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Abstract 

Background Identification of pathogenic bacteria from clinical specimens and evaluating their antimicrobial resist‑
ance (AMR) are laborious tasks that involve in vitro cultivation, isolation, and susceptibility testing. Recently, a number 
of methods have been developed that use machine learning algorithms applied to the whole‑genome sequencing 
data of isolates to approach this problem. However, making AMR assessments from more easily available metagen‑
omic sequencing data remains a big challenge.

Results We present the Metagenomic Sequencing to Antimicrobial Resistance (MGS2AMR) pipeline, which detects 
antibiotic resistance genes (ARG) and their possible organism of origin within a sequenced metagenomics sample. 
This in silico method allows for the evaluation of bacterial AMR directly from clinical specimens, such as stool sam‑
ples. We have developed two new algorithms to optimize and annotate the genomic assembly paths within the raw 
Graphical Fragment Assembly (GFA): the GFA Linear Optimal Path through seed segments (GLOPS) algorithm 
and the Adapted Dijkstra Algorithm for GFA (ADAG). These novel algorithms improve the sensitivity of ARG detec‑
tion and aid in species annotation. Tests based on 1200 microbiome samples show a high ARG recall rate and cor‑
rect assignment of the ARG origin. The MGS2AMR output can further be used in many downstream applications, 
such as evaluating AMR to specific antibiotics in samples from emerging intestinal infections. We demonstrate 
that the MGS2AMR‑derived data is as informative for the entailing prediction models as the whole‑genome sequenc‑
ing (WGS) data. The performance of these models is on par with our previously published method (WGS2AMR), which 
is based on the sequencing data of bacterial isolates.

Conclusions MGS2AMR can provide researchers with valuable insights into the AMR content of microbiome environ‑
ments and may potentially improve patient care by providing faster quantification of resistance against specific antibi‑
otics, thereby reducing the use of broad‑spectrum antibiotics. The presented pipeline also has potential applications 
in other metagenome analyses focused on the defined sets of genes.
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Background
Antibiotic-resistant bacteria are a global problem caus-
ing millions of deaths worldwide [1, 2]. Early detection 
of emerging human pathogens and rapid evaluation of 
their antimicrobial resistance (AMR) profile are of vital 
importance. Such detection and evaluation can guide the 
choice of an effective antibiotic (AB) treatment regimen 
and can prevent the development of novel AMR [3]. A 
common way for bacteria to develop AMR is by acquir-
ing antibiotic resistance genes (ARG) [4]. One of the 
most comprehensive, curated lists of ARG is maintained 
by the NCBI Bacterial Antimicrobial Resistance Refer-
ence Gene Database [5]. Bioinformatics tools leveraging 
the high-throughput sequencing (HTS) data from bac-
terial isolates are already able to detect ARG presence 
and subsequently predict their AMR [6]. Deployment 
of such tools in clinical settings can potentially shorten 
the time needed to obtain antibiograms compared to the 
current practice of laboratory culturing and AB testing. 
Faster antibiograms will make therapy more effective and 
improve patient outcomes [7, 8].

Clinical samples containing just a single bacterium are 
mostly limited to infections of otherwise sterile com-
partments of the body, such as blood or cerebral spinal 
fluid. The other body sites, however, such as the intes-
tines, lungs, or skin, are populated with a mix of various 
microbes (collectively called a microbiome) of which the 
bacterium causing an infection is only one [9]. Evalua-
tion of these samples requires the clinical laboratory to 
first isolate a suspected pathogen from a mixed popula-
tion and then perform antibiotic susceptibility testing; 
a process that may require several days. Hence, broad-
spectrum antibiotics are often used to treat these infec-
tions while awaiting identification and characterization 
of the infecting organism, though sometimes a therapy 
can be tailored when PCR-based detection of pathogens 
or some specific ARG is available [10–12]. Furthermore, 
culture-based methods are sometimes incapable of sepa-
rating pathogens from other non-pathogenic organisms, 
in which case antibiotic susceptibility of the infect-
ing organism cannot be determined using traditional 
methods.

Identifying a pathogen amongst the commensal 
microbes in the background and determining its spe-
cific AMR profile are the next logical steps, but it comes 
with a set of challenges. High-throughput metagenom-
ics sequencing (MGS) has to provide sufficient coverage 
and depth to detect ARG and its origin. Furthermore, the 
metagenomic sequencing reads are generally short pieces 
of DNA—dozens to several hundred base pairs (bp) 
long—that originate from any genomic regions, including 
those highly conserved across different strains (patho-
genic and commensal). Another challenge of the MGS 

analysis, more specific to ARG detection, is that many 
ARG are located on plasmids, i.e., mobile genomic ele-
ments that exist outside of a bacterial genome and can be 
highly similar between species or shared across species 
(e.g., through conjugation) [13]. Furthermore, a single 
bacterium can have multiple copies of a plasmid or even 
contain different plasmids [14].

In this work, we present MGS2AMR—a computational 
pipeline for the AMR evaluation of a microbiome sample 
based on high-throughput sequencing data. MGS2AMR 
detects ARG and suggests their origin. The results of the 
pipeline can be visualized and analyzed with an associ-
ated tool called MGS2AMR Explorer. We further dem-
onstrate a potential clinical application of the pipeline by 
using machine learning to detect the presence of poten-
tial pathogens within the intestinal microbiome and eval-
uating their geno- and phenotypical AMR, which may 
provide the clinician with advance notice of the presence 
and antibiotic resistance profile of an organism caus-
ing impending invasive infection. Such a workflow may 
improve clinical practice by providing the AMR informa-
tion early in the infection phase before complications, 
such as sepsis, arise.

The source code and latest release are available at 
https:// github. com/ piete rjanvc/ mgs2a mr.

Methods
Figure 1 provides a high-level overview of the proposed 
pipeline. MGS2AMR starts the search for known ARG 
within the MGS data using MetaCherchant [15] that 
makes alignment-free assemblies seeded by a set of refer-
ence genes. The identified ARGs are filtered by the quality 
of the assembly. For every retained ARG, the assembled 
surrounding genomic regions are evaluated to identify 
alternative paths over the sequence segments. These 
segments are then annotated and scored through the 
homology search against a bacterial nucleotide database, 
e.g., retrieved from NCBI, using BLASTn [16]. Finally, 
the assembly graphs and BLASTn results are combined 
to score the recovered ARG and link them with specific 
bacteria or plasmids of origin. The raw output from the 
MGS2AMR pipeline can be further processed depending 
on the application. Here, we demonstrate a specific appli-
cation of MGS2AMR by using its output to predict AMR 
to a set of commonly used AB within clinically important 
bacteria. The following sections will detail the tools and 
approaches used at every step.

Metagenomic sequencing analysis
ARG detection
The MGS2AMR pipeline starts with detecting known 
ARG in the MGS data using MetaCherchant [15]. This 
alignment-free metagenomics assembler makes assembly 

https://github.com/pieterjanvc/mgs2amr
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from a set of user-specified DNA seed sequences. The 
ARG sequences used as seeds were retrieved from 
the curated NCBI Bacterial Antimicrobial Resist-
ance Reference Gene Database (NCBI Accession ID: 
PRJNA313047). As of June 2021, this database contained 
information on 5804 ARG across all classes of AMR and 
bacterial species. If a seed is at least partially detected in 
the MGS, MetaCherchant initiates the assembly of the 
genomic region surrounding the seed. MetaCherchant is 
used with default settings, except for an imposed exten-
sion limit of 2000 nucleotides (nt) and chunk length of 
250 nt to accelerate the assembly and limit the size of the 
output files.

MetaCherchant generates graphical fragment assembly 
(GFA) files that list unitigs, linear sequence subgraphs of 
the overall graph. GFA is a type of graph that considers 
segments instead of nodes (Fig. 2A). Unlike nodes, a seg-
ment is a piece of DNA with 3′ and 5′ ends and therefore 
has direction. The GFA file specifies which ends of neigh-
boring segments are connected and how large the overlap 
is [17].

MetaCherchant generates a separate GFA for each ARG 
detected in the MGS data. The partially present seeds 
yield either multiple disconnected segments (Fig.  2B) 
or the seed segments bridged by non-seed segments 

(Fig. 2D–E). Ideally, GFA should represent a simple linear 
extension of ARG into its surrounding genomic regions 
(Fig. 2C). Practically, however, GFA is a complex network 
of diverging paths consisting of many smaller segments 
(Fig.  2D) due to the following possible reasons. (1) The 
ARG is (partially) present in multiple species within the 
metagenome, which results in the different surrounding 
genomic regions. (2) Other unrelated genomic regions 
in the metagenome share similarities with the ARG or 
immediate surroundings. (3) Sequencing errors or other 
technical imperfections result in lower quality reads pre-
venting correct assembly. (4) The bacterium is in low 
abundance (i.e., insufficient sequencing coverage) that 
makes assembly incomplete.

ARG assembly refinement
We developed the GFA Linear Optimal Path through 
Seed segments algorithm (GLOPS, Fig. 3A) to combine 
discontinuous seed segments (e.g., Fig.  2E) into one 
contig to reconstruct the full ARG sequence. First, the 
non-bypass and bypass seed segments are assigned as 
primary (Sp, marked green in Fig.  3B) and secondary 
(Ss, orange), respectively. All non-seed segments are 
tertiary (St, gray). Next, paths (P) over adjacent seg-
ments are extended from all primary segments in both 

Fig. 1 A flowchart of the MGS2AMR pipeline. The MGS2AMR pipeline accepts metagenomic sequencing (MGS) data as short‑read sequencing 
files in the FASTQ format. The MGS data is fed to MetaCherchant that makes genomic assembly using ARG sequences as seeds. The resulting 
raw assembly (GFA) files are subsequently processed to reconstruct the ARG and to score the assembly paths. These scores, in conjunction 
with the BLASTn homology search, are used to annotate the identified ARG with respect to the origin (bacterial species or plasmid). Rectangles 
represent data files, hexagons—software employed. File formats: FASTA, FASTQ, GFA Graphical Fragment Assembly, CSV comma‑separated values
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directions until one of the following four criteria is met 
(Eq.  1): (1) Another primary segment is encountered. 
(2) The end of the graph is reached. (3) The path over 
secondary and tertiary segments exceeds the maximum 
length (Lmax, set to 800 bp in this work). (4) The num-
ber of alternative paths exceeds the limit (set to 5000 
per primary segment in this work). The latter is critical 
to prevent computer memory overload while storing a 
high number of branching paths in case of poor-quality 
assemblies. The path search stops when all primary and 
secondary segments are found and linked.

where P is a path encompassing the ith primary segment 
Sp

I surrounded by the U, V, X, and Y sets of adjacent sec-
ondary and tertiary segments Ss and St, respectively, and 
terminating at kth and lth primary segments (Sp

k and Sp
l) 

or at the end(s) of the graph. Path weight is defined as the 
total number of k-mers, mapped to the given path, nor-
malized to the total length of the path. All lengths herein-
after refer to the number of nucleotides in the sequence.

(1)
P = S

p
k ∨∅, SsU , S
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Y , S

p
l ∨∅

SsU , S
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U ∩ X = ∅ ∧ V ∩ Y = ∅,

Then, the most optimal paths between primary seg-
ments are chosen based on the following criteria. (1) If 
there are paths from one primary segment to multiple 
other primary segments, the shortest path is chosen, pro-
vided the connecting primary segment is not an end seg-
ment. If primary segments are end segments, the longest 
path is chosen. (2) If there are multiple paths between 
two primary segments, the one with the longest second-
ary segment length is retained, keeping the path with the 
highest weight in case of ties.

In special cases, such as loops, the connection between 
primary segments with the longest distance is dropped 
to ensure a linear path. Loops can occur at low-quality 
assemblies. Also, if a path does not end at a primary seg-
ment (e.g., reached the end of the graph), the last encoun-
tered secondary segment is considered as the end of the 
path.

Lastly, all segments (and their extensions) between 
the start and end of the final path, but not part of it, 
are pruned resulting in a linear path that represents 
the reconstructed seed ARG. Isolated seed fragments 
may still be present in the graph if not all primary seg-
ments are connected (e.g., the gap is too large, or no 
path is found). Each reconstructed seed sequence is 

Fig. 2 Graphical Fragment Assembly. A Comparison between a traditional graph and a GFA. Circles represent nodes, rectangles—segments, lines 
are connections. B Incomplete assembly of ARG (not all fragments are linked). C Simple linear assembly from an ARG seed. D Complex branched 
assembly around ARG. E Zoom‑in on the fragmented seed ARG assembly from panel D. Segments originated from an ARG seed are highlighted 
green. Gray segments represent anextension of the assembly beyond the seed sequence. Here and in the following figures, GFA are visualized using 
the Bandage tool [18]
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then evaluated on coverage and sequence identity to 
the original ARG to be reported in the final output. In 
some cases, the full assembly cannot be completed, 
either due to a lack of coverage of the seed or because 
of a false positive match. This results in multiple small 
fragmented assemblies (Fig. 2B). An assembly is labeled 
as fragmented when the longest primary segment either 
has no extension or extends on one side only. Of note, 
tertiary segments below 100 bp are ignored while assess-
ing assemblies. When fragmented, the coverage and 
sequence identity of the ARG are estimated simply by 
summing all seed segment lengths.

At the end, GLOPS generates a table of all detected 
ARG with corresponding coverage, sequence identity to 
the seed, weight, and type (fragmented or not).

Filtering false positive and duplicate ARG 
Any ARG with coverage below 25% is removed as a false 
positive. On the other hand, the ARG reference database 
contains many genes that have high sequence similarity 
or represent subtypes (e.g., alleles) of the same ARG, such 
as the family of OXA β-lactamases [19]. Similar genes 
will generate nearly identical assemblies. Therefore, it is 

Fig. 3 GLOPS algorithm. A Flowchart of the algorithm. B Illustration of the work of GLOPS. Green segments are primary seed segments 
(non‑bypassable), orange—secondary seed segments (bypassable), and gray—tertiary segments (non‑seed). Blue segments are tertiary segments 
that are part of the final path
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necessary to remove duplicates and choose representa-
tives for downstream analysis.

Assuming a particular ARG is present in a given 
metagenome, its close orthologs from the ARG reference 
database will also yield assemblies resulting in similar 
GFA. Isomorphism detection in graph theory is a prob-
lem that has no solution in polynomial time [20]. How-
ever, since GFA is a special type of graph (Fig. 2A), a fast 
approximation is achievable. It is very unlikely that two 
genomic regions of different origins within the metagen-
ome would assemble in the exact same way, i.e., generate 
an identical list of segments. If two GFA share the exact 
same list of non-seed segments, one can assume these 
GFA are identical without the need to compare the layout 
of links between them. This simple list comparison iden-
tifies all duplicates in linear time.

This approach does not work when the GFA are not 
identical, i.e., there are minor differences in segments. 
In this case, the identity of segments between GFA is 
assessed using the calc_distmx function from the Use-
arch package [21]. This comparison is more computa-
tionally intensive and is therefore limited to the seed 
sequence and the immediately adjacent segments. If all 
segments in one GFA share sequence similarity over 90% 
to the corresponding segments in the other GFA, both 
assemblies are considered identical for MGS2AMR. For 
all GFA found identical, the seeds with the highest cov-
erage, sequence identity, and depth are kept for further 
analysis and the rest are removed as duplicates.

Evaluating the ARG genomic context
Pathfinding in genomic extensions of seed genes
After reconstructing and culling the ARG seeds in the 
GFA, MGS2AMR evaluates the assembly of the sur-
rounding non-seed genomic regions. The goal is to iden-
tify paths in the graph that represent bacterial genomes 
from which the ARG originated. For simple GFA (e.g., 
Fig. 2C), this is straightforward as there is only one path 
in either direction extending from the seed. However, in 
complex graphs (e.g., Fig. 2D), the enumeration and eval-
uation of all possible paths is a hard combinatorial prob-
lem. To tackle this, several steps are taken to retain only 
the most probable paths.

First, the search is limited to all shortest paths from end 
segments to the seed segment. An end segment has an 
adjacent segment on one side only (e.g., GFA segments C, 
D, E, and G in Fig. 2A). To identify all shortest paths from 
these end segments, we developed a new Adapted Dijk-
stra Algorithm for GFA (ADAG, Fig. 4). ADAG is based 
on the classical Dijkstra’s algorithm [22] for finding the 
shortest paths and has been adapted to accommodate the 
differences in graph traversal in GFA, where the direction 
of segments (DNA sequences) is important. For example, 

let us consider the path from E to A in Fig.  2A. In the 
traditional graph, the shortest path is (E,B,A), while it is 
(E,B,F,A) in the GFA. It is not possible to walk from B to 
A, as E and A are connected to the same side of B. Simi-
larly, there is no path from G to A in the GFA, whereas 
(G,C,A) is traversable in the traditional undirected graph. 
Some paths like (D,B,A) are valid in both graphs.

Once ADAG is complete, all paths in the GFA are eval-
uated for loops, which can form because segments have 
two orientations. A loop is defined when a segment is 
used twice in the same path (in sense and antisense direc-
tion). These loops are artifacts of imperfect DNA assem-
bly (e.g., sequencing errors, repeats, overlapping regions 
inter- or intra-genomic, etc.) and need to be resolved. 
Additional file  1: Figure S1 shows the different types of 
loops and how paths are corrected when loops occur.

Figure 5 illustrates the process of the ADAG algorithm 
on an example GFA wherein the ADAG simplified the 
overall complexity of the graph and removed loops. For 
this work, the path search is limited to the neighborhood 
of 2000 bp around the seed. This provides enough assem-
bly to evaluate the genomic environment around the 
ARG yet ensures that all relevant paths can be annotated 
through homology search in a practical time frame. First, 
only segments that are part of the shortest path from any 
end segments are kept (Fig. 5, steps 1–3). Then, the GFA 
is further pruned by removing any end segments shorter 
than 250 bp, as these often represent very small spurious 
assembly branches (Fig.  5, step 4). Finally, all consecu-
tive adjacent segments, except for the seed segments, 
are merged into new continuous segments Fig. 5, step 5). 
Figure 5A–C shows an example of this procedure on an 
actual GFA.

To perform all steps of GFA analysis and refinement 
described above, a new R package called gfaTools was 
developed within the environment of R version 4.0 + [23]. 
The package is distributed together with the MGS2AMR 
pipeline.

Genomic sequence homology search
Once the paths in each GFA are finalized, the MGS2AMR 
pipeline runs a sequence homology search of the path 
segments against the NCBI nucleotide database using 
the BLAST + software package [16]. All non-seed seg-
ments >  = 250 and seed fragments >  = 75  bp are used 
(e.g., Fig. 2B). Different GFA may have overlapping seg-
ments when their respective ARG are in close proximity 
to each other in the assembled sequence. This primar-
ily occurs for plasmids or ARG cassettes [24]. To avoid 
performing homology search multiple times for GFA 
with overlapping segments, all segments are compared 
for sequence identity using the cluster_fast algorithm 
from the Usearch package [21]. Sequences are considered 
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“identical” when they share 99% sequence identity and 
differ no more than 2.5% in length.

We used BLAST + settings optimized for long, high-
scoring matches to any bacterial genome or plasmid 
(Table 1). After the sequence homology search, each GFA 
segment receives the number of matches to bacterial spe-
cies accompanied by a set of alignment quality scores 
(e.g., bit score, coverage, and sequence identity) or zero if 
no matches are found.

Annotation by origin
In the final step of the MGS2AMR pipeline, the paths in 
the GFA and the segment homology search results from 
BLASTn are combined to annotate the detected ARG 
with any matching bacterial species. First, all homol-
ogy hits annotated as uncultured or mixed bacteria are 
removed while matches to plasmids are assigned an extra 
label to distinguish them from genomic matches.

The homology search results are used to check if any of 
the detected ARG are duplicates (Additional file 1: Figure 
S2). If two or more ARG segments from different GFA 
overlap in the same bacterium (or plasmid), these GFA 
likely represent the same ARG and only the one with the 
highest bit score is kept. Similar logic is applied to verify 
if the distance between a segment and the seed ARG in 
the GFA is the same as the distance between their respec-
tive matches in a genome/plasmid. If not, the segment 
match is likely a false positive and is discarded.

Next, paths are annotated by the origin (Fig.  6). A 
bacterium is considered a match only if it is found in 
a path through consecutive matching segments start-
ing from the seed ARG. Short segments not used for 
homology search (below cutoff, see previous section; 
denoted by ‘*’ in Fig. 6) are assumed to match the ori-
gin if the larger adjacent segments have a match. Paths 
are annotated at the strain level, i.e., segments have the 
same NCBI taxon ID.

Fig. 4 Adapted Dijkstra Algorithm for GFA (ADAG). All paths emanating from a given segment (i.e., the reconstructed seed segment) are 
enumerated, whilst keeping track of the distance traveled (in bp) and the total k‑mer count. Since segments have two directions, the path search 
is performed from both the 3′ and 5′ ends, also keeping track of the orientation in which segments are traversed. The search continues until all 
segments that can be reached have been visited or when a specified limit (distance from the start segment or number of iterations) is exceeded. 
Once finished, the shortest paths from the end segments are found by backtracking through the graph to the starting segment. Variables: seg = the 
3′ and 5′ segments ends (i.e., each segment has 2 orientations); prev = previous segment in shortest path; dist = distance from current segment 
to start; TK = total k‑mer count from current segment to seed; visited = segment has been visited by algorithm; end = end‑segment (true/false); 
LN = segment length; KC = segment k‑mer count; NA = Not Available; Inf = Infinity
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Fig. 5 Illustration of ADAG operation. Top panel. Schematic representation of best path retention in GFA. The green segment is the seed, and blue/
gray are the sequence assembly extensions. 1. Example of a GFA before path detection. 2. Removal of segments beyond the maximum distance 
from the seed. 3. Removal of segments not in a shortest path. Of note, while steps 1–3 are shown sequentially (for better illustration), ADAG 
completes them in one step. 4. Removal of short end segments. 5. Merging adjacent segments. Note that adjacent segments in a GFA overlap 
(30 nt) so the length of the merged segment is shorter than the sum of the original segments. Bottom panel. Example of path retention in real 
GFA. A Original GFA from MetaCherchant with many short segments and loops. B An inset that zooms in GFA to show a complexity of the original 
assembly. C Final GFA after running ADAG to reduce the overall complexity and remove loops

Table 1 BLAST + settings used in MGS2AMR

Parameter Value Comment

megablast Megablast is optimized for rapid homology search of nucleotide sequences with expected high sequence identity

taxidlist All bacterial 
NCBI taxa ID

The nucleotide database is masked to include bacterial sequences only. The full list of IDs was obtained from the NCBI 
taxonomy database with Entrez filter “txid2[Organism:exp]” (n = 515,103 at the time of writing)

word_size 64 The performance of BLASTn in recovering a bacterial host was consistent across word sizes 32, 48, and 64. As 
the longer word size contributes to faster searches, 64 was selected

max_hsps 3

qcov_hsp_perc 50

perc_identity 75

max_target_seqs 500 The initial BLAST + results are limited to the top 500 matches. However, when a particular segment matches 500 
times with identical bit scores across bacteria, the sequence homology search is repeated with the identity and cover‑
age set to the maximum value of the first run, with homology hits to return = 5000. This ensures that all top‑scoring 
bacteria are represented in the results
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Finally, the path score for each retained bacterial strain 
in the GFA is calculated. For the N segments in a path, let 
C be the segment coverage and B the corresponding bit-
score computed by BLASTn. The total path score Q for 
the bacterium is as follows:

The resulting annotation is a list of all candidate bac-
terial strains (i.e., accession numbers) that match in the 
GFA together with their total path score, the path score 
of the extension (i.e., excluding the seed ARG), the path 
length, and the path k-mer count. All data, including 
intermediate files, are saved in a user-defined output 
folder. Additionally, the MGS2AMR tool saves all results, 
metadata, and logs in an SQLite database, which allows 
not only easy data access but also resumption of the pipe-
line from intermediate stages in the case of unexpected 
issues. Additional details on the setup and configuration 
can be found in the MGS2AMR documentation.

MGS2AMR explorer application
The output generated by the MGS2AMR pipeline con-
tains a list of detected ARG associated with certain bac-
terial strains as the possible origin. However, all these 
strains are not necessarily present in a given micro-
biome, as one GFA path can potentially match multi-
ple organisms in the vast NCBI nucleotide database. 
MGS2AMR keeps all matches, though the highest score 
should denote the best match for a particular ARG. The 

(2)Q =
∑N

i=1
Bi × Ci

number of matches per ARG also depends on the qual-
ity of the assembly and subsequent processing, as long 
singular paths will generate more specific results com-
pared to complex or fragmented assemblies. The results 
can be refined, e.g., by removing the likely false positives, 
through imposing specific cutoffs or downstream statis-
tical analyses that can vary depending on the intended 
application. To gain more insights into the results, we 
designed an application to interactively visualize the 
MGS2AMR output.

MGS2AMR explorer is a R-Shiny application, distrib-
uted with the MGS2AMR package, that can be either 
run locally or installed on a server and accessed through 
an internet browser. The annotation data generated by 
MGS2AMR can be imported by either connecting to a 
MGS2AMR database or importing individual reports. 
The application allows the user to browse through the 
results and evaluate the detected ARG and matching 
bacteria.

Benchmarking the MGS2AMR pipeline
Benchmarking is focused on recovering pathogen-spe-
cific AMR characteristics from simulated emerging intes-
tinal infections caused by 6 clinically important bacteria: 
Acinetobacter baumannii, Enterobacter sp., Enterococcus 
faecium, Escherichia coli, Klebsiella pneumoniae, and 
Pseudomonas aeruginosa. All listed bacteria are known to 
be major contributors to the global burden of AMR on 
human health [1]. The metadata on AMR (ARG and labo-
ratory-derived AB resistance profile) were collected from 

Fig. 6 Schematic example of annotation of GFA segments after BLASTn. The green segment refers to the seed ARG and gray to the assembled 
environment. Letters A–G represent different bacterial strains matching the segments. Segments denoted by “*” are shorter than the segment cutoff 
and were not used in the homology search. “#” denotes that no significant homology hits were found. Hence, only strains A, B, C, and D are retained 
in the given example
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the Pathogen Detection Project [25]. This online resource 
from NCBI reports ARG presence in isolates as reported 
by the AMRFinderPlus tool [5] together with labora-
tory results of clinical AMR testing. Isolates with ARG 
marked by AMRFinderPlus as “complete,” “partial,” “par-
tial end of contig,” or “mistranslation” were considered 
in this study. All HTS files corresponding to the sam-
ples were downloaded from the NCBI Sequence Reads 
Archive using the SRA toolkit [26]. The SEQ2MGS tool 
[27] was used to combine sequencing reads from differ-
ent existing FASTQ files in proportion to the desired final 
relative abundance producing a realistic simulation of the 
metagenome sequencing experiments. By mixing real 
microbiome samples with well-characterized isolates, the 
MGS2AMR pipeline can be assessed for the detection of 
a mixed-in pathogen while challenged with the full com-
plexity of real MGS data.

For all bacteria of interest, sequencing experiments 
were randomly chosen from the Pathogen Detection Pro-
ject. The healthy metagenomes were chosen from control 
samples used in published metagenomics studies across 
different continents. The latter ensures the benchmark-
ing data represents the wide variety of healthy intestinal 
flora, which is influenced by many factors such as diet, 
geographical location, or genetic background. The origi-
nal MGS files can vary greatly in size due to sequenc-
ing depth. For this work, the total genomic content was 
set to be between 1.5 and 4.5 Gbp. For all 6 species, 50 
unique isolates were sampled and used 4 times. Isolates 
were randomly mixed into one of 100 backgrounds with a 
relative abundance between 1 and 10%. Although there is 
no definitive relative abundance at which intestinal infec-
tions can become clinically relevant, studies have shown 
that the range can be large, and sometimes only a few 
percent appears to be enough to cause illness [28]. Each 
background MGS sample was used 12 times. The com-
plete list of the 1200 samples generated by SEQ2MGS 
can be found in the supplemental validation data details 
(Additional file 3).

MGS2AMR performance is evaluated on two criteria: 
the detection of the mixed-in bacterium and detection 
of the associated ARG (using the Pathogen Detection 
Project metadata as a gold standard). For this work, the 
results are evaluated at the bacterial genus level and dif-
ferences in ARG alleles are ignored (e.g., CTX-M-16 and 
CTX-M-129 are considered the same gene). Extension 
from the ARG indicates an increased likelihood that the 
ARG is truly associated with the bacterium, which is 
quantified by the path score (a higher path score indi-
cating higher confidence in the association). Since the 
isolate-associated ARG is known in a given simulated 
microbiome sample, recall and precision for the mixed-
in bacterium can be calculated. Instances in which the 

true host shares a top score with other hosts are counted 
as true positives. However, the pipeline’s output reports 
all top-scoring ARG-host pairs. Additionally, we use 
the “ARG recall” metric to evaluate the sensitivity of the 
pipeline to detect the mixed-in ARG irrespective of the 
assignment of their origin. For example, if the mixed-
in bacterium has 5 distinct ARG and all are detected by 
MGS2AMR, but only 4 are assigned to the original bac-
terium (the fifth ARG annotated differently), the bacterial 
recall is 80%, but the ARG recall is 100%.

Application of MGS2AMR output to clinical AMR prediction
To demonstrate a potential application of the MGS2AMR 
pipeline output, we further processed the results gener-
ated from the 1200 samples (used to validate the tool) to 
predict the clinical AMR of the mixed-in bacterium (phe-
notypes known) to a set of specific AB.

Eight independent prediction models (one for each 
AB of interest) were built using a similar methodology 
described in detail in our previous work on phenotypic 
AMR prediction from sequenced bacterial isolates [7]. 
The AB considered for this work are ampicillin, cefepime, 
gentamicin, meropenem, tetracycline, tobramycin, tri-
methoprim-sulfamethoxazole, and vancomycin. The 
models were built species agnostic, i.e., no species infor-
mation was used during the training and thus phenotypic 
AMR prediction can be made for all 6 bacteria of interest 
using the same model.

The data (bacterial geno- and phenotypes) to train, 
validate, and test the XGBoost models was sourced from 
the Pathogen Detection Project and supplemented with 
the PATRIC database to increase the number of avail-
able antibiograms [25, 29]. A total of 1739 isolates (across 
the 6 bacteria) with both geno- and phenotype informa-
tion were collected. Table  2 summarizes the total num-
ber of samples available per antibiotic with the number 
of unique genes per relevant AMR class. As in our pre-
vious work, the XGBoost algorithm was chosen to train 
the models as it works well with sparse datasets, is less 
prone to overfitting, and provides the option to report 
important features of the model. As these models are 
merely used to demonstrate the possible application of 
the MGS2AMR pipeline and are not part of it, an in-
depth analysis of the models or comparison of different 
machine learning methodologies for AMR prediction is 
outside of the scope of this work, but has been the topic 
of related research [6, 7].

Each model, one per AB, takes a binary vector of ARG 
detected (present = 1, absent = 0) as an input and predicts 
clinical AMR to the AB as a 2-class problem (suscepti-
ble = 0, resistant = 1). To ensure biological consistency 
between genotype input and phenotype output, only ARG 
belonging to the AB class of the resistance model was 
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considered. For example, the model for gentamicin resist-
ance prediction only considers aminoglycoside-related 
ARG and ignores ARG from other AMR classes that might 
be present.

For each model, 70% of the data was used for training, 
with the remaining part split into 40% validation data for 
tuning the hyperparameters of the models, and 60% testing 
data to evaluate the performance. The XGBoost objective 
was set to “Binary logistic” with a maximum tree depth of 
3, a total of 500 iterations with an early stopping after 150 
iterations when no improvement in learning occurred. All 
XGBoost models were built in R using the XGBoost library 
[23].

The metrics for performance evaluation on the test set 
include precision, recall, accuracy, and the Matthew corre-
lation coefficient (MCC, Eq. 3).

Once the 8 models were built, the performance on 
their respective test sets (ARG vectors from pure isolate 
bacteria) was compared to the performance of known 
MGS2AMR genotypes (i.e., mixed in bacterium) recov-
ered from the 1200 samples used to validate the pipeline. 
For this to work, MGS2AMR output first needed to be con-
verted to ARG input vectors that could be supplied to the 
XGBoost models. ARG with no assembled extension was 
ignored if at least one other detected ARG had a path score 
S ≥ 3500. The path scores of all remaining ARG were nor-
malized (Eq. 4).

(3)MCC =
(TP × TN )− (FP × FN )

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(4)Ŝ =
log(Si)

max(log(S))

The normalized values range between 0 and 1, with 0 
referring to the absence of the ARG in the bacterium and 
1 as the highest chance of ARG presence. The same met-
rics used to evaluate the XGBoost model performance on 
the test set are used to evaluate the performance of the 
processed output of the MGS2AMR pipeline.

Results
Summary of benchmark data
Figure  7 summarizes the ARG reported in the meta-
data from the Pathogen Detection Project by AB class. 
A total of 152 unique genes were present across the 300 
bacteria (50 for each of the 6 species) used for generat-
ing the partially annotated metagenomes. ARG belong-
ing to the aminoglycoside and beta-lactam class have 
the largest overall presence (circle size in Fig.  7A). The 
top 3 ARG (ignoring alleles) present in over 100 bacte-
ria each were blaOXA (beta-lactam resistance), fosA 
(fosfomycin resistance), and sul1 (sulfonamide resist-
ance). Other common ARG families found are related 
to resistance to aminoglycoside antibiotics (e.g., aac(6’), 
ant(3’’), aph(3’), aph(6’)), trimetroprim antibiotics (e.g., 
dfrA), phenicol antibiotics (e.g., catA), tetracyclines (e.g., 
tet(A), tet(M)), sulfonamides (e.g., sul1, sul2), and many 
beta-lactams (e.g., blaADC, blaCTX-M, blaEC, blaPDC, 
blaSHV, blaTEM). A full list of all genotypes and pheno-
types can be found in the supplemental validation data 
details (Additional file 3).

When the isolated bacteria were mixed into the healthy 
intestinal metagenomes by SEQ2MGS the average RA 
was 5.5% (± 1.7%). The generated metagenomic sequenc-
ing data were on average 2.86 Gbp (± 0.725) in size.

GFA processing and homology search
The first step in the pipeline, MetaCherchant assem-
bly, yielded 697 (± 379) ARG assemblies on average per 
sample. In the next step, after applying the GLOPS algo-
rithm, the number of ARG segments was reduced to a 
single segment in the majority of cases (Fig.  8A) while 
the length and k-mer count of the segments increased 
(Fig.  8B). After ARG reconstruction and filtering, the 
average number of ARG became 27 (± 10) per sample. 
Across all 1200 metagenomes, 1290 unique ARG were 
detected, of which 152 (12%) belonged to any of the six 
bacteria of interest. All other ARG were recovered from 
bacterial species present in the metagenomes used to 
generate the background sequencing data.

Once detected, ARG assemblies were further processed 
by the ADAG algorithm to find the top-scoring assembly 
paths emanating from the reconstructed ARG. As with 
ARG reconstruction, this again dramatically improved 
the length of segments (4.3 fold median increase) and 

Table 2 Instances used for building AMR XGBoost prediction 
models per antibiotic

Class represents the class of the antibiotic. Samples is the total number of 
samples available for training and testing the XGBoost models. ARG is the 
number of unique ARG found across these samples (and used as input). S and 
R are the numbers of samples susceptible or resistant to the AB, respectively, as 
defined by the clinical laboratory metadata (antibiogram)

Antibiotic Class Samples ARG S R

Ampicillin Beta‑lactam 1376 28 57 1319

Cefepime Beta‑lactam 720 29 240 480

Gentamicin Aminoglycoside 1550 52 560 990

Meropenem Beta‑lactam 1072 31 550 522

Tetracycline Tetracycline 1333 7 446 887

Tobramycin Aminoglycoside 1258 49 482 776

Trimethoprim‑
sulfamethoxazole

Sulfonamide 1356 3 329 1027

Vancomycin Glycopeptide 95 7 15 80
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k-mer counts (4.1 fold median increase) in the GFA as 
can be seen in Fig. 8C, resulting in an overall reduction 
of the total number of segments and links in each GFA 
(~ sevenfold decrease for both).

ARG recovery and bacterial annotation
ARG recall, defined as the percentage of the mixed-in iso-
late ARG detected in the microbiome sample, regardless 
of species, relative abundance, or background, is 98.9% 
(± 4.0%). When evaluating only the ARG correctly asso-
ciated with the bacterium of interest, the recall is 87.5% 
(± 12.9%) with a precision of 87.5% (± 15.8%). Figure  9 
shows the stratification of these metrics by bacterium.

Next, we assessed the metagenomics backgrounds in 
which the bacteria were mixed in for each sample. As 
outlined in the “Methods” section, all these backgrounds 
originated from healthy intestinal microbiomes with an 
unknown mix of bacteria and possible ARG. All output 
associated with the mixed-in bacterium was removed. 
The remaining results were evaluated at the bacterial 
genus level and summarized in Table 3 that lists the top 
10 most commonly detected genera across all samples. 
All genera are known to be commensal to the human 
intestinal flora. As each of the 100 background metage-
nomes from healthy individuals was used 12 times, each 
time with different mixed-in isolates, the background 
species detected should be consistent across samples. 
This was quantified by the Bray–Curtis dissimilarity with 
an average dissimilarity of 0.36 (± 0.12) [30]. This shows 

MGS2AMR detects the same species consistently in sam-
ples known to be similar.

When an ARG is detected by MGS2AMR, the respec-
tive assembly paths may match multiple bacteria. The 
higher the path score (Eq. 2), the more likely the match. 
The paths for the ARG known to belong to the mixed-
in bacterium were top-scored in 98.6% (± 6.9%) cases. 
Table 4 shows the breakdown of the percentage when the 
correct match has the highest score by a bacterium.

In 27.9% of cases, multiple bacteria share the highest 
path score for a particular ARG (i.e., ambiguity in bacte-
rial assignment). However, in 70.8% of these cases, the 
match is labeled as a plasmid. The latter are known to 
have high sequence similarities between species compli-
cating unique assignments [31]. In other words, when 
the ARG known to belong to the mixed-in bacterium 
does not yield the top score for that genus, they are 
more likely to be of the plasmid origin. This is shown 
by the odds ratio in Table  4 which divides the number 
of times an ARG that was not assigned the top-score for 
the known mixed-in bacterium when it was predicted to 
be on a plasmid versus when it was predicted to be of 
genomic origin.

MGS2AMR Explorer
To get a better overview of the bacteria and ARG anno-
tated by MGS2AMR, we developed the MGS2AMR 
explorer application. The results can be stratified by 
various parameters and combined in visualizations that 

Fig. 7 Distribution of ARG and AMR across the bacteria used to validate the pipeline. A Overview of the ARG present across bacteria used 
to validate the pipeline. The ARG are grouped by the AB class per bacterium. The size of the circle indicates the percentage of samples with at least 
one ARG belonging to the AB class, and the color indicates how many unique ARG (ignoring alleles) are present across all samples. B Overview 
of the resistance to 8 different antibiotics present across the bacteria used to validate the pipeline. The size of the circle indicates the number 
of samples in which antibiogram data on the antibiotic was available. The color indicates the percentage of all samples resistant to the antibiotic
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provide insights. Figure 10A shows a heatmap of the top 
species detected in a sample known to contain Acineto-
bacter baumannii. Some ARG like blaADC are uniquely 

assigned to the bacterium. Others, like sul1 or ant(2’’)-
Ia, have a top score assigned to the bacterium, but other 
bacteria also have matches though with lower scores. 

Fig. 8 ARG assembly from metagenomic data improved by GLOPS and ADAG algorithms. A Reduction of the total number of seed segments 
after GLOPS. B Increase in seed segment length and k‑mer count after GLOPS. C Path optimization using ADAG resulting in the reduction 
of the total number of segments/links in the GFA, with an increase in segment length and k‑mer count. Note that all density plots have 
a log‑scale x‑axis. Sequence homology search using BLASTn on the segments constituting the final GFA paths returned at least one match 
with coverage of 97% (± 9%) and identity of 99.7% (± 1%) for 92% segments (818 ± 475 nt). This indicates that the GFA paths generated and filtered 
by the implemented steps represent real, biologically meaningful sequences
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In some cases, like sul2 however, there is a large list of 
bacteria with (near) top scores, of which Acinetobacter is 
only one. This MGS2AMR Explorer visualization facili-
tates a conclusion that Acinetobacter is very likely to be 
truly present, as it has multiple ARG all with top scores. 
This is further visualized in the Sankey diagrams shown 
in Fig.  10B. In these plots, when focusing on a specific 

bacterium (purple/blue color), only bacteria with equal 
or higher scores for one or more ARG (gray color) are 
shown. The Acinetobacter plot shows very little over-
lap with other bacteria, whereas the focus on Klebsiella 
shows a large overlap with Acinetobacter suggesting Kleb-
siella to be likely a false positive. Both Bacteroides and 
Acinetobacter appear to be present, but blaOXA and sul2 
genes cannot easily be disambiguated. By providing all 
the associated data and visualizations, the user can be 
better informed to decide how to further process the data 
and make specific calls.

Fig. 9 Performance of MGS2AMR on bacterial ARG recovery. Bacterial recall and precision are evaluated on ARG recovered from the mixed‑in 
species from each of the 1200 metagenomes. The ARG recall represents the recovery of the ARG regardless of correct genus annotation or path 
score. Each boxplot represents the distribution of the given metric across the 200 samples per bacterium used for validation

Table 3 Top bacterial genera found in the background 
metagenomes

The sample background is defined as bacterial genera present in the results 
of MGS2AMR after excluding the genus of the mixed-in bacterium. The total 
path score is the sum of all ARG path scores for a particular genus in a given 
sample. The average path score is used to rank overall genus presence across 
all analyzed samples. The prevalence is the percentage of samples reportedly 
containing the genus

Bacterial genus Average total
path score

Prevalence 
(%)

Bacteroides 21,193.82 88

Barnesiella 13,564.08 91

Riemerella 12,962.68 87

Lachnospiraceae 12,665.01 89

Prevotella 12,599.36 92

Proteus 12,248.33 76

Enterobacter 12,243.81 83

Parabacteroides 11,924.01 85

Clostridium 11,409.35 92

Streptococcus 11,208.43 85

Table 4 Correct ARG association with a bacterial genus based 
on the assembly path score

a The percentage of cases in which an ARG known to belong to the mixed-in 
bacterium has the top path score assigned by MGS2AMR
b The percentage of cases where ARG are estimated to originate from plasmids
c The odds ratio an ARG originates from a plasmid or not when the known genus 
is not the top prediction

Genus Top score (%)a Plasmid (%)b Odds  ratioc

Acinetobacter 94.9 25.7 1.133

Enterobacter 83.6 59.4 1.452

Enterococcus 97.4 47.1 0.760

Escherichia 88.2 66.2 1.257

Klebsiella 89.3 60.8 1.402

Pseudomonas 88.2 9.1 3.288



Page 15 of 20Van Camp et al. Microbiome          (2023) 11:223  

While MGS2AMR Explorer provides valuable insights 
into the MGS2AMR output, the tool does not modify the 
data. This ensures that the output can be used for a vari-
ety of subsequent downstream applications.

Example of using MGS2AMR output in predictive machine 
learning models
To showcase the potential downstream analyses using 
MGS2AMR output, we converted the genotypes of the 
recovered mixed-in bacteria (with known AMR pheno-
types) from the 1200 samples into inputs for indepen-
dently developed XGBoost machine learning models that 
predict clinical AMR based on a set of ARGs.

Table 5 shows the performance of the XGBoost mod-
els on their respective test sets and the comparison to 
the performance of the prediction when MGS2AMR 
genotypes were used. Although slightly lower, the pre-
diction performance on MGS2AMR input is on par with 
the performance on the models’ test set data (derived 
from pure isolates). This suggests that MGS2AMR can 
effectively recover specific bacteria and their ARG from 
a large metagenome with enough accuracy to be used in 
a prediction model expecting input from a single bacte-
rium and yield clinically relevant results.

Discussion
The MGS2AMR pipeline detects ARG and their pos-
sible origin within the metagenome sequencing data. 
This in silico bacterial recovery mimics laboratory isola-
tion, culturing, and sequencing of bacteria from a micro-
biome sample, allowing for the evaluation of bacterial 
AMR directly from stool samples. The pipeline bypasses 

Fig. 10 Example of the MGS2AMR Explorer visualization. A A heatmap of detected ARG and annotated bacteria, colored by the min–max 
normalized score (1 represents the top score, 0—no association determined). B Detailed exploration of specific bacteria and associated ARG. The 
blue‑colored lines denote the genus in focus, with gray lines representing other top‑scoring bacteria that match a particular ARG. Lighter blue 
shades are non‑top‑scoring matches. The image shows the alternative views of the same report upon changing the focus across the determined 
genera. Top: Acinetobacter is likely to be present as all ARG are top scoring with only two (blaOXA and sul2) having a potential association 
with another bacterium. Middle: Klebsiella is probably not present in the sample as all ARG are also present in Acinetobacter, and only 1 ARG 
(sul2) shares a top score (i.e., scores for all other ARG are lower than those for Acinetobacter). Bottom: Bacteroides has 6 top‑scoring ARG that are 
not contested, so it likely is present in the sample

Table 5 Performance of the 8 AMR prediction models on their 
respective test sets and MGS2AMR output

The first value is the performance on the XGBoost model test set (isolates only), 
and the second value is the performance on the MGS2AMR processed output 
(ARG recovered from the metagenomics data)

Antibiotic Precision Recall Accuracy MCC

Ampicillin 1.00/0.98 1.00/0.99 1.00/0.97 0.94/0.74

Cefepime 0.91/0.85 0.80/0.78 0.78/0.74 0.46/0.37

Gentamicin 0.93/0.73 0.95/0.89 0.92/0.81 0.83/0.63

Meropenem 0.86/0.74 0.74/0.78 0.78/0.74 0.57/0.48

Tetracycline 0.79/0.61 0.99/0.94 0.86/0.75 0.75/0.57

Tobramycin 0.95/0.76 0.99/0.97 0.96/0.84 0.91/0.70

Trimethoprim‑
sulfamethoxazole

0.97/0.86 0.95/0.93 0.93/0.86 0.81/0.70

Vancomycin 1.00/0.97 1.00/1.00 1.00/0.98 1.00/0.95
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several hurdles of in  vitro bacterium cultivation. First, 
bacteria have different growth requirements, such as the 
composition of the culture medium, aerobic vs anaerobic 
conditions. Some will not even grow at all under labora-
tory conditions. Second, cultivation is a time-consuming 
process that can take several days to weeks depending 
on the species. This is especially critical when patients 
with bacterial infections need a timely antibiotic treat-
ment. Finally, the in vitro AMR analysis of metagenome 
samples would require isolating and testing all unique 
bacteria, while MGS2AMR works directly with the 
metagenomic sequencing data.

Both MetaCherchant and BLASTn were used in 
our MGS2AMR pipeline; however, the actual inno-
vation stems from the use of two novel algorithms, 
namely GLOPS and ADAG, to optimize and annotate 
the genomic assembly paths within the raw GFA that 
resulted in generating accurate results. First, the GLOPS 
algorithm provides a way to reconstruct the ARG present 
in the data. An important advantage of GLOPS com-
pared to simply counting the various pieces of seed ARG 
used in the assembly is that GLOPS takes into account 
the interspersed non-seed segments. Such a gene recon-
struction step reduces the number of seed segments per 
GFA, with just a single, long segment of DNA (Fig. 8A, 
B). In this work, there were hundreds of cases where less 
than 75% of the seed segments were used in the assem-
bly, but a whole gene was recovered after the GLOPS 
reconstruction. This reduces the pool of potential ARG 
candidates from hundreds (raw MetaCherchant output) 
to just a few dozen. However, the detection of ARG alone 
does not suffice to uniquely associate them with a bacte-
rium. Many ARG can be found across different species, 
especially when residing on plasmids. The ADAG algo-
rithm evaluates the assembly surrounding the ARG to aid 
in species annotation and to extract the most probable 
paths from the GFA, effectively creating much longer 
(4.1 fold on average), and fewer segments surrounding 
the ARG, also improving the sequence homology search 
results (Fig. 8C).

The results of 1200 tests (Fig. 9) show a very high ARG 
recall rate, indicating that MGS2AMR is very sensitive 
even at a low relative abundance of the bacterium. There 
are still some reasons why the detection of ARG may 
fail. One is related to uncertainty in the reference meta-
data from AMRFinderPlus (Pathogen Detection Project) 
used as a gold standard. For example, the ere(A) gene, 
when reported by AMRFinderPlus, was only detected 
in about half the samples processed by MGS2AMR. 
However, the former had labeled this ARG as “partial” 
or “partial end of contig” in 75% of the isolates. Accord-
ing to the AMRFinderPlus reference, this means that the 
coverage of the ARG was between 50 and 90%, denoting 

uncertainty in its presence. This example highlights that 
ARG detection is still an active area of research even in 
isolated bacteria. False positive calls can also be related to 
the presence of mosaic ARG in the Antimicrobial Resist-
ance Reference Gene Database. Mosaic genes have not 
evolved from one ancestral gene, but rather contain the 
combined fragments of different genes. For example, the 
tetracycline resistance genes tet(O/M/O), tet(O/32/O), 
tet(W/32/O), and tet(O/W/O) are combinations of 
tet(M), tet(O), tet(W), and tet(32) [32]. When the latter, 
“simple” ARG were detected by the pipeline, the mosaic 
ARG would often be returned as well. None of the used 
isolates in the tested samples contained mosaic tetracy-
cline ARG, but in 14% of the cases when a tetracycline 
resistance gene was detected, one or more mosaic ARG 
would be reported as well. While this lowers precision, 
in practice however, these ARG still represent the same 
class of AMR, which is less problematic than detection of 
ARG from the non-related AMR classes. High bacterial 
recall and precision (Fig.  9) are also encouraging, given 
the bacterium has a maximal relative abundance of 10% 
in any of the analyzed samples, and only 37% (± 17%) of 
the total number of ARG detected in any sample belong 
to the isolate.

MGS2AMR will assign ARG top scores to the correct 
genus in the vast majority of the cases (Table 4, first col-
umn). Even when the bacterium was not assigned the 
top score for an ARG known to be present, it still has a 
nearly top score (Table  4, second column). It is impor-
tant to note, however, that not all bacteria listed in the 
MGS2AMR output are actually present in the microbi-
ome, as the output lists all species with any match in the 
nucleotide database after homology search of the GFA 
paths. If the assembly and homology search were perfect, 
only the top scores should be considered (i.e., one bac-
terium per ARG), and the rest could be ignored as false 
positive matches. However, a strict cutoff like that is not 
recommended since closely related species and subop-
timal assembly could assign the incorrect bacteria with 
top scores while the true positives are very close in score. 
Additional file  1: Figure S3 shows how certain bacteria 
detected in any of the 1200 samples are often associ-
ated with the actual ones mixed into the benchmarking 
samples.

Interestingly, when the performance of the models on 
the MGS2AMR dataset is broken down by bacterium 
instead of antibiotic, performance on predicting P. aer-
uginosa antibiotic resistance was lowest among organ-
isms tested (Additional file 2: Table S1). Further analysis 
of P. aeruginosa resistance by antibiotic (Additional file 2: 
Table  S2) shows that cefepime and meropenem models 
yield lower prediction power (MCC 0.14 and 0.09, respec-
tively), whereas gentamicin and tobramycin perform 
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much better (MCC 0.52 and 0.57, respectively). This 
stark difference can be explained by the fact that beta-
lactam AB (cefepime and meropenem) in Pseudomonas 
requires porins to enter the bacterial cell whereas ami-
noglycosides do not. Porins are membrane channels, and 
not considered specific ARG, but mutations can affect 
their expression or permeability thus conferring indirect 
resistance [33]. Since porins are not present in the NCBI 
ARG database, MGS2AMR does not evaluate them. This 
explains why the performance of MGS2AMR is high for 
P. aeruginosa (i.e., when known ARG are present, they 
are detected), but the prediction of phenotypical AMR is 
lower. This alternative mechanism of resistance through 
porins highlights one of the limitations of MGS2AMR. 
Given the pipeline’s reliance on the curated ARG data-
base, any genes not represented in the database will not 
be detected. This extends to the AB resistance mecha-
nisms that rely on processes other than the simple pres-
ence of ARG, including the expression level of a porin 
channel in the example above or point mutations in 
various AB target genes associated with increased AMR. 
Future work could expand MGS2AMR by including point 
mutation mechanisms, though detection of a single poly-
morphism in a metagenome is even more challenging 
than gene detection and subsequent bacterial annota-
tion. This will be particularly complex in instances where 
AMR-related mutations are present in otherwise highly 
conserved structures like the bacterial ribosome. Using 
the ribosomal genes as a seed for MetaCherchant would 
result in matches to numerous bacteria, and differentia-
tion between species with or without a particular point 
mutation would be very challenging.

Another limitation of working with metagenomes 
focused on AMR analysis comes from the inherent 
unknowns present in the data. It is impossible to culture 
all bacteria present in a metagenome. Bioinformatics 
pipelines all rely on tailored experiments which are lim-
ited in scope or on simulated data for validation. This 
work is no exception; however, by using the SEQ2MGS 
tool, the amount of artificial data was kept to a mini-
mum by using real sequencing data for both the back-
ground metagenome and the isolate mixed in. Though 
the pipeline could only be validated on the recovery of 
the isolate, the species present in the background would 
still be reported since MGS2AMR detects any species in 
sufficient relative abundance. Although full validation 
of the background species with respective ARG con-
tent is not possible, all metagenome backgrounds were 
selected from healthy participants serving as controls in 
various metagenomics studies. Table 3 shows that, when 
excluding the mixed in pathogens, the bacteria detected 
in the backgrounds belong to known commensals of the 
intestinal flora.

As the pipeline heavily relies on the NCBI nucleotide 
database for bacterial annotation, one must take into 
account its inherent biases. This database has a higher 
presence of specific species, especially when relevant to 
human health. In effect, these bacteria will have a higher 
representation in the database increasing the chance 
of any match when homology searches are conducted. 
This phenomenon could also explain some of the cases 
with lower precision seen in Fig. 9. Most of the bacteria 
evaluated in this work are very well studied (i.e., human 
pathogens) and thus should have high representation 
in the nucleotide database. If a less studied commensal 
species (i.e., background) contains ARG that can also 
be found in the pathogens studied, they might be falsely 
associated with that pathogen instead. This underscores 
that, for now, MGS2AMR is most useful for detecting 
AMR of bacterial species that are both well studied and 
in sufficient abundance in the metagenome (e.g., emerg-
ing infection). MGS2AMR is not a metagenomic tool for 
taxonomic classification (tools that identify all species 
present in a metagenome), but rather aimed at evaluating 
the most abundant species containing one or more ARG 
of interest. However, the tool effectively identifies impor-
tant species without the need for separate taxonomic 
classification.

In theory, the concepts that underlie the presented 
computational MGS2AMR pipeline could be applied to 
any set of genes that might be of interest in metagenomic 
analysis. By changing the list of seed genes submitted to 
MetaCherchant, these genes would become the center 
of assembly and thus subsequent cluster forming and 
species annotation. Additional research outside of this 
paper’s scope is needed to validate the expansion to genes 
unrelated to AMR. One factor that makes this pipeline 
suitable for AMR evaluation is the specific presence or 
absence of genes (i.e., ARG). Only species containing the 
gene (or highly similar genomic regions) will assemble 
around it, with subsequent evaluation validating its pres-
ence and potential host. In contrast, highly conserved 
genes used as input would likely end up mapping back to 
many species with low specificity. This still is the case for 
many ARG shared across species, and MGS2AMR has 
several built-in steps that are taken to reduce the false 
positive rate.

The adoption of MetaCherchant as the metagenome 
assembler within the MGS2AMR pipeline is pivotal in 
achieving optimal speed and efficiency. In the supple-
mentary materials (Additional file 4), we provide a com-
prehensive breakdown of the MGS2AMR pipeline into 
its individual steps, with a thorough assessment of the 
required computational resources, including runtime 
and peak memory usage. Within the four pipeline steps, 
the most significant consumption of time and RAM is 
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attributed to BLAST + . Additional file 1: Figure S4 illus-
trates the speed of the MGS2AMR pipeline, indicating a 
runtime of approximately 1150  s (around 20  min). The 
innovative approach of MetaCherchant, which involves 
assembly centered around seeds of interest (ARGs), 
greatly contributes to the swift execution of the initial 
assembly phase. It is noteworthy that the runtime cor-
responds with the file size, as expected. Interestingly, the 
time dedicated to homology search appears to show no 
correlation with the original file size.

While alternative pipelines could potentially be con-
structed using different metagenome assemblers, such as 
metaSPAdes [34], these alternatives frequently engage in 
assembling the entire metagenome. This, unfortunately, 
results in a substantial amount of time being spent on 
irrelevant regions unrelated to our specific objective of 
detecting and annotating ARGs. Additionally, it is impor-
tant to recognize that ARGs or similar seed sequences do 
not hold a central role in such assembly process, which 
necessitates the use of supplementary tools for their 
identification before subsequent analysis. In the same 
supplementary document (Additional file 4), we present 
a comparative analysis between MGS2AMR and an alter-
native workflow. In this alternative approach, we replace 
the first MetaCherchant step and subsequent assembly 
analysis (including GLOPS and ADAG) with metaSPAdes 
[34] and DIAMOND [35]. While the alternative approach 
is feasible and could potentially benefit from further 
refinement steps not explored here, its notable drawback 
lies in its slower pace. The pipeline requires a considera-
bly longer runtime, with metaSPAdes contributing to the 
majority of the processing time, and subsequently results 
in lower ARG recall rates (Additional file 2: Table S4). On 
average, the completion time for the pipeline extends to 
approximately 90 min, with the largest file taking around 
2 h. It is important to observe that in the case of the alter-
native pipeline, runtime scales proportionally with the 
file size due to the extended assembly process.

Conclusions
In summary, MGS2AMR provides a novel way of 
exploring antimicrobial resistance in a microbiome 
specimen. In addition to detecting ARG, it also associ-
ates these genes with bacteria of potential origin. The 
pipeline returns the assemblies of identified ARG with 
extension into their surrounding genomic regions. This 
allows for the bacterium-specific evaluation of antimi-
crobial resistance based on the metagenomic sequenc-
ing data offering many potential applications, ranging 
from early prediction of the AMR profile of bacterial 
infections to evaluating the presence and origin of ARG 
across specific bacteria in a microbiome sample.
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Additional file 1: Fig. S1. Resolving shortest paths with loops in GFA. 
Green segment is the start and end of the loop. 1. Loop that begins and 
ends on the different sides of the start‑segment. Resolved by generating 
two paths (A,B,C,D) and (A,D,C,B). Note that the sequence direction of A 
differs in two paths. 2. Loop that begins and ends on the same end of 
the start‑segment. Resolved similar to Loop 1, but the direction of A is 
identical in both paths. 3. Hairpin loop with repeated segments A, B and 
C. Resolved by creating two paths (A,B,C,D,E,F) and (A,B,C,F,E,D). 4. Hairpin 
loop with different start‑ (A) and end‑ (H) segments. Resolved by removing 
all path data (G and H) after the repeated segment (C), reducing the prob‑
lem to the hairpin loop in example 3 with the same solutions: (A,B,C,D,E,F) 
and (A,B,C,F,E,D). Fig. S2. Example of the evaluation of homology matches. 
The seed segments of ARG1 and ARG2 both match a reference genome 
at the same position, indicating they refer to the same ARG. The position 
of segment 4 in the reference genome does not align with the expected 
distance from the ARG as represented in the GFA of ARG 1 suggesting 
it likely represents a false positive match, and therefore will be excluded 
from further analysis. Fig. S3. Bacteria associated with the 6 bacteria 
used in validation. This heatmap shows which bacterial sequences (both 
genome or plasmid) also tend to score high when the known presence 
is one of the 6 used in validation. It reflects the uncertainty that comes 
with bacterial calling in metagenomics. Fig. S4. MGS2AMR run time and 
memory usage for 5 benchmarking samples. All tools were allowed to use 
up to 8 CPUs. The numbers 1 through 5 refer to the file ID in Table S3. The 
four main pipeline steps are denoted as follows: A. MetaCherchant (exist‑
ing tool). B. The MetaCherchant output pre‑processing for BLAST (novel R 
scripts). C. BLAST+ (existing tool) D. ARG annotation (novel R scripts). Note 
that the large leap in memory for BLASTn is nearly entirely explained by 
having to load the nucleotide database into memory (~150 GB).

Additional file 2: Table S1. Breakdown of the MGS2AMR output by 
genus. Details on XGBoost model performance on the dataset used to 
validate the MGS2AMR pipeline. Table S2. Breakdown of MGS2AMR 
output for Pseudomonas. Details on XGBoost model performance for 
Pseudomonas. 

Additional file 3: Metadata utilized for the validation of the MGS2AMR 
pipeline. ARG: The list of all antimicrobial resistance genes (ARG) evalu‑
ated by the pipeline. Backgrounds: Information on metagenomic 
sequencing data from healthy individuals, sourced from previously 
published studies (control samples). These data serve as the background 
for the 1200 samples generated for validation. GeneLinks: The linkage 
between genotypic information and the ARG tables. Genotypes: Details 
on the antimicrobial resistance genotypes of all bacteria used in the 
generation of the 1200 validation samples. Phenotypes: Information on 
the antimicrobial resistance phenotypes exhibited by all bacteria used in 
the generation of the 1200 validation samples. SampleInfo: Details on the 
sequencing data used in the generation of the 1200 validation samples. 
SEQ2MGS_1200: Input parameters for SEQ2MGS to generate the 1200 
validation samples.

Additional file 4: Table S3. Dataset used for benchmarking. Samples 
used to benchmark the MGS2AMR pipeline. Table S4. Comparison of 
the ARG annotation by MGS2AMR and the alternative pipeline. The 
performance of the MGS2AMR pipeline in comparison with the alternative 
(metaSPAdes/DIAMOND) pipeline.
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