 2010, and the 
study site is located in the subtropical climate zone. The 
mean annual temperature is 16.7 °C, with the coldest 
temperature  0.4 °C occurred in January, and the warm-
est 34.2 °C in July [56], while mean annual precipita-
tion is 1821 mm. The vegetation in natural ecosystems 
surrounding the BEF-China platform is an evergreen 
and deciduous broad-leaves mixed forest [57]. The soils 
belong to Regosols, Cambisols, Acrisols, Gleysols, and 
Anthrosols [58].

Experimental setup and sampling
The design of BEF-China main experiment was described 
by Bruelheide et al. [54]. In brief, two experimental sites, 
A (18.4 ha) and B (20 ha), were respectively set up after 
clear-cutting the Cunninghamia lanceolata plantation, 
where some Pinus massoniana individuals were scat-
tered only at the border of site A. In both study sites, 
there were 32 super-plots measuring 4 mu each, which 
were further divided into four plots with dimensions of 
25.8 × 25.8 m (equivalent to 1 mu of Chinese area unit). 
Within each plot, there were 400 trees randomly planted 
in 20 × 20 grids, with a 1.29-m interval between tree 
individuals along the cardinal compass directions. A 
species pool containing 40 broadleaved tree species and 
18 shrub tree species was first established, to minimize 
the confounding effects of a particular species combina-
tion on diversity effects [54]. Based on the species pool, 
tree and shrub species were randomly selected to build 
a crossed tree and shrub species richness gradient. The 
super-plots represented five tree species richness levels: 

one- (16 super-plots), two- (8 superplots), four- (4 super-
plots), eight- (2 super-plots), and sixteen- (1 super-plot) 
and twenty-four species richness (1 super-plot). There 
were 32 super-plots in total, with 128 1 mu plots. Within 
each 4 mu super-plot, there were four 1 mu plots where 
shrubs were planted, with 0, 2, 4, or 8 shrub species rich-
ness randomly assigned in these plots.

In this study, a total of 16, 8, and 4 plots with three 
tree species richness levels of 1, 2, and 4 were selected in 
both sites A and B in October 2018, respectively (Fig. 1a, 
b). Within each plot, four tree individuals per species 
were randomly selected, resulting in 4, 8, and 16 indi-
viduals per plot of tree species richness of 1, 2, and 4, 
respectively.

A composite soil sample was collected per individual, 
as illustrated in Figure S1. Specifically, four soil cores at 
0-10 cm depth, where the greatest microbial diversity 
was found [59–61], were collected from different direc-
tions within 1/2 of the canopy projection area of each 
tree individual, and well mixed to avoid spatio-temporal 
autocorrelation. Therefore, a total of 64 soil samples were 
collected from each of three tree richness levels, resulting 
in 192 samples in site A or B, as presented in Table S1. 
These soil samples were further divided into two parts: 
(1) the air-dried for soil physicochemical properties 
measurement; (2) the stored at -80 °C for DNA extraction 
and subsequent microbiome analyses.

Topographic and soil physicochemical properties
A digital elevation model was used to estimate mean plot 
aspect and inclination as explained in the BEF-China 
data portal [62, 63]. Two components, i.e., a north–south 
and an east–west slope aspect, were calculated based 

Fig. 1  Sampling and experimental design. a Plots with tree species richness gradients (1, 2, 4) and shrub species richness gradients (0, 2, 4, 8) 
selected from BEF-China platform (site A, site B). b The tree species and their combinations used in this study
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on the mean plot aspect. Because there are also plots in 
flat areas and on small slopes that cannot be classified 
as a particular aspect, hence two identified components 
d.SLOPEnew and d.GRA_NS used in this study were esti-
mated according to the following equations [64]:

Fresh soil samples were sieved with a 2-mm sieve to 
measure soil properties. Soils were dried at 105 °C for 48 
h for determine soil water content. Soil solutions with 
a 1: 2.5 soil to water ratio were used to measure soil pH 
with a glass electrode (Thermo Orion T20, USA). Air-
dried soils were used to estimate soil organic C and total 
N with the CHNOS Elemental Analyzer (vario EL III, 
CHNOS Elemental Analyzer; Elementar Analysensys-
teme GmbH, Langenselbold, Germany). Soil P and other 
chemicals, i.e., calcium (Ca), potassium (K), magnesium 
(Mg), and ferrum (Fe) were measured with inductively 
coupled plasma emission spectrometry (ICAP 6300 ICP-
OES Spectrometer; Thermo Scientific, Waltham, MA, 
USA). Soil inorganic N including nitrate and ammonium 
N were measured using Continuous Flow Analyzer (SAN 
Plus, Skalar, Erkelenz, Germany).

Tree stand volume and increment
Tree stand volume and increment data were retrieved 
from a previous study [65] which estimated the stand-
level tree productivity. Briefly, individual tree volume 
proxies were calculated as H × π (BR)2 in which H is 
height and BR is basal radius at the ground, and then 
transformed to more accurate tree volume estimates by 
multiplying the proxies with a size-dependent correction 
factor based on a previous study [16]. The stand-level 
tree volume was calculated by aggregating the volumes 
of the surviving trees in the central 36 planting positions 
per plot and stand volume increment was calculated as 
the absolute differences in stand volume between two 
consecutive years. In our study, we used the tree stand 
volume data in 2018 and volume increment data between 
2017 and 2018.

Soil microbial biomass
Microbial biomass was measured by the chloroform 
fumigation extraction method [66]. A pair of fresh soils 
per sample with 5 g weight of each were separately 
added into beakers, and then one of them was placed 
into a vacuum drier with 50 ml alcohol-free CHCl3 
to fumigate for 24 h, while the other was assigned as 
the control without fumigation. The paired fumigated 
and non-fumigated soils were both incubated at 25 oC 

d.SLOPEnew = SLOPE× pi/180

d.GRA_NS = tan(d.SLOPEnew)×NS

for 24 h in the dark. The paired soils were extracted 
using 50 ml 0.5 M K2SO4 (1:2.5 w/v), and then C and 
N concentration in soil solutions were measured with 
TOC analyzer (Liqui TOC II; Elementar Analysensys-
teme GmbH, Hanau, Germany). The formula calculat-
ing microbial biomass C (MBC) and microbial biomass 
N (MBN) is as followed: Bc(n) = Fc(n)/kc(n). Here, Fc(n) 
referes to difference value between amount of C or N 
extracted from fumigated and non-fumigated soil. kc(n) 
refers to the calibration coefficient of microbial bio-
mass, where kc is 0.38 for MBC [67] and kn is 0.54 for 
MBN [66].

DNA extraction, PCR amplification and sequencing
Soil samples packed with dry ice were transferred and 
stored at -80°C in laboratory until DNA extraction. The 
extraction of microbial genomic DNA was conducted 
using the PowerSoil DNA Isolation Kit (Mobio, Labo-
ratories, Inc., Carlsbad, CA, USA) according to the 
manufacturer’s protocols. The concentration of DNA 
extracts was determined using the NanoDrop 2000 UV-
vis spectrophotometer (Thermo Scientific, Wilmington, 
USA), and the quality of DNA extracts were examined 
using 1% agarose gel electrophoresis. The primer pairs 
338F (5′-ACT​CCT​ACG​GGA​GGCA GCAG-3′) and 
806R (5′-GGA​CTA​CHVGGG​TWT​CTAAT-3′) [68, 
69] and the primer pairs 524F10extF (5′-TGY​CAG​CCG​
CCG​CGG​TAA​-3′) and Arch958RmodR (5′YCC​GGC​
G TTGAVTCC​AAT​T-3′) [70] were used to amplify 
the hypervariable region V3-V4 of the bacterial 16S 
rRNA gene and V4-V5 of archaeal 16S rRNA gene, 
respectively.

The PCR amplification of 16S rRNA gene was per-
formed as follows: initial denaturation at 95 °C for 3 
min, followed by 27 cycles of denaturing at 95 oC for 30 
s, annealing at 55 oC for 30 s and extension at 72 oC for 
45 s, and single extension at 72 oC for 10 min, and end at 
10 oC. The PCR mixtures contain 5 × TransStart FastPfu 
buffer 4 μL, 2.5 mM dNTPs 2 μL, forward primer (5 μM) 
0.8 μL, reverse primer (5 μM) 0.8 μL, TransStart FastPfu 
DNA Polymerase 0.4 μL, template DNA 10 ng, and finally 
ddH2O up to 20 μL. The PCR reactions were performed 
in triplicate.

The PCR products were extracted from 2% agarose gel 
and purified using the AxyPrep DNA Gel Extraction Kit 
(Axygen Biosciences, Union City, CA, USA) according to 
manufacturer’s instructions and quantified using Quan-
tus™ Fluorometer (Promega, USA). The qualified PCR 
products were mixed, and paired-end sequenced on an 
Illumina MiSeq PE300 platform (Illumina, San Diego, 
USA) according to the standard protocols by Majorbio 
Bio-Pharm Technology Co. Ltd. (Shanghai, China).
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Bioinformatics analysis
All paired rRNA amplicon sequencing raw reads were 
processed via the Quantitative Insights into Microbial 
Ecology 2 (QIIME2) version 2020-2 [71]. Briefly, raw 
sequence data were imported into QIIME2 manually 
using the “qiime tools import” command. The quality 
trimming, denoising, merging and chimera detection and 
non-singleton amplicon sequence variants (ASVs) group-
ing were done using the plugin “qiime dada2 denoise-
paired” in DADA2 [72] as implemented in QIIME2 
v2020-2. The “-p-trimleft-f” and “-p-trim-left-r” param-
eters were set at 0 and the “-p-trunc-len-f” and “-ptrunc-
len-r” parameters were set at 294 for bacteria and 298 
for archaea, respectively, after reviewing the “Interactive 
Quality Plot tab” in the “demux.qzv” file. After the quality 
filtering steps, the ASV abundance tables were rarefied at 
4337 for bacteria and 2083 for archaea, according to the 
“Interactive Sample Detail” in the “table.qzv” file, respec-
tively to ensure even sampling depth. The α-diversity 
analyses were conducted from the rarefied ASV abun-
dance tables through the core-metrics-phylogenetic 
method in the q2-diversity plugin. The bacteria AVSs 
were taxonomically classified using the qiime2 v2020-2 
plugin “qiime feature-classifier classify-sklearn” with the 
pre-trained Naïve Bayes Greengenes classifier trimmed 
to the V3-V4 region of the 16S rDNA gene. The archaea 
ASVs were analyzed by RDP Classifier [73] against the 
SILVA Small Subunit rRNA Release v11.5 using a confi-
dence threshold of 0.7. Furthermore, the taxa that were 
not present in at least 5% of total samples were removed 
from the matrices for both bacteria and archaea to reduce 
the noise [74]. The bacterial and archaeal ASVs were 
functionally annotated by FAPROTAX [75] and assigned 
to putative functional groups, i.e., microbial groups asso-
ciated with carbon cycle, nitrogen cycle, or sulphur cycle.

Statistical analysis
All the statistical analyses and data visualization were 
performed in R statistical software (V. 3.6.3 [76]). To 
examine how tree and shrub species richness as well 
as tree mycorrhizal type impact microbial community 
diversity and composition, we used the vegan pack-
age [77] to calculate the Chao1 index for bacterial and 
archaeal richness and diversity, as well as unweighted 
UniFrac distance matrices to measure β-diversity.

The significance of different factors on community 
dissimilarity was tested with PERMANOVA by permu-
tations of 999 in using the ‘adonis2’ function with the 
term “by=margin” of the vegan package [77] based on 
unweighted UniFrac distances. To investigate the impact 
of plant species richness on α-diversity, β-diversity, 
and volume growth, we utilized the Chao1 index, the 
unweighted Unifrac distance of bacterial and archaeal 

communities, and the volume increment between 2017 
and 2018 as response variables, and tree species richness 
as the predictor variable to perform linear regression. The 
multiple R-squared value (r2) and the significance of the 
model were used to evaluate the model fit.

To identify taxa with statistically significant differen-
tial abundant taxa across different levels of plant species 
richness, we utilized the DESeq2 package [78] to perform 
pairwise comparisons in a negative binomial general-
ized linear model in at an FDRadjusted p value of 0.05. 
To investigate the specific microbial groups under differ-
ent levels of tree species richness, we conducted bipartite 
network analysis with the software Cytoscape [79] follow-
ing the method described in a previous study [80]. The 
network association analysis was performed by igraph 
package [81] and visualized in Gephi [82] to explore the 
co-occurrence of microbial features from a holistic per-
spective. To evaluate the correlation of environmental/
microbial properties with βdiversity distance matrices of 
bacterial and archaeal communities, we selected a set of 
fourteen predictor variables including eight soil physico-
chemical properties (pH, SM, NO3

-, MBC, MBN, C, N, P, 
C/N, C/P), two soil microbial biomass predictors (MBC 
and MBN), and four topographic properties (aspect, alti-
tude, d.SLOPEnew, and d.GRA_NS) to perform Mantel 
tests using ade4 package [83], all of which exhibited low 
multicollinearity (indicated by variance inflation factor 
values between 1 and 5) [84]. The correlation was visual-
ized using the MatCorPlot package [85]. To tease apart 
the effects of tree and shrub species richness on bacte-
rial or archaeal microbiome and the consequences on 
stand-level tree productivity, Structural Equation Model-
ling (SEM) were performed. The SEM models were built 
based on the conceptual model shown in Figure S2, using 
the “sem” function in lavaan package [86]. The path coef-
ficient represents the direction and strength of the direct 
effect between two variables. The goodness of fit was esti-
mated using three indices: (i) the root mean square error 
of approximation (RMSEA < 0.05) [87], (ii) the compara-
tive fit index (CFI > 0.95) [88], and (iii) the standardized 
root mean squared residuals (SRMR < 0.08) [89].

Results
Soil bacterial and archaeal α‑diversity
For the soil bacterial community, α-diversity (expressed 
as Chao1) reduced from monocultures to 2-tree species 
mixtures (p < 0.001) and 4-tree species mixtures (p < 
0.001) and was affected by an interaction between shrub 
and tree species richness (Fig. 2a). The interaction indi-
cated that bacterial α-diversity increased with increas-
ing shrub species richness for tree monocultures but 
decreased in 4-tree species mixtures. When tree species 
richness is 2, bacterial α-diversity increased generally 
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with increasing shrub richness, except for a significant 
decrease in shrub richness at 4. For archaea, Chao1 
increased from monocultures to 2-tree species mixtures 
(p < 0.05) and 4-tree species mixtures (p < 0.05) (Fig. 2a). 
Moreover, shrub species richness enhanced archaeal 
α-diversity, especially in the context of 2- and 4-species 
tree mixtures (Fig. 2a). When considering the mycorrhi-
zal types of the focal tree species, we found the bacterial 
diversity was higher for ectomycorrhizal (EcM) than for 
arbuscular fungi-colonized trees (AM) (p < 0.05). The 
bacterial α-diversity decreased from monocultures to 
polycultures for both EcM and AM trees (p < 0.001) (Fig-
ure S3a). However, no significant differences of archaeal 
diversity were found between EcM and AM tree spe-
cies, only the archaeal α-diversity of EcM tree species 
increased with increasing tree species richness (p < 0.01), 
but not for AM tree species (Figure S3b).

We found that the ratio of MBC to soil organic C 
(MBC/Corg) and the ratio of MBN to soil organic N 
(MBN/Norg) were positively correlated to archaeal 
α-diversity. Soil organic C significantly negatively related 
to both bacterial and archaeal α-diversity (Table 1).

The composition bacterial and archaeal communities
We found that bacterial community composition dif-
fered between levels of tree species richness and shrub 
species richness, but the effects of tree species richness 
on bacterial community composition were stronger than 
effects of shrub species richness (Fig. 2b; Table 2). In con-
trast, soil archaeal communities were influenced by shrub 

species richness, but generally not by tree species rich-
ness (Fig. 2b; Table 2). In addition, bacterial community 
composition was influenced by the interaction between 
tree and shrub species richness (Table 2).

Soil bacterial community composition varied between 
EcM and AM trees (PERMANOVA test, F = 1.68 p < 
0.010) (Figure S4a). In addition, tree species richness 
had a significant effect on bacterial community structure 
under both EcM and AM trees (Table S2). For archaeal 
community composition differences between tree mycor-
rhizal types were less pronounced (Figure S4b) and it was 
not affected by differences in tree and shrub species rich-
ness under the canopy of EcM or AM trees (Table S2).

We found that soil moisture (SM), pH, the soil C/N, 
and two topographical factors d.SLOPEnew and d.GRA_
NS were positively associated with bacterial commu-
nity composition (p < 0.05) (Fig. 3). However, there was 
no significant correlation between these factors and soil 
archaeal community composition (Fig. 3).

Bacterial and archaeal taxonomic and functional groups
For all 384 soil samples, we obtained a total of 70,836 
ASVs for bacterial and 13,552 ASVs for archaeal com-
munities. The dominant bacterial phyla across all sam-
ples were Acidobacteria (36.44% of the total bacterial 
sequences), Proteobacteria (27.99%), and Chloroflexi 
(6.37%) (Fig. 4a). As for the taxonomic abundance of the 
soil archaeal communities, the phyla Thaumarchaeota 
(56.97% of the total archaeal sequences), Euyarchaeota 
(29.00%), and Crenarchaeota (12.78%) dominated the 

Fig. 2  Soil bacterial and archaeal α-diversity and community structure. a tree richness and shrub richness effects on soil microbial α-diversity; b 
tree richness and shrub richness effects on soil microbial β-dissimilarity. The asterisks showed the p-value significance level, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001 and ns showed no significance
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Table 1  Pearson correlation of bacterial and archaeal α-diversity with environmental variables

SM, MBC, MBN, C and N respectively refers to soil moisture, microbial biomass C, microbial biomass N, soil organic C and N. Note: Bold indicates the significant values

Bacterial abundance Archaeal abundance Bacterial Chao1 index Archaeal Chao1 index

r p r p r p r p

pH -0.084 0.099 -0.017 0.742 -0.060 0.241 -0.033 0.523

SM -0.006 0.900 -0.037 0.465 -0.010 0.850 -0.057 0.267

NH4
+ -0.040 0.434 0.048 0.351 -0.015 0.762 0.048 0.344

N03
− 0.067 0.193 0.113 0.026 0.060 0.237 -0.085 0.096

N -0.010 0.851 0.084 0.099 0.009 0.854 0.010 0.847

MBC 0.047 0.360 0.104 0.042 0.072 0.161 0.030 0.557

MBN 0.022 0.668 -0.012 0.811 0.003 0.947 -0.009 0.856

MBC/MBN 0.004 0.934 0.060 0.243 0.026 0.607 0.006 0.901

MBC/Corg 0.081 0.115 0.176 0.001 0.115 0.025 0.121 0.017
MBN/Norg 0.047 0.358 0.113 0.027 0.047 0.360 0.107 0.037
P -0.052 0.309 -0.051 0.316 -0.065 0.203 -0.034 0.513

C -0.125 0.014 -0.165 0.001 -0.142 0.005 -0.189 0.000
C:N -0.002 0.976 0.137 0.007 0.025 0.631 0.059 0.252

Table 2  The effects of tree and shrub richness on the compositional variances of soil bacterial and archaeal communities based on 
PERMANOVA with 999 permutations. Note: Bold indicates the significant values

Bacterial community Archaeal community

df F p value df F p value

Tree richness (TR) 2 3.405 0.001 2 0.767 0.992

Shrub richness (SR) 3 1.424 0.001 3 1.168 0.028
Interaction (TR × SR) 6 1.254 0.001 6 0.942 0.831

Fig. 3  Pairwise correlation matrix of environmental factors with Mantel tests of bacterial and archaeal communities. Red and blue lines indicate 
positive and negative correlations, respectively, while solid and dashed lines indicate the significant correlations (p < 0.05) and insignificant 
correlations (p > 0.05)
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archaeal communities (Fig. 4a). We found that tree spe-
cies richness affected the relative abundance of certain 
bacterial taxonomic groups (Table S3). For example, 
the relative abundances of Chloroflexi increased with 
increasing tree species richness, while the relative abun-
dances of Acidobacteria and Firmicutes were lower 
in 4-species mixtures compared to monocultures and 
2-species mixtures. The abundance of the phylum Pro-
teobacteria was lower in 2-species mixtures than mono-
cultures (Table S3). In addition, the relative abundance of 
bacterial phyla was more likely to change with increas-
ing shrub species richness, as tree species richness 

increased (Table S3). When tree species richness was 
at level 1, the relative abundance of bacterial phyla did 
not differ between shrub monocultures and other shrub 
diversity levels. However, the relative abundance of Aci-
dobacteria decreased significantly from shrub richness 
level 2 to 4 when tree species richness level increases to 
2, and increased significantly from shrub richness level 
2 to 4 (or 8) when tree species richness increased to 
4 (Table S3). For archaea, we found little effects of tree 
and shrub species richness on relative abundances (Table 
S3). Furthermore, we did not find significant differences 
in the taxonomic composition of bacterial or archaeal 

Fig. 4  A general overview of changes in taxonomic composition and species abundance for bacterial and archaeal communities affected 
by increased plant species richness. a the relative of phylum-level taxa dominated across tree species richness and shrub species richness 
levels; b bipartite networks illustrating the specific and conserved amplicon sequence variants (ASVs) assigned to monoculture, two-species 
mixtures, and four-species mixtures and their combinations, respectively for soil bacterial and archaeal community; c volcano plots showing 
up- and down-regulated ASVs in three comparisons: tree richness of 1 and 2, tree richness 1and 4, tree richness of 2 and 4. An adjusted p 
value < 0.01 is indicated in red, while an adjusted p value < 0.01 is indicated in black. The top ten ASVs with the most significant differences 
in abundance were indicated by their ID numbers and the numbers of ASVs with significantly differences in abundance for the three comparisons 
are indicated in bracket
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communities in soils collected under EcM and AM trees 
(Figure S5).

Two bipartite association networks were used to assess 
the contribution of different microbial populations to the 
overall community structure (Fig. 4b). For this purpose, 
we obtained a specific subset of ASVs with their taxo-
nomical assignments at each tree species richness level 
and core ASVs in their combinations (Fig. 4b; Table S4). 
We found that the abundance of ASVs in specific subset 
for either bacteria or archaea decreased with increasing 
tree species richness (Fig. 4b; Table S4). In addition, we 
found that the tree and shrub species richness signifi-
cantly altered the abundance of microbial ASVs (Fig. 4c; 
Figure S6), with increasing tree species richness lead-
ing to a gradual increase in the number of bacterial dif-
ferential ASVs, however, no such trend was observed for 
archaea (Table S5).

Our results showed that a large proportion of bacterial 
and archaeal ASVs were assigned to C-cycle and N-cycle 
groups (Figure S7). The relative abundance of bacteria 
was significantly lower in the C-cycle and S-cycle groups 
but higher in the N-cycle group in 4-tree species mix-
tures compared to monocultures and the relative abun-
dance of archaeal C-cycle group was significantly higher 
in monocultures than 2-tree species mixtures (Table S6).

Bacterial and archaeal network complexity
Tree species richness decreased network complexity for 
bacteria (Fig.  5a), indicated by a decline in the average 
degree, network density, modularization, the number of 
nodes, and the number of edges. Network complexity did 
not change for archaea (Fig.  5b) and interactive effects 
of tree and shrub species richness on soil bacterial and 
archaeal co-occurrence networks were limited (Figure 
S8-S9).

The role of soil bacteria and archaea modifying BEF 
relationship
This study found a significant increase in stand-level 
volume growth with increasing tree species richness 
from monoculture to 2-species mixtures and 4-species 
mixtures, and a significant superimposed effect at the 0, 
2, and 4 shrub species richness levels (Fig.  6a). We also 
found significant effects of plant diversity on soil key ele-
ments and MBC/Corg (Figure S10), some of which were 
further identified as key factors regulating the relation-
ship between aboveground plant richness and below-
ground microbial communities, and then determining 
plant productivity (Fig.  6b). Specifically, soil C/N was 
positively correlated with MBC/Corg, and consequently 
increased tree productivity (Fig.  6b). Tree species rich-
ness exhibited a significantly positive effect on MBC/Corg 
as well (Fig.  6b). Most interestingly, we found that tree 

species richness positively linked to bacterial diversity, 
and modulate bacterial community composition, which 
then contributed to the increase in stand-level tree pro-
ductivity (Fig.  6b). Impacts of tree species richness on 
bacterial community composition were modulated via 
altered soil C/N (Fig. 6b). Here, we note that the bacterial 
composition rather than diversity was a direct positive 
driver on MBC/Corg, thereby contributing to an increase 
in stand-level tree productivity (Fig. 6b). Neither tree nor 
shrub species richness directly altered the diversity and 
composition of archaeal community (Fig.  6b). However, 
we found that tree species richness influenced archaeal 
diversity via regulating soil C/N (Fig. 6b). Archaeal diver-
sity was positively associated with MBC/Corg ratio, which 
then increased stand-level tree productivity (Fig. 6b).

Discussion
In our study, we explored how tree and shrub species 
richness affected the diversity, complexity, and compo-
sition of bacterial and archaeal communities in a large 
subtropical tree biodiversity experiment. In addition 
to earlier work on fungal communities [90, 91], we now 
show for the first time that tree species richness drives 
shift in bacterial and archaeal α-diversity and bacterial 
community composition (H1). In addition, we found 
significant interactions between tree and shrub species 
richness levels, indicating that the shrub species richness 
effect on bacterial α-diversity was dependent on tree spe-
cies richness (H1). The complexity of the bacterial net-
works was found to decrease significantly with increasing 
tree species richness but was not altered by shrub species 
richness (H2). The complexity of archaeal co-occurrence 
network was not correlated with either tree or shrub spe-
cies richness (H2). Contrary to the view that the presence 
of shrub competition in forests may reduce tree produc-
tivity [16], we found that both tree and shrub species 
richness contributed to tree productivity and highlighted 
soil bacterial and archaeal communities as vital linkages 
between plant richness and stand-level tree productiv-
ity in the context of plant-created soil chemical proper-
ties (H3). In summary, our study provided novel insights 
that diversity and composition of prokaryotic communi-
ties are responsive to tree species richness and appear to 
play a role in driving tree productivity; hence, the inclu-
sion of them in forest soil community analyses is there-
fore important for better understanding the functioning 
of these ecosystems.

Tree‑shrub species richness affected the bacterial 
and archaeal diversity and community composition 
under the canopy of focal tree species
In contrast with our first hypothesis that soil microbial 
α-diversity increases with the increasing tree species 



Page 10 of 16Tao et al. Microbiome          (2023) 11:261 

diversity, we found that plant community richness had 
a negative effect on soil bacterial diversity under the 
canopy of focal trees, indicating that the most diverse 
bacterial communities in our study occurred in mono-
cultures and that diversity decreased with increasing 
community-level tree richness. This is in contrast with 
earlier work in grassland [10] and on fungal communi-
ties in the BEF-China experiment [29]. Unlike these ear-
lier studies, we have collected soil samples underneath 
individual trees rather than at the community level, and 
it is therefore reasonable to suggest that the decline in 

soil bacterial diversity may point to a ‘dilution effect’ 
[26, 92]. From this perspective, the tree species richness 
gradient from 1, 2 to 4 resulted in reducing densities 
of conspecific tree species in the focal tree species, so 
that some focal treespecific bacteria may be restricted. 
In addition to the sampling strategy, we also speculated 
that the soils in tree monocultures with low-diversity 
resources may amplify bacterial competitive pressures, 
resulting in highly antagonistic bacterial communities, 
while higher diverse plant communities that provided 
diverse resources to the soil may reduce microbial 

Fig. 5  The co-occurrence networks of bacterial communities (a) and archaeal communities (b) in three tree species richness levels, monocultures, 
two-species mixtures and four species-mixtures, respectively. The nodes in the networks are colored according to the taxonomic assignments 
at phylum level and the size of each node is proportional to the relative abundance
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competitive pressure and generate less diverse bacterial 
communities [55, 93, 94].

In line with our first hypothesis, we found that tree 
and shrub species richness resulted in shifts in bacte-
rial community composition. In addition, we found that 
bacterial community composition became more simi-
lar with increasing tree species richness, which is in line 
with earlier findings from the BEF-China study that fun-
gal community composition was more similar in multi-
tree species mixtures [31]. The community composition 
and diversity can be pronouncedly changed by modulat-
ing the soil chemistry resources, which can promote or 
inhibit the relative abundance of specific microbial taxa 
[95].

As part of our hypothesis (H1), we postulated that 
the α-diversity of soil archaea increases with increas-
ing tree species richness but decreases with increasing 
shrub species richness. Our results are partly consistent 
with this hypothesis that α-diversity of the soil archaea 
consistently increased with increasing tree species rich-
ness, likely due to changes in the abundance of ammonia-
oxidizing archaea resulting from increasing tree species 
richness [96, 97]. However, we found that the effect of 
shrub species richness on archaeal diversity was rather 
weak. One possible explanation is that the changes in 
nitrogen content brought about by the changes in shrub 
species richness were not sufficient to cause a significant 
difference in archaeal diversity. Furthermore, neither 
tree species richness nor shrub species richness showed 
a significant effect on soil archaeal compositional varia-
tion, unlike bacteria, which may be related to their large 
differences in environmental adaptations, cellular struc-
ture, or cellular metabolisms [98, 99]. Despite the key 
role archaea play in soil biogeochemical cycles, studies 
on how their abundance is influenced by plant diversity 
remain extremely sparse [100].

Notably, our findings also underline the need to con-
sider the tree mycorrhizal types as important factor in 
studying ‘tree-shrub diversity-soil prokaryotic com-
munity’ relationships. We found that both bacterial 
and archaeal α-diversity showed significant differences 
between mycorrhizal types and the mycorrhizal type of 
the focal tree species influenced the microbial response 
pattern to tree species diversity. This is mainly because 
different mycorrhizal types-associated fungi differ in 
their strategies of resource acquisition, nutrient alloca-
tion, and plant-soil feedback, which could affect their 
recruitment of different microbes in the mycorrhizos-
phere [101]. In contrast to our results, a previous study 
examining the same field experiment showed no sig-
nificant difference in soil bacterial α-diversity between 
EcM and AM trees [31]. This contrasting result may be 
because the study selected two adjacent EcM and AM 

Fig. 6  Plant richness affects tree productivity by regulating 
soil properties and microbial communities. a Stand-level tree 
volume increment as a function of aboveground plant richness 
from 2017–2018. b Structural equation models demonstrating 
the direct and indirect effects of aboveground plant richness on soil 
nutrient contents, microbial communities and community-level tree 
productivity, red arrows indicate significant and positive relationships 
(p < 0.05), and dashed arrows indicate connections with insignificant 
relationship (p > 0.05). TC: total carbon, TN: total nitrogen, TP: total 
phosphorus, SM: soil moisture, C/N: the ratio of soil organic C and N, 
MBC/Corg: the ratio of microbial biomass C and soil organic C
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trees as a target sampling unit, making the difference in 
soil nutrient resources not significant enough to affect 
bacterial diversity.

The bacterial and archaeal communities under the canopy 
of focal tree species exhibited different co‑occurrence 
patterns with increasing tree species richness
The shifts of topological characteristics in co-occurrence 
network inferred from soil bacteria along a tree spe-
cies richness gradient suggests that tree species rich-
ness influences its complexity; however, contrary to our 
hypothesis (H2), the network complexity decreased pro-
gressively from monocultures to 2-tree species mixtures 
and 4-tree species mixtures. Bacterial network assembly 
has been found in many studies to be a deterministic pro-
cess involving competitive interactions, non-overlapping 
niches, and thus follows a power-law distribution pat-
tern when bacterial communities are constructed [48, 49, 
102]. Therefore, we proposed the niche differentiation 
caused by the tree species richness could be the main 
reason for changes in bacterial network complexity, with 
plant monocultures providing a smaller variety of weaker 
niche differentiation than polycultures, and the weaker 
niche differentiation, the stronger microbial interactions 
would be [49, 102, 103].

The topological features of archaeal co-occurrence net-
work are not influenced by tree species richness, contrary 
to our expectations (H2). One proposed explanation is 
that the archaeal interaction is structured as a random 
network following the ErdosRenyi model [49, 104], where 
the presence or absence of edges is a stochastic process, 
implying that all interactions between archaea are equally 
possible. This view is also supported in a recent study of 
archaeal biogeography showing that the diversity pat-
terns of soil archaea are largely influenced by stochas-
tic processes [105], that is, neutral processes are more 
important than deterministic factors for soil archaea.

The roles of bacterial and archaeal community 
in regulating the relationship between tree‑shrub species 
richness and community‑level tree productivity (BEF)
Both tree and shrub species richness contributed sig-
nificantly to the increase in standlevel tree productivity, 
confirming our hypothesis (H3). Tree species richness 
can promote their productivity and thus accelerate C 
stock [106] and the underlying mechanism is often sum-
marized as ecological niche complementarity [12]. 
Although shrub competition exists at low shrub species 
richness levels, but generally, diverse shrub communi-
ties positively contribute to stand-level tree productivity, 
suggesting that competition between shrubs and trees 
is reduced at higher shrub diversity, and indicating that 

complementarity effects extend from tree-tree interac-
tions to tree-shrub interactions [16].

In addition, our study also provides insight into the 
potential role microbial communities play in this posi-
tive BEF relationship. The SEM model suggests that soil 
C/N is a critical linkage between plant diversity and tree 
productivity by influencing bacterial and archaeal com-
munities. Bacteria and archaea inhabiting forest soil are 
important players in geochemical cycles and organic 
matter recycling, particularly in the C cycle [107]. The 
complexity of C cycling is often interlinked with the N 
cycle, influencing nitrification and denitrification pro-
cesses and subsequently C/N [108]. Plant species rich-
ness significantly drove incremental soil C/N, which 
can be explained by increased carbon release from trees 
to the soil through litter production [109] and root exu-
dates [110]. Both C and N are closely linked to microbial 
growth and development in biogeochemical cycles, and 
C/N has a direct effect on the relatively microbial biomass 
C (MBC/Corg), mainly because soil bacteria and archaea 
are predominately heterotrophic organisms that gener-
ally derive energy from the decomposition and minerali-
zation of organic matter [39]. In a given ecosystem with 
high nutrient and resource availability, microbial biomass 
synthesis is prioritized over catabolism [111]. As a result, 
the stoichiometry (e.g., C/N) of soil organic matter is crit-
ical for regulating microbial communities and increasing 
microbial activity. Such increases can therefore induce 
biogeographical cycling of nutrients and maintain higher 
levels of functioning by increasing physiological potential 
of microorganisms, thus promoting tree volume growth 
at the community level. This view is supported by a study 
showing that plant diversity mediates the metabolic 
activity of soil microbes via higher root inputs and soil N 
status and C storage, which would be expected to lead to 
increased microbial activity [24]. However, in this study, 
the response of soil bacterial and archaeal communities 
was only investigated using amplicon sequencing. The 
response of microbial functions to increased plant spe-
cies richness would be another intriguing exploration for 
future research.

Conclusions
Here, we provide pioneering empirical evidence for the 
interactive effects of tree and shrub species richness on 
soil bacterial and archaeal communities under the cano-
pies of focal trees in our long-term biodiversity forest 
experiments. We demonstrate that α- diversity, co-occur-
rence networks, and community composition of bacteria 
and archaea follow different patterns towards increasing 
tree and shrub species richness. For bacterial communi-
ties, the α-diversity, and the complexity of co-occurrence 
network decreased with increasing tree species richness, 
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and the effect of shrub species richness on bacterial 
α-diversity varied across tree species richness levels. Our 
results highlight the dilution effect of tree species rich-
ness on soil bacterial diversity in tree diversity experi-
ment. We also demonstrate that changes in bacterial 
community composition may be the result of the direct 
effects of plant species richness, or indirect effects of 
them via changing edaphic properties (e.g., C/N and 
pH). In contrast, for archaeal communities, the effects of 
tree and shrub species richness on α-diversity, microbial 
network complexity, and community composition were 
somehow ambiguous, while edaphic properties barely 
altered the archaeal community composition. Finally, we 
found that both tree and shrub species richness strongly 
increased the stand-level tree productivity through direct 
or indirect regulations on soil microbiota, however, their 
contributions and the roles of bacterial and archaeal 
communities in this process were content dependent. 
Tree species richness could indirectly accelerate bacterial 
diversity and modulate bacterial community composi-
tion via stimulating soil C/N, inducing a cascading effect 
on tree productivity. As for archaea, only the diversity 
of them increased with increasing soil C/N that may be 
attributable to tree species richness and thus contributed 
to stand-level tree productivity. Our findings highlight 
the important role of soil microbiome in modulating the 
relationship between tree and shrub species richness and 
productivity in subtropical forests.
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