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Abstract 

Background With the emergence of metagenomic data, multiple links between the gut microbiome and the host 
health have been shown. Deciphering these complex interactions require evolved analysis methods focusing 
on the microbial ecosystem functions. Despite the fact that host or diet-derived fibres are the most abundant nutri-
ents available in the gut, the presence of distinct functional traits regarding fibre and mucin hydrolysis, fermentation 
and hydrogenotrophic processes has never been investigated.

Results After manually selecting 91 KEGG orthologies and 33 glycoside hydrolases further aggregated in 101 func-
tional descriptors representative of fibre and mucin degradation pathways in the gut microbiome, we used non-
negative matrix factorization to mine metagenomic datasets. Four distinct metabolic profiles were further identified 
on a training set of 1153 samples, thoroughly validated on a large database of 2571 unseen samples from 5 external 
metagenomic cohorts and confirmed with metatranscriptomic data. Profiles 1 and 2 are the main contributors 
to the fibre-degradation-related metagenome: they present contrasted involvement in fibre degradation and sugar 
metabolism and are differentially linked to dysbiosis, metabolic disease and inflammation. Profile 1 takes over Profile 
2 in healthy samples, and unbalance of these profiles characterize dysbiotic samples. Furthermore, high fibre diet 
favours a healthy balance between profiles 1 and profile 2. Profile 3 takes over profile 2 during Crohn’s disease, induc-
ing functional reorientations towards unusual metabolism such as fucose and H2S degradation or propionate, ace-
tone and butanediol production. Profile 4 gathers under-represented functions, like methanogenesis. Two taxonomic 
makes up of the profiles were investigated, using either the covariation of 203 prevalent genomes or metagenomic 
species, both providing consistent results in line with their functional characteristics. This taxonomic characterization 
showed that profiles 1 and 2 were respectively mainly composed of bacteria from the phyla Bacteroidetes and Firmi-
cutes while profile 3 is representative of Proteobacteria and profile 4 of methanogens.

Conclusions Integrating anaerobic microbiology knowledge with statistical learning can narrow down the metagen-
omic analysis to investigate functional profiles. Applying this approach to fibre degradation in the gut ended with 4 
distinct functional profiles that can be easily monitored as markers of diet, dysbiosis, inflammation and disease.
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Background
The generalization of metagenome sequencing 15 years 
ago has provided ample evidence of the complex inter-
actions between the gut microbiota and its host health 
[1]. Since then, a large number of new links between the 
function and composition of the microbiota and the host 
health have been consistently discovered [2]. Significant 
efforts put into the recruitment of large cohorts to con-
stitute reference datasets made it possible to explore the 
high inter-individual variability of the microbial commu-
nities in the gut [3–6].

Metabarcoding methods have been first popularized. 
Amplification of universal taxonomic marker gene before 
sequencing allows the construction of taxonomic entities 
(Operational Taxonomic Units, OTUs [7], or Amplicon 
Sequence Variants, ASVs [8]) informing on the phyloge-
netic composition of the microbial community [9] and 
on ecological biomarkers such as diversity indices [10]. 
Additional analysis can show co-occurrence networks 
[11, 12] or dynamical interactions in time-series [13, 14] 
both informing on ecological interactions. However, as the 
functional potential of the microbial populations remains 
unknown with metabarcoding techniques, the functional 
mechanisms that drive these interactions cannot be identi-
fied, even if tools leveraging reference databases of known 
genomes partially mitigate this issue [15].

With the development of metagenomic next-gener-
ation sequencing (mNGS) techniques [16], the entire 
functional information contained in the metagenomes 
became accessible. Shotgun sequencing together with 
bioinformatics methods identifying contigs between the 
sequenced fragments [17] and the constitution of mas-
sive catalogs of annotated genes [5] provide decisive tools 
for the study of the functional ecology in the gut micro-
biome. Multi-omics studies including metatranscriptom-
ics or metabolomics give complementary information 
on the microbial functions actually activated in the gut 
[4]. Taxonomic and functional ecology can be addressed 
simultaneously with mNGS with the identification of 
entire microbial genomes in the metagenomes, such as 
metagenomic species (MGS [18]) or metagenome-assem-
bled genomes (MAG [19]). Statistical analysis makes 
it possible to decipher universal MGS patterns in both 
metabarcoding and metagenomic cohorts, termed ente-
rotypes, that are linked to different physiopathological 
status [20].

However, despite the massive amount of metagen-
omic data that were gathered by the microbial ecol-
ogy community and the sophisticated agnostic 
data-driven analysis methods that were developed, the 
understanding of the mechanisms involved in the gut 
microbiota regulation and dynamics remains scarce. 

This observation calls for the development of new 
approaches operating a shift from descriptive ecology 
towards functional ecology [21] by leveraging exist-
ing knowledge in microbiology to explore the links 
between community structure and functions [22].

Dietary and host-derived fibres are the main primary 
substrate for the gut microbiota [23] so that anaerobic 
hydrolysis and consecutive downstream sugar degra-
dation towards short-chain fatty acids (SCFAs) are the 
most common microbial functions in the colon, the 
distribution of which reflects the fibre intake [23]. The 
corresponding metabolic pathways are very well char-
acterized [24], hence providing suitable candidate func-
tions for pattern identification and differential analysis. 
Considering the well-defined framework of fibre anaer-
obic hydrolysis, we hypothesize that (H1) functional 
invariants can be deciphered, defining ‘universal’ func-
tional profiles shared by all individuals, describing fibre 
degradation in the microbiota, (H2) functional and tax-
onomic interpretation of these profiles can be obtained 
and (H3) these profiles characterize the metagenomic 
samples and are related to dysbiosis or disease.

In this study, we build on a method proposed in [25], 
which informs a data-driven dimension reduction tech-
nique termed nonnegative matrix factorization (NMF) 
with the well-established knowledge of fibre degradation 
pathways in the gut to analyse fibre-degradation-related 
metagenomic count matrix. The method is trained on 
a database of 1152 samples and validated on 5 external 
databases gathering 2571 unseen samples, allowing to 
identify four functional Profiles the mixture of which 
reconstruct the metagenomes, the expression of which 
is confirmed with metatranscriptomics. Extensive func-
tional and taxonomic characterization of the profiles is 
performed and systematic differential analysis is con-
ducted to identify possible links between the profiles and 
the sample physiopathological status. The microbiota 
simplification provided by the method allows in-depth 
biological interpretations of the differential analysis.

Methods
We first introduce the different datasets that are con-
sidered in this study. We then describe the rationale 
of the function selection and the pooling of the cor-
responding genes related to dietary and host-derived 
fibre degradation pathways, and the subsequent bioin-
formatics, from the samples to the frequencies matrix. 
We finally detail the NMF decomposition of the fre-
quencies matrices to identify functional profiles in the 
metagenomes. Finally, we present the differential analy-
sis method, based on Profiles weights in samples.
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Training and external validation datasets
A training set was assembled with ns = 1126 sam-
ples covering a balanced mix of health status, includ-
ing healthy samples, inflammatory diseases (Crohn’s 
disease (CD), ulcerative colitis (UC)) and metabolic 
diseases (obese, type 2 diabetes) taken from 7 cohorts 
(accession ID PRJEB1220 [19], PRJEB4336 [26], 
PRJEB5224[5, 27], PRJNA48479 [28], PRJNA422434 
[29], PRJEB6337 [30], PRJNA375935 [31]) and 5 coun-
tries (USA, China, Spain, Denmark, France) to avoid 
potential study or country effects. External validation 
datasets were taken from studies selected for their focus 
on a specific effect. We selected two cohorts dedicated 
to IBD―hmp2 (PRJNA398089 [4], ns = 1266 sam-
ples) and CD (PRJEB15371 [32], ns = 119 samples)―
one cohort to obesity―metacardis (accession ID 
PRJEB37249 [33], ns = 883 samples)―one cohort 
to Mediterranean diet (accession ID PRJEB33500 [34], 
ns = 244 ) and one to Parkinson disease (accession ID 
PRJEB17784 [35], ns = 59 samples) since this disease 
is associated to a longer transit time and microbial 
modifications. Note that 3 and 5 samples, respectively, 
have been removed from cohorts PRJEB15371 and 
PRJEB37249 after quality checks. All together, these 
datasets make it possible to consider a large vari-
ety of co-variables, including  dysbiosis index (DI, see 
the  “Statistical treatment” section), body mass index 
(BMI) used to define obesity, statin treatment against 
hypercholesterolemia, the four enterotypes Bacteroides 
1 (Bact1), Ruminococcaceae (Rum), Prevotella (Prev) 
and Bacteroides 2 (Bact2) [20, 33] and Bristol score 
[36] used to determine stool appearance. Dataset over-
view can be found in Table 1. Dataset homogeneity has 
been assessed by computing intra and inter-variability 
of pairwise Bray-Curtis distance (pBCd, see the “Statis-
tical treatment”  section and Fig.  2). The complete list 
of samples and their corresponding metadata can be 

found in Additional file  11 — dataset count matrices, 
profile decomposition and metadata.

A functional view of fibre degradation in metagenomes
Following the method that was previously used in [25], 
we assembled a simplified view of the metabolic network 
of fibre degradation (see Fig. 1a and the “GH, PL and KO 
Graphical representation” section). Briefly, the first meta-
bolic step was the hydrolysis of fibre, performed by special-
ized multimodular enzymes belonging to the CAZymes [37, 
38]. We performed a two step selection of glycosyl hydro-
lases (GH) and polysaccharide lyases (PL). We first selected 
the main GH and PL involved in the catabolism of the main 
dietary fibre consumed as part of a balanced diet: cellulose, 
hemicellulose, xylan, resistant starch and pectin [37–43]. 
Next, since mucin can be used as a substrate by both path-
ogens and commensals, we included the beta-N-acetyl-
glucosaminidase (GH84), fucosidase (GH29 and GH95), 
neuraminidase/ialidase (GH33) that cleave endogenous 
mucins and release galactose (GH2), glucose, fucose, or 
sialic acid moieties [44, 45]. GHs that have a marked fucosi-
dase and galactosidase activity were pooled together for the 
importance of fucose and galactose pathways. The remain-
ing GHs involved in mucin degradation were gathered and 
related to sulfate production since mucins are heavily sul-
fated in the gut and sulfate is accessed during full cleavage of 
the glycoprotein [46] (Table 2 and Fig. 1A). Polysaccharide 
lyases PL1, PL9 (pectate lyase) and PL11 (rhamnogalactu-
ronan lyase) were also added. The hydrolysis of fibre and 
mucin releases oligosides and sugars that are subsequently 
subjected to anaerobic fermentation. The known fermen-
tation pathways of glucose, fructose, mannose, galactose, 
L-arabinose, xylose, L-fucose and L-rhamnose were reca-
pitulated using bibliographic ressources [24, 47, 48] and 
Metacyc database (https:// metac yc. org/) guided by exper-
tise [49–53]. We included the Embden-Meyerhoff-Parnas 
(EMP), Entner-Doudoroff (ED) and semi-phosphorylative 

Table 1 Dataset overview. We indicate for each dataset the number of samples ns , individuals ni , and if the dataset is used for DI, BMI, 
CD, statin, enterotypes, bristol score, diet or Parkinson studies

train hmp2 CD metacardis med.diet Parkin.

ns 1126 1266 119 883 244 59

ni 1126 106 119 883 82 59

DI x x x x x x

BMI x x x x

CD x x x

statin x

enter. x

Bristol x

diet x

Parkin. x

https://metacyc.org/
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Entner-Doudoroff (SP-ED) pathways and the Bifidobacte-
rium shunt. The downstream SCFA-producing reactions 
were added: (i) the three known propionate pathways, 
including lactate pathways and the propanediol one which 
is not commonly found in commensals; (ii) butyrate pro-
duced from acetate and lactate-utilizing species and (iii) 
acetate produced through the main pathways but also by 
some human GI tract pathogens. Finally, H2S, butanediol 
and acetone production pathways were added, together 
with the three hydrogen hydrogenotrophic utilization path-
ways: methanogenesis, sulfate reduction and the Wood-
Ljundhal pathway of acetate production from H2/CO2 and 
glucose (see Fig.  1a). For each pathway, KEGG Orthology 
(KO) was selected as being representative (KO not involved 
in other pathway) and essential (the corresponding function 
is needed for the completion of the pathway) to the given 
metabolism with the method detailed in [25]. We note that 
H2S production pathway has been added compared to [25]. 
See Additional file 12 — Supplementary materials for addi-
tional precisions on KO selection.

From the IGC 9.9M genes catalog [5], we extracted the 
resulting 129,352 selected genes (SG) included in the KO, 
GH and PL that were further pooled in aggregated func-
tional traits (AFT, see Fig. 1b for a sketch of the selection 
and aggregation steps). A final list of 101 AFTs charac-
terizing the fibre degradation process in the human gut 
microbiome was obtained, comprising 33 GH and PL and 
68 KOs or KO aggregations (see Table 2 for the complete 
list of KOs, GHs and PLs that were conserved and the file 
List_of_Reactions.xlsx in the Additional file 11 — Dataset 
count matrices, Profile decomposition and metadata for 
the complete list of reactions).

Metagenomic data and gene frequencies
Gene abundance tables were generated with the 
METEOR software suite [54]. First, reads were mapped 

with bowtie2 [55] (parameters: –trim 80 -k 1000) to the 
integrated gene catalog (IGC) of the human gut micro-
biome [5], comprising 9.9 million of genes. Alignments 
with nucleotide identity less than 95% were discarded 
and gene counts were computed with a two-step proce-
dure previously described that handles multi-mapped 
reads[30]. Finally, raw gene counts were normalized 
according to gene length and total number of mapped 
reads per sample, reported in relative frequency (FPKM 
normalization).

The IGC KO annotation was used to map the genes 
to their corresponding AFTs. The GHs and PLs were 
re-annotated in the IGC using Hmmer [56] and dbCan 
version 3 [57] with default parameters, after assessment 
of dbCan annotation quality on 145 manually annotated 
protein sequences as previously described [25], and the 
corresponding genes were mapped to their AFTs. The 
AFT frequencies were obtained by summing the FPKMs 
of all genes with the corresponding annotation, handling 
for multiple annotations as previously described [25].

At end, a AFT frequency matrix X (AFT )
i  of dimension 

ns,i × 101 is built for each dataset i ∈ {train, hmp2,CD,

metacardis,med.diet,Parkinson} , where ns,i is the num-
ber of samples of dataset i. The 9.9M genes frequencies 
are also used to compute pBCd between samples at the 
three aggregation levels, on the 9.9M genes, on the SGs 
and on the AFTs as displayed in Fig. 2c (see Fig. 1b for 
a sketch of the different aggregation levels and the “Sta-
tistical treatment”  section for methods and Additional 
file 11 — Dataset count matrices, Profile decomposition 
and metadata, X_AFT.xlsx for the corresponding tables).

Metatranscriptomic data and frequency matrix
Metatranscriptomic data and metadata were obtained 
from the HMP2 cohort at https:// ibdmdb. org. Gene 
transcript abundance tables were generated, mapped 

(See figure on next page.)
Fig. 1 Modelling overview. a Schematic metabolic network of fibre degradation in the gut. The metabolic network used to model fibre 
degradation in the gut is represented from complex dietary and host-derived fibres to terminal metabolites. Dashed boxes in the upper part 
represent fibre pools that are linked to fibre-derived sugars by GH and PL. Intra- and extra-cellular metabolites are respectively represented by gray 
and black boxes. Metabolic pathways linking metabolites are numbered from 1 to 68 (see Table 2): representative KOs are selected for each pathway, 
checking for specificity (KO are not involved in other metabolic reactions) and essentialness (essential reactions for the completion of the pathway). 
Functional blocks are represented by colored shapes. GH_Fucose and GH_galactose, complex carbohydrate involving respectively fucose 
and galactose; ED, Entner-Doudoroff; SP-ED, semi-phosphorylative Entner-Doudoroff; EMP, Embden-Meyerhoff-Parnas; Bif. shunt, Bifidobacterium 
shunt; WL, Wood-Ljundhal. Complete list of reactions and abbreviations can be found in the Additional file 11—Dataset count matrices, Profile 
decomposition and metadata. b Gene count aggregation pipelines. The pipelines used to build the count matrices are sketched. To build X (AFT ) , 
KO, GH and PL are first selected according to the metabolic network in a, leading to a list of selected genes (SG) that are annotated in the 9.9M 
gene catalog and pooled into their respective KO, GH or PL. Some KOs are gathered according to functional proximity, leading to aggregated 
functional trait (AFT). This aggregation scheme allows to transform sample gene frequencies into AFT frequencies in X (AFT ) by pooling SG counts. 
For prevalent genome (PG) counts, taxonomic marker genes (TMG) are extracted from the genomes with FetchMg and annotated in the 9.9M 
catalog: the aggregated TMG are next counted in the samples to build X (PG) . MGS are reconstructed from the metagenomes, directly counted 
in the samples and pooled by genus to build X (mgs) . A NMF is performed on X (AFT ) to obtain W (AFT ) (weights) and H(AFT ) (functional profiles). Then, 
nonnegative least square inference is conducted on X (PG) and X (mgs) using W (AFT ) as regressor to obtain H(PG) and H(mgs) (PG and MGS taxonomic 
profiles)

https://ibdmdb.org
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Fig. 1 (See legend on previous page.)
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against the 9.9 million gene catalog and gathered into 
AFTs with the same procedure as for the metagen-
omic data. Sample outliers were removed according to 
read numbers and fraction of reads mapping against 
the 9.9 catalog, by filtering out respectively the 3 and 
5 first centiles. It resulted in the construction of a AFT 
expression frequency matrix X (AFT ,mtx) of dimension 
676× 101 (see Additional file 11—Dataset count matri-
ces, Profile decomposition and metadata, X_AFT.xlsx 
for the corresponding table).

GH, PL and KO Graphical representation
GH and PL were distributed according to the dietary 
fibre type they degrade. Some GH or PL appear in sev-
eral arrows because GH or PL CAZymes classification 

Table 2 KO, GH, PL lists and dataset characteristics. The list of 
reactions corresponding to Fig. 1 is displayed (top), with their 
corresponding KO (KEGG nomenclature). Then, GH and PL are 
listed (bottom)

Id KO
1 K01809

2 K00882

3 K06859

4 K01810

5 K01803

6 K00150

7 K00134

8 K00927

9 K00131

10 K01834

11 K01689

12 K00036

13 K01057

14 K07404

15 K01690

16 K00874

17 K00041

18 K01685

19 K00883

20 K00849

21 K00965

22 K01818

23 K00879

24 K01628

25 K01813

26 K01804

27 K01786

28 K03077

29 K03080

30 K00854

31 K01621

32 K00169, K00170, K00171, K00172

33 K00627

34 K03737

35 K00656

36 K04020

37 K00625

38 K00925

39 K00626

40 K01034, K01035

41 K00634

42 K00929

43 K01574

44 K01938, K00288, K01491

45 K00297

46 K00004, K03366

47 K00016

Table 2 (continued)

48 K01847

49 K01848, K01849

50 K01026

51 K00672

52 K01499

53 K00319

54 K13942

55 K00320

56 K00577, K00578, K00579, K00580, K00581, 
K00582, K00583, K00584

57 K00399, K00401, K00402

58 K01699, K13919, K13920

59 K13922

60 K13788

61 K15024

62 K00955

63 K00956, K00957

64 K00958

65 K00394, K00395

66 K11180, K11181

67 K00380, K00381

68 K00385

GH/PL
GH2 GH3 GH5

GH8 GH9 GH10

GH13 GH16 GH26

GH28 GH29 GH30

GH32 GH33 GH35

GH39 GH43 GH44

GH48 GH51 GH74

GH84 GH91 GH94

GH95 GH101 GH115

GH120 GH127 GH129

PL1 PL9 PL11
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does not represent a unique substrate uptake and fibre 
degradation modular enzymes are usually not substrate 
specific. KO were represented by directed arrows link-
ing metabolites together on a graph (Fig. 1a). Note that 
each array of this graph represent a full metabolic path-
way between metabolites, represented by the specific 
KOs collected for this pathway. Reaction cofactors such 
as  CO2, ATP and others were left out of this representa-
tion. Extracellular compounds, which micro-organisms 
can uptake or excrete, were identified with black con-
tours. Functional modules were identified from KEGG 
and expert knowledge. The metabolic network has been 
displayed with Pathvisio [58] (Fig. 1a) and further anno-
tated (functional blocks) with Inkscape [59].

Prevalent genome selection and function frequencies 
computation in prevalent genomes
A list of 203 genomes (see Additional file  11—Data-
set count matrices, Profile decomposition and meta-
data, Genome_list.xlsx) was built by selecting prevalent 
genomes from [27] and [60], taking care that the main 
phyla are represented. The genes involved in the 101 

AFTs were recovered in 191 genomes (see Additional 
file 11—Dataset count matrices, Profile decomposition 
and metadata, Genome_list.xlsx for subset list): KEGG 
Orthology annotation was carried out using diamond 
(0.7.11) [61] and default parameters on the KEGG 
database from 2016 [62]. If a query was found to have 
multiple hits, only the best hit was kept, any hit with 
bitscore under 60 was discarded [29]. GH and PL anno-
tations were obtained using Hmmer [56] and dbCan 
version 3 [57] with default parameters. The resulting 
presence/absence annotation is given in (see Additional 
file 11—Dataset count matrices, Profile decomposition 
and metadata, Genome_list.xlsx) and used for cluster-
ing in Fig. S6 (see the “Statistical treatment” section).

Taxonomic count matrices
Two different taxonomic informations were derived by 
counting in the samples either the 203 PGs through anno-
tation of taxonomic marker genes or metagenomic species. 
40 taxonomic marker genes (TMG) [63–65] were extracted 
from each 203 gut microbiota PGs using fetchMG (http:// 
vm- lux. embl. de/ ~mende/ fetch MG/ about. html) [66] with 

Fig. 2 Samples representation with AFT. a Intra and inter datasets pBCd distributions are computed on the 9.9M genes for each cohort dataset 
and compared with pBCd distributions among all samples. Little discrepancies are observed except for the Metacardis and Mediterranean diet 
cohorts, where intra pBCd is shifted towards lower values, and the CD cohort, where the shift is towards higher values. b The dysbiosis index 
distribution of each dataset is displayed, together with the dysbiosis threshold (red dotted line). Dysbiotic samples are over-represented in the CD 
cohort. c Comparison of different aggregation levels. pBCd distributions are displayed for each dataset, computed both on the 9.9M gene counts, 
on the subset of SGs or on the AFT counts (see Fig. 1b). pBCd with AFT are strongly decreased. HMP2 and CD distributions are wider than other 
datasets for all aggregation levels. d PERMANOVA p-values after variance decomposition analysis of pBCd matrices respectively to structuring 
co-variables. The PERMANOVA was performed for the different levels of aggregation and for the WH reconstruction. We can see that significance 
tends to decrease for higher aggregation levels, but the same level of significance is kept between AFT and WH, indicating that the same level 
of structure is kept after NMF decomposition. e Qq-plots of AFT and reconstructed pBCd distributions. The dots indicate the distribution centiles. 
The reconstructed pBCd are computed on WH reconstructions including 1 

(

WH1 = W
(AFT )
1

H
(AFT )
1

)

 , 2 WH12 =
2

i=1
W

(AFT )
i H

(AFT )
i

 , 3 
(

WH123 =
∑

3

i=1
W

(AFT )
i H

(AFT )
i

)

 or 

the 4 profiles 
(

WH1234 =
∑

4

i=1
W

(AFT )
i H

(AFT )
i

)

 . The red line indicates the bisector line. We observe that profile 1 alone is not sufficient to reconstruct 

accurate pBCd but that profiles 1 and 2 together allow the reconstruction of the main part of the pBCd distribution, for the lowest pBCd values. 
We can see that higher pBCd are not correctly rendered by the 2 profiles, especially for the CD cohort where dysbiotic samples are over represented. 
Adding the third and the fourth profiles enables a correct reconstruction of the whole distribution but with a homogeneous bias among 
the whole distribution

http://vm-lux.embl.de/%7emende/fetchMG/about.html
http://vm-lux.embl.de/%7emende/fetchMG/about.html


Page 8 of 26Labarthe et al. Microbiome          (2023) 11:231 

default parameters. These genes were annotated in the IGC 
catalog using diamond (0.7.11) [61] and default param-
eters. Any hit with bitscore, percent identity or alignment 
length under respectively 60, 97 and 45 was discarded as 
indicated in [66] for correct taxonomic annotation. TMGs 
frequencies in each sample were pooled by PG to assemble 
a genome frequency matrix X (PG) (see Additional file 11—
Dataset count matrices, Profile decomposition and meta-
data, X_PG.xlsx). Metagenomic species (MGS) [18] were 
recovered in the train dataset. Genus abundance was com-
puted according to MGS abundance in order to assemble 
a MGS-derived genus frequency matrix X (mgs) (see Addi-
tional file 11—Dataset count matrices, Profile decomposi-
tion and metadata, X_mgs.xlsx).

Inference of functional profiles
The inference method was thoroughly detailed in [25]. 
Briefly, starting from the frequence matrix X (AFT )

train  of the 
101 AFTs of the train dataset, we used a constrained 
nonnegative matrix factorization (NMF) to decompose 
X
(AFT )
train  as the product of two nonnegative matrices, the 

profile matrix H (AFT ) of dimension k × 101 and the 
weight matrix W (AFT )

train  of dimension ns,train × k where k 
is the number of profiles, an hyperparameter to be tuned 
(see below). Each line of H (AFT ) represents a functional 
profile, characterized by a vector of co-varying AFT fre-
quencies: H (AFT )

i,j  is the frequency of AFT j in profile i. 
The columns of W (AFT )

train  represent the weights of the cor-
responding profiles in the different samples: W (AFT )

train i,j 
represents the weight of profile j in the i-th sample of the 
train dataset X (AFT )

train
.

Matrices W (AFT )
train

 and H (AFT ) are inferred by solving the 
optimization problem

In this equation, D is a diagonal scaling matrix, so that 
Dii =

∥

∥

∥
X
(AFT )
train i

∥

∥

∥

2
 is the l2 norm of the i-th column. The 

matrix F is a constraint matrix designed to favour the 
presence in the profiles of complete metabolic pathways 
linking two extracellular compounds in Fig. 1a so that a 
given profile carries the whole set of reactions needed for 
intracellular metabolism (see Additional file 12—Supple-
mentary materials for additional precisions on the con-
struction of F, Additional file  11—Dataset count 
matrices, Profile decomposition and metadata, F.xlsx for 
the constraint matrix and [25] for more details). Finally, 
155 constraints were implemented so that F has 

(1)

(

W
(AFT )
train ,H (AFT )

)

= argmin

W ≥ 0
H ≥ 0

FHT ≤ 0

∥

∥

∥

(

X
(AFT )
train −WH

)

D−1
∥

∥

∥

2

F
+ α

(

�W�2F +

∥

∥

∥
HD−1

∥

∥

∥

2

1,2

)

dimension 155× 101 . The parameter α is a tuning param-
eter that sets up the impact of the regularization penal-
ties �W�2F + �HD−1�21,2 on the NMF. The Froebenius 
norm in penalty ‖W‖2F tends to standardize the Profile 
weights in a given sample while the l1,2 norm on H tends 
to assign each AFT to a limited number of profiles by 
inducing sparsity on the rows of H. The resulting profiles 
are not exclusive, meaning that a given AFT can be repre-
sented in several profiles.

The selection of the regularization parameter α and the 
number of profiles k was performed using the same tri-
ple criterion approach as in [25] providing the best trade-
off between internal data reconstruction (reconstruction 
error criterion), reconstruction of external samples 
(bi-cross validation) and profiles stability, while avoid-
ing over-fitting. See Additional file  12—Supplementary 
materials for precise definitions of the hyperparameter 
selection criteria.

Implementation of the NMF inference in python based 
on OSQP solver [67] is available at https:// forge mia. inra. 
fr/ nmf4m etage nomics/ pynmf and is based on a block 
coordinate descent algorithm consisting in alternatively 
solving the nonnegative least-square problems inferring 
W

(AFT )
train  knowing H (AFT ) with

and inferring H (AFT ) knowing W (AFT )
train

Average profiles weights W̄ (AFT )
train  and AFT counts 

X̄
(AFT )
train  of the training set are defined. Namely, average 

profiles weights W̄ (AFT )
train = 1

ns

∑ns
i=1W

(AFT )
train,i  are computed 

by averaging W on the train set. Average AFT counts 
X̄
(AFT )
train = 1

ns

∑ns
i=1 X

(AFT )
train,i  are obtained in the same 

manner.

Profiles validation
The matrix H (AFT ) whose lines are the 4 functional Profiles 
obtained after NMF on X (AFT )

train  was held fixed, and the posi-
tive least square regression (2) was performed on the valida-
tion datasets X (AFT )

d
 , for d ∈ {hmp2,CD,metacardis,med.diet,Parkinson} 

(2)

W
(AFT )
train

= argmin

W ≥ 0

∥

∥

∥

(

X
(AFT )
train

−WH
(AFT )

)

D
−1

∥

∥

∥

2

F
+ α

(

�W�2F

)

(3)

H
(AFT ) = argmin

H ≥ 0

FHT ≤ 0

∥

∥

∥

(

X
(AFT )
train

−W
(AFT )
train

H

)

D
−1

∥

∥

∥

2

F
+ α

(

∥

∥

∥
HD

−1
∥

∥

∥

2

1,2

)

.

https://forgemia.inra.fr/nmf4metagenomics/pynmf
https://forgemia.inra.fr/nmf4metagenomics/pynmf
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to determine the corresponding weight matrices W (AFT )

d  . 
Relative reconstruction error distributions 

∥

∥

∥
X
(AFT )

d i
−

W
(AFT )

d i
H (AFT )

∥

∥

∥

F

/
∥

∥

∥
X
(AFT )

d i

∥

∥

∥

F
  for i = 1, . . . , ns,d are computed 

for validation assessment.

Genomes and MGS affectation to profiles
To affect genomes to the functional profiles, we assumed 
that the weights predicting profiles assemblage to recon-
struct X

(AFT )
train

 were also a suitable predictor to recon-
struct genome frequencies. In other words, we search 
for genomes that co-vary with the functional profiles, 
with the implicit assumption that the genes included 
in a functional profile will vary proportionally with the 
genomes that carry them. Hence, knowing the (1153× 4) 
matrix W (AFT )

train
 , the unconstrained positive least square 

regression (3) was solved on respectively the prevalent 
genomes and the MGS frequency matrices X (PG)

train and 
X
(mgs)
train

 to infer H (PG) the 4 × 203 prevalent genome and 
H (mgs) the 4 × 217 MGS-derived genus count matrices. 
Note that the same L1,2 regularization penalty as in Eq. 
(1) was applied to favour unique allocation to the profiles, 
together with the same penalty coefficient α.

To compare this profile taxonomic make up with tax-
onomic-only profiling of the metagenomes, we per-
formed a NMF on the taxonomic count matrix X (PG) 
and X (mgs) . Namely, we solved problem (1) on X (PG)

train
 and 

X
(mgs)
train

 to find respectively the couples 
(

W
(PG,nmf )

train
,H (PG,nmf )

)

 
and 

(

W
(mgs,nmf )
train ,H (mgs,nmf )

)

 that best approximate the 
count matrices. Note that the constraint FHT ≤ 0 has 
been removed and that the regularization parameter α 
that is used is the same than for problem (1).

Transcriptome affectation to profiles
We use the same methodology as for taxonomic affecta-
tion: we search for transcripts co-varying with the func-
tional profiles. We then infer H (AFT ,mtx) such that 
W

(AFT )

hmp2 H (AFT ,mtx) ≃ X (AFT ,mtx) where W
(AFT )

hmp2  is the 
weight matrix obtained by decomposition of the 
metagenomic data with the function profiles in the hmp2 
dataset. The matrix H (AFT ,mtx) is obtained with the non-
negative least square inference problem (3) with the same 
constraint matrix F, L1,2 regularization penalty and pen-
alty coefficient.

Statistical treatment
All the computations and statistics have been per-
formed with custom scripts using the standard python 
libraries numpy [68], scipy [69], pandas [70] and mat-
plotlib [71]. Ternary plots that are plots in barycentric 
coordinates of normalized W1 , W2 , and W3 values, i.e. 
Wi/(W1 +W2 +W3) for i = 1, 2, 3 , are produced with 

the Ternary python package [72] (Figs. 6a, c and e, 7, S4a, 
c and e, S7c and d).

pBCd have been computed with scikit-learn [73] 
(see Fig.  2). Intra-cohort pBCd refers to dissimilari-
ties obtained with two samples of the same cohort 
while inter-cohort pBCd distribution of the dataset 
i ∈ {train, hmp2,CD,metacardis,med.diet,Parkinson} 
refers to dissimilarities obtained with a sample from the 
dataset i and another sample from dataset j  = i.

Dysbiosis index (DI) has been computed following [4]: 
a reference set has been set up with non-IBD samples of 
the  ‘hmp2’ cohort obtained after the 20-th weeks from 
the patient enrollment and DI is defined as the median 
pBCd with the reference dataset, excluding samples from 
the same individual. A dysbiotic threshold is defined as 
the quantile 0.9 of the DI in healthy samples: samples 
with DI above this threshold are tagged as dysbiotic [4].

To avoid statistical bias (individual effect) due to over-
representations of the same individuals, only the first 
time point of each individual is included in differential 
analysis involving the ‘hmp2’ cohort, i.e. for BMI (Fig. 5a, 
b), CD and dysbiosis analysis (Fig. 6a–d).

PERMANOVA (Fig.  2d) has been performed on the 
intra-cohort pBCd matrices obtained from the differ-
ent levels of aggregation (9.9M genes, SGs and AFTs, see 
the  “A functional view of fibre degradation in metage-
nomes” section)  with scikit-bio [74] using 10000 per-
mutations and default parameters, respectively to the 
following structuring co-variables: individual, sex, age, 
body mass index (BMI), diagnosis, study and nationality.

All the statistical tests have been performed with 
the scipy.stats module [69] (Fig.  5, Fig.  6, and Fig. S4). 
Multiple test corrections were made with statsmod-
els.stats.multitest [75] (Fig. 7 and Fig. S5). In all graphs, 
significant p-values are indicated with one star if 
1e − 2 < p ≤ 5e − 2 , 2 stars if 1e − 3 < p ≤ 1e − 2 , 3 
stars if 1e − 4 < p ≤ 5e − 3 and 4 stars if p ≤ 1e − 4 , non 
significant p-values are indicated with n.s.. The test name 
is indicated with the significance level. MW stands for 
the ‘two-sided’ Mann-Whitney U test and levene for the 
Levene test for the variance.

Support vector machine (SVM) classification has been 
made with scikit-learn [73] using ‘rbf ’ kernel after cross-
validation of the hyperparameters C and γ and min-max 
scaling normalization. The SVM classifier was trained on 
the ‘hmp2’ cohort, by classifying CD against healthy sam-
ples (Fig. S5).

Hierarchical clustering has been performed with the 
package scipy.cluster.hierarchy using a pairwise Jaccard 
distance matrix computed on the AFT presence-absence 
in the 191 genomes and the 4 profiles (see the “Prevalent 
genome selection and function frequencies computation 
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in prevalent genomes” section), ward algorithm and 4 
clusters (Fig. S6).

Results
Assessment of dataset and gene selection
Upstream to any data analysis, we first assess that the 
training set is representative of the whole set of metage-
nomes included in the study by computing pBCd on the 
9.9M genes, focusing on intra and inter-cohort distribu-
tions (see the “Statistical treatment” section). The train-
ing set shows nearly identical intra- and inter-cohort 
pBCd distributions that are also very close to the pBCd 
distribution obtained when the whole set of sample pairs 
are pooled (Fig. 2a, dashed and plain blue curves super-
imposed with dotted red curve), indicating that the train-
ing set is representative of the gene diversity observed 
in the metagenomes of the different datasets. The intra- 
and inter-cohort pBCd of the CD cohort show a pick of 
high dissimilarities (Fig. 2a, red curve), showing a higher 
prevalence of dissimilar samples in agreement with the 
over-representation of dysbiotic samples in this cohort 
(Fig. 2b, red). A similar observation can be done for the 
hmp2 cohort, with slighter effects, that can be related to 
the over-representation of inflammatory bowel diseases 
(IBD) in these cohorts. On the contrary, the Mediter-
ranean diet cohort presents a higher fraction of samples 
with low dysbiosis index (Fig. 2b, purple).

We next check that the functional simplification oper-
ated in this study by selecting genes related to fibre deg-
radation does not strongly bias the functional variability 
observed in the metagenome. Indeed, as fibres are the 
main substrate in the gut, fibre-related pathways are 
expected to be observed in all the metagenomes, induc-
ing less variable counts that could impair sample differen-
tiation. We then assess the impact of the different levels 
of aggregation and simplification of the metagenome per-
formed in the study (see Fig.  1b and the  “A functional 
view of fibre degradation in metagenomes” section). The 
pBCd obtained on the selected genes (SG) frequencies 
(Fig.  2c, plain lines) show very similar distributions to 
the pBCd computed on the 9.9M genes (Fig.  2c, dotted 
lines), indicating that the functional simplification result-
ing from the gene selection allows to reproduce the same 
sample stratification as the one obtained from the whole 
metagenome. As expected, dissimilarities are strongly 
reduced when pooling the SGs in AFTs shifting pBCd 
towards lower values (Fig. 2c, colored distributions), but 
AFT-based pBCd captures the over-representation of 
dissimilar samples in the CD and hmp2 cohorts. Further-
more, PERMANOVA shows that the main part of data-
set structures with respect to co-variables are correctly 
reproduced by AFT-based pBCd (Fig. 2d), indicating that 
the functions related to fibre degradation selected for the 

AFTs are suitable to capture stratifications observed in 
the whole metagenome.

Fibre degradation process is accurately described by 4 
universal functional profiles
Statistical inference of the functional profiles
Co-varying AFTs are identified in the training data-
set using the NMF method (see the  “Inference of func-
tional profiles” section), resulting in 4 distinct functional 
profiles (matrix H (AFT ) ) whose weighted mixture with 
weights W (AFT )

train
 allows to reconstruct the training AFT 

counts X (AFT )
train

 : X (AFT )
train ≃ W

(AFT )
train H (mean relative error : 

17%, see Fig. S1a). We recall that the NMF method was 
specifically constrained by a metabolic-based constraint 
F favouring in practice the clustering in the same profile 
of AFTs belonging to the same metabolic pathways [25]. 
This constraint results in the distribution of the differ-
ent metabolic pathways of the fibre degradation network 
among the 4 profiles.

Validation on external datasets
To assess the ability of the profiles to reconstruct 
external datasets, i.e. to validate the universality of 
the functional profiles, the nonnegative least square 
regressions (2) is performed on the AFT count 
matrix X (AFT )

d  in order to identify the best weight 
matrix W (AFT )

d  so that X (AFT )

d ≃ W
(AFT )

d H (AFT ) with 
d ∈ {hmp2,CD,metacardis,med.diet,Parkinson} . The 
relative reconstruction error distributions are very 
homogeneous across datasets, except for the CD 
dataset where increased reconstruction errors are 
observed (Fig. S1a). This is probably induced by an 
over-representation of dysbiotic and CD samples in 
this dataset that are less acurately reconstructed (Fig. 
S1 d and g). Structuring variables such as study, health 
or weight status, drug administration, diet or dysbiosis 
do not strongly affect reconstructions (Fig. S1). In the 
worst case (dysbiotic samples), the mean relative error 
is kept under 27%, and the 0.95 quantile is kept under 
a relative error of 44%.

We note a strong discrepancy in the four profile 
weights in the samples (Fig. S1 j). The weights W1 and W2 
of profiles 1 and 2 are significantly higher than W3 and 
W4 in all datasets (paired t-test, p < 1e − 6 ). This observa-
tion suggests that profiles 1 and 2 carry characteristic gut 
microbiota fibre degradation functions dominant in the 
majority of metagenomes whereas profiles 3 and 4 indi-
cate specific functional variations.

To investigate the contribution of the different pro-
files to metagenome reconstruction, we compare the 
pBCd obtained on reconstructed counts with AFT-
based pBCd when the number of profiles is increased. 
Namely, we compute the reconstructed count matrices 
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∑K
m=1W

(AFT )

d,m H
(AFT )
m  for K = 1 to 4 and compared 

the resulting AFT-based pBCd with the AFT-based 
pBCd computed on the original count matrix X (AFT )

d
 , for 

d ∈ {hmp2,CD,metacardis,med.diet,Parkinson} (Fig.  2. 
e). We can see that the first profile alone does not pro-
vide an accurate reconstruction of the pBCd distribution. 
Interestingly, adding the second profile allows to recon-
struct the main part of the pBCd distributions (until 
approximatively the 80th centile in the worst case, Fig. 2e, 
CD, orange line), except when the dataset involves over-
representation of highly dissimilar samples (HMP2 and 
CD datasets, Fig. 2c, orange and red distributions). How-
ever, in these cases, adding the third profile (and even 
the fourth for the hmp2 dataset, Fig.  2e, HMP2, green 
and pink lines) makes it possible to reconstruct higher 
pBCds. These observations suggest that profiles 1 and 2 
carry sufficient information to describe the AFT-related 
metagenomic variability in the main part of the popula-
tion, except in dysbiotic situations, that are correctly ren-
dered by adding profiles 3 and 4 in the reconstruction. 
We also note that the reconstructed pBCds are slightly 
uniformly underestimated, the qq-plot lying slightly 
under the bisector line.

The four profiles present contrasted functional 
characteristics
To dig into the intrinsic functional characteristics of the 
different profiles, we plot their AFTs distributions (Fig. 3a 
and Additional file  10—metabolic exploration). We first 
observe that the different profiles do not exhibit the same 
balance between GHs, i.e. AFTs involved in complex 
molecule cleavage like fibres, and KOs, i.e. AFTs taking 
in charge the downstream part of fibre degradation, from 
simple sugars to end products (Fig.  1a). Profile 1 car-
ries the largest set of GH (70%), reflecting a very broad 
capacity to breakdown fibre, resistant starch and diverse 
plant cell wall polymers, unlike profile 2 (38%), profile 3 
(23%) and profile 4 (22%). Profile 1 main GHs are related 
to mucin (GH2, GH43, GH29, GH95), glycoprotein and 
xylan (GH3), pectin and plant cell wall (GH 43, GH28), 
and to a less extent to starch degradation (GH13) as 
shown in Fig. 3a (GH pie chart) and Additional file 10—
metabolic exploration. Profiles 2, 3 and 4 are shifted 
towards sugar fermentation rather than hydrolysis. They 
are preponderantly characterized by starch degrada-
tion and amylase (GH13), with secondary GH activity 
related to glycoprotein and xylan degradation (GH3) and 
mucin (GH2) for profile 2, fructan and inulin degradation 
(GH32) for profile 3 and cellulose degradation (GH5) for 
profile 4. Profiles 2 and 4 present high proportions of GH 
involved in glycoprotein degradation. In contrast, profile 
3 has noticeably low proportions of GH involved in plant 

cell wall breakdown compared to other profiles but pre-
sents high proportions of GH2 releasing galactose from 
N acetyl-galactosamine moieties and GH29 and GH95 
releasing fucose, suggesting a shift from polymers hydrol-
ysis towards host derived glycan breakdown.

In the downstream part of fibre degradation, profile 
1 and profile 2 are very similar (Fig. 3a, KO pie charts 
and Additional file  10—metabolic exploration). The 
main differences are related to galactose pathway (AFT 
21 is more present in profile 2) and in the propanoate 
pathway where profile 1 takes in charge AFT 48 link-
ing lactate to propanoate while profile 2 is involved 
upstream in AFT 47 linking pyruvate to lactate. Pro-
files 3 and 4 present more dissimilarities: EMP propor-
tion is reduced in profile 3 while fucose (AFTs 22, 23 
and 24) and propanoate (AFT 48 and 50) pathways are 
enhanced (Fig.  3a and Additional file  10—metabolic 
exploration). Profile 3 is also the unique profile provid-
ing AFT 19 in galactose pathway. Profile 4 is character-
ized by a higher proportion of AFTs of the pyruvate 
pathway and the presence of the methanogenesis.

To check if these profiles, which represent a functional 
potential, are expressed in a metatranscriptome, we assem-
bled a AFT transcript count matrix X (AFT ,mtx) obtained 
from the hmp2 database and searched for co-varying AFT 
transcripts with the profiles. Namely, we performed a non-
negative inference to define the expression profile matrix 
H (AFT ,mtx) so that X (AFT ,mtx) ≃ W

(AFT )

hmp2 H (AFT ,mtx) (see 
Fig. S8a, b and c for approximation accuracy). The result-
ing AFT distribution of these expression profiles are repre-
sented in Fig. S8d. The expression profiles 1 and 2 shows a 
very good agreement with the functional profiles 1 and 2 
that are the preponderant profiles of the metagenome 
(Figs. S8d and Fig.  3a, upper panels). This consistency is 
particularly striking since the expression of a gene is not 
directly related to its count in the metagenome: it may 
reflect the preponderance of fibre degradation in the gut. 
The expression profile 3 gathers the same main AFTs than 
profile 3 but with different weights. In particular, the rela-
tive expression of EMP and WL pathways and of GH32 is 
higher than their functional potential in the metagenome. 
The expression profile 4 only gathers methanogenesis-
related AFT transcripts, confirming the functional charac-
terization of profile 4.

Profile contribution to the microbiota functional potential
These intrinsic characteristics functionally characterize 
each profile but do not give insight into its importance 
in the metagenomes. We assess the relative contribu-
tion of each profile i to the total count of AFT j by com-
puting W̄

(AFT )
train,i H

(AFT )
ij

/

X̄
(AFT )
train,j  , where W̄

(AFT )
train  and 

X̄
(AFT )
train  are the average weights and counts in the train-

ing set as defined in the  “Inference of functional 
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profiles” section. The four profiles have different eco-
logical contributions in the metagenomes (Fig. 3b and 
Fig. S2a). As expected, profile 1 is the main provider of 
GH counts, except for GH with the lowest counts 
(GH44 and 48 for plant cell wall degradation, GH 101 
and 129 for glycoprotein cleavage). It is also particu-
larly involved in some pathways such as Bifidobacte-
rium shunt, butyrate production, WL, SPED, EMP, ED, 
fructose and fucose pathways. Profile 2 has a major 

contribution in the pyruvate, butanoate, acetone path-
way and some specific KOs (K00882 and K01786 in the 
fructose pathway, K00965 for galactose metabolism, 
K13788 for acetate pathway). Profile 3 is the unique 
provider of some KOs such as K03080 in the fructose 
pathway, K01690 in ED or K04020 in acetate produc-
tion. It is also particularly present in galactose, fucose, 
SPED and propionate production. Profile 4 is the main 
contributor for methanogenesis, and has otherwise 

Fig. 3 Functional profiles characterization. a KO and GH-related AFT frequencies are first gathered to show the distribution of KO and GH in each 
profile (top central pie chart). Then, the frequency of each AFT is renormalized by KO or GH/PL total frequency, and displayed in pie-charts 
for KO (left) and GH/PL (right) after clustering by functional modules (color coded; see Fig. 1a for the functional modules). The number of the KO 
or GH-related AFT is displayed in its corresponding pie-chart sector (radially, inner zone) when its frequency is higher than 3% in the profile. b 
Average profile contribution in AFT counts. Average profile contribution for AFT j and profile i is computed as the proportion of average AFT counts 
provided by the profile i with W̄ (AFT )

train,i H
(AFT )
ij /X̄

(AFT )
train,j  , where W̄ (AFT )

train  and X̄ (AFT )train  are introduced in the “Inference of functional profiles” section. Finally, 
contributions are stacked by AFT in bar plots and ordered by functional modules. The residual 1−

∑

4

i=1
W̄

(AFT )
train,i H

(AFT )
ij /X̄

(AFT )
train,j  is plotted in gray. 

Dotted gray lines indicate the value of X̄ (AFT )train,j  measuring the average AFT frequency (y log-scale on the right)
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small to marginal contributions in EMP, pyruvate or 
sulfur pathways.

Taxonomic make up of the 4 profiles
A natural question at this point is to wonder which 
taxonomic units could provide the AFT of each func-
tional profiles. We selected 203 genomes among the 
top-prevalent strains in metagenomes, covering the 
main phyla found in the gut microbiota (see the “Preva-
lent genome selection and function frequencies com-
putation in prevalent genomes” section) and assembled 
TMG count matrix X (PG) for the different metagen-
omic datasets (see the “Taxonomic count matrices” sec-
tion). Under the assumption that a genome providing a 
specific AFT in a functional profile H (AFT )

i
 , i = 1, · · · , 4 , 

should co-vary with the profile, we search by nonnega-
tive inference the best H (PG) so that X (PG)

train
≃ W

(AFT )
train

H (PG) . 
In this equation, W (AFT )

train  is the weight matrix of the 
functional profiles (see Fig.  1b the “Genomes and MGS 
affectation to profiles” section). Hence, if H (PG) is con-
sistent, we should also have for each external data-
set d ∈ {hmp2,CD,metacardis,med.diet,Parkinson} 
X
(PG)

d ≃ W
(AFT )

d H (PG) . This is actually the case since the 
reconstruction errors at the phyla levels (Fig. S3) follow 
similar characteristics to the reconstruction of the AFT 
counts (Fig. S1). The same inference procedure is per-
formed to reconstruct the training MGS count matrix 
X
(mgs)
train  resulting in the MGS profile matrix H (mgs) with 

similar reconstruction error distributions (Fig. S3j).

Marked taxonomic structure of the profiles
The taxonomic profiling obtained with the MGS or the 
203 PGs are particularly consistent (Fig. 4a, b). Profile 1 
is dominated by Bacteroidetes species belonging to the 
genera Bacteroides and Prevotella. In contrast, Profile 2 
has a high diversity of Firmicutes species, with butyrate-
producing species from the Cluster IV Faecalibacterium 
prausnitzii species, Roseburia intestinalis, Ruminococcus 
bromii which is a degrader of resistant starch [76], and 
cluster XIVa Eubacterium rectale such as Eubacterium 
eligens. Anaerostipes putredinis is the main representer 
of the Bacteroidetes phylum. Actinobacteria, including 
the Bifidobacteria and the Verromicrobia species Akker-
mansia muciniphila are also present in profile 2. Profile 
3 is strikingly distinct from the two first profiles. It has 
a major proportion of commensals of the Proteobacteria 
phylum (Escherichia coli K12 and Klebsiella pneumoniae) 
but also marginaly the multi-drug resistant Escherichia 
coli SMS-3-5 strain [77] and Citrobacter sp. The mucin 
degrader Ruminococcus gnavus [78] is the main repre-
senter of the Firmicutes. Within the Bacteroidetes, the 
main fibre hydrolysing species are not contributing but 
the Bacteroides fragilis are dominant. Bifidobacteria and 

Akkermansia muciniphila are also part of Profile 3 taxo-
nomic contribution but more marginally. Profile 4 is sig-
nificantly distinct regarding its taxonomic representation. 
The Euryarchaeota domain, and specifically with hydrog-
enotrophic methanogenic strains from Methanobrevibac-
ter smithii species [79], is over-represented. Then, follow 
Firmicutes, Verrucomicrobia (Akkermansia Muciniphila), 
Bacteroidetes and Actinoacteria (see Table  3 for a table 
of main PGs in profiles). The MGS profiling of profile 4 
is rather different: it also includes the methanogens but 
otherwise gathers unclassified genus. These discrepan-
cies can be related to the low amount of signal carried by 
profile 4 (Fig. S1j).

We now wonder how consistent are the profiles with the 
enterotypes obtained from the analysis of the taxonomic 
compositions of large metagenomic datasets [20, 33]. Pro-
files 1 and 2 present contrasted distribution among ente-
rotypes (Fig. S4 c and d): if profile 1 is over-represented in 
Bact2 and Prevotela enterotypes, higher weights W (AFT )

2  are 
observed for Bact1 and Ruminoccocus enterotypes. Inter-
estingly, profile 3 is almost only observed in Bact2 entero-
types and profile 4 in Ruminoccocus enterotype (Fig. S4 d).

The profiles link the taxonomic and functional composition 
of the microbiota
Compared to the functional contribution of the profiles 
(Fig. 3b), their taxonomic contribution is very structured 
(Fig. 4c, d and Fig. S2b, c). Profile 1 is the main contributor 
for Bacteroidetes, profile 2 for Firmicutes and Actinobacte-
riota, profile 3 for the Proteobacteria and some Firmicutes 
and profile 4 for the Euryarchaeota. Repeating this analy-
sis on MGS clustered by genus (Fig. 4d and Fig. S2c) leads 
to consistent results, despite the very different nature of 
the taxonomic data, i.e. targeted PGs versus untargeted 
MGS. This clear structure is particularly strinking since 
the taxonomic profiling is indirect and based on the pro-
files weights obtained on the AFT counts, indicating that 
these specific phyla may carry specific AFTs of the dif-
ferent profiles, linking taxonomic composition and func-
tional contribution to the metagenome.

To check this hypothesis, we blasted the genes involved 
in the AFTs in 191 PGs (Fig. S6) and clustered the genomes 
by their similarity in carrying AFT genes, adding the four 
profiles to the clustering process (see the “Statistical treat-
ment” section). The Bacteroidota, main carrier of GH 
genes, clustered with profile 1 as expected. Actinobacteria 
clustered together, characterized by the Bifidobacterium 
shunt and one function involved in acetate production 
(AFT 60). Firmicutes are splitted in two groups: the first 
group characterized by the absence of fucose-related genes 
and little presence of fructose and mannose pathways clus-
tered with profile 4, while the others clustered with pro-
files 2 and 3. Profile 3 clustered with the Proteobacteria 
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characterized by a strong representation of fucose, fruc-
tose, mannose and propionate pathways. This clustering is 
very consistent with the taxonomic profiling, even though 
derived from very different biological signals. This repeated 
consistency (profiling with targeted PGs, untargeted MGS, 
clustering based on AFT presence/absence in genomes) 
suggests that the functional stratification described by the 
different profiles actually reflects co-variations of micro-
bial entities. These covarying taxons, characterized by 
within-group functional similarities and between-group 

functional discrepancies, are the taxonomic support of the 
covarying AFTs defining the functional profiles.

Balance of profiles 1 and 2 reflects metabolic status 
and dysbiosis
Profiles 1 and 2 particularly contribute to GH produc-
tion and sugar metabolism AFTs; we therefore wondered 
if body mass index (BMI) structured the samples in the 
W1-W2 space (Fig. 5a). When W (AFT )

1  is high and W (AFT )
2  

is low, higher BMIs are preponderant (light green dashed 

Fig. 4 Taxonomic profiles characterization. a The 203 genomes frequencies in H(PG) are displayed in pie-charts and clustered by successive 
taxonomic levels, i.e. taxa (outer ring), genus, class and phyla (inner ring), color-coded by phyla. Taxa names are displayed radially when their 
frequency is higher than 1% in the profile. These taxa are recapitulated in Table 3. b The same procedure is applied on MGS clustered at the genus 
level. Taxonomic levels are genus, class and phyla. c Average profile contribution in the 203 genomes counts. Namely, the same average profile 
weight W̄ (PG)

train as in Fig. 3 is computed together with X̄ (PG)train . Then, average profile contribution for genome j and profile i is computed 
with W̄ (PG)

train,iH
(PG)
ij

/

X̄
(PG)
train,j . Finally, contributions are stacked by genome in bar plots and ordered by phyla. The residual 1−

∑

4

i=1
W̄

(PG)
train,iH

(PG)
ij

/

X̄
(PG)
train,j 

is plotted in gray. Dotted gray lines indicate the value of X̄ (PG)train,j measuring the average AFT frequency (y log-scale on the right). d) The same 
procedure is repeated on the MGS clustered at the genus level
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Table 3 For each profiles, PGs with a frequency greater than 1% are indicated

Profile 1 Profile 2 Profile 3 Profile 4

Prevotella copri Eubacterium eligens Streptococcus thermophilus Eubacterium siraeum

Bacteroides stercoris Eubacterium rectale Ruminococcus gnavus Butyrivibrio crossotus

Bacteroides vulgatus Ruminococcus bromii Escherichia coli Ruminococcus bromii

Bacteroides coprocola Faecalibacterium prausnitzii Klebsiella pneumoniae Collinsella aerofaciens

Alistipes putredinis Faecalibacterium cf Parabacteroides distasonis

Faecalibacterium cf Alistipes putredinis Akkermansia muciniphila

Akkermansia muciniphila Methanobrevibacter smithii

Fig. 5 W1 and W2 profile variations. a BMI. When BMI is available, samples are displayed in the W1-W2 space, colored by BMI. 95% confidence 
ellipse are indicated for BMI lower and higher than 35 (class 2, severe obesity threshold). b Obesity status. Boxplot of W1 and W2 levels structured 
by obesity status. We can observe that for highest obesity classes, W1 is significantly higher whereas W2 is significantly lower (MW = Mann-Whitney 
test). This shift can be also observed in the confidence ellipse centroid in subfigure a. c Dysbiosis index. All samples are displayed in barycentric 
coordinates in the W1-W2 space. Barycentric coordinates are equivalent to compute W∗ = W

(AFT )
2

/(

W
(AFT )
1

+W
(AFT )
2

)

 . The extremity W (AFT )
1

 

corresponds to W∗ = 0 , i.e. when only profile 1 is present in the sample, and the extremity W (AFT )
2

 corresponds to W∗ = 1 , i.e. when only profile 2 
is present. Samples are stratified by DI: the first DI decile (gray), non dysbiotic samples (blue, DI<dysbiosis threshold), dysbiotic samples (orange, 
DI>dysbiosis threshold) and last DI decile (pink) are displayed. The red ticks indicate the group mean, and confidence interval (mean +/- 2*standard 
deviation) is displayed with a colored bar. The dotted red line indicate the value W∗ = 0.2 . We note a higher W1 −W2 unbalance for increasingly 
dysbiotic groups. d Mediterranean diet. Samples are displayed in barycentric coordinates in the W1 −W2 space for the Mediterranean Diet cohort 
at baseline (circles) , 4 weeks (trianges) and 8 weeks (stars) after intervention for control (mauve) and Mediterranean diet (brown). The mean of each 
category is displayed with a red vertical line and confidence intervals are indicated as in plot c. The dotted red line indicate the value W∗ = 0.2 . We 
can observe that sample variability around the mean is strongly shrunk for the Mediterranean diet group after 4 weeks. e Mediterranean diet 
stabilises the microbiota. The variance of W2/(W1 +W2) in the control and Mediterranean diet groups is displayed at baseline, 4 weeks and 8 weeks. 
The variance decreases for Mediterranean diet after 4 and 8 weeks is significant (Levene test). e Time shifts of W∗ . Time shifts, defined 
as the difference of W∗ = W2/(W1 +W2) between 4 weeks and 8 weeks, are displayed with boxplots, for the Mediterranean and control diet 
groups. Time shifts are reduced after intervention for the Mediterranean group, with low significance ( p = 0.06 , Mann-Whitney one-sided test)
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confidence ellipse), whereas lower BMIs are over-rep-
resented in the region defined by low W (AFT )

1  and high 
W

(AFT )
2  (green confidence ellipse). Plotting W (AFT )

1  and 
W

(AFT )
2  distributions stratified by obesity levels (Fig. 5b) 

shows that W (AFT )
1  values are significantly higher and 

W
(AFT )
2  significantly lower for class 3 obesity compared to 

healthy samples. Interestingly, the shifts are significantly 
reversed under statin treatment (Fig. S4f ), a drug used 
against hypercholesterolemia, suggesting metabolism-
driven modifications of the microbiota. Statin is known 
to impact the microbial composition, reducing the preva-
lence of Bact2 enterotype in patients under treatment 
[33], consistently with the statin-induced reduction of 
W

(AFT )
1  since profile 1 is over-represented in Bact2 ente-

rotype (Fig. S4 d). It should be noted that a taxonomic-
only profiling of the metagenomes shows a completely 
different pattern, with a vanishing preponderant taxo-
nomic-only Profile W (AFT )

1  for higher classes of obesity 
but small variations of W (AFT )

2  (Fig. S9e).
As profiles 1 and 2 are preponderant in the samples, we 

investigated if their respective weights are impacted dur-
ing dysbiosis. To quantify the balance between profiles 1 
and 2 in the microbiota, we introduce the barycentric 
coordinate W ∗ = W

(AFT )
2

/(

W
(AFT )
1 +W

(AFT )
2

)

 that we 
plot with stratification by dysbiosis index (DI, see 
the “Statistical treatment” section for DI definition). For 
balanced microbiota (Fig. 5c, blue, DI < dysbiotic thresh-
old), the barycentric coordinates are tightened around an 
average ratio of 0.2, meaning that profiles 1 and 2 are 
mixed with a respective ratio 4:1 in non dysbiotic sam-
ples. On the contrary, W ∗ is significantly higher in dysbi-
otic samples (DI>dysbiotic threshold, orange, p < 1e − 5 , 
two-sided Mann-Whitney (MW) test), with significantly 
increased dispersion around the mean ( p < 1e − 5 , Lev-
ene test). Shrinkage around W ∗ = 0.2 is enhanced for the 
first DI decile (gray) and W ∗ is more dispersed in the last 
decile (pink) compared to the set of dysbiotic samples. 
All together, these observations suggest that dysbiosis is 
characterized by unbalanced profiles 1 and 2. Further-
more, unbalance is induced by both a significant deple-
tion of profile 1 (Fig. S4 b, MW test) and a significant 
increase of profile 2 (MW test).

Profile 1 main characteristic is its preponderant contri-
bution in GH-related AFTs, involved in fibre cleavage. We 
then hypothesized that high fibre diet may impact profile 1 
and 2 balance. In an interventional study comparing Medi-
terranean diet (considered as a high fibre diet) to a control 
diet, the distribution of the barycentric coordinate W ∗ 
are similar in the Mediterranean diet and control groups 
at baseline (Fig. 5 d). Four weeks after intervention, W ∗ is 
tightened around the value 0.2 in the Mediterranean diet 
group, and this shrinkage is maintained 8 weeks after inter-
vention, whereas the dispersion is similar to the baseline 

in the control group (Fig.  5d). Furthermore, the variance 
of W ∗ is significantly reduced after intervention in the 
Mediterranean diet (Fig. 5e, Levene test) unlike the control 
group. The shift of W ∗ between four and eight weeks are 
higher in the control group compared to the Mediterra-
nean diet (Fig. 5d) with slight significance ( p = 0.06 , one-
sided MW test). These observations suggest that the higher 
fibre intake in the Mediterranean diet contributes to the 
stabilization of profile 1 and 2, particularly equipped with 
fibre degradation functions, around a non-dysbiotic ratio.

Profiles 3 is associated to Crohn’s disease and profile 4 
to slow transit
When plotting the weight of the 3 first profiles in a ter-
nary plot in the W1 −W2 −W3 space (Fig. 6 a), Crohn’s 
disease (CD) samples (red dots, red line : 95% confi-
dence) are mainly shifted towards the W1 and the W3 
corners, whereas healthy samples (green dots, green line: 
95% confidence) are kept near the basis of the triangle, 
around the ratio 0.2 between profiles 1 and 2 previously 
identified as a marker of healthy samples. This means that 
Crohn’s disease is characterized by unbalanced profiles 1 
and 2 and over represented profile 3. Bar plots (Fig. 6b) 
shows that the unbalance is driven by a very signifi-
cant (MW test) depletion of W (AFT )

2
 in CD samples while 

W
(AFT )
1

 is not significantly modified and a very significant 
increase of W (AFT )

3
 is observed (MW test). Hence, in CD 

samples, a shift in the profiles weights occurs from pro-
file 2 towards profile 3. This shift carries enough signal 
to correctly classify CD and healthy samples using SVM 
classifier with high accuracy (Fig. S5 e., recall: 0.94, preci-
sion: 0.81, AUC: 0.92 for the unseen test cohort).

This observation is unexpected since dysbiotic sam-
ples ought to be over-represented in CD samples and we 
just saw that dysbiosis is characterized by an increase of 
W

(AFT )
2  (Fig. S4 a and b). We then color-coded dysbiotic 

and not dysbiotic samples in the ternary plot (Fig.  6c) 
and stratified accordingly the bar plots (Fig.  6d). In not 
dysbiotic samples, the weight of profiles 1 is increased 
in CD compared to healthy population whereas profile 
2 drops, with high significance. During dysbiosis, usual 
shifts occur: W (AFT )

1  is reduced while W (AFT )
2  is increased 

in both CD and normal populations, but W (AFT )
2  remains 

lower for dysbiotic CD compared to healthy dysbiotic 
samples, with high significance (MW test). We also 
observe that profile 3 is not a strong marker of dysbio-
sis since in healthy populations, a dysbiosis only triggers 
a limited increase of profile 3 weight, while CD induces a 
strong increase of W (AFT )

3  whatever the dysbiotic status 
with a strong enhancement during dysbiosis (Fig.  6 d). 
Interestingly, profile 3 is mitigated by Mediterranean diet 
(Fig. 6f ). After 8 weeks of high-fibre diet, profile 3 is sig-
nificantly reduced (MW test) together with its variance 
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(Levene test) compared to baseline and to control (MW 
test p = 3e − 3 , Levene test p = 4e − 2 ) so that samples 
are kept near the basis of a ternary plot (Fig. 6 e). Medi-
terranean diet has been shown to improve the inflam-
matory status of patients experiencing an increase of 
microbial richness after diet change[34], suggesting that 

W
(AFT )
3  reduction after intervention could be linked with 

the inflammation reduction. This would be consistent 
with the taxonomic composition of profile 3, carrying 
Proteobacteria known to bloom during inflammation 
[80]. The association of W (AFT )

3  with the CD inflam-
matory disease and the over-representation of higher 

Fig. 6 W3 Profile variations associated to inflammatory status. a Crohn’s disease. Ternary plot in the W1 −W2 −W3 space of samples colored 
by disease status (red: Crohn’s disease (CD), green: Non-CD). 95% confidence area of each category are displayed with plain lines. b Boxplot of W1 , 
W2 and W3 levels, structured by disease status. We can observe that CD samples have no marked difference in W1 levels but are characterized 
by significantly lower W2 and strongly higher W3 levels. This pattern differs from dysbiotic samples where W2 were over-represented. This 
observation corroborates the shift of the confidence area in the ternary plot c. c Unraveling dysbiotic and CD profiles. CD and healthy (N) dysbiotic 
(dys.) and not-dysbiotic(Not_Dys.) samples are displayed in a ternary plot in the W1 −W2 −W3 space. d Boxplot of the W1 , W2 and W3 levels, 
structured by dysbiotic and CD status. e Mediterranean diet. Ternary plots in the W1 −W2 −W3 space of samples of the Mediterranean diet 
cohort. Control and Mediterranean diet groups are displayed in separated ternary plots. For a same individual, samples at baseline (circles) and 8 
weeks after intervention (stars) are represented and linked by a line, showing the individual time trajectory. 95% confidence areas are displayed 
for baseline and 8 weeks groups. Ternary plots are clipped in the W3 direction at W3 = 0.08. f Boxplots of W3 levels in the control and Mediterranean 
diet groups at baseline, 4 weeks and 8 weeks after intervention. W3 mean and variance are significantly reduced after 8 weeks of Mediterranean diet
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W
(AFT )
3  in Bact2 enterotype (Fig. S4d) are also consistent 

with the previous identification of Bact2 as a dysbiotic 
microbiome [33].

The weight transfer from profile 2 towards profile 3 
reflects functional shifts in CD compared to healthy 
samples. Functional modules are significantly over-
represented in CD samples compared to healthy ones, 
in particular ED, fucose, galactose GH, sulfur and pro-
pionate pathways (Fig. S5a and c, fdr 0.05, Benjamini-
Hochberg correction). A closer look to the metabolic 
pathaways during CD and dysbiosis indicates a shift 
towards non typical metabolic pathways in the metage-
nome (Fig. 7). If some GHs are shifted, mainly involved 
in cellulose (GHs 44 and 48), xylan (GH 8) and glycopro-
tein (GH 101) degradations, the most interesting modifi-
cations occur in the KOs. First, the downstream part of 
fucose pathway including the propane1-2 diol produc-
tion from L-lactadehyde (AFT 58; K13922) and propion-
ate production through AFT 59 is particulary marked in 
CD samples: it is a propionate production pathway dis-
tinct to the usual one based on lactate transformation, 
which is reduced in CD (AFT 50). Consistently, the genes 
involved in acetate production through AFT 36 (K04020) 
and 60 (K13788) are non typical for anaerobic pathways 
and are over-represented in CD samples. Further shifts 
are observed during CD presenting alternatives in sul-
fur (AFT 62), SP-ED (AFT 9) and pyruvate (AFT 33) 
pathways.

During dysbiosis, these shifts are further enhanced. 
Fucose fermentation pathway is exacerbated with the 
increase of AFT 23 encoding for fucK which is pre-
sent in Proteobacteria and Akkermansia muciniphila 
genomes (Fig. S6), which complete a pathway from 
fucose to propionate and enforces the availability of the 
corresponding genes. AFT 67 encoding for sulfite and 
NAPDH from hydrogen sulfide (Fig.  7) driving hydro-
gen removal from dissimilatory sulfate reduction is also 
increased: these functions are characteristic of Proteo-
bacteria and Bacteroidota (Fig. S6) and are an alterna-
tive to AFTs 66 and 68 more present in Firmicutes and 
profile 2 in healthy samples (Fig.  7, S6 and Additional 
file  10—metabolic exploration). Further modifica-
tions occur during dysbiosis and dysbiotic CD such as 
AFT 43 (acetone production) or GH 74 (hemicellulose 
degradation). Alternatively, some shifts are prepon-
derant in healthy dysbiotic samples but do not belong 
to the main modifications in dysbiotic CD. Among 
them, alpha-galactose fermentation as characterized 
by AFT 19 (including gene dgoK; 2-dehydro-3-deox-
ygalactonokinase [EC:2.7.1.58]) involved in galactose 
to pyruvate metabolism is an alternative to galactose 
transformation towards glucose during dysbiosis. The 
alternative ED pathways for glucose fermentation is 

also enhanced (AFTs 12, 13 and 15) compared to EMP 
pathway in healthy dysbiotic samples, since these AFTs 
are over-represented in profile 3 (Fig. 3a and Additional 
file 10—metabolic exploration).

If the functional count changes are relatively limited 
(Fig. S5c), the taxonomic changes are massive (Fig. 
S5d), supporting the fact that the observed functional 
shifts are carried by modifications in the taxonomic 
composition of the microbiota during CD. Functional 
redundancies across micro-organisms (Fig. S6) lead to 
limited changes in the functional composition of the 
fibre-related metagenome, with more marked modi-
fications in a limited number of functions involved in 
species functional specialization in alternative path-
ways. For example, Proteobacteria are characterized 
by the presence of propionate-related AFTs (Fig. S6), 
which relates the preponderance of Proteobacteria in 
CD samples (Fig. S5d) to the shift towards W (AFT )

3  in 
the distribution of propionate-related AFTs during CD 
(AFT 58, 59, 50, Fig. 7). However, taxonomic-only pro-
filing of the metagenome does not allow to accurately 
reproduce the stratification between dysbiotic and CD 
samples obtained with Profile 2 and Profile 3 (Fig.  6d 
and Fig. S9g).

Regarding profile 4, W (AFT )
4  weight is significantly 

reduced for higher Bristol scores (3 to 7), associated to 
more fluid stools, compared to low Bristol scores (1–2) 
associated to hard stools (Fig. S7a). As fluid stools are 
often related to lower retention times in the gut, we 
wondered if larger retention times would favour profile 
4 and investigated a cohort including patients suffering 
Parkinson’s disease, a disease associated to constipation, 
reported in 80–90% of PD patients [81]. As expected, 
W

(AFT )
4  is higher in PD samples compared to control with 

slight significance (MW test, p: 5.3e−2, Fig. S7,b). This 
relation of W (AFT )

4  with low transit time can be linked to 
the taxonomic composition of profile 4, mainly marked 
by the presence of methanogenic archaea, characterized 
by low growth rates.

Discussion
We used the NMF method previously introduced [25] 
to analyse metagenomic gene count matrix taking into 
account prior knowledge on fibre degradation. Our 
approach is based on a two-step microbiota simplification. 
In the first step, functional marker genes of interest are 
selected to build the AFT count matrix while providing a 
simplified view of the metagenome focused on fibre deg-
radation. In the second step co-varying AFT are identified 
using NMF, leading to 4 universal functional profiles that 
can be used to reconstruct external samples. This double 
simplification is crucial to decipher changes among the 
very high dimensional metagenomic data and to provide 
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Fig. 7 Variation of profiles contributions in healthy vs CD and dysbiotic vs not dysbiotic samples. The metabolic network of fibre degradation 
is displayed, and profile contribution in GH/PL and KO counts is color coded on the corresponding arrows of the network. Profile contributions are 
displayed for healthy (N, left panel) and CD (right panel) samples and dysbiotic (lower panel) and not dysbiotic (upper panel) samples. Namely, we 
compute CD and healthy average profiles weight W̄ (AFT )

train,g
 by averaging W (AFT )

train
 on the sample group g (N and dysbiotic, N and not dysbiotic, CD 

and dysbiotic, CD and not dysbiotic). Average AFT counts X̄ (AFT )train,g
 are obtained in the same manner for each group. Then, average profile contribution 

for AFT j and profile i is computed with W̄ (AFT )
train,g,i H

(AFT )
ij

/

X̄
(AFT )
train,g,j

 . The respective relative contribution of profiles 1, 2 and 3 is then mapped into a ternary color 

map (central triangle) and displayed on the corresponding arrow or GH/PL box. Black arrows indicate AFT the main contribution of which 
is given by profile 4. Arrow widths are proportional to AFT counts in X̄ (AFT )train,g

 . For N&Not dysbiotic graph, all the AFTs are represented (control situation). 
For the other graph, the AFTs that significantly changed compared to N&Not dysbiotic group (t-test and Benjamini Hochberg correction 
with FDR < 0.05 ) were filtered; we then ordered AFTs by compositional changes compared to N&Not dysbiotic group (L2 difference 
on W̄ (AFT )

train,g,iH
(AFT )
ij

/

X̄
(AFT )
train,g,j computed on both groups) and kept the top 20 AFTs in order to highlight the main changes in microbiota composition. 

The same figure can be explored dynamically (see Additional file 10—metabolic exploration)
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extensive biological interpretations of the different pro-
files and their shifts during diseases. This functional view-
point is supplemented by a taxonomic make up of the 4 
profiles. Several external datasets were further studied 
and profiles weights variations were linked to obesity, dys-
biosis, Mediterranean diet, statin intake and Crohn’s dis-
ease. The expression of these universal functional profiles 
has been checked in metatranscriptomic data, and their 
taxonomic characterizations have been compared to a 
taxonomic-only NMF profiling of the metagenomes.

Screening the profiles weights allows the identifica-
tion of global shifts in the microbiota induced by con-
joint changes in the co-varying genes of the profiles. We 
emphasize that this differential analysis relies on four 
quantities only (the weights of the four profiles), repre-
senting a dramatic reduction of the dimensionality. Fur-
thermore, as the profiles take in charge specific parts of 
the metabolic network of fibre degradation, our frame-
work is very suitable for functional interpretation: the 
profiles weights variations are directly linked to func-
tional variations that can be mapped to specific meta-
bolic pathways of the fibre degradation network. Finally, 
the profiles functional potentials are particularly consist-
ent with their taxonomic composition and the functional 
peculiarities of the genomes they include.

In particular, new biomarkers were identified for dys-
biosis and CD. A healthy microbiota is characterized 
by a balance of profiles 1 and 2 around a proportion 4:1 
while microbiota diverging from this 4:1 proportion are 
over-represented in dysbiotic samples. As profiles 1 and 
2 mainly differ by their GHs, these shifts reflect pre-
ponderantly changes in fibre cleavage. In the same way, 
profile 2 and profile 3 are sufficient to classify CD sam-
ples with high accuracy and reflect functional shift from 
usual to unusual pathways for fucose, propionate, H2S, 
SPED, acetone or butanediol, together with a bloom of 
Proteobacteria. These biomarkers give in themselves 
new insights on the underlying ecology during these 
pathological events. However, due to our focus on fibre 
degradation, we only capture changes inside fibre cleav-
age and fermentation pathways of fibre-derived sugars: 
our methodology is missing all the functional shifts out-
side this scope, which can be important in particular in 
pathological situations. This limitation could explain 
why many samples are tagged as dysbiotic with the 9.9M 
genes pBCd-derived classification but display a healthy 
ratio of 4:1 between profiles 1 and 2 for fibre-related 
genes. Hence, our methodology could be extended to 
other metabolic functions, such as respiration functions 
in micro-aerophilic environments during inflammation 
or glycoprotein degradation, or to non-metabolic func-
tions such as antibiotic production or bile salt hydrolysis.

AFT selection is a crucial step of this methodology. 
Narrowing down the number of genes in the metagenome 
is needed for microbiota simplification. Furthermore, the 
careful selection of specific genes allows to link an AFT 
count to specific metabolic pathways despite ubiquitous 
genes: enlarging too much the set of selected genes would 
have blurred the biological interpretation by adding genes 
involved in very different pathways. However, some of 
these genes had to be added in the selection to allow cer-
tain degradation pathways. Selection step is then a trade-
off between specificity and completeness of the global 
network, in the context of ubiquitous enzymes. This is 
particularly true for the first step of the degradation path-
way, from dietary and host-derived fibres to simple sugars, 
due to the large diversity of fibres [82], and the presence of 
GHs with a broad range of cleaving sites [37, 38]. Again, 
this modelling option can be seen as a bias of the present 
study that could be corrected by enlarging the functional 
scope of the method by enrolling other functions, e.g. to 
put the focus on the metabolism by the microbiota of gly-
cosaminoglycans (GAGs), which are important for the 
colonization of certain gut bacteria but also for the host 
health, GH88, PL29, PL8 and PL33 should be added to the 
upper part of the metabolic network, with connections to 
galactose [83]. We consider this trade-off as a necessary 
bias intrinsic to microbiota simplification, a price to pay 
for facilitated biological interpretations.

Another ambition of microbiota simplification is to 
decipher universal pattern, or functional invariant that 
can be searched for in a metagenomic sample. In the 
present study, four functional profiles are identified that 
structure the main part of the metagenomic samples. 
In the inference procedure, strong caution has been put 
in hyperparameter selection and inference validation, 
with a particular criterion on the stability of the inferred 
matrix H: the selected hyperparameters reduced the sen-
sitivity of the inferred H to subsampling of the training 
set, enforcing the universality of the inferred profiles. 
Furthermore, the training set has been carefully consti-
tuted by enrolling a large panel of healthy, inflammatory 
disease, metabolic disorder, with a strong caution not to 
introduce age, sex, study or origin bias. The representa-
tiveness of the training set has been validated a posteriori 
by checking that its intrinsic pBCd distribution was iden-
tical to the overall pBCd distribution. We also stress that 
the ability of the profiles to accurately reconstruct exter-
nal samples has been widely validated by applying them 
to 2571 unseen samples from 5 external studies. How-
ever, other inference settings such as other regularization 
penalty, or a different learning set, could bring slightly 
different profiles. This drawback is inherent to dimension 
reduction strategies, also present in other strategies such 
as enterotyping: the microbiota simplification allows to 
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decipher general features but the statistical method itself 
comes with intrinsic bias that introduces peculiarities.

A classical debate in microbial ecology is the cross-talk 
between taxonomic composition of the microtiota and its 
functions. As functions are derived from the taxa present 
in the sample, most of the microbiota simplification efforts 
have been put on exhibiting patterns of diversity, i.e. invari-
ants in the taxonomic composition of the samples. This led 
to the concept of enterotypes [20, 84] and more recently 
of enterosignatures [85]. Here, we proposed to reverse the 
view point by first exhibiting functional profiles and then 
digging into taxonomic entities that could carry the func-
tions they involve. From a microbial ecology perspective, 
this approach is similar as identifying stable environment-
dependent niches, i.e. the metabolites and their related 
functions in a Profile, that can be occupied by adapted 
microbes, i.e. the taxonomic make-up of the profiles. In 
this study, we compared both microbiota decomposition 
approaches. Function-based reduction seems to be more 
general in the sense that functional profiles prevalence is 
rather stable among datasets (Fig. S1j) compared to taxo-
nomic-only reduction (Fig. S9c) that shows exclusion of 
taxonomic profiles in some datasets (e.g. W (PG,nmf )

2  and 
W

(PG,nmf )
4  in hmp2 dataset). This feature is expected since 

the gut environment is strongly constrained by the host 
physiology and the diet, whereas taxonomic composition 
is also subject to contingency, such as temporal priority 
effect [86, 87] or biogeography effects [88, 89]. Taxonomic-
only partitioning such as enterotypes proved to be efficient 
in structuring populations with respect to geographic ori-
gin [90], age [85], diet [91, 92] or disease [33, 90, 93, 94]. 
However, the present study shows that the function-based 
microbiota simplification allows capturing weak signals 
such as stratifying between dysbiotic or undysbiotic CD 
samples (Fig.  6c, d) or deciphering a functional switch in 
higher classes of obesity (Fig. 5b), contrary to taxonomic-
only profiles (respectively Fig. S9f, g and e). But the main 
advantage of this function-based approach is the functional 
interpretation of the shifts in the metagenomes induced by 
profiles weights variations. They facilitate the identifica-
tion of key functions that can be targeted to manipulate the 
microbiota with pre- or probiotic treatments.

The NMF method was previously used for metagen-
omic data analysis [95–97]. It can also be related to 
other dimension reduction or soft clustering techniques. 
NMF is comparable from a modelling point of view to 
mixture models such as DDM, that were used to iden-
tify enterotypes [20]: the metagenomic counts are seen 
as a mixture of different populations the composition 
and weight of which is unknown. The inference setting is 
however very different, and NMF suggests a continuous 
interpretation of the weights, by comparison to discrete 
allocation to an enterotype in DMM. NMF method can 

also be interpreted as a PCA-like method, constrained 
by the positiveness of the weights and the direction. 
The very specific added-value of our approach com-
pared to previous microbiota reduction methods is the 
inclusion of prior knowledge on microbial physiology 
and bio-chemistry in the inference process through the 
functional constraint F (see Eq.(1)). This introduction, 
deeply discussed in [25], facilitates the biological inter-
pretation of the profiles, compared to completely agnos-
tic approaches. We believe that adding such modelling 
overlay on statistical learning methods could be decisive 
in facilitating the integration of the wealth of knowledge 
acquired during decades by microbiologists before the 
omics revolution in the analysis of the high-throughput 
data of NGS methods.

Conclusion
In this paper, we analysed a large amount of data com-
ing from various mNGS studies. From a training dataset 
with 1153 samples from 7 cohorts, we performed a two 
step microbiota simplification method based on AFT 
selection and NMF dimension reduction technique. We 
identified four universal functional profiles that were 
thoroughly validated on 2571 external samples from 5 
independent studies and further characterized in term 
of functional capabilities related to fibre degradation and 
taxonomic composition. Profile 1 is strongly equipped 
in GH, making hydrolysis of a large variety of carbohy-
drates its main characteristic, and is mainly composed 
of Bacteroidetes. By contrast, profile 2 is more directed 
towards starch or glycoprotein degradation and is 
mainly composed of Firmicutes. Profile 1 and 2 balance 
of roughly 4:1 is associated with a healthy microbiota, 
while unbalance is associated with dysbiotic events. A 
Mediterranean diet can help stabilizing the microbiota 
around this healthy equilibrium. Profile 1 and 2 unbal-
ances mainly reflect shifts in fibre cleavage towards 
simple sugars, with GH distribution being the principal 
difference between these profiles.

Profile 3 takes over profile 2 during CD, making shifts 
between both profiles a biomarker able to correctly classify 
CD patients. This ecological unbalance reflects functional 
reorientations towards unusual metabolism, in particular 
for fucose and H2S degradation and propionate, acetone 
and butanediol production. These alternative pathways 
are carried by Proteobacteria, the main phylum involved 
in profile 3. Profile 4 is mainly marked by rare metabolism, 
such as methanogenesis, and is favoured by slow transit.

Integrating anaerobic microbiology knowledge into sta-
tistical learning methods narrows down the metagenomic 
analysis to investigating ecosystem traits and identifying 
functional invariants that can be easily monitored to iden-
tify markers of diet, dysbiosis, inflammation and disease.
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Additional file 1:  Figure S1. AFT reconstruction error distribution and 
weight distribution. The relative reconstruction error distribution among 

samples defined as 

∥

∥

∥
X
(AFT )
g ,i −W

(AFT )
g ,i H (AFT )

∥

∥

∥

/∥

∥

∥
X
(AFT )
g ,i

∥

∥

∥
 is 

displayed, and structured according to the different groups g encountered 
along the study i.e. a) datasets, b) obesity status, c) enterotypes, d) dysbiotic 
status, e) statin intake, f ) Bristol score, g) Crohn disease status, h) Mediter-
ranean or control diet and i) parkinson disease. For comparison, the 
distribution observed in the train dataset is displayed in all graphs (gray 
dash lines), together with its mean relative reconstruction error (red dashed 
line). The mean and quantile 90% of each distribution are displayed with the 
vertical red and black lines. We can see that the relative reconstruction error 
distributions are very homogenenous along every structuring variables, 
except for dysbiotic and CD samples and Prevotela enterotypes, where 
relative reconstruction error is increased, but keeping the 95% quantile 
under 44% of reconstruction error. All together, the functional profiles allow 
to reconstruct the large majority of external samples with a level of accuracy 
comparable to the training dataset reconstruction, with a higher bias for 
dysbiotic, CD and Prevotela samples. j) The distribution of the weights 
W

(AFT )
i

 are displayed for each dataset, with violin plots in log scale. profiles 
1 and 2 are preponderant, and Profile 3 and 4 are associated with lower 
weights.

Additional file 2:  Figure S2. Top functional and taxonomic profiles 
contribution to metagenome. The top 50 relative profiles contribution to 
a) AFTs b) PGs and c) MGS-derived genus reconstruction are displayed. 
Namely, we compute for Profile i and AFT or genome j the profiles 

contribution W̄
(AFT )
train,i H

(AFT )
j

/

X̄
(AFT )
train,j  where W̄

(AFT )
train  and 

X̄
(AFT )
train  are averaged among the training samples. Then, contributions 

are sorted and top 50 contributions are kept and colorcoded by KO or GH 
for AFT, and phylum for PGs and MGS clustered by genus. Profile 1 is 
characterized by an over-representation of GH and Bacteroidetes, while 
Profile 2 is characterized by more KOs, and Firmicutes and Actinobacteriota.

Additional file 3:  Figure S3. Phyla reconstruction error distribution when 
reconstructing the PG counts. The phyla relative reconstruction error 
distribution among samples defined as 
∥

∥

∥

(

X
(PG)
i −W

(AFT )
i H (PG)

)

.Aphyla

∥

∥

∥

/∥

∥

∥
X
(PG)
i .Aphyla

∥

∥

∥
 is displayed, where 

X
(PG) is the count matrix of the 203 representative genomes and Aphyla 

is an allocation matrix of each genome to its phyla, and structured 
according to the different classes encountered along the study, i.e. a) 
datasets, b) obesity status, c) enterotypes, d) dysbiotic status, e) statin 
intake, f ) Bristol score, g) Chron disease status, h) Mediterranean or control 
diet and i) parkinson disease. For comparison, the distribution observed in 
the train dataset is displayed in all graphs (gray dash lines), together with 
its mean relative reconstruction error (red dashed line). The mean and 
quantile 90% of each distribution are displayed with the vertical red and 
black lines. We can see that the relative reconstruction error distributions 
of the phyla are very homogenenous along every structuring variables, 
except for dysbiotic, CD and Parkinson disease samples, where relative 
reconstruction error is increased. Like for AFTs, the functional profiles allow 
to reconstruct the taxonomic composition of the large majority of 
external samples at the phyla level with a level of accuracy comparable to 
the training dataset reconstruction. j) MGS. The same procedure is 
repeated with MGS. Namely, 
∥

∥

∥

(

X
(mgs)
i −W

(AFT )
i H (mgs)

)

.Aphyla

∥

∥

∥

/∥

∥

∥
X
(mgs)
i .Aphyla

∥

∥

∥
 is displayed, where X (mgs) 

is the MGS count matrix and Aphyla is an allocation matrix of each MGS to 
its phyla and structured according to the different classes encountered in 
the ’train’ test, i.e. k) dysbiotic status and l) Chron disease status. The MGS 
count matrix are correctly reconstructed, whatever the structuring 
variable.

Additional file 4:  Figure S4. Characterization of dysbiosis, ente-
rotypes and statin related samples. a) Dysbiosis. Ternary plot in the 
W1 −W2 −W3 space of samples colored by dysbiotic status. We 
also display the 95% confidence area for each category (colored line). b) 

Boxplot of W (AFT )
1

 , W (AFT )
2

 , W (AFT )
3

 and W
(AFT )
4

  levels, structured by 
dysbiotic status. We can observe that dysbiotic samples are characterized 
by significantly lower W (AFT )

1
 , higher W (AFT )

2
 and strongly higher W (AFT )

3
 

levels. This information corroborates the much wider confidence area 
for dysbiotic samples in the ternary plot a). c) Enterotypes. Samples are 
displayed in a ternary plot in the W1 −W2 −W3 space, colored by 
enterotype, when available. 95% confidence ellipses of each class are 
displayed. d) Boxplot of W (AFT )

1
 , W (AFT )

2
 , W (AFT )

3
 and W (AFT )

4
  levels, struc-

tured by enterotypes. We can observe that Ruminococcus enterotype 
is overrepresented for higher W (AFT )

2
 and lower W (AFT )

1
 . The reverse 

observation can be made for Bact2 enterotype. To a lower extent, Bact1 
enterotype is more prevalent for lower W (AFT )

1
 and higher W (AFT )

2
 , which 

is the inverse of Prevotella enterotype. High W (AFT )
3

 counts are related to 
Bact2 enterotype. e) Statin. Ternary plot in the W1 −W2 −W3 space, 
colored by statin intake, together with 95% confidence ellipses. f ) Boxplot 
of W (AFT )

1
 , W (AFT )

2
 and W (AFT )

3
 levels structured by statin intake. W (AFT )

1
 is 

significantly lower for statin intake, whereas W (AFT )
2

 is significantly higher. 
No significant shift is observed for W (AFT )

3
.

Additional file 5:  Figure S5. CD-related profiles characterization. a) 
Functional differential analysis between CD and healthy samples (N). 
Average profile contribution in the significantly different functional 
module frequencies for CD and N groups. Functional modules are defined 
in fig. 1. a. We averaged the L1 normalized W (AFT ) (resp. X (AFT ) ) for the 
CD and N groups of the train dataset, noted W̄ (AFT )

train,L1,g
 (resp. X̄(AFT )

train,L1,g
 ) 

for g = CD or N, and computed W̄ (AFT )
train,L1,g

H(AFT ) . We then gathered 

the columns of X̄(AFT )
train,L1,g

 by functional modules and filtered functions 
with significant changes (t-test, 0.05 fdr Benjamini-hochberg correction) 
between N and CD groups. For selected modules, we computed 
W̄

(AFT )
train,L1 ,g ,I

HIj

/

∑

i W̄
(AFT )
train,L1 ,g ,i

Hij , for Profile I, group g = CD or N, and 
functional module j, displayed in barplots, in order to display profile 
contribution for each functional module. b) Taxonomic differential analysis 
between CD and healthy samples. The same procedure is repeated on 
phyla counts. After computing X̄(PG)

train,L1,g
 and pooled representative 

genome counts by phyla, the significantly varying phyla (t-test, 0.05 fdr 
Benjamini-hochberg correction) between N and CD groups are filtered. 
Then, W̄ (PG)

train,L1 ,g ,I
H

(PG)
Ij

/

∑

i W̄
(PG)
train,L1 ,g ,i

HPGij , for Profile I, group g = CD 
or N, and functional module j, is displayed in barplots, in order to display 
the Profile contribution to the reconstruction of each phyla. c) Log2 ratio 
between CD and N groups of filtered functional groups are displayed. d) 
Log2 ratio between CD and N groups of filtered phyla are displayed. 
Whereas functional variations are limited, taxonomic variations are more 
acute. e) Classification of CD samples. The SVM classifier for CD/N, trained 
on the hmp2 cohort, is displayed in the W2 −W3 space (normalised 
with min-max scaling). The black line separates the negative (green) and 
the positive region (red). The samples of the ‘hmp2’ (train, crosses) and ’CD’ 
(test, circles) cohorts are displayed, colored by disease status. We observe 
that W2 −W3 variations for CD samples are strong enough to capture 
this signal with a classifier (recall: 0.94, precision: 0.81, AUC: 0.92 for the CD 
unseen cohort).

Additional file 6:  Figure S6. Prevalent genomes functional profiling. 
Selected AFTs are annotated in the prevalent genomes and presence/
absence is displayed (middle panel), sorted by functional blocks (top). 
The genome names are indicated (short name and NCBI ID, right panel), 
colorcoded by phylum, and the the taxonomic allocation of the genomes 

in profiles is indicated by the presence/absence matrix in H (PG) (right 
panel, taxo. alloc. Profile i is the i-th column of this matrix). The 4 profiles 
are added to the genome list and displayed with presence/absence tags 
(a KO is assumed present in the Profile if its frequence is higher than 
1e − 3 ). Hierarchical clustering is performed ( k = 4 clusters), based 
on pairwise-Jaccard distance computed on AFT presence/absence matrix 
(corresponding dendogram in the left panel), and genomes are sorted 
accordingly in the middle and right panels. We note that the 4 profiles 
are clustered at the same time than the genomes. Bacteroidetes and 
Actinobacteria are gathered into their own cluster (orange and green 
clusters), whereas Firmicutes are splitted in two clusters: the main part is 
clustered with Proteobacteria (red), while the others are clustered with less 
prevalent phyla such as Desulfobacterota or Euryarchaeota (purple), the 

https://doi.org/10.1186/s40168-023-01667-y
https://doi.org/10.1186/s40168-023-01667-y
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separation being based on difference in presence of ED and SPED-related 
AFTs. Profile 1 clusters with Bacteroidetes, consistantly with its taxonomic 
profiling (Fig. 4). This cluster is marked by higher presence of GH and PL, 
consistantly with its functional profiling (Fig. 3). Profile 2 and 3 cluster with 
Firmicutes (red cluster), profile 3 being included in a sub-cluster involv-
ing Proteobacteria, again consistantly with their respective taxonomic 
profiling (Fig. 4). Profile 4 clusters with methanogens (Euryarchaeota) as 
expected. This last cluster is characterized by lower presence of GH/PL in 
the genomes.

Additional file 7:  Figure S7. Profile 4 association with Bristol score and 
Parkinson’s disease. a) Bristol score. Boxplot of W (AFT )

4
 levels, structured 

by Bristol stool score. b) Parkinson’s disease. Boxplot of W (AFT )
4

 levels in 
PD and healthy control samples. We can observe that the significance of 
the difference between groups is slight ( p = 5.3e − 2 , MW test) c) 
Ternary plot in the W1 −W2 −W4 space, colored by Bristol stool 
score. 95% confidence ellipses of each class are displayed. d) Ternary plot 
in the W1 −W2 −W4 space of PD and healthy control samples. 95% 
confidence ellipses of each class are displayed.

Additional file 8:  Figure S8. Expression profiling by searching for 
transcripts co-varying with AFT profiles in metatranscriptomics data. a) 
Reconstruction error distribution. Metatranscriptomics data are acquired 
from the hmp2 database, and an AFT expression count matrix 

X (AFT ,mtx) is assembled. Expression profiles are constructed by 
computing Hmtx such that X(AFT ,mtx) ≃ W

(AFT )

H(AFT ,mtx)
 by NNLS, i.e. by 

searching for AFT expressions that co-varies with the AFT profiles 

H (AFT ) . Relative reconstruction error distribution among samples 
defined as 

∥

∥

∥
X (AFT ,mtx)g , i −W

(AFT )
g ,i H (AFT ,mtx)

∥

∥

∥

/

∥

∥X (AFT ,mtx)g , i
∥

∥ is displayed, 
and structured according to the different groups g encountered in the 
hmp2 dataset i.e. dysbiotic, non dysbiotic, Chron’s disease and healthy 
patients. The vertical dotted red line show the average reconstruction 
error on AFT metagenomic counts in the training set. The vertical red line 
shows the average reconstruction error on AFT metatranscriptomic data 
in each group. We can see that the reconstruction is less accurate than in 
metagenomics, but is still kept in a reasonable level. b) KO and GH-related 
AFT expression frequencies are first gathered to show the distribution of 
KO and GH in each Profile (top central pie chart). Then, the frequency of 
each AFT expression is renormalized by KO or GH/PL total frequency, and 
displayed in pie-charts for KO (left) and GH/PL (right) after clustering by 
functional modules (color coded, see Fig. 1a for the functional modules). 
The number of the KO or GH-related AFT is displayed in its corresponding 
pie-chart sector (radially, inner zone) when its frequency is higher than 3% 
in the profile. We can observe that this expression profiles are very similar 
to the AFT profiles in Fig. 3, specially for the preponderant profiles 1 and 2.

Additional file 9:  Figure S9. Taxonomy-only profiling of the metagen-

omes. We performed a NMF on the X (PG) and X (mgs) taxonomy count 
matrices to recover the couples 

(

W
(mgs,nmf )
train ,H (PG,nmf )

)

 and 
(

W
(mgs,nmf )
train ,H (mgs,nmf )

)

 

so that X (PG)
train

≃ W
(PG,nmf )

train
H (PG,nmf ) and X (mgs)

train ≃ W
(mgs,nmf )
train H (mgs,nmf ) . We then 

acquired the weights matrices W (PG,nmf )

i
 by NNLS of X (PG)

i
 wrt H(PG,nmf ) 

for i ∈ {hmp2,CD,metacardis,med.diet,Parkinson} . a) The 203 genomes 
frequencies in H (PG,nmf ) are displayed in pie-charts and clustered by 
successive taxonomic levels, i.e. taxa (outer ring), genus, class and phyla 
(inner ring), color-coded by phyla (phyla name displayed radially in the 
outermost zone). Taxa names are displayed radially when their frequency 
is higher than 1% in the Profile. b) The same procedure is applied on MGS 
clustered at the genus level in H (mgs,nmf ) . Taxonomic levels are genus, 
class and phyla. c) We display for each dataset the weights distribution in 
W

(AFT )
i,PG,nmf

 with log-scale violin plots. We can observe a very irregular 
pattern compared to the weights W (AFT )

i
 obtained with AFT profiling, 

with profiles that are absent in certain datasets (e.g. W2 in the hmp2 
dataset, or W1 in the Parkinson dataset). d) When BMI is available, samples 
are displayed in the W1PG,nmf -W2PG,nmf  space, colored by BMI. 
95% confidence ellipse are indicated for BMI lower and higher than 35 
(class 2, severe obesity threshold). e) Obesity status. Boxplot of 
W1PG,nmf  and W2PG,nmf  levels structured by obesity status. We can 
observe that the switch between W1 and W2 observed in AFT profiling for 
higher obesity classes (see Fig. 4a) is not recovered. Instead, a total 

disappearance of W1PG,nmf  is observed, together with small or 
non-significant shifts in W2PG,nmf  for strong obesity (MW = Mann-Whit-
ney test). f ) CD and healthy (N) dysbiotic (dys.) and not-dysbiotic(Not_
Dys.) samples are displayed in a ternary plot in the 
W1PG,nmf −W2PG,nmf −W3PG,nmf  space. g) Boxplot of the W1PG,nmf  , 
W2PG,nmf  and W3PG,nmf  levels, structured by dysbiotic and CD status. 
The pattern observed in Fig. 6d is not recovered. In particular, contrary to 
W2 and W3, W2PG,nmf  and W3PG,nmf  do not allow to finely 
discriminate between dysbiotic and not-dysbiotic CD samples.

Additional file 10. Metabolic exploration. A dynamical metabolic explora-
tion is made available in html pages. Archives must be unzipped and the 
html file must be open in a web browser. • Profile AFT frequencies. HTML 
page sources Within-profile-dynamical-map.zip. • Metabolic shifts during 
CD and dysbiosis. HTML page sources Metabolic-shifts-CD-dys-map.zip. 

Additional file 11. Dataset count matrices, Profile decomposition 
and metadata. The input data needed for the analysis are provided. • 
Metadata.xlsx: excel file containing the metadata of all the datasets used 
in the analysis. Field definition: – Sample_ID : internal ID. – ProjectID : 
study accession number. – SRA : SRA sample accession ID. – Patient_ID 
: internal patient ID. – Nationality, sex, age, BMI : patient nationality, sex, 
age and BMI. – Diagnosis : internal diagnosis code. N = healthy, CD = 
Crohn’s disease, UC = Ulcerative colitis, Control = Control sample, ObCIII 
= class 3 obesity, ObCII = class 2 obesity, ObCI= class 1 obesity, OW 
= overweight (but not obese), UW = underweight, PD = Parkinson 
disease, HC = healthy control, Diab = diabetis, ankylosing_spondylitis 
= ankylosing spondylitis. – Dysbiosis_index : dysbiosis index computed 
from HMP2 samples (see material and methods), Is_dysbiotic = above or 
under dysbiotic threshold (see material and methods). – Study : internal 
study ID. – reference : doi of the related publication. – alias : internal alias 
of the sample (HMP2 dataset only). – enterotype : sample enterotypes 
(metacardis dataset only). – Statin : statin intake (metacardis dataset 
only). – Bristol : Bristol score (metacardis dataset only). – Diet : diet 
taken by the patient (control or Mediterranean diet, med diet dataset 
only). – Timepoint : baseline, 4_weeks, 8_weeks (med_diet dataset 
only). • W.xlsx: weight matrix for the different datasets. • X_AFT.xlsx: AFT 
count matrix for the different datasets. The header indicates the AFT 
names as in Table 2. • X_mgs.xlsx: MGS count matrix at the genus level 
(train dataset only). • X_pg.xlsx: Prevalent genomes count matrix for the 
different datasets. The first sheet indicates the NCBI taxonomy ID and the 
name of the 203 prevalent genomes included in the study. • Genome_list.
xlsx: list of the 203 genomes included in the study. • H.xlsx: matrices 
H (AFT ) ,H (PG) ,H (mgs) ,H (AFT ,mtx) ,H (PG,nmf ) and H (mgs,nmf ). • W_NMF_
taxonomy.xlsx: weight matrix for the different datasets, for taxonomy-only 
NMF. • List_of_Reactions.xlsx: List of reactions as indicated in Fig. 1 and 
Table 2, with complete aggregated biochemical reaction, and reactant 
names. • F.xlsx: matrix of metabolic constraints used during NMF.

Additional file 12. Supplementary materials. This document recapitulates 
additional precisions on the material and methods involved in this study.
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