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PandaGUT provides new insights 
into bacterial diversity, function, and resistome 
landscapes with implications for conservation
Guangping Huang1†, Wenyu Shi2†, Le Wang1, Qingyue Qu1, Zhenqiang Zuo3, Jinfeng Wang3, 
Fangqing Zhao3,5* and Fuwen Wei1,4,5* 

Abstract 

Background The gut microbiota play important roles in host adaptation and evolution, but are understudied in nat-
ural population of wild mammals. To address host adaptive evolution and improve conservation efforts of threatened 
mammals from a metagenomic perspective, we established a high-quality gut microbiome catalog of the giant 
panda (pandaGUT) to resolve the microbiome diversity, functional, and resistome landscapes using approximately 7 
Tbp of long- and short-read sequencing data from 439 stool samples.

Results The pandaGUT catalog comprises 820 metagenome-assembled genomes, including 40 complete closed 
genomes, and 64.5% of which belong to species that have not been previously reported, greatly expanding the cov-
erage of most prokaryotic lineages. The catalog contains 2.37 million unique genes, with 74.8% possessing complete 
open read frames, facilitating future mining of microbial functional potential. We identified three microbial entero-
types across wild and captive panda populations characterized by Clostridium, Pseudomonas, and Escherichia, respec-
tively. We found that wild pandas exhibited host genetic-specific microbial structures and functions, suggesting 
host-gut microbiota phylosymbiosis, while the captive cohorts encoded more multi-drug resistance genes.

Conclusions Our study provides largely untapped resources for biochemical and biotechnological applications 
as well as potential intervention avenues via the rational manipulation of microbial diversity and reducing antibiotic 
usage for future conservation management of wildlife.
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Introduction
Gut microbiomes play critical roles in host ecological 
adaptation, disease resistance, and physiological fitness, 
with important conservation implications for threatened 
species [1–7]. Furthermore, wildlife gut microbiota are 
increasingly recognized as harboring vast biochemical 
and metabolic potential that can contribute to improv-
ing host fitness [8–12]. A comprehensive understand-
ing of the diversity and functional repertoire of gut 
microbiomes is important for understanding their role 
in host ecological adaptation, thereby facilitating the 
guidance of conservation decisions and management 
policies. However, wildlife gut microbiomes, especially 
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those of threatened species, are very incompletely under-
stood. The lack of high-quality reference genomes has 
become an obstacle for science-informed biodiversity 
conservation.

The giant panda (Ailuropoda melanoleuca) is a flagship 
species for global biodiversity conservation and is cat-
egorized as “vulnerable” within the International Union 
for Conservation of Nature (IUCN) Red List [13]. Pro-
tecting giant pandas also protects other sympatric spe-
cies in addition to the entire ecosystem. Giant pandas 
belong to the order Carnivora and have evolved as exclu-
sive bamboo specialists during their nearly eight million 
years of evolutionary history [14]. Only 1864 wild giant 
pandas are extant and are distributed in six mountain 
ranges including the Qinling (QIN), Minshan (MIN), 
Qionglai (QIO), Daxiangling (DXL), Xiaoxiangling 
(XXL), and Liangshan (LSH) mountains that can be clas-
sified into three genetic populations including the QIN, 
MIN, and QIO-DXL-XXL-LSH (QXL) populations [15]. 
Considerable efforts have been made to understand the 
roles of gut microbiomes in dietary adaptations via 16S 
ribosomal RNA (rRNA) gene sequencing and shotgun 
metagenomic sequencing [16–20], revealing the great 
potential to degrade fiber, detoxify cyanide, and degrade 
bamboo flavonoids that are known for their health ben-
efits. Nevertheless, lacking a unified and comprehensive 
gut microbiome catalog for the giant panda hampers 
the exploration for host-microbiota coevolution and 
conservation.

Here, we present a comprehensive panda gut micro-
biome catalog (termed pandaGUT), established with 
Nanopore, Pacbio, and Illumina sequencing data across 
highly diverse samples to address host-microbe coevolu-
tion and improve conservation efforts. These highly com-
prehensive gut microbiome resources for the threatened 
species will not only substantially expand prokaryotic 
genomic representation, but also has far-reaching impli-
cations for future research into the adaptive evolution 
and conservation of wildlife.

Results
The recovery of over 800 metagenome‑assembled 
genomes with 40 being complete closed bacterial 
genomes in pandaGUT 
To obtain a comprehensive reference gene catalog and 
genome collection for panda gut microbiomes, Nanop-
ore, PacBio, and Illumina sequencing data for 439 faecal 
samples from 131 individuals were integrated together 
(Fig.  1A, Fig. S1, Table S1). A total of 6.27 Tbp of short 
reads and 598 Gbp of long reads were used for the over-
all metagenome assemblies (Fig. S2), yielding a total of 
3.66 ×  106 contigs with an overall assembly N50 of 34 
kbp. After contig binning, refining, and decontamination, 

820 metagenome-assembled-genome bins (MAGs) with 
summed length > 150 kbp were obtained (Table S2). 
Genome quality assessment with CheckM revealed that 
502 MAGs met the medium-quality (MQ) criteria of ≥ 50% 
genome completeness and < 10% contamination, with 174 
MAGs reaching the high-quality (HQ) criteria of > 90% 
genome completeness and < 5% contamination (Fig.  1B, 
Fig. S3A, B). Of the 174 HQ MAGs, 69 genomes pos-
sessed the 5S, 16S, and 23S rRNA genes together with at 
least 18 of the typical tRNAs (Table S2), further satisfying 
the “high-quality” criteria for MAGs set by the Genomic 
Standards Consortium [21]. Over 64.5% of the MQ MAGs 
were not assigned to species level against the Genome 
Taxonomy Database (GTDB), indicating a substantial 
abundance of potentially novel species in the pandaGUT 
dataset (Table S2).

The genome collection was dominated by large num-
bers of genomes from Firmicutes (n = 277) and Pro-
teobacteria (n = 152), with Bacilli, γ-Proteobacteria, 
and Clostridia being the dominant classes (Fig.  1B, 
Table S2). The genome collection also contained many 
genomes from the Campylobacterota (n = 29), Bacteroi-
detes (n = 28), Actinobacteria (n = 12), and Fusobacte-
ria (n = 4), reflecting the diversity of reference genomes 
in the catalog. Of the 502 MQ MAGs, 501 were classi-
fied into 47 families, 477 were classified into 88 genera, 
179 were classified into 86 known species, and over 64% 
were not classified at the species level (Table S2). Of the 
genomes classified at the species level, Escherichia coli 
and Clostridium cuniculi were the most prevalent among 
samples (in 67.5% and 66.7% of the samples, respectively) 
and exhibited higher relative abundances (Fig.  1B). The 
bacterial genus most represented in the collection was 
Clostridium, with 59 MAGs (Table S2). Seven genomes 
were obtained that belonged to a previously unknown 
species and shared 87.35–94.4% ANI with Clostridium 
sartagoforme, a bacterium that can directly convert cel-
lulosic biomass to biohydrogen in cows [22], potentially 
pointing to a gut bacterium that could provide alternative 
mechanisms for cellulose degradation. All high-quality 
MAGs possessed genes that largely were involved in met-
abolic pathways, including glycoside hydrolases (GHs) 
and glycosyl transferases (GTs), such as GH23, GT2, and 
GT4 (Fig. S4).

Notably, 40 MAGs in our dataset were circularized 
(Fig. 1B, Table S3 and Supplementary Dataset 1), with 23 
of these not having been previously described (Fig. 1C). 
Using a pairwise ANI estimation cutoff of 95%, these 
23 MAGs were classified into 17 new species belong-
ing to five classes including the γ-Proteobacteria (n = 7), 
Bacilli (n = 4), Clostridia (n = 3), Campylobacteria (n = 2), 
and Fusobacteriia (n = 1) (Fig.  1C). The 40 circular-
ized MAGs were annotated against the CAZy database 
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and comprised a total of 1833 proteins predicted to be 
involved in carbohydrate metabolism, primarily compris-
ing GHs (n = 816) and GTs (n = 757) (Table S4). However, 
relatively few proteins were classified as being involved 
in auxiliary activities (AA, 5) and polysaccharide lyase 
(PL, 24) classes. Buttiauxella sp. (MAG0005) contributed 
the largest number of proteins (n = 125), especially in the 
GH (n = 65) and GT (n = 43) classes, suggesting these 
populations are involved in cellulolytic activity. We also 

identified one strain of Lactococcus lactis (MAG0012) 
that is a well-known lactic acid producing bacteria [23].

One of the 40 circular genomes was classified as a novel 
species of the Morganella genus (MAG0010), with its 16S 
rRNA gene sharing ~ 96.4% nucleotide similarity with the 
closest relative, Morganella morganii. To improve taxo-
nomic annotation, we cultured and purified a Morganella 
bacterial isolate from fecal samples and conducted de 
novo sequencing to obtain its complete genome. Genome 

Fig. 1 Construction and assessment of the pandaGUT database quality and representation. A Geographic distribution of the 439 giant panda 
stool samples collected from across all three wild genetic populations and most captive populations, with individuals spanning different dietary 
regimes, ages, sexes, and geographic distributions. B Maximum-likelihood tree constructed using at least 25 concatenated protein sequences 
from 469 medium- and high-quality metagenome-assembled genomes (MAGs). Clades are colored according to taxonomic class. From the inner 
circle to the outer circle, genome characteristics are indicated successively including sample source, circular genomes, N50 of contigs, genome 
similarity, genome occurrence ratio, and genome completeness. The solid and empty circles correspond to samples from captive and wild giant 
pandas, respectively. The 40 circular MAGs are indicated by triangles. In the outer layers, genome information (contig N50, genome similarity, 
and completeness), the occurrence ratio, and average relative abundance in all samples for each MAG are presented, respectively. C Average 
nucleotide identity (ANI) heatmaps for the 40 circularized MAGs. Taxonomic information is shown on the left. The solid and empty circles 
correspond to samples of captive and wild giant pandas, respectively. Diamonds represent 17 new species based on a < 95% nucleotide identity 
threshold. D Rarefaction curves depicting the coverage ratios of sequencing reads in the indicated samples against all sequence reads in all 
investigated samples. The number of unique identified genes finally reached a saturated state with increasing sample numbers, suggesting 
complete coverage of the gene catalog. E Percentage of mapping rates (left) and annotation rates (right) of de novo gene predictions generated 
in this study (as indicated by *) and for previously published giant panda gut metagenome datasets in comparison against the reference catalog 
pandaGUT 



Page 4 of 15Huang et al. Microbiome          (2023) 11:221 

sequence comparison between the MAG and the isolate 
genome revealed highly conserved synteny, with 98.07% 
ANI shared between the two genomes and over 99% 
shared nucleotide identity of 16S rRNA genes (Fig. S3C). 
Both short and long sequencing reads were then aligned 
against the genome of M. morganii, revealing that mini-
mum coverage was > 10 × , and no gaps were present in 
the MAG (Fig. S3D). These results provide further evi-
dence of the generally high quality and accuracy of the 
assembled genomes.

Five circular MAGs of the Basfia genus were obtained 
from different samples of wild and captive pandas and 
these MAGs shared 94.6–97.6% ANI along with highly 
conserved genomic synteny with each other (Fig. S5), 
suggesting similar taxonomic origins. We speculated 
that the strain-level genome variants might be attrib-
uted to different geographically distributed populations. 
In contrast, profound genome variation was observed 
between the five Basfia MAGs and the only known spe-
cies of this genus, Basfia succiniciproducens, which is 
a succinic acid-producing bacterium that was isolated 
from cow rumen that can hydrolyse cellulose [24]. ANI 
comparisons were only < 76%, suggesting the presence of 
novel Basfia species involved in the degradation of fibre-
rich bamboo that is part of the giant panda diet. These 
results highlight the potential for this catalog to expand 
our understanding of microbiome diversity of understud-
ied taxa present within the panda microbiome.

Integrated gene catalog of the gut microbiome 
and the representativeness assessment
The comprehensive pandaGUT gene catalog not only 
contributes to a more precise taxonomic identification 
of microbiome populations, but also helps predict func-
tional profiles among hosts. A non-redundant microbial 
gene catalog was generated containing 2.37 ×  106 genes 
with an average length of 831.8  bp (Fig. S6), 74.82% of 
which possessed complete open reading frames (ORFs). 
To evaluate the gene catalog completeness, sequenc-
ing reads were mapped to it. Rarefaction curves reached 
saturated states with accumulated sequencing data, sug-
gesting complete coverage of the gene catalog via the 
sequence effort used here (Fig.  1D). The classification 
rates of the gene catalog were also compared against 
those of several public datasets, including our previ-
ously published dataset [17], data from 16 XXL wild 
panda samples [25], data from seven QIO wild panda 
samples [26], data from 57 CDB captive panda samples 
[18], data from six CRC captive panda samples [27], and 
data from four captive panda individuals [28]. The clas-
sification rate ranged from 33.68 to 93.22% and increased 
with the read mapping rate (Fig. 1E, Fig. S6C). Although 
the captive panda dataset exhibited a marginal increase 

in classification, the rates of classification and mapping 
of each dataset were far from saturated (Fig.  1D). Thus, 
the integrated gene catalog outperformed all previous 
studies with respect to dataset coverage and substantially 
improved the detection of microbial genes.

To obtain an overview of functions in pandaGUT, 
genes were annotated against the COG database. Nearly 
half (1.08 ×  106) of the genes exhibited significant matches 
to the COG database (Table S5), indicating that a marked 
proportion of genes in the giant panda gut microbiome 
are still not functionally characterized. In terms of COG 
function distributions, 44.1% of genes were assigned to 
metabolic functions, with the most represented catego-
ries related to amino acid transport and metabolism, car-
bohydrate transport and metabolism, and transcription 
(Table S5). Thus, the integrated gene catalog from this 
study will serve as an important reference resource for 
the unified analysis of giant panda gut microbiomes.

Host genetic‑specific gut microbial diversity and functions 
in wild giant panda indicates host‑gut microbiota 
phylosymbiosis
To identify the effects of host genetics on the diversity 
and functional repertoire of wild giant panda gut micro-
biomes and exclude the influences of diet, 45 representa-
tive samples across the three wild genetic populations 
were collected during foraging of similar food resources 
and then compared. Alpha diversity analysis based on the 
Simpson index revealed that the gut microbiomes of QXL 
populations possessed the highest diversity, while the 
QIN population microbiomes were the most divergent 
and their microbiomes exhibited the lowest alpha diver-
sity (pFDR < 0.05 and pFDR < 0.01, respectively; Fig.  2A), 
consistent with the host genetic diversity patterns [15]. 
The Shannon index also exhibited similar trends among 
the three populations (Fig. S7A). We further determined 
intra- and inter-group variation in gut microbiomes 
based on Bray–Curtis dissimilarity values. The QIN and 
QXL populations exhibited significantly greater dissimi-
larity values (pFDR < 0.001, Fig. S7B). Principal coordinates 
analysis (PCoA) further confirmed the presence of two 
distinct clusters corresponding to the QIN and QXL pop-
ulations, respectively, with the MIN populations reflect-
ing a mixed pattern along the first principal component 
that explained 40.98% of all variance (Adonis analysis, 
R2 = 0.18, p < 0.01; Fig. 2B). Hierarchical clustering analy-
sis also revealed a clear separation between both popu-
lations, while also accounting for the horseshoe effect, 
indicating the presence of niche differentiation along 
environmental gradients [29]. Moreover, the QIN popu-
lations exhibited significantly lower intragroup variance 
than the MIN and QXL groups (pFDR < 0.001; Fig. S7B). 
Thus, the diversity of the gut microbiomes across the 
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three genetic populations exhibited two distinct patterns 
overall that were associated with host genetic structures.

Two distinct compositional profiles were observed 
across the three genetic populations, with Clostridium 
(over 60% average relative abundance) and Pseudomonas 
(over 70% average relative abundance) representing the 
most dominant taxa (Fig. 2C). Clostridium was the domi-
nant taxon in most of the QIN population pandas, while 
Pseudomonas was overrepresented in the QXL cohort, 
and the MIN cohort exhibited a mixture of Clostridium 
and Pseudomonas. Functional annotation of micro-
bial genes within the three genetic populations revealed 
that QIN microbiomes possessed more annotated KOs 

(n = 1.65 ×  106), with 23.5% population-specific annota-
tions that were three- to four-fold higher than in the MIN 
(8.0%) and QXL (4.8%) cohorts, respectively (Fig.  2D). 
Notably, genes related to genetic information processing 
were significantly enriched in the QIN cohort (LDA > 2, 
p < 0.05), including those associated with replication and 
repair in addition to nucleotide metabolism, including 
DNA replication, purine metabolism, pyrimidine metab-
olism, and the upstream pentose phosphate pathway 
(Fig. 2E, Fig. S8A).

We further reconstructed the DNA biosynthesis path-
ways of the gut microbiome based on significantly dif-
ferentially abundant genes (pFDR < 0.05) (Fig. S8B). The 

Fig. 2 Host genetic-specific associated with the compositions and functions of wild giant panda gut microbiomes. A Alpha diversity of gut 
microbiomes among the three wild genetic populations (n = 45). The FDR-corrected Wilcoxon rank sum test was used to determine significance. 
**p < 0.01, *p < 0.05. The following group colors are the same as in A. B Principal coordinates analysis revealed two distinct clusters of microbial 
communities along the first principal component belonging to the QIN and QXL populations, respectively, with MIN communities exhibiting 
mixed compositions. The solid and empty ellipses were constructed based on multivariate normal distributions at 50% and 70% confidence levels, 
respectively. C Bar plot showing the assemblage patterns of giant panda gut microbiota at the genus level. Patterns were determined based 
on hierarchical clustering. D Characterization of host genetic-specific genes and KEGG pathways of gut microbiomes. Venn diagrams showing 
shared and unique genes in the gut microbiomes of each genetic population. The bar plot shows the gene counts at the second KEGG pathway 
level for each pairwise comparison. The inset bar graph shows the total numbers of microbial genes in each population annotated to KEGG 
orthologs. E Hierarchy of KEGG pathways showing the functional differentiation of gut microbiomes among the three genetic populations based 
on LEfSe analysis. Pathways with LDA > 2 and p < 0.05 are shown. The numbers refer to pathways designated in Fig. S8A
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QIN populations exhibited significant enrichment of the 
enzymes EC3.2.1.122 and EC3.2.1.21 compared to the 
QXL cohorts, and these enzymes are involved in starch and 
sucrose metabolism pathways for hydrolysing polysaccha-
ride compounds to glucose. Glucose is then phosphorylated 
to glucose-6-phosphate by EC2.7.1.2, while EC2.7.1.199 
participates in the pentose phosphate pathway for the for-
mation of phosphoribosyl pyrophosphate (PRPP) by the 
enzymes EC2.2.1.1, EC2.7.1.11, EC5.1.3.1, and EC5.3.1.6. 
Finally, PRPP is transformed to inosine monophosphate 
(IMP) by the enzymes EC 2.7.1.133, EC1.17.4.2, EC2.7.1.76, 
EC2.7.1.74, and EC2.7.1.21 (Fig. S8B). IMP is an important 
precursor for the biosynthesis of purine and pyrimidine 
nucleotides. The enrichment of DNA repair- and replica-
tion-related pathways in the QIN gut microbiome suggest 
that gene plasticity could confer the host with a plastic 
response of degradation functions based on seasonal die-
tary shifts. Taken together, these results reveal host genetic-
specific gut microbial structures and functions, providing 

robust evidence to support the co-evolution between giant 
pandas and their gut symbionts.

Strain‑level variation in Clostridium drives functional 
changes in wild giant panda gut microbiome 
for adaptation to seasonal dietary changes
How gut microbial composition and function adapt to 
host food seasonality in natural environment has rarely 
been investigated, particularly at single-nucleotide pol-
ymorphisms (SNPs) level. The QIN cohort of pandas 
exhibited an apparently seasonal diet of bamboo leaves 
and shoots, resulting in seasonal variation in microbial 
functional potentials [30]. However, the SNPs within 
functional genes that varied between seasons remain 
poorly classified. Six species exhibited significantly dif-
ferent relative abundances between seasons (Fig.  3A), 
including Clostridium sp. K25 (pFDR = 0.034), Clostrid-
ium algidicarnis (pFDR = 0.045), Clostridium hiranonis 
(pFDR = 0.045), and Clostridium cellulosi (pFDR = 0.045). 

Fig. 3 Strain-level analysis of variation in gut microbial composition and functional profiles of QIN giant pandas between leaf and shoot eating 
seasons. A The variation in composition and abundance in the gut microbiota of giant pandas (n = 57) at the genus and species levels. Significantly 
differentially abundant taxa between seasons are indicated by asterisks. The size of the circle indicates the abundances and colors indicate 
the abundances of taxa that significantly differed between leaf- (green) and shoot-eating (orange) seasons. B The 15 most differentially abundant 
KEGG pathways and quantitative contributions to functional profiles that belonged to Clostridium (orange), Escherichia (blue), and other taxa (grey). 
The size of the circle indicates KEGG pathway relative abundances and the area of the sector indicates the relative contributions of each taxon. The 
color outlines indicate that the KEGG pathways significantly differed between the leaf- (green) and shoot-eating (orange) seasons. C Reconstruction 
of acyl chain-associated pathways that were differentially enriched between samples from different seasons. Histogram colors indicate genes 
that significantly differed in communities collected between leaf- (gray) and shoot-eating (black) seasons. FDR-corrected Wilcoxon rank sum tests 
were used to determine significance. **p < 0.01, *p < 0.05
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The SNP profiles of cellulose-degrading genes like cel-
lulase (cel), beta-glucosidase (bglX), and xylan 1,4-beta-
xylosidase (xynB) were then evaluated in the genomes 
of six Clostridium species. Interestingly, seasonally 
distinct characters were observed for SNP abun-
dances and read mapping rates, since the genes dur-
ing the leaf eating season exhibited significantly higher 
polymorphisms and abundances, including especially 
bglX (pFDR < 0.05; Fig. S9), suggesting that strain-level 
variation in Clostridium may contribute to cellulose 
degradation.

Differences in KEGG pathway enrichment was then 
compared between seasons. Among the most over-
represented pathways with relative abundances higher 
than 0.05%, 15 exhibited significantly different enrich-
ments between seasons (p < 0.05, FDR < 0.1; Fig.  3B). 
Four pathways were notably enriched in the shoot eat-
ing season, including arachidonic acid metabolism and 
the AMPK signaling pathway, which are both involved 
in fatty acid metabolism. In contrast, pyruvate metab-
olism and carbon fixation pathways of prokaryotes 
were enriched in the leaf eating season microbiomes 
and may contribute to providing acyl chains for the de 
novo synthesis of essential nutraceuticals (Fig. 3C). To 
further determine the contributions of the overrepre-
sented taxa Clostridium and Escherichia, in addition 
to other taxa, towards differentially abundant path-
ways, metabolic genes were taxonomically classified. 
An overwhelming contribution of Clostridium to meta-
bolic activities was observed in the microbiomes from 
either the leaf or shoot eating seasons, thereby provid-
ing further evidence that genetic polymorphisms of 
Clostridium drive functional plasticity in response to 
seasonal dietary changes.

Enterotype and resistome landscapes of the wild 
and captive giant panda gut microbiomes inform 
conservation implications
To characterize the differences in gut microbiome com-
positions between wild and captive giant pandas, the 
samples encompassed all the three wild genetic popula-
tions and four different captive cohorts, with complete 
sample information were used for downstream analy-
ses. Microbial profiling resulted in the identification 
of three clusters (termed enterotypes) present in the 
wild (n = 59) and captive (n = 73) pandas (Fig. S10A), 
with each being significantly identifiable by variation in 
the relative abundances of Clostridium, Pseudomonas, 
and Escherichia (pFDR < 0.001; Fig.  4A, B). Correlation 
analysis of the giant panda cohorts and the entero-
types indicated that the QIN wild pandas belonged to 
the Clostridium enterotype and the QXL wild pandas 

belonged to the Pseudomonas enterotype, whereas all 
the captive cohorts from different geographic distribu-
tions belonged to the Escherichia enterotype (Fig. 4A), 
indicating that captivity significantly alters natural 
microbial profiles. In addition, the Escherichia entero-
type also exhibited more abundant Streptococcus than 
the other two enterotypes (Fig. S10B). These results 
suggest that enterotype provides potential implications 
for future conservation translocation.

To further monitor the prevalence of antibiotic resist-
ance genes (ARGs) in panda gut microbiomes that may 
lead to alterations in microbial compositions, a Compre-
hensive Antibiotic Resistance Database (CARD) annota-
tion scheme was used to capture the full breadth of the 
resistomes. A total of 752 ARGs associated with five 
antibiotic resistance mechanisms were identified in gut 
microbiomes across all enterotypes. ARG distributions 
exhibited high heterogeneity among the three entero-
types (Fig. 4C). The Escherichia enterotype exhibited the 
highest abundances of ARGs, with efflux pump genes 
(e.g., acrB, acrF, robA, and evgS) being particularly prom-
inent and conferring resistance to at least three antibiot-
ics, suggesting a potential risk of multidrug resistance. 
The Pseudomonas enterotype exhibited the lowest abun-
dances of ARGs, while the Clostridium enterotype exhib-
ited moderate abundances. Analysis of the 502 microbial 
genomes also confirmed the enterotype-related resistome 
profiles (Fig. S10C). Correlational analysis indicated that 
enterotype displayed higher correlation with resistomes 
than captivity status (i.e., wild or captive), geographic 
distributions, and diets (Fig. S10D, E), suggesting that 
resistomes significantly altered the enterotypes of the 
captive cohort, in contrast to their wild counterparts.

Integrative and conjugative elements (ICEs) broadly 
refer to a collection of mobile genetic elements that par-
ticipate in the important process of horizontal transfer 
of antibiotic resistance among various bacterial spe-
cies [31]. A novel ICE containing a tetracycline resist-
ance gene tet(M) was identified in four MAGs that were 
assembled from the four different captive panda sam-
ples and these MAGs were classified as Veillonella par-
vula and Streptococcus sp. 002300045 (Fig. S10F). The 
genetic locus of the tet(M) gene, in addition to its flank-
ing regions were analyzed to investigate their mobility 
potential. Genes encoding enzymes involved in bacte-
rial conjugation were found flanking the tet(M) gene, 
including nick (relaxase), YddH (hydrolase), and ydcQ 
(encoding a membrane vesicle protein). In addition, 
genes encoding a putative genome engineering toolkit 
were also detected in the flanking sequences, includ-
ing recX that encodes a single-stranded DNA-binding 
protein that can catalyze homologous recombination, 
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in addition to xis that encodes excisionase, and int that 
encodes an integrase. In addition, accessory proteins 
commonly associated with mobile elements, like tnpA 
and tnpR that encoded transposons, were also found 
flanking the tet(M) gene. These results suggest that the 

tet(M)-containing ICE may mediate horizontal gene 
transfer (HGT) among members of the gut microbial 
communities of captive pandas. These results provide 
important baselines of ARGs in captive pandas as well 
as the natural populations.

Fig. 4 Characteristics of gut microbiome enterotypes and resistomes across wild and captive giant panda populations. A PCoA plot revealing 
three clusters in the gut microbiome, with each being significantly identifiable by variation in the relative abundances of Clostridium, Pseudomonas, 
and Escherichia. The lines connected to the center of each ellipse correspond to the affiliation. The inset mosaic plot shows the association 
between giant panda cohorts and enterotypes. The Pearson residuals were used to assess the individual contribution to the Pearson statistic. The 
blue, red, and grey colours correspond to positive, negative, and lack of associations, respectively. The area of each plot represents the sample size 
of each group. B The box plots show the relative abundances of major bacterial contributors of each enterotype. FDR-corrected Wilcoxon rank sum 
tests were used to determine statistical significance. ***p < 0.001, **p < 0.01, *p < 0.05. C Heatmap of antibiotic resistance genes (ARGs) identified 
among the three enterotypes. Information regarding resistance mechanisms and antibiotics is highlighted at the top. Color intensity indicates ARG 
abundances and darker colors indicate higher abundances. The sources and corresponding enterotypes of the sample in each line are marked 
in the tree (right)
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Discussion
Mapping wildlife microbiomes can guide conserva-
tion efforts. In this study, we constructed a comprehen-
sive catalog of giant panda gut microbiomes, resulting 
in the pandaGUT database that comprises 2.37 million 
genes and 502 better-quality MAGs, 64.5% of which have 
not been previously described. The 40 complete bacte-
rial genomes obtained in this study expand the cover-
age of several lineages and phylogenetic diversity within 
the panda gut microbiome, also expanding prokaryotic 
genomic representation. Three gut microbiome entero-
types were identified using the data that spans different 
genetic populations, dietary regimes, ages, sexes, and 
geographic distributions. We found that wild pandas 
exhibited host genetic-specific microbial structures and 
functions, whereas the captive counterparts exhibited 
much higher abundances of multi-antibiotic resistance 
genes. Our findings have an importance significance for 
science-informed conservation.

Comprehensive landscapes of gut microbiome diversity 
and functions for the threatened mammal exhibit several 
advances over previous studies of pandas and other 
wildlife
Reference gene catalogs and metagenome-assembled 
genome collections of microbiomes from several model 
organisms, including humans [32–40], non-human pri-
mates [41], mice [42–44], pigs [45, 46], dogs [47], chick-
ens [48], and ruminants [49–54]; however, it still remains 
lacking for the threatened mammal. This study exhibits 
several unique advances over previous gut microbiome 
studies of pandas and other wildlife. First, this study 
encompasses the varied sample sources of giant panda 
and an unprecedented level of large-scale metagenomic 
data that was obtained by combined Nanopore and 
PacBio long-read and Illumina short-read sequencing. 
These efforts enabled recovery of more complete micro-
bial genomes and increased catalog representation. Sec-
ond, contig assembly qualities were markedly higher in 
this study, relative to previous studies, resulting in an 
overall contig N50 of 34 kbp, representing a 4.5–27-fold 
increase over values obtained in previous studies [26]. 
Consequently, 74.82% of the microbial genes were iden-
tified as complete, representing a much higher number 
than values previously obtained for ruminants (32.2% 
[52]) and humans (57.74% [34]). Third, rRNA genes have 
previously been shown to be problematic for inclusion in 
MAG assemblies with short-read metagenomic data [55]. 
The combination of short-read and long-read sequencing 
technologies that were used here, in addition to assem-
blies from different samples resulted in overcoming 
this issue to a significant extent. In particular, this study 

recovered a much higher number of high-quality MAGs 
encoding 5S, 16S, and 23S rRNA genes in addition to 
tRNAs. Fourth, the genome catalog covers many low-
abundance species that were neglected in previous stud-
ies [20, 30]. Low-abundance bacteria like C. sartagoforme 
and Basfia strains that were represented in this dataset 
may exhibit important biochemical roles in fibre degra-
dation, representing promising resources for future bio-
technological applications.

Unique signatures of QIN panda gut microbiome with host 
genetic‑specific and seasonal variations indicate adaptive 
evolution
A strong phylosymbiosis signal of host–microbiome 
coevolution has been previously shown across many ani-
mal clades [56]. Giant pandas belong to the order Car-
nivora and have evolved to exclusively feed on bamboos 
that are rich in cellulose and hemicellulose. Host genetic-
specific gut microbiome structures and functions were 
observed here for pandas. The QIN pandas exhibited 
lower genetic diversity [15], but also lower gut microbial 
community diversity. Nevertheless, the QIN panda com-
munities harbored the most abundant metabolic genes 
that may then serve as a significant reservoir of func-
tional diversity. We speculate that such functional diver-
sity may be related to seasonal variation of food sources 
in the Qinling Mountains. Strain-level analysis of SNPs 
within the cellulose-degrading genes of Clostridium fur-
ther indicated a plastic microbiome response to variation 
in dietary nutrients.

The population density of QIN panda is higher than 
those of other populations, which may result in overlap 
in home range. However, considering the solitary nature 
of giant panda, the social interaction may have less effect 
on the gut microbiome composition, which may be dis-
tinct to that of non-human primates [57, 58]. This effect 
is needed to be examined in the future. Considering the 
distinctiveness of the QIN cohort via lower genetic diver-
sity, but also lower gut microbial diversity and unique 
microbiome enterotypes, we suggest that a national park 
should be specifically established for QIN pandas. In 
addition, key gut bacterial populations within the QIN 
microbiomes that exhibit important metabolic activi-
ties should be cultured and functionally characterized. 
Such efforts would represent an important step towards 
manipulating gut microbiomes for improving giant 
panda fitness in the future.

Gut microbiome structure divergence and reducing 
antibiotic usage should be highlighted in future 
conservation translocation
Antibiotic exposure can strongly induce the enrich-
ment of ARG-containing pathogens [59, 60], and this 



Page 10 of 15Huang et al. Microbiome          (2023) 11:221 

represents a significant threat to the overall health of 
wildlife and the public, while also resulting in giant panda 
enterotype variation. In this study, captive giant panda 
gut microbiomes consistently harboured diverse ARGs 
that were dominated by bacterial populations conferring 
specific resistance to multiple antibiotics. ARGs were also 
notably identified in the gut microbiomes of wild popula-
tions, most likely due to the selection pressures from nat-
ural antibiotic secretion by gut bacteria or environmental 
bacteria over the long evolutionary timescales. Moreo-
ver, the presence of ICEs containing tetracycline resist-
ance genes suggests potential dissemination of antibiotic 
resistance through HGT that would further adversely 
affect conservation management and public health [61]. 
We consequently recommend reducing antibiotic usage 
for wildlife, while regularly monitoring the ARG content 
of their gut microbiomes. Considering that the diver-
gence in the enterotypes between wild and captive pan-
das, we further suggest that rational manipulation of 
captive gut microbiomes to better reflect those of their 
wild counterparts to improve the capacity for ecological 
adaptation of wildlife. The recently proposed enterosig-
nature concept can not only confirm key ecological char-
acteristics of gut microbiome, but also enable to detect 
the gradual shifts in community structures [62], which 
should be introduced into wildlife conservation reintro-
duction. More longitudinal data should be collected and 
assessed in the future to further test the variation of the 
microbial community structures in giant panda.

In summary, this study offers a comprehensive and 
unprecedented catalog of the gut microbiome of a threat-
ened mammal and reveals three enterotypes that are 
associated with host genetics and captivity. These find-
ings have far-reaching implications for future metage-
nome-based evolutionary studies and conservation of 
giant pandas and other wildlife.

Methods
Sample collection and metagenomic data retrieval
To comprehensively obtain faecal samples from wild 
giant panda populations, teams were assembled in differ-
ent nature reserves and sample collection was performed 
by trained laboratory staff with assistance of reserve 
staff. Line transects used for sample collection had been 
widely used in wild giant panda population census sur-
veys, ensuring the probability of obtaining fresh faces. 
De novo generation of fecal metagenomic data was con-
ducted from 111 fresh stool samples that were collected 
from 76 individuals during the leaf and shoot eating sea-
sons (Table S1). Thirty-eight out of the 111 stool samples 
were collected from the wild cohort in the QIN (n = 31 
stool samples) and MIN (n = 7) mountains. The remain-
ing samples were collected from captive cohorts in the 

Beijing Zoo (BEI, n = 10), the Chengdu Research Base 
of Giant Panda Breeding (CDB, n = 51), and the Shaanxi 
Rare Wildlife Rescue and Feeding Research Centre (SXC, 
n = 12). The surfaces of fresh faeces were removed. All 
stool samples were then immediately flash-frozen in 
liquid nitrogen after collection and maintained under 
anerobic conditions, followed by transfer to the labora-
tory on dry ice, and storage at − 80 °C until later use. All 
samples were collected based on the criteria needed to 
meet Nanopore or PacBio sequencing thresholds. Stool 
DNA extraction and metagenome sequencing were con-
ducted using the same standardized protocols. All sample 
collection procedures were approved by the Institutional 
Animal Care and Use Committee of the Institute of Zool-
ogy, Chinese Academy of Sciences (Beijing, China).

In addition, 328 publicly available metagenomic data-
sets were collected from 55 giant pandas and combined 
for integrative analysis, including the 26 stool samples 
collected from QIN in our previous study [17] and data 
from five other metagenomic studies, including sam-
ples from the QIO (n = 7) [26] and XXL (n = 16) [25] 
wild cohorts, in addition to those from the CDB cap-
tive cohort (n = 57) [18], the China Conservation and 
Research Center for Giant Pandas [27], and from four 
individuals at the Macao Giant Panda Pavilion [28].

DNA extraction and sequencing
To prepare samples for molecular analyses, cecal samples 
(1 g per sample) were homogenized and passed through 
a 100-μm filter membrane to remove bamboo fibres. 
Stool DNA was then extracted using the QIAamp Power 
Fecal DNA Kit (Qiagen, Germany) following the manu-
facturer’s instructions. DNA concentration and purity 
were assessed using a NanoDrop2000 spectrophotometer 
(Thermo Fisher Scientific Inc., USA), and the quality of 
the extracted DNA was evaluated with electrophoresis 
on an 0.8% agarose gel. High-quality DNA was then used 
to construct a metagenomic library with an insert size of 
500 bp, followed by sequencing on the Illumina NovaSeq 
platform (150 bp paired-end reads) to generate at least 12 
Gbp of raw data per sample. DNA extracted from each 
sample from one of nine groups was pooled for Nanop-
ore sequencing (Fig. S1, Table S1). Another DNA pool 
from the leaf and shoot groups of the CDB samples were 
also subjected to PacBio Sequel sequencing.

Metagenome assembly, genome binning, and quality 
assessment
To obtain high-quality metagenomic data, sequenc-
ing data were mapped to the giant panda, bamboo, 
and human genomes using bowtie2 v.2.4.0 [63] to 
remove potential DNA contamination. The bamboo 
genome used for this analysis was the sequence for the 
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species closest to the panda’s food that was available in 
the NCBI database. Considering that de novo discov-
ery of non-bacterial genomes is very challenging but 
should receive more attention in the future, the reads of 
eukaryotic microorganisms, archaea, and viruses were 
excluded from the following analysis. All the reads that 
were assigned to eukaryotic microorganisms, archaea, 
or viruses by kraken2 or minimap2, respectively, were 
removed. Following quality trimming of Illumina short 
reads using sickle v.1.33 (https:// github. com/ najos hi/ 
sickle), the sequencing reads of each sample were indi-
vidually assembled into contigs using Megahit v.1.1.3 [64] 
(parameters: –min-count 2 –k-min 27 –k-max 87 –kstep 
10 –min-contig-len 500). High-quality reads within the 
same groups were also co-assembled to obtain co-assem-
blies using Megahit v.1.1.3 (Fig. S1).

The clean reads from Nanopore and PacBio sequenc-
ing were obtained after removing chimaeric and adaptor 
sequences using Porechop v.0.2.4 (https:// github. com/ 
rrwick/ Porec hop). The low-quality and short subreads 
were also filtered using Nanofilt v.2.6.0 [65] and Filtlong 
v.0.2.0 (https:// github. com/ rrwick/ Filtl ong). Long con-
tigs were then generated using metaFlye v.2.7 [66], and 
the Racon v.1.4.10 [67] program was used to correct base 
errors within the long read sequences.

To further reduce errors generated in the assembly, all 
short- and long-reads were mapped back to the assem-
bled contigs using bowtie2 v.2.4.0 [63] and Samtools 
v.1.10 [68] to correct single bases, insertions, and dele-
tions [69]. Following short- and long-read correction, 
contigs generated with Megahit and metaFlye assemblers 
from the same group were merged together with quick-
merge v.0.3 (https:// github. com/ mahul chak/ quick merge) 
and further polished five times with Pilon v.1.23 [70] and 
Nextpolish v.1.2.4 [71]. All the assembled contigs that 
were assigned to non-bacterial clades were removed.

Genome binning into metagenome-assembled-
genomes (MAGs) was then conducted using MaxBin 
v.2.2.4 [72], MetaBAT2 v.2.11.1 [73], CONCOCT v.0.4.0 
[74], and VAMB v.3.0.3 (https:// github. com/ Rasmu 
ssenL ab/ vamb), resulting in 1047, 2335, 1344, and 1750 
genome bins, respectively. The DAS Tool v.1.1.1 [75] 
program was then used to integrate bins generated from 
the different methods and ensure representativeness and 
diversity of all MAGs. The integrated bins were further 
decontaminated and merged by aligning all of them to 
the core genes of the corresponding genus or family 
using a greedy approach to filter bins. When removing 
contaminated contigs, bins that had completeness values 
decrease were then removed.

The completeness and contamination of the final 
bins were determined using CheckM v.1.0.11 [76]. 
Bins with estimated genome completeness > 90% and 

contamination < 5% were considered high-quality MAGs 
and bins with completeness ≥ 50% and contamina-
tion < 10% were considered medium-quality MAGs, as 
described elsewhere [21].

To evaluate circularity and precisely locate the genome 
wrap-around point in single-contig genomes, we deter-
mined whether redundant sequences were present at 
the wrap-around point of the genome contigs, as previ-
ously described [69]. We also collected reads that aligned 
to the termini of a candidate genome and assembled the 
spanning contigs for alignment. In addition, the Illumina, 
Nanopore, and PacBio reads were further mapped to 
the circular genomes to assess whether chimeric regions 
were present.

The circular genomes were taxonomically classified 
using GTDB-Tk v.0.3.2 [77] with a cut-off of ≥ 95% ANI 
and by using FastANI v.1.2 with the default options. The 
genomic similarity of each genome bin was calculated as 
the ratio of the shared length to the total length of the 
bin following alignment to representative genomes in the 
GenBank database (October, 2020) with Mash [78]. The 
Illumina sequencing reads of each sample that covered 
at least 50% of the genomic bin was used to identify the 
presence of the bin in that sample, and the percentage of 
the samples where a bin was identified was considered 
the occurrence ratio for the bin. A maximum-likelihood 
tree of the medium-quality MAGs was constructed using 
FastTree v. 2.1.9 [79] with at least 25 concatenated pro-
tein sequences [80].

Construction of the gene catalog and comparison 
with previous datasets
ORFs were predicted using Prodigal v.2.6.3 [81] with the 
parameter “-p meta”. rRNAs were then annotated with 
RNAmmer v1.2 [82], and tRNAs were annotated with 
tRNAscan-SE v.2.0.9 [83]. ORFs < 100  bp in length were 
discarded, and the remaining ORFs were clustered using 
CD-HIT v.4.8.1 [84] by specifying the parameter settings 
of -n 10 -c 0.95 -G 0 -M 0 -aS 0.9.

To assess the representativeness of the gene catalog of 
the giant panda gut microbiome assembled here, the gene 
catalog was compared against all metagenomic datasets 
included in this study using 90% of protein sequence 
identity with CD-HIT v.4.8.1. The clean reads of each 
sample were also aligned to the gene catalog to calculate 
the coverage ratio and the numbers of mapped reads to 
the genes were determined using Samtools v.1.10. The 
proportion of mapped reads was calculated by comput-
ing the percentage of mapped reads to the total numbers 
of reads in each sample. Further, the annotation ratio of 
each sample was calculated as the percentage of anno-
tated genes in the gene catalog of this study.

https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://github.com/rrwick/Filtlong
https://github.com/mahulchak/quickmerge
https://github.com/RasmussenLab/vamb
https://github.com/RasmussenLab/vamb
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Taxonomic annotation, functional annotation, 
and abundance analysis
All gene catalog members were subjected to taxonomic 
and functional assignment using DIAMOND v.0.9.22 
[85] via comparison against the NCBI-NR (Oct 2020) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
databases using an e value cutoff of ≤ 1e − 5. Carbohy-
drate-active enzymes (CAZymes) were also annotated 
using the hmmscan function of HMMER v.3.2.1 [86] to 
identify protein sequences and their corresponding rep-
resentatives in the CAZy database (v.7; http:// www. cazy. 
org/) using an e value cutoff ≤ 1e − 5.

The relative abundances of taxa, KEGG orthologous 
groups (KOs) and CAZymes, were calculated based on 
the abundances of annotated genes. Gene abundances 
in each sample were estimated by mapping the quality-
trimmed reads to the non-redundant gene catalog at the 
95% nucleotide identity threshold using bowtie2 v.2.4.0 
and Samtools v.1.10. The FeatureCounts v.2.0.1 [87] pro-
gram was then used to quantify the numbers of success-
fully assigned reads. The abundances were normalized 
to fragments per kilobase of gene sequence per million 
reads mapped (FPKM) values, as previously described 
[88]. To establish taxonomic profiles, phylogenetic 
assignments of each annotated gene from the gene cata-
log were evaluated and the relative abundances of genes 
from the same taxon were summed to represent the 
abundance for the taxon. The profiles of each KO, KEGG 
pathway, CAZyme, and CAZyme family member were 
calculated using the same procedures. The limma and 
ComBat programs were used to minimize potential batch 
effects, as described previously [89].

Linear discriminant analysis (LDA) effect size (LEfSe) 
analysis was used to identify the key characteristics of 
KEGG pathways in the gut microbiomes of the three 
genetic populations. LDA scores > 2.0 and p < 0.05 were 
considered statistically significant.

The functional contributions of the most abundant 
bacteria in the QIN cohort between seasons, including 
Clostridium, Escherichia, and other genera, were assessed 
by mapping genes annotated in each of the metabolic 
pathways to the genomes of Clostridium, Escherichia, 
and other genera using DIAMOND [85].

Gut microbiota diversity analysis
To analyze the alpha and beta diversity of the gut micro-
biota communities, the Shannon and Simpson indi-
ces were calculated using the vegan R package v.3.6.2, 
whereas Jensen–Shannon divergence (JSD) was esti-
mated using the phyloseq R package. Further, PCoA 
based on Bray–Curtis distances between communities 
was performed using vegan. The expectation–maximiza-
tion algorithm was used to estimate the subcomponent 

of a mixture Gaussian distribution for the first principal 
component of the beta-diversity analysis for wild sam-
ples. Two components were identified using the Bayesian 
information criterion.

Cellulase‑encoding genes in Clostridium 
and polymorphism analysis
All Clostridium contigs were aligned to sequences of 
known cellulase-encoding genes, including β-glucosidase 
(bglX), endo-β-1,4-glucanase (celA, cel5A), and xylan 
1,4-β-xylosidase (xynB), with the thresholds of alignment 
length as > 100  bp, nucleotide identity > 70%, and shar-
ing by at least 60% of hits. Strain-level haplotypes were 
generated using VCFtools v.0.1.17 (using the parameters: 
filter -O v -o -e ’QUAL < 30 || DP < 20’). SNP density was 
also determined by the ratio of filtered SNP bases to total 
mapped bases.

Enterotype classification
Enterotype clustering was conducted at the genus level, 
as previously described [90, 91]. The genus with the high-
est relative abundance was considered the primary con-
tributor to each enterotype. Samples were selected for 
enterotype clustering according to the following criteria. 
First, samples from overlapping sampling regions were 
avoided. If samples of the published studies were col-
lected from a region that overlapped with the sampling 
region of this study (Table S1), the metagenome data for 
these samples were not included. Second, samples with 
incomplete host dietary information were excluded. A 
total of 132 representative samples remained and were 
clustered with the pam function of the cluster R package 
[90]. The optimal number of clusters was then selected 
according to the Calinski–Harabasz (CH) index.

Resistome and ICE identification
ARGs were annotated against the CARD database using 
RGI v.5.1.1 [92]. The alignment parameters included a 
minimum sequence identity of 70%, a sequence length 
cutoff of 60%, and an e value < 1e − 6. UPGMA was used 
to construct a hierarchical cluster tree of the resistome, 
yielding six clusters using a cutoff of tree height = 0.0007. 
Variables that influenced enterotype classification were 
determined using Cramer’s V statistic. To assess the 
potential mechanisms of ARG mobility, ICE’s flanking 
resistance genes in the genomes of gut bacteria were 
investigated, as previously described [31]. Nucleotide 
sequences were aligned with ICEs available in the ICE-
berg database to identify potential ICEs using BLASTn 
(default parameters) using a length cutoff of > 5 kbp. 
The identified ICEs were then annotated against the 
CARD, ARG-ANNOT, and ResFinder databases. tet(M) 
was identified in five of the genomes and 15 kbp of the 

http://www.cazy.org/
http://www.cazy.org/
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sequences flanking tet(M) were annotated using UniProt 
(https:// www. UniPr ot. org/) and by specifying a mini-
mum coverage threshold of 50%.

Isolation and whole‑genome sequencing of Morganella 
morganii
Fresh panda feces were collected from Beijing Zoo, Bei-
jing, China, immediately after defecation. Fecal bacterial 
suspensions were prepared from the samples for cultiva-
tion using Columbia agar with 5% sheep’s blood (Qingdao 
Hope Bio-Technology Co., Ltd., Qingdao, China) and incu-
bation at 37 °C for 16 h with a 5%  CO2 atmosphere. Colony 
morphological analysis and whole-genome sequencing 
were performed for confirmation of the M. morganii 
identification. The complete genome sequence was then 
determined using the Illumina MiSeq paired-end (400 bp 
library) and Nanopore sequencing technology platforms.

Statistical analyses
Comparison of the microbiomes of different genetic pop-
ulations or from pandas with different foraging seasons 
was performed using Kruskal–Wallis tests (multiple-
group comparison) or two-tailed Wilcoxon rank-sum 
tests (pairwise comparisons). A false discovery rate 
(FDR)-corrected p < 0.05 was considered statistically 
significant for comparing bacterial species, KEGG path-
ways, and MAGs. The results were visualized with box-
plots or heatmaps plotted with the ggpubr and pheatmap 
packages in R v.3.6.2, respectively. Text processing, infor-
mation extraction, and data statistics incorporated in the 
pipeline for construction of the pandaGUT database and 
MAGs were processed using R v.3.6.2.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 023- 01657-0.

Additional file 1: Fig S1. Pipeline for the construction of the unified 
pandaGUT reference catalogue of the giant panda gut microbiome. 
Approximately 7 Tbp of long- and short-read sequencing data from 
diverse samples spanning different genetic backgrounds, dietary regimes, 
ages, sexes, and geographic distributions were integrated to construct 
the catalogue. pandaGUT contains 502 nonredundant MAGs and 2.37 
million unique genes. Fig S2. Overview of sample and metagenome data 
integrated in the pandaGUT catalogue. (A) Metagenome statistics for 
de novo samples generated in this study and six other publicly available 
studies. The dark colours indicate the total numbers of the samples, and 
the light colours indicate the numbers of the samples contaminated by 
either > 1% human genome sequences, > 10% giant panda genome 
sequences, or > 1% bamboo genome sequences in the corresponding 
study. (B) Metagenome statistics for the metagenomic sequencing data 
de novo generated in this study and data from six other publicly available 
studies. The dashed square indicates Nanopore and PacBio sequencing 
data statistics. Fig S3. Genome quality of species representatives. (A) 
The completeness and contamination of all bins before (red colour) and 
after (green colour) refining by merging, splitting, and decontaminat-
ing. (B) GC content and MAG size statistics. (C) Synteny analysis (left) and 
statistics of genomic features (right) between the isolated and sequenced 

genome (ISG) and metagenome-assembled genome (MAG) of Morganella 
morganii. (D) Coverage of Nanopore and Illumina sequencing reads that 
were mapped to the M. morganii genome in addition to GC content dis-
tribution. Fig S4. Annotation information for the Clusters of Orthologous 
Genes (COG) and CAZyme genes within 174 high-quality metagenome-
assembled genomes. AA, auxiliary activities. PL, polysaccharide lyase. GH, 
glycoside hydrolases. GT, glycosyl transferases. CBM, carbohydrate-binding 
module. CE, carbohydrate esterase. Distribution of six CAZyme classes as a 
proportion of the total number of predicted CAZyme, and COG functional 
classes as a proportion of the total number of predicted genes. * indicates 
unannotated category. Fig S5. Synteny and average nucleotide identity 
(ANI) comparisons between the Basfia metagenome-assembled genomes 
(MAGs) obtained from the giant panda gut microbiomes and the genome 
from the only described species of the Basfia genus from ruminants, Basfia 
succiniciproducens. Five circular Basfia genomes from giant panda micro-
biomes exhibited better synteny and higher ANI than compared to the B. 
succiniciproducens genome, suggesting the presence of a potentially new 
species of Basfia. Fig S6. Contig and gene characteristics of the pandaGUT 
database. (A) Distribution of assembled contig lengths. (B) Distribution of 
gene lengths from data assembled with short- and long-read sequencing 
data. The dark and light colours indicate complete and incomplete genes, 
respectively. (C) The percentages of genes annotated and reads mapped 
to the pandaGUT database obtained in this study exhibit a strong correla-
tion. The empty circles indicate samples contaminated with > 1% human 
genome sequences, >10% giant panda genome sequences, or >1% bam-
boo genome sequences. Fig S7. Gut microbiome diversity from the three 
wild giant panda populations. (A) Shannon index of microbial diversity. (B) 
Bray–Curtis distances between pairwise comparisons of communities. Fig 
S8. Differentially abundant KEGG pathways in the microbiomes from 
the three wild giant panda populations. (A) Linear discriminant analysis 
(LDA) effect size (LEfSe) analysis used to identify key KEGG pathways that 
differentiated samples (LDA scores > 2 and p <0.05) in the gut microbiota 
among the three panda genetic populations. The numbers on the right 
indicate the numbers of corresponding pathways in Fig. 2E. (B) Recon-
struction of nucleotide metabolic pathways. Fig S9. Strain-level analysis of 
single-nucleotide polymorphisms (SNPs) within the cellulose-degrading 
genes of six significantly different Clostridium species. (A) SNP abundances 
and read mapping rates in cellulose-degrading genes like cellulase (cel), 
beta-glucosidase (bglX), and xylan 1,4-beta-xylosidase (xynB). SNPs are 
highlighted in red and the mapping regions are indicated in blue. Back-
ground colours indicate samples collected during the leaf-eating (green) 
and shoot-eating (orange) seasons. (B) SNP densities of the genes that 
encode enzymes involved in cellulose degradation and that indicate the 
strain heterogeneity of Clostridium. SNP density (0–0.05) was determined 
as the ratio of filtered SNP bases to the total mapping bases. Darker 
colours indicate greater densities. Fig S10. Enterotypes and giant panda 
gut microbiome resistomes. (A) Calinski–Harabasz (CH) index values 
indicating the optimal number of enterotype clusters. (B) The microbial 
composition profiles of each enterotype revealing one of three dominant 
bacterial genera, including Clostridium,Pseudomonas, and Escherichia. (C) 
Sankey diagram showing the ARG composition and relative abundances 
of metagenome-assembled genomes of each enterotype. (D) UPGMA 
phylogenetic tree revealing six clusters of resistome profiles. (E) Cramer’s 
V statistics indicating the correlations among enterotype, captivity status, 
geographic distribution, and diet with resistome cluster. (F) Schematic 
showing the genetic organization of novel integrative and conjugative 
elements (ICEs) identified from the genomes of Veillonella parvula and 
Streptococcus sp. 002300045. Lines connecting blocks with identical col-
ours indicate aligned regions and reveal synteny or gene rearrangements. 
The tet(M) gene is indicated in red. Essential modules of the ICE machinery 
are indicated in orange, blue, and pink for mobilization, recombination, 
and regulation genes, respectively.

Additional file 2: Table S1. Samples and corresponding information 
regarding collection location, captivity status, and sequencing data col-
lected in this study. n/a, not available. Table S2. Assembly and annotation 
information for 820 metagenome-assembled genomes. TGS, single-
molecular sequencing data. NGS, Illumina sequencing data. Table S3. 
Genome characteristics for the 40 circular metagenome-assembled 
genomes. Table S4. Annotation information of the CAZyme genes of 40 
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circular metagenome-assembled genomes. Table S5. COG annotations 
for all nonredundant microbial genes.

Additional file 3. Circos plot for the 40 complete metagenome-assem-
bled genomes.
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