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Abstract 

Background The widespread nature of plastic pollution has given rise to wide scientific and social concern regard‑
ing the capacity of these materials to serve as vectors for pathogenic bacteria and reservoirs for Antimicrobial 
Resistance Genes (ARG). In- and ex-situ incubations were used to characterise the riverine plastisphere taxonomically 
and functionally in order to determine whether antibiotics within the water influenced the ARG profiles in these 
microbiomes and how these compared to those on natural surfaces such as wood and their planktonic counterparts.

Results We show that plastics support a taxonomically distinct microbiome containing potential pathogens 
and ARGs. While the plastisphere was similar to those biofilms that grew on wood, they were distinct from the sur‑
rounding water microbiome. Hence, whilst potential opportunistic pathogens (i.e. Pseudomonas aeruginosa, Acine-
tobacter and Aeromonas) and ARG subtypes (i.e. those that confer resistance to macrolides/lincosamides, rifamycin, 
sulfonamides, disinfecting agents and glycopeptides) were predominant in all surface‑related microbiomes, espe‑
cially on weathered plastics, a completely different set of potential pathogens (i.e. Escherichia, Salmonella, Klebsiella 
and Streptococcus) and ARGs (i.e. aminoglycosides, tetracycline, aminocoumarin, fluoroquinolones, nitroimidazole, 
oxazolidinone and fosfomycin) dominated in the planktonic compartment. Our genome‑centric analysis allowed 
the assembly of 215 Metagenome Assembled Genomes (MAGs), linking ARGs and other virulence‑related genes 
to their host. Interestingly, a MAG belonging to Escherichia –that clearly predominated in water– harboured more 
ARGs and virulence factors than any other MAG, emphasising the potential virulent nature of these pathogenic‑
related groups. Finally, ex-situ incubations using environmentally‑relevant concentrations of antibiotics increased 
the prevalence of their corresponding ARGs, but different riverine compartments –including plastispheres– were 
affected differently by each antibiotic.

Conclusions Our results provide insights into the capacity of the riverine plastisphere to harbour a distinct set 
of potentially pathogenic bacteria and function as a reservoir of ARGs. The environmental impact that plastics pose 
if they act as a reservoir for either pathogenic bacteria or ARGs is aggravated by the persistence of plastics in the envi‑
ronment due to their recalcitrance and buoyancy. Nevertheless, the high similarities with microbiomes growing 
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Background
Plastic litter is a relatively new material that is colo-
nised by a diverse range of microorganisms due to its 
global ubiquity, e.g. terrestrial, freshwater and marine 
water bodies, as well as extreme environments [16, 61, 
153]. The complexity of such microbial communities has 
attracted much attention, especially after the term plas-
tisphere was used to define this new ecological niche 
[160]. Since then, most research efforts have focussed on 
establishing microbial communities’ temporal and spa-
tial development on plastic debris in marine ecosystems 
[101, 103, 104, 115]. On the contrary, characterisations 
of freshwater plastispheres are scarce, despite freshwa-
ter bodies (e.g. rivers, streams) being the primary path 
for plastics’ entry to the ocean [17, 18] as well as a recog-
nised source of potential pathogens [55, 142].

Rivers are estimated to annually transport between 1.15 
and 2.41 million tonnes of plastic debris to the oceans 
[76]. However, a recent estimation has lowered the global 
plastic waste input from rivers up to three orders of mag-
nitude to 3.5 thousand tonnes [145]. Regardless of the 
exact amount, once plastic enters a waterbody, its surface 
is colonised within minutes by the local microbial com-
munity [48, 53, 74]. When initially describing the plasti-
sphere, Zettler et al. detected a high abundance of Vibrio 
as part of the community colonising polypropylene (PP), 
which suggested that plastic debris could be a niche 
for the proliferation and dissemination of opportunis-
tic pathogens [160]. Subsequently, this idea has gained 
strength given the buoyancy and resilience to environ-
mental degradation of plastics, compared with other 
naturally occurring surfaces for attachment (e.g. leaves, 
wood) [5, 29, 71]. Furthermore, antimicrobial resistance 
(AMR) –mainly studied via the detection of antimicrobial 
resistance genes (ARGs)– is also prevalent in the plas-
tisphere [57, 143]. AMR is an environmental and public 
health issue directly linked to the infectious processes 
of pathogenic bacteria. It has been estimated that AMR-
related infections caused 1.27 million deaths worldwide 
in 2019 (survey including 204 countries and territories) 
[96], and they are predicted to produce 10 million deaths 
worldwide by 2050 [100].

The most abundant type of plastic that pollutes the 
environment is polyolefins, e.g. polyethylene (PE) and 
PP, matching their dominance in global industrial 

production (30% and 19.7% of global plastic production 
for PE and PP, respectively) [117]. Moreover, materi-
als made of PE and PP are less dense than water and 
therefore float, increasing their transportation within 
waterbodies [49]. Unsurprisingly, these are the pre-
ferred materials when studying microbial colonisation 
and environmental pathogen occurrence, however, 
plastic weathering (i.e. polymer oxidation due to abi-
otic factors) is rarely considered in these studies despite 
its known influence on the plastisphere [8, 48, 75, 153]. 
Most commonly, community analyses of the plasti-
sphere are based on the taxonomic results of ampli-
con sequencing [153], and the potential for microbial 
pathogenicity is frequently assessed by qPCR [70, 75]. 
These are both targeted molecular techniques that pro-
vide limited information on the microbial community 
complexity and do not allow investigation of the spe-
cific taxa harbouring ARGs or virulence determinants 
[22, 75]. To date, few investigations have performed 
comprehensive metagenomic analyses on plastic sam-
ples recovered from marine environments [30, 116, 
134, 157] and even less from freshwater systems [154]. 
In this sense, a metagenomic approach provides a more 
complete description of microbial communities and 
their genomic plasticity.

In this study, we go beyond a descriptive metagen-
omic characterisation of in-situ riverine plastispheres 
and complement this approach with controlled ex-situ 
incubations of plastics in freshwater microcosms. Spe-
cifically, using our in-situ incubations and metagen-
omic analyses, we characterised the taxonomic profiles 
of microbial communities colonising both pristine and 
weathered PE, as well as a control surface (i.e. wood) 
and the surrounding water. Applying both sequence-
driven and Metagenome Assembled Genome (MAG)-
driven approaches the metagenomic data allowed a 
pioneering investigation of the ARGs and virulence 
factors encoded within these microbial assemblages. 
Additionally, we performed controlled ex-situ incuba-
tions to test whether the presence of sub-inhibitory 
concentrations of antibiotics within the water influence 
the abundance of ARGs on pristine plastic (PE and PP) 
and wood. This paper was posted as a preprint on 8th 
May 2023 and the preprint can be found here https:// 
www. resea rchsq uare. com/ artic le/ rs- 28862 55/ v1.

on natural co‑occurring materials and even more worrisome microbiome observed in the surrounding water high‑
lights the urgent need to integrate the analysis of all environmental compartments when assessing risks and expo‑
sure to pathogens and ARGs in anthropogenically‑impacted ecosystems.

https://www.researchsquare.com/article/rs-2886255/v1
https://www.researchsquare.com/article/rs-2886255/v1
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Results and discussion
Microbial diversity within riverine plastispheres
Pristine and weathered low-density PE films (LDPE and 
W-LDPE), together with wooden strips as a control sur-
face, were incubated in-situ 1 km downstream from the 
effluent of a wastewater treatment plant (WWTP) in the 
River Sowe for one week (Coventry, West Midlands, UK; 
Figs. S1 and S2) after which total DNA was extracted and 
sequenced (Table S1A). One week was needed for bio-
films to establish and allow the development of sufficient 
biomass for DNA extraction and metagenomic analysis. 
As expected, a distinct microbial community associ-
ated with the materials (i.e. wood, LDPE and W-LDPE) 
developed compared with the surrounding water (Fig. 1A 
and Table S1B). Principal Coordinate Analysis (PCoA) 
showed that all samples clearly clustered by sample 
type using Robust Aitchison’s distance (PERMANOVA 
R = 0.898, p = 0.001; ANOSIM R2 = 0.713, p = 0.001; Table 
S1C), with water being separated from all substrates on 
the first axis (representing 53.9% variation) and the three 
substrates being separated on the second axis (10.1% 
variation; Fig. 1A). Planktonic vs. biofilm community dif-
ferences are well documented [153], and come as a con-
sequence of the different nature of surface-attached vs. 
free-living communities and their capacity to become 
sessile [24]. Furthermore, water samples represent only a 
snapshot of the community present at the time of sample 
collection. In contrast, the substrates represent a cumula-
tive and changing microbial community in the river over 
the entire incubation period.

Differential microbial assemblages on surfaces have 
previously been reported between plastic and non-plas-
tic materials [40, 105, 137, 160]. However, the material 
preferences of microbial colonisers are unclear and may 
be dependent on residence time, location [101, 104] 
and nutrient availability [102]. The potential differences 
across microbial communities colonising plastics rely on 
the presence of specific early settlers and rare taxa [153], 
whereas the microbial community differences on wood 
seem to be shaped by the more degradable nature of this 
substrate per se [101]. Here it is likely that W-LDPE, as 
well as wood, also released readily available compounds 
for microbial biodegradation that caused an early selec-
tion of specific taxa, as discussed below. Consistent with 
previous studies [90], our data showed wood to sup-
port the highest alpha diversity values across all sam-
ples (ANOVA p ≤ 0.05; Fig.  1B and Table S1D). Given 
the necessity to filter out extremely low abundance taxa 
during the data analyses, water microbial communi-
ties exhibited significantly lower richness (ANOVA 
p ≤ 0.05) compared to all other groups, although the 
Simpson’s Index of diversity was similar to that of 
W-LDPE (Fig.  1B). LDPE and W-LDPE were similar in 

richness to each other, with LDPE having significantly 
lower Simpson’s Index of diversity than any other sample 
group (ANOVA p ≤ 0.05). The differences in the micro-
bial profiles between the pristine and weathered LDPE 
are probably related to physicochemical modifications 
of the weathered material, which reduce the polymer 
hydrophobicity [11] and promote the release of car-
bon leachates [126, 159], all being factors that influence 
microbial settling. Such a phenomenon was also evi-
denced at the community level during the early colonisa-
tion of PE in marine environments [48].

Regarding the affiliation at high taxonomic levels, the 
vast majority of classified reads were related to Bacte-
ria (98.83% on average within samples), with Eukaryota, 
Viruses and Archaea making up only 1.01%, 0.15% and 
0.01%, respectively (Fig. S3 and Table S1E). Amongst 
Bacteria, the phylum Proteobacteria dominated across all 
microenvironments tested (i.e. LDPE, W-LDPE, wood, 
and water; averaging 90, 93, 85 and 77%, respectively), 
followed by Bacteroidota (averaging 6, 4, 7 and 8%, 
respectively; Fig. S3 and Table S1E), similar to a previ-
ous metagenomic analysis of water samples at a location 
nearby to our incubations [28]. Amongst Proteobacte-
ria, the most abundant class was Gammaproteobacteria, 
averaging > 70% of reads in all samples (Fig. S3), and this 
was mainly composed of the order Burkholderiales (aver-
age 82, 69, 68 and 58%, respectively; Fig. S3). The order 
Burkholderiales, previously classified as Betaproteobac-
teria [42], has been reclassified to Gammaproteobacteria 
in the GTDB taxonomy [111] based on the phylogenetic 
affiliation of their genomes. Interestingly, the dominance 
of the Betaproteobacteria in freshwater bodies identified 
in several previous publications [66, 82, 136] was found 
to be driven by the dominance of the order Burkholde-
riales [82]. In this context, using amplicon sequencing, 
Lu et al. [85] reported former Betaproteobacteria as the 
most dominant class (15.12—46.56%) and Limnohabitans 
(Burkholderiales) at the genus level in freshwater sam-
ples from the River Xiangxi. Additionally, critical roles in 
nutrient and carbon cycling have been related to versatile 
copiotrophs within the former Betaproteobacteria [50, 
15] functions that can be attributed to the dominance of 
Burkholderiales in freshwater systems [36]. In contrast 
to the high abundance of Burkholderiales in freshwater, 
this order is found in relatively low numbers in marine 
environments, most likely being outcompeted by other 
Gamma- and Alphaproteobacteria groups.

Dominant species belonging to the order Burkholderi-
ales were similar across all solid substrates and distinct 
from the planktonic communities (Fig.  1C, Fig. S3 and 
Table S1B). Amongst them, the most abundant genus 
corresponded to Sphaerotilus (averaging 52, 35, 26 and 
0.33% on LDPE, W-LDPE, wood and water, respectively; 



Page 4 of 21Zadjelovic et al. Microbiome          (2023) 11:225 

Fig. 1 Microbial community analysis of 7‑day‑old biofilms grown on LDPE, W‑LDPE and wood, as well as the riverine planktonic community 
of the surrounding water. A Principal Component Analysis (PCoA) showing samples grouped by Robust Aitchison’s distance (i.e. Euclidean 
distance of robust Centered‑Log Ratio transformed counts). The variation accounted for by each principal component is indicated in parentheses 
on the axes. Ellipses show the mean of three sample replicates for each treatment plus the standard deviation. ANOSIM and PERMANOVA tests 
between the treatments are shown in the box. B Chao1 richness and Simpson’s diversity index in the three replicates for each treatment. The results 
of ANOVA tests for differences between treatments are shown in boxes within the axes, while p‑values for post-hoc Tukey’s honestly significant 
difference (HSD) between treatments are shown underneath (highlighted in red are significant values; p ≤ 0.05). Both (A) and (B) show results 
for reads classified to the species level. C Forty most abundant bacterial genera detected amongst all metagenomes (i.e. those above 0.5% relative 
abundance). Bacterial genera are grouped by phylogenetic similarity. Colour shading indicates the class each genus belongs to. The relative 
abundance of each genus (in %) is shown in the central heatmap, normalised per column. The top dendrogram shows samples grouped by Robust 
Aitchison’s distance. The heatmap on the right shows whether taxa were significantly differentially abundant between conditions. We used three 
tools to determine whether taxa were differentially abundant, ANCOM‑II, ALDEx2 and MaAsLin2 (Table S2). White represents that no tool found 
the genus to be differentially abundant between conditions, while dark green shows that all three tools found a difference. Shapes within cells 
denote which of the three tools found a significant difference
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Fig. S3). Sphaerotilus is an aquatic filamentous iron bac-
terium –a taxon that can use iron as an energy source– 
also found in activated sludge in WWTP, and capable of 
forming sheaths that allow attachment to solid surfaces. 
This favours their growth in slow-running or nutrient-
poor water and provides protection by shielding the bac-
teria from protozoa [81, 139, 98]. Such biofilm-forming 
bacteria clearly dominate all solid substrates assessed and 
could potentially serve as the main protective structure 
for other biofilm colonisers and even organisms that typi-
cally have a planktonic lifestyle. For example, the typi-
cally planktonic Burkholderiales genus Limnohabitans 
[69] was detected on plastic (LDPE and W-LDPE) and 
wood (averaging 11, 12 and 13%, respectively), although 
it was much more abundant in the surrounding water 
(44%; Fig. 1C). Another interesting Burkholderiales genus 
identified as part of the biofilms recovered from solid 
substrates was Methylotenera, present across all surfaces 
tested but more abundant on wood (4.4%) than plastic 
and water samples (Fig. 1C; 2.2, 1.4, and 0.6% on LDPE, 
W-LDPE and water, respectively). Methylotenera has 
been described as a putative cellulose degrader found 
in microbial communities associated with sunken wood 
logs in marine environments [118]. Similarly, Duganella 
(Burkholderiales) and Microthrix (Acidimicrobiales) were 
found to be significantly more abundant in wood samples 
(Fig.  1C). Interestingly, Duganella was found to encode 
cellulases, xylan esterases and pectin lyases, all enzymes 
involved in the degradation of lignocellulosic carbon 
sources [163]. Microthrix species are abundant in active 
sludges and linked with the degradation of complex car-
bon compounds [21, 125], however, no direct association 
with wood or wood derivate degradation has been pre-
viously reported. Finally, Hydrogenophaga (Burkholderi-
ales was more abundant on solid substrates, especially on 
W-LDPE (7%; Fig. 1C). Members of this genus have been 
detected within biofilm-forming bacteria on sand recov-
ered from WWTP denitrification filters [77].

Even though aspects regarding the biodegradation of 
polyethylene are out of the scope of this investigation, it is 
important to point out that the genera Methylotenera and 
Pseudomonas (Gammaproteobacteria), identified in our 
samples, have both been associated with the degradation 
of Polycyclic Aromatic Hydrocarbons (PAHs) in sewage 
sludge [58] and that several species of Pseudomonas have 
had their degradative capacities widely explored [12, 120, 
123]. Curiously, most Pseudomonas were significantly 
more abundant on W-LDPE than in any other sample 
(Fig.  1C), with the total relative abundance of the fam-
ily Pseudomonadaceae being 2.6, 18.6, 6.7 and 3.2% on 
LDPE, W-LDPE, wood and water, respectively (Fig. S3). 
W-LDPE releases large amounts of organic compounds 
that encourage the colonisation and growth of a distinct 

microbial community [48,  159], however, these findings 
need to be further explored and the degradative capacity 
of this family elucidated.

At lower taxonomic levels, the water samples showed 
a clear divergent microbial profile as compared with the 
solid substrates and contained the typical planktonic 
genera Limnohabitans (41%), Planktophila (4.4%), Poly-
nucleobacter (4.1%) and Aquirufa (0.84%) (Fig.  1C). The 
most remarkable result from the water samples was the 
high abundance of potential human pathogens, such as 
the Enterobacterales Escherichia, Salmonella and Kleb-
siella (7.2, 3.7 and 1.5%, respectively), as well as Strep-
tococcus (3.6%) –all described as frequent commensals 
in waterbodies in the proximity of cities, WWTP, and 
other industrial activities [6, 72, 80, 122, 124, 131]. As 
expected from previous studies (e.g. [130], these were 
also found as part of the microbial community on solid 
substrates such as plastics, but in much lower abundance 
(Fig. 1C). The lower abundance of the genus Escherichia 
on solid substrates correlates with previous results [132] 
where Escherichia coli could not be isolated from plastics 
incubated across different points along the River Weser 
(Germany). Although most of these potential human 
pathogens were not abundant on the solid substrates, 
there were other examples of potential opportunis-
tic human pathogens on these surfaces, such as Pseu-
domonas aeruginosa [43] and Acinetobacter [46], which 
were more abundant in both wood and plastic samples 
than in water samples (Figs. 1C and S3).

While known biofilm-forming microbes such as P. aer-
uginosa abounded on material surfaces (especially on 
W-LDPE), Enterobacterales species did not seem to be 
good colonisers of plastics under in-situ environmen-
tal settings. Hence, further work is needed to determine 
whether these potential pathogens colonising plastics 
may survive, transfer and cause disease [22] and whether 
they are able to compete with naturally biofilm-forming 
microbes in freshwater environments.

ARG distribution within the plastisphere and their 
surrounding freshwater compartments
Our initial CARD analysis (The Comprehensive Antibi-
otic Resistance Database) for the identification of ARGs 
generated a comprehensive list of both known target 
point mutations for antibiotic resistance (e.g. gyrase and 
ribosomal mutations) and other antibiotic resistance 
determinants (i.e. ARGs) (Table S1F). However, we focus 
hereafter on the latter ARGs due to the elevated back-
ground noise that can occur when including point muta-
tion ARGs from metagenomic data. Additionally, the 
database utilised also provides annotation of genes con-
ferring resistance to disinfectants and other antimicrobial 
agents; however, as these are not the main target of our 
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research, we will mainly refer to ARGs throughout this 
investigation.

As with microbial communities, ARG diversity and 
distribution showed a noteworthy divergence between 
the solid substrates and the surrounding water (Fig.  2A 
and Table S1F). As stated above, taxonomic differences 
between planktonic communities and biofilms were 
expected; hence, it is not surprising that these differ-
ences in microbial assemblages also drive divergent ARG 
profiles (Fig.  2A). ARG richness was significantly lower 
in the planktonic community than in any of the biofilms 
(ANOVA p ≤ 0.05) while the Simpson’s Index of diversity 
of ARGs was similar between both LDPE substrates and 
water, with only wood having higher Simpson’s Index 
of diversity than any other sample type (Fig.  2B). Thus, 
while biofilms are enriched in ARGs [13, 59], the plank-
tonic microbiome of our in-situ incubation site presented 
an interesting array of ARGs –as demonstrated by our 
genome-centric analysis below– which is possibly caused 
by the elevated number of pathogen-like microbes pre-
sent in the water (e.g. Enterobacterales).

In total, we identified 226 ARG subtypes amongst all 
microbiomes (212, 209, 211 and 198 identified in the 
LDPE, W-LDPE, wood and water samples, respectively; 
Fig.  2C and Table S1F). While the number of ARGs 
detected kept constant across solid substrates (n = 209–
212), the relative abundance of the ARGs was clearly 
higher in W-LDPE biofilms than in any other microbi-
ome (i.e. 156 reads per kilobase per million [RPKM] in 
W-LDPE vs. 81, 81 and 119 in wood, LDPE and water 
microbiomes, respectively; Fig.  2C). Multiple Drug 
Resistance (MDR) genes dominated the dataset in num-
ber (n = 84) and relative abundance, particularly in sur-
face biofilms (61%, 77% and 66% of the RPKM in wood, 
W-LDPE and LDPE, respectively, vs. 27% in water). MDR 
is known to dominate ARGs in soil microcosms [31] as 
well as in mining-impacted soil samples [158], or even 
in ready-to-eat food [79]. The reported levels of MDR in 
the literature are in line with our findings, where MDR 
accounts for a high proportion of the number of reads 

and the highest number of genes associated with AMR 
[28, 134, 154] (Fig. 2C).

While MDR, beta-lactams and peptide resistance genes 
were abundant and similar between biofilm and plank-
tonic microbiomes, other abundantly detected ARG sub-
types showed large differences between both microbial 
communities (Fig. 2C and Table S1F). Hence, planktonic 
microbiomes were clearly enriched in ARG subtypes for 
aminoglycosides, tetracycline, aminocoumarin, fluo-
roquinolones, nitroimidazole, oxazolidinone and fos-
fomycin; whereas biofilms were enriched in ARGs that 
conferred resistance to Macrolides-Lincosamides-Strep-
togramins (MLS), rifamycin, sulfonamides, disinfecting 
agents and glycopeptides. Interestingly, microbiomes 
on W-LDPE were specifically enriched for triclosan, 
phenicol and diaminopyrimidine resistance genes. These 
results suggest an intrinsic distinctness of ARG profiles 
within different environmental compartments, mostly 
driven by microbial community lifestyles, i.e. biofilm vs. 
planktonic, but also influenced by the weathering of plas-
tic surfaces.

As expected, similar profiles were observed at the indi-
vidual ARG level (Fig. 3). Thus, water samples were dom-
inated by predominant aminoglycoside resistance gene 
aph(3’)-Ia and tetracycline resistance gene tetC. On the 
other hand, the solid substrates showed high abundances 
of axyY, mex and mux genes, all belonging to the MDR 
gene class (Fig. 3). Overall, our results confirm previous 
studies in which aquatic biofilms –independently of them 
growing on plastics or natural surfaces– showed high 
abundances of these MDR genes [134, 154, 157]. Never-
theless, some of these mex and mux genes, as well as the 
triclosan resistance genes opmH, were substantially more 
abundant on W-LDPE in our study, emphasising for the 
first time the concerning enrichment of distinct ARGs on 
weathered plastics –an observation that requires further 
attention.

As shown here, plastics have been found to support 
microbial communities harbouring a variety of resistance 
genes [35, 144, 157]. The fact that plastic microbiomes are 

Fig. 2 Differential occurrence of disinfectants and antibiotic resistance determinants. Reads within samples were classified using the CARD RGI tool 
and grouped to the drug class that they gave resistance to. A Principal Component Analysis (PCoA) showing samples grouped by Robust Aitchison’s 
distance (i.e. Euclidean distance of robust Centered‑Log Ratio transformed counts). The variation accounted for by each principal component 
is indicated in parentheses on the axes. Ellipses show the mean plus three standard deviations for each treatment, and the box shows the results 
of ANOSIM and PERMANOVA tests between the treatments. B Chao1 richness or Simpson’s diversity index in each of the three replicates for each 
treatment (top). The results of ANOVA tests for differences between treatments are shown in boxes within the axes, while p‑values for post-hoc 
Tukey’s honestly significant difference (HSD) between treatments are shown (highlighted in red are significant values; p ≤ 0.05; bottom). Both 
(A) and (B) show results for reads classified as ARGs. C The number of reads classified (in reads per kilobase per million, RPKM; blue colour scale) 
and the number of ARGs identified within each sample (red colour scale). The main heatmap (blue to yellow colour scale) shows the abundance 
of ARGs giving resistance to different drug classes with the number of genes detected within each drug class shown on the right. Numbers 
within cells indicate RPKM, while the colour shows the proportion of the maximum for that drug class

(See figure on next page.)
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enriched in ARGs has raised wide concern regarding the 
potential of plastics as reservoirs for antibiotic resistance, 
although we demonstrate that this is only the case for a 
distinct set of ARG subtypes and greater attention should 

be given to all environmental compartments that are 
impacted by anthropogenic activities since we detected 
a much higher prevalence of potential pathogens and 
determined ARG subtypes in the planktonic microbiome. 

Fig. 2 (See legend on previous page.)
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Due to the protection conferred by biofilms and floatabil-
ity of certain plastics, pathogens and encoded ARGs in 
planktonic communities may be at a disadvantage when 
it comes to survival and transport, but are also much 
harder to filter out and may offer an increased risk of 
exposure to higher organisms. In this sense, and despite 
that mutations in antibiotic targets were not considered, 
fluoroquinolone inactivating determinants –enriched 
in planktonic microbiomes– confer protection against 
several second and third-generation drugs, such as cip-
rofloxacin, levofloxacin and ofloxacin (livertox.nih.gov). 
It is also worth highlighting that the main concern sur-
rounding the presence of ARGs in the environment is 
for these to become reservoirs of resistance that can 

then be horizontally transferred to pathogenic bacteria. 
Horizontal gene transfer is more likely to occur on solid 
surfaces, and plastics have been shown to facilitate this 
process [10], but natural surfaces also need to be taken 
into account, as demonstrated here. While we chose to 
perform our in-situ incubations downstream from the 
WWTP effluent because these locations are known for 
enhancing the abundance of both pathogen-like organ-
isms and ARGs [7, 130], different incubation times, other 
compartments (e.g. river sediments or WWTP upstream 
locations), as well as other materials and plastic types, 
should be contemplated in future studies.

To the best of our knowledge, there are only two other 
metagenomic datasets that analysed ARGs on plastics 

Fig. 3 Abundance of the top 20 most abundant ARGs in different samples. The size of the bubble for each ARG (y‑axis) represents the abundance 
in RPKM within each sample (x‑axis), while the colour represents the normalised abundance for each gene. The drug class that each ARG gives 
resistance to is shown on the right
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incubated in freshwater [101, 154]. Oberbeckmann 
et  al. reported a much higher association of ARGs with 
wood than with plastics; i.e. 20 putative ARGs conferring 
resistance to beta-lactams, fluoroquinolones and tetra-
cycline were found in metagenomes from wood samples, 
while polystyrene (PS) and PE presented only one puta-
tive ARG related to beta-lactam resistance on PS and 
none on PE; [101]. The second metagenomic analysis 
covered biofilms forming on polyvinyl chloride (PVC) 
pellets incubated in an ex-situ 5 L bioreactor [154]. 
Researchers determined that even though the biofilms 
associated with PVC pellets showed some degree of spec-
ificity, including a distinct profile of potential pathogens, 
major differences were only seen when comparing solid 
substrates vs. surrounding water, as reported here in our 
analysis (Fig. 2). Nevertheless, we further show that plas-
tic weathering prior to water submersion –a process that 
frequently occurs in nature– enhances the enrichment 
of particular ARGs. The surface properties of submerged 
materials are likely to play a key role in the development 
of microbial community assemblages and, hence, the 
importance of the choice of adequate control materi-
als for comparison. While we used wood in the present 
study, more inert materials such as ceramics [115], rocks 
[154], glass [48] or sand [130] have been previously used 
as controls. However, these materials may not necessar-
ily exhibit the same physical behaviour in water as plas-
tics (e.g. migration patterns) and, therefore, we selected 
a buoyant material that would potentially reflect similar 
effects in terms of dispersal.

Genome‑centric insight of potential pathogens 
and associated ARGs within the plastisphere
In an attempt to link ARGs to their host, we co-assem-
bled the reads from all samples and generated 215 
Metagenome Assembled Genomes (MAGs) with > 50% 
completion and < 10% redundancy (20 of these MAGs 
were > 90% complete and 73 MAGs were > 75% complete; 
Table S3A; Fig. S4). Of the 215 MAGs, only one was pre-
dicted to be archaeal (MAG106, classified as the TA-21 
genus from the Nitrosphaeraceae family; Thermopro-
teota phylum). The taxonomic classification of the other 
214 bacterial MAGs revealed that the contribution of 
each class closely mirrored that of the read-based analy-
ses: Gammaproteobacteria (113 MAGs), Bacteroidota 
(45), Myxococcota (11), Alphaproteobacteria (9), Ver-
rucomicrobiota (9) and Actinobacteria (6) (Table S3A). 
Interestingly, MAGs were assembled for potential path-
ogens such as Escherichia flexneri (MAG1 with 100% 
completion and 0% redundancy; see Escherichia/Shigella 
reclassification in [109]), Aeromonas spp. (MAG107) and 
Acinetobacter spp. (MAGs 98, 124, 92 and 214; Fig.  4). 
In accordance with our read-based analysis above, 

Escherichia was almost exclusively found in water sam-
ples, whereas Acinetobacter –typically found in soil and 
water samples (CDC.gov)– were mainly attached to 
plastic and wood materials (Fig.  4). While Acinetobac-
ter members such as A. baumannii are related to patho-
genesis in humans [127] (CDC.gov), it was not possible 
to assign a taxonomic affiliation to the species level for 
these Acinetobacter MAGs. Aeromonas spp. are also well-
recognised disease-causing agents, not only for animals 
such as fish, but also for humans [26, 113]

We used PathoFact [39] to predict the ARGs, tox-
ins and virulence factors present within the MAGs and 
found that of the 214 bacterial MAGs, 115 were predicted 
to have three or more ARGs in their genomes (Fig. 4). As 
above, we focussed only on the resistance genes, and not 
the known target point mutations for antibiotic resist-
ance. Expectedly, MDR genes were the most abundant 
antibiotic resistance class (i.e. 254 MDR genes within all 
MAGs, averaging 1.19 MDR genes per MAG; Fig. S5). 
The maximum number of MDR genes predicted for a 
single genome was 22 in MAG1 (i.e. Escherichia flexneri). 
Other antibiotic resistance classes that were both preva-
lent and abundant within the MAGs were aminoglyco-
side and beta-lactam resistance genes, with a total of 93 
and 72 (mean 0.715 or 0.5 ARG copies per MAG), respec-
tively (Fig. S5). Interestingly, MAG1 (i.e. E. flexneri) also 
had the most beta-lactam resistance gene copies (n = 6), 
as well as three aminoglycoside resistance gene copies. 
The highest number of aminoglycoside resistance gene 
copies (n = 4) were found in MAGs all belonging to the 
order Burkholderiales (i.e. MAGs 88, 172, 44, and 135; 
Fig. 4). Genes for bacitracin, MLS or Antimicrobial Pep-
tide resistance were also prevalent, being present in 59, 
40 or 49 MAGs, respectively (Fig. S5).

On top of the encoded ARGs, the presence of toxins 
and virulence factors within the MAGs provides further 
hints on their potential pathogenicity. Although water 
samples seem to be the main source of typical human 
pathogens (e.g. MAG1 E. flexneri, as well as raw read 
based detected Salmonella, Streptococcus and Klebsiella, 
Fig. 1 and Fig. S3), it is important to point out the poten-
tial of biofilms –established on either plastic or wood– to 
also harbour potential opportunistic pathogens (e.g. Aci-
netobacter spp. and Aeromonas spp., as well as P. aerugi-
nosa, Fig. S3). The array of toxins and virulence factors 
across most MAGs suggest a wide diversity of pathogenic 
factors that may affect surrounding organisms; from co-
occurring microbes to animal species or plants, as well 
as humans. For instance, some Flavobacterium spp. can 
cause disease in fish [83]. Regardless of the genomic indi-
cations of the potential pathogenicity of the plastisphere 
(i.e. ARGs and genes encoding virulence factors), it is not 
possible to draw conclusions on the eventual human risk 
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Fig. 4 Shortlist of MAGs (n = 115) encoding three or more ARGs. MAGs were taxonomically classified with the GTDB toolkit providing 
the phylogenomic tree shown on the left. The normalised abundance within the different treatments is shown considering triplicate samples. 
The number of virulence factors, toxins and different ARGs (as predicted by PathoFact) are represented. A summary for all bacterial MAGs (n = 214) 
is available in Fig. S5
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of plastic pollution as a vector for pathogens without fur-
ther experimentation. For this, additional assessments 
are needed to determine the actual pathogenicity of 
microbes within the plastisphere; these should take into 
account the potential transfer and ability to cause disease 
to the host organism –be it human, animal or plant [22].

Altogether, this genome-centric analysis has allowed 
the assembly of MAG1, i.e. E. flexneri, one of many 
planktonically-found pathogen-like strains detected 
within our water metagenomes (e.g. Escherichia, Sal-
monella, Klebsiella and Streptococcus; see Fig.  1). Not 
surprisingly, this MAG showed the highest amount of 
encoded ARGs and an elevated potential to produce tox-
ins and virulence factors. While these potential patho-
gens were not major components of the plastisphere, 
other taxonomical groups like Acinetobacter spp. and 
Aeromonas spp. did show a higher presence within the 
biofilms, in which case, their pathogenic capacity needs 
to be further elucidated. Since a dominant proportion of 
environmentally detected ARGs are usually assigned as 
low-risk or non-clinically relevant [161], it becomes cru-
cial to better assess the actual human health risk posed 
by plastic pollution in future investigations.

Case study: sub‑inhibitory antibiotics concentrations 
induce distinct ARG enrichments in different riverine 
compartments
As our in-situ analysis showed a distinct enrichment of 
ARGs in different riverine compartments, we went on to 
test the selective pressure sub-inhibitory concentrations 
of antibiotics may have on the abundance of ARGs in 
the plastisphere. Antibiotic concentrations considerably 
below any ecotoxicological effect have been reported to 
be enough to select for resistances [23]. For this, ex-situ 
microcosms containing river water and sediment were 
set up with PE, PP and wood fragments (as shown in 
Fig. S6) in the presence/absence of a cocktail of antibi-
otics: the macrolide azithromycin (AZM, 0.076 µg  L−1), 
the fluoroquinolone ciprofloxacin (CPFX, 0.136  µg  L−1) 
and the sulphonamide sulfamethoxazole (SMX, 4.8  µg 
 L−1). These are concentrations three orders of magnitude 
below susceptible breakpoints established by EUCAST 
(www. eucast. org) and in the range detected in WWTP 
effluent waters [25]. These clinically relevant antibiot-
ics were selected based on their detection in freshwater 
environments [149] and because they were previously 
used in microcosm experiments for ARG selection within 
microbial communities in the River Sowe [28]. We then 
used HT-qPCR to achieve an absolute quantification 
of 48 ARGs -chosen based on the microbial composi-
tion and antibiotic resistance profiles revealed by the 
in-situ incubation metagenomic findings. Through this 
approach, it was possible to obtain a comparative analysis 

of microbiomes present on PE, PP, wood, water and sedi-
ment under varying antibiotic conditions (Resistomap 
results are shown in Table S4).

Microbiomes that developed on wood showed the 
highest detection of ARGs tested (21/48) regardless of 
the presence/absence of antibiotics (Fig.  5A). Surface 
biofilms had a significant impact on all antibiotic resist-
ance classes (ANOVA p ≤ 0.05), whereas the presence 
of antibiotics significantly impacted the resistance to 
quinolones and tetracycline as well as MDR and ‘other’ 
genes (these being mainly resistance genes against qua-
ternary ammonium compound (QACs); Fig.  5B). Inter-
estingly, while ARGs against quinolones –present within 
the cocktail as CPFX– showed a positive correlation with 
the presence of the antibiotic mix, ARGs against tetra-
cycline –antibiotic not present within the cocktail– and 
MDR genes showed a negative correlation potentially 
due to environmental selective pressures. Nevertheless, 
the most remarkable results are observed when analys-
ing the effects at an individual antibiotic and correspond-
ing ARG subtype level. After applying AZM, CPFX and 
SMX, we would expect an enrichment on ARGs related 
to MLS, quinolone and sulphonamide resistance, respec-
tively. AZM did in fact cause a strong enrichment of MLS 
ARGs, particularly of the known resistance genes msrE 
and mphE [34], but this occurred mainly in the water 
samples (Fig.  5A). On the other hand, CPFX enhanced 
the presence of ARGs against quinolone antibiotics –i.e. 
gene qepA which encodes for a fluoroquinolone efflux 
pump [156]. The gene qepA was enriched in most com-
partments in the presence of antibiotics, but this was 
particularly evident in microbiomes from PE and wood 
surfaces (Fig.  5B). Finally, SMX had an effect on ARGs 
against sulphonamides. While these genes were particu-
larly high in all conditions, exposure to sub-inhibitory 
concentrations of SMX enriched for sulphonamide ARGs 
–i.e. mainly sul1– in microbiomes from plastics, PP and 
PE (Fig. 5). This is particularly interesting as, while pre-
vious experiments in our group observed almost negli-
gible effects of such low SMX concentrations in riverine 
sediments and waters [28], this antibiotic has been shown 
to adsorb to PE [155] causing the potential enhanced 
(although not significant) effect of ARG enrichment 
observed here.

ARGs that confer resistance to antimicrobial com-
pounds not included in the antibiotic cocktail (e.g. 
aminoglycoside, tetracycline, bacitracin or mecha-
nisms for MDR) showed no observable increase in 
abundance (Fig.  5 and Table S4). On the other hand, 
the presence of sub-inhibitory concentrations of anti-
biotics did, curiously, produce an enrichment of 
ARGs against antiseptics such as QACs, mainly in the 
planktonic microbiome (i.e. qacE genes classed in the 

http://www.eucast.org
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category ‘others’; Fig.  5A). While sub-inhibitory con-
centrations of QACs are well documented to develop 
antibiotic resistance in the environment [94, 162], the 
fact sub-inhibitory concentrations of antibiotics may 
enrich for QAC resistance –as reported here– has also 

been previously suggested [95]. This is not surprising 
given that resistance genes to antibiotics and biocides 
co-occur in genetic clusters [54, 107]. As performed in 
Borsetto et al. [28], we also included sediment samples 
in an effort to better reflect the riverine environment 

Fig. 5 AMR profile of microbial communities in ex-situ microcosms exposed to sub‑inhibitory antibiotic concentrations and analysed by HT‑qPCR. 
A The total number of detected genes in each sample are shown in the red colour scale in the top panel, while the abundance of individual 
ARGs relative to the 16S rRNA gene is represented in the bottom panel using a blue to yellow colour scale to indicate lowest to highest relative 
abundances (%) within each row. Dark blue cells represent no detection. The F values for significant (p ≤ 0.05) two‑factor ANOVA tests between all 
samples are also shown with a black‑red‑white colour scale (right panel). B For each drug class, the number of genes tested by Resistomap 
is shown underneath the title (see Table S4A for full details) together with the ANOVA test on the differences due to the presence of antibiotics (‘A’), 
surface vs. planktonic (‘S’) or both (‘A:S’), with significant results indicated with red shading. ‘Genes detected’ represents the number of the genes 
within each drug class that were detected per sample. The combined abundance of the genes relative to the 16S rRNA gene are graphed, 
with points indicating the mean and error bars showing the standard deviation
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[28]; however, the presence of antibiotics produced no 
significant variations across all ARGs analysed.

Here we show that sub-inhibitory but environmentally 
relevant antibiotic concentrations can enhance ARGs 
in microbiomes from riverine systems. Specifically, our 
study shows a correlation between the presence of an 
antibiotic and the enrichment of its particular ARGs, and 
not a generic non-specific enrichment of ARGs, as well 
as the co-enrichment of QAC resistance genes. Antibi-
otic residues have been widely detected in riverine eco-
systems [149] and can adsorb to microplastics [155], but 
distinct ecological compartments seem to be affected by 
different antibiotics. The influence of an antibiotic on the 
plastisphere will most likely rely on its adsorption to the 
plastic’s hydrophobic surfaces or their biofilm penetrabil-
ity. Hence, this will only occur on a case-by-case basis, 
opening a new area of investigation that will provide a 
more detailed view of the potential spread of particu-
lar ARGs across the environment using microplastics as 
vectors.

Conclusions
Our results indicate that freshwater plastic debris are 
colonised by potential pathogens that are distinct from 
those found in their surrounding waters. While emerg-
ing pathogenic microbes were enriched on riverine sur-
faces (e.g. P. aeruginosa, Aeromonas and Acinetobacter), 
other typical human pathogenic genera (e.g. Escheri-
chia, Salmonella, Klebsiella and Streptococcus) were 
generally restricted to a planktonic lifestyle or outcom-
peted by other biofilm-forming taxa under environ-
mental conditions. Furthermore, while there were no 
strong differences between plastic and wood biofilms, 
weathered LDPE did enrich for certain bacteria such as 
P. aeruginosa, an observation that has not been previ-
ously reported and that deserves further investigation. 
The metagenomics (in-situ incubations) and HT-qPCR 
data (ex-situ incubations) have also evidenced the occur-
rence of a clearly distinct set of ARGs between biofilms 
and planktonic microbiomes. Of particular note, some 
biofilm-related ARGs seemed to be more enriched on 
weathered LDPE than wood or pristine LDPE. To date, 
the weathering of plastic materials has attracted more 
attention concerning the increased biodegradability 
of such recalcitrant polymers [14, 48, 137, 159], and no 
study has focussed on the differential capacity of weath-
ered plastic to harbour potentially pathogenic bacteria 
or ARGs compared with pristine materials. Since plastic 
debris entering the environment is subjected to weather-
ing, it is therefore crucial to examine the impact of mate-
rials’ oxidation in relation to their increased capacity to 
transport potential pathogens.

The exposure to environmentally-relevant concen-
trations of antibiotics is known to enhance ARGs in 
environmental microbiomes and, as we show here, plas-
tispheres are no exception. Contrary to what happens in 
sediments [28], exposure to sub-inhibitory concentra-
tions of antibiotics had a more pronounced influence on 
the modulation of the ARG profile in biofilms colonising 
buoyant substrates as well as in their surrounding plank-
tonic microbiome. Nevertheless, only ARGs specific to 
the antibiotics used were enriched and, furthermore, 
these differed between compartments, highlighting the 
specificity of antibiotic diffusion in different microenvi-
ronments. These case-by-case variations leave questions 
open regarding the capacity of plastics to adsorb antibiot-
ics, enrich for specific ARGs and ultimately promote the 
dissemination of such phenotypes, and how these differ 
from other environmental compartments.

In this context, given the increase in HT-qPCR and 
metagenomic studies looking at the presence of clinically 
relevant pathogens and ARGs on plastics, it is important 
to stress the urgent need to distinguish between poten-
tially pathogenic taxa (by mere taxonomic association) 
and phenotypically characterised pathogenic microbial 
diversity before any claims of plastics serving as vectors 
for disease-causing microbes are made. Our data high-
light the importance of integrating the information from 
all co-occurring compartments within an anthropogeni-
cally-impacted ecosystem and show that the implementa-
tion of health and safety measures against the presence 
of pathogens and ARGs seems to be an issue that goes 
beyond the plastisphere.

Methods
Materials and weathering characterisation of plastic
Commercial packaging films (Greiner Bio-One) of low-
density polyethylene (LDPE) were cut into strips of 
2 × 10 cm (Fig. S1). Wood sticks were used as a proxy of 
natural control material for microbial colonisation. Addi-
tionally, LDPE strips were subjected to thermooxidative 
weathering (W-LDPE), a process carried out as previ-
ously reported [159]. Briefly, LDPE strips were placed in 
glass beakers and kept in an oven at 80 °C for a period of 
6 months at standard atmospheric pressure. The weath-
ering process was monitored by Fourier-transform infra-
red (FTIR) spectroscopy (PerkinElmer® Spectrum™ GX; 
[159]. A total of 32 scans were averaged within a range 
of 600 to 4000 wave  cm−1 and resolution of 4   cm−1 at 
intervals of 1.0   cm−1. The increase of absorbance in the 
carbonyl peak at 1712   cm−1 was used as an indicator of 
plastic oxidation. The region 2030   cm−1 was used as an 
intensity control since it remains unaltered throughout 
the oxidation process (Fig. S1) [128].
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Square films (4  cm2) of pristine LDPE (GoodFellow), PP 
(GoodFellow) and wood (control material) were used as 
surfaces for microbial colonisation in the ex-situ micro-
cosm incubations.

River in‑situ incubations
The weathered and pristine plastic strips, together with 
the wood sticks, were attached to a PVC frame (Fig. S1). 
The frame was submerged in the River Sowe, Stoneleigh, 
UK (52.354944, -1.51425, Fig. S2) for seven days between 
the  12th and the  19th of February 2020. This location was 
approximately 1 km downstream from the WWTP Trent 
Water Ltd. Finham (52.361028, -1.508028; Fig. S2). After 
the incubation period, samples were collected by cutting 
triplicate plastic strips and wood sticks off the frame. 
Samples were placed in sterile square Petri dishes and 
gently washed three times with sterile river water col-
lected previously from the same location (0.2 µm filtered 
and further autoclaved at 121  °C for 15  min). Once the 
samples were washed and loosely attached debris were 
removed, samples were placed in 50 mL centrifuge tubes 
(screw cap tubes, Sarstedt, Inc.) containing 20  mL ster-
ile river water and immediately transported for DNA 
extraction. Additionally, 500  mL of river water was col-
lected into borosilicate bottles (triplicates) using a pre-
filter mesh of 1  mm (stainless-steel mesh) in order to 
avoid large fragments. Water was filtered through ster-
ile 0.22  µm membranes (S-pak mixed cellulose esters, 
47  mm Ø), and filters were stored at -20  °C until DNA 
extraction.

DNA extraction
Samples were sonicated using an ultrasonic bath (Bran-
son 1210) to recover the microbial community attached 
to the different materials incubated in the river. The 
ultrasonic bath procedure consisted of 3 rounds of 
5  min of sonication with 2  min intervals to avoid over-
heating and unwanted cell lysis. Immediately after the 
sonication, detached cells were retrieved by centrifuga-
tion (4000  rpm, 15 min, 18  °C). Cell pellets were resus-
pended using 350 µL of solution MBL and transferred 
into 2 mL PowerBiofim Bead tubes as the initial step for 
DNA extraction of the PowerBiofilm Kit (Dneasy® Pow-
erBiofilm®—Qiagen). Fragments of the plastic films and 
wood were also included in the respective PowerBiofilm 
Bead tubes. Subsequently, the samples were homog-
enised by bead-beating (SLS Lab Pro VelociRuptor – 
Microtube Homogeniser) and further DNA purification 
was performed as detailed by the manufacturer (Quick-
Start Protocol – Dneasy® PowerBiofilm® Kit). The filters 
resulting from water filtration were also subjected to 
DNA extraction using the kit as described above. Briefly, 
the membranes were cut in half and one of the sections 

transferred into 2 mL PowerBiofilm Bead tubes contain-
ing 350 mL of solution MBL. The downstream procedure 
was the same as described for plastic and wood DNA 
extractions.

Metagenomic sequencing and analysis
Shotgun metagenomic analysis was carried out by Novo-
gene (Novogene Europe, Cambridge, UK) using the 
Illumina NovaSeq 6000 platform (150  bp paired-end 
strategy). Novogene also performed the library prepara-
tion and quality controls. The data output requirement 
was 20 Gb per sample. Biological triplicates of all samples 
included in this analysis (i.e. LDPE, W-LDPE, wood and 
water) were sequenced. Kneaddata v0.7.4 [20] was used 
for primer trimming and quality filtering of reads (using 
the option “SLIDINGWINDOW:4:20 MINLEN:50”) with 
Trimmomatic v0.39 [27] and removal of contaminat-
ing PhiX sequences (using the option “–very-sensitive –
dovetail”) with Bowtie2 v2.3.5.1.

Taxonomic classification was performed using Kraken 
2 v2.0.8-beta [151] with confidence thresholds of 0–0.5 
at 0.1 intervals  (data shown in the main text use a con-
fidence threshold of 0.3) with a database built using all 
sequences in the NCBI RefSeq release 205 [152]. Bracken 
v2.5.0 [84] was used to re-estimate abundance and all 
NCBI taxonomy ID’s for bacteria and archaea were 
converted into a seven-rank taxonomy [152] using the 
Genome Taxonomy Database (GTDB, release 207; [108–
111, 121]. The NCBI taxonomy was kept for Eukaryotes, 
Viruses and Archaea. The phylogenetic tree from GTDB 
(release 207) was used for taxonomic analyses of bacte-
rial reads. ARGs were identified using the Resistance 
Gene Identifier (RGI) to assign reads to the Comprehen-
sive Antibiotic Resistance Database (CARD) [1] using the 
Protein Homolog Model and Perfect RGI matches (100% 
identity). Only completely mapped reads were consid-
ered. While the CARD database includes sequences of 
genes related to resistance against disinfectants and other 
antimicrobial agents, we will mainly refer to ARGs as 
they are the primary focus of this investigation.

Metagenome Assembled Genomes (MAGs) were gen-
erated with Anv’io v7.0 [47], following the methods of the 
TARA ocean project [41]. Briefly, MEGAHIT v1.2.9 [78] 
was used for the co-assembly of paired-end reads from all 
samples into contigs, which were then filtered to remove 
any contigs that were below 1000  bp in length. Hidden 
Markov Models (HMMs) were run to identify single-
copy core genes within contigs [63], which were classi-
fied taxonomically using Kaiju v1.7.4 [93] with the default 
database (NCBI non-redundant protein database with 
the addition of fungi and microbial eukaryotes). Reads 
from samples were then mapped onto contigs using 
Bowtie2 v2.3.5.1 [73], generating abundance profiles 
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for each contig across all samples. Contigs that were at 
least 2500 bp in length were clustered using CONCOCT 
v1.1.0 [4] to generate 279 bins, 154 of which were above 
50% complete. These automatically generated bins were 
then refined manually to create 215 MAGs that were at 
least 50% complete with < 10% redundancy.

The quality of MAGs was confirmed using CheckM 
v1.1.3 [45, 67, 68, 112]. The “complete” PathoFact v1.0 
workflow [39] was run using SignalP v5.0b [3] to deter-
mine ARG, toxin and virulence factor profiles for each 
MAG. We applied the default PathoFact parameters 
for these assignments: 40 for the bitscore threshold of 
toxin prediction, 0.7 for the plasflow threshold and 
1000 bp for the plasflow minimum length. Briefly, Patho-
Fact v1.0 takes assembled contigs and: (1) uses Prodi-
gal (v2.6.3) for prediction of Open Reading Frames; (2) 
predicts virulence factors using a HMM and a random 
forest model –both constructed using the Virulence Fac-
tor Database [33]– and predicts whether these will be 
secreted using SignalP,(3) predicts toxins using a HMM 
–constructed from the Toxin and Toxin Target Data-
base [150]– and predicts whether these will be secreted 
using SignalP; and (4) predicts ARGs using DeepARG 
(v1.0.1) [9] and CARD RGI (v5.1.0). We did not use the 
predictions that PathoFact gave for whether ARGs were 
found within chromosomes, phages or plasmids, and we 
manually removed ARGs that were due to mutations or 
were species-specific genes. We then used v1.7.0 of the 
GTDB toolkit [32] to obtain the taxonomic affiliation and 
a phylogenomic tree for all MAGs. The GTDB toolkit 
also used Prodigal [63] for gene calling, HMMER [45] 
for marker gene identification, pplacer [89] for inserting 
genomes into reference trees and FastANI [65] for calcu-
lating Average Nucleotide Identity (ANI) and therefore 
species assignment as well as the additional packages 
FastTree [119], Mash [106], DendroPy [133], NumPy [60] 
and tqdm [38].

Statistical analysis of metagenome samples
Taxa or ARGs with less than 10 reads per sample or not 
present in all three samples of treatment were removed, 
and data were normalised by conversion to relative abun-
dance. ARGs were normalised to the length of the refer-
ence ARG within the CARD database and to the number 
of reads within each sample to give reads per kilobase per 
million (RPKM). Chao1 richness and Simpson’s index 
of diversity were calculated using the Python package 
scikit-bio [135]. ANOVA and post-hoc Tukey’s HSD tests 
for differences between groups were carried out using 
bioinfokit [19]. Robust Aitchison’s distances –euclidean 
distance on robust Centered Log Ratio (rCLR) trans-
formed abundances using the Python package deicode 
[88]– between samples were calculated using the Python 

package SciPy [140], ordinations were performed using 
the Python package scikit-bio and ANOSIM and PER-
MANOVA tests between groups were performed using 
the R package vegan [44]. The Python packages Biopy-
thon [37] and ete3 [64] were used for the filtering and 
rooting of phylogenetic trees, and tree plotting used a 
modified version of the Python package Biopython.

Following the suggestions of Nearing & Douglas et al. 
[99], we ran three tools for determining differential 
abundance: ANCOM-II [87], ALDEx2 [51, 52, 56] and 
MaAsLin 2 [86]. ANCOM-II and ALDEx2 are both rela-
tively conservative differential abundance methods that 
identify few false positives; MaAsLin2 is more sensitive 
than ANCOM-II or ALDEx2 but still controls for false 
discovery rate [99]. These were run using the R pack-
ages exactRankTests, nlme [114], dplyr [148], ggplot2 
[147], compositions (van den [138], vegan [44], phyloseq 
[92], tidyr [146], ALDEx2 and MaAslin 2. Tests were run 
with: (1) all sample groups, (2) wood vs. LDPE, (3) wood 
vs. W-LDPE, and (4) LDPE vs. W-LDPE. For a taxon to 
be considered as significantly differentially abundant, 
we required a False Discovery Rate cut-off of 0.7 in 
ANCOM-II, a Benjamini–Hochberg adjusted p-value 
of ≤ 0.1 in ALDEx2 or a q-value of ≤ 0.1 in MaAsLin 2. 
We report on which of the methods identified a taxon as 
significantly differentially abundant and considered this 
to be informative if two of the three methods identified 
that taxon.

Microcosms setup
Microcosms were performed in 500  mL glass beak-
ers containing ~ 2  cm of sediment and 350  mL of river 
water prefiltered through a 1 mm diameter pore mesh to 
remove large-sized debris. Sediment and water samples 
were collected in July 2021 from the same location used 
for our in-situ plastic incubations, and microcosms were 
immediately set up. Square LDPE and PP films as well 
as wood fragments (4  cm2; n = 3 of each material) were 
added to each microcosm (Fig. S6). Two sets of triplicate 
microcosms, with and without the addition of antibiotics 
(azithromycin [AZM, 0.076 µg  L−1], ciprofloxacin [CPFX, 
0.136 µg  L−1] and sulfamethoxazole [SMX, 4.8 µg  L−1]), 
were set up. Microcosms were incubated for 7  days at 
20 °C with 40 rpm orbital shaking. After the 7 days, trip-
licate plastics and wood samples were collected, washed 
with sterile river water and stored separately in lysis 
buffer for further DNA extraction as described above. 
Planktonic microorganisms were collected from 200 mL 
of the microcosm supernatant water by filtering through 
0.22  µm membranes and processed for DNA extrac-
tion as detailed above. Sediment samples were collected 
within the top limit presented in Quick-Start Protocol 
– Dneasy® PowerBiofilm® Kit (0.2  g of wet sediment 
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material). Downstream DNA extraction was carried out 
as already described in the DNA extraction section.

ARG quantification within the ex‑situ microcosms 
by HT‑qPCR
ARG detection was done using SmartChip™ (Real-Time 
based HT-qPCR method) performed by Resistomap Oy 
(Helsinki, Finland). For this procedure, we selected 54 
gene targets, which included 48 ARGs and 5 taxon-spe-
cific genes as well as the 16S rRNA gene for normalisation 
(see Table S4). The ARG targets were selected according 
to our metagenomic analysis’s preliminary results. The 
qPCR conditions were as described previously [141]. 
The abundance of each ARG was normalised to the 16S 
rRNA gene in each sample, as calculated by Resistomap 
Oy (Helsinki, Finland) with a threshold cycle (Ct) of 27 as 
the detection limit and using the delta Ct calculations pre-
viously reported by [97]. To determine differences in the 
prevalence or abundance of ARGs between the different 
samples (LDPE, PP, wood, water or sediment) and antibi-
otic treatments, two-factor ANOVA’s and post-hoc Tuk-
ey’s HSD tests were carried out using the Python packages 
statsmodels [129] and bioinfokit [19], respectively.

Data visualisation
All analyses used custom scripts within R notebooks 
that used R version 3.6.1, Python version 3.8.10 and the 
R package reticulate [2]. Basic data importation, explora-
tion and plotting used the Python packages Matplotlib 
[62], NumPy [60], os, pandas [91] and pickle.
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