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Abstract 

Background Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation 
between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity 
and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such 
as elevated temperature, there is little data directly comparing physiological performance that accounts for symbi-
ont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically 
distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics 
of symbiont community change under thermal stress in a laboratory-controlled experiment.

Results We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durus-
dinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype 
C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the ther-
mally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon 
to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced 
increase in Durusdinium proportion in the PdC holobiont; however, this “symbiont shuffling” in the background 
was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced 
calcification.

Conclusions These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses 
to thermal stress. In addition, we found that “symbiont shuffling” may begin with stress-forced, subtle changes 
in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals’ asso-
ciation with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed 
with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities 
of corals.
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Background
Coral lives in symbiosis with a plethora of interwoven 
microorganisms, including bacteria, archaea, fungi, and 
microalgae, which are known to enhance the ability of 
corals to synthesize calcium carbonate skeletons [1]. Pho-
tosynthetic dinoflagellates in the family Symbiodiniaceae 
[2, 3] are algal symbionts of many cnidarians includ-
ing corals, sea anemones, jellyfish, and hydras. Nutrient 
exchanges between scleractinian corals and Symbiodini-
aceae underpin the success of reef-building corals as hab-
itat engineers in coral reef ecosystems [4]. Reef corals are 
reliant on the translocation of Symbiodiniaceae-derived 
compounds in support of calcification demands, and in 
exchange, Symbiodiniaceae receive metabolic byproducts 
required for growth and photosynthesis [5]. This cnidar-
ian–algal association is of particular importance to coral 
reefs and plays a key role in carbon sequestration in the 
context of global climate change [6, 7], as elevated sea-
water temperatures are threatening coral reef ecosystems 
worldwide, causing more frequent and severe mass coral 
“bleaching” (the loss or expulsion of algae from the host 
corals) [8].

It is generally suggested that symbiont community 
structure and functional diversity shape the energy bal-
ance and stress tolerance of host corals, which are 
important factors in sustaining their symbiotic relation-
ship under thermal stress [9–11]. However, the specific 
impacts of symbiont composition and abundance on 
host corals’ fitness and ecological success remain poorly 
resolved [10, 12, 13]. For example, while the role of Sym-
biodiniaceae in fueling host metabolism with nutrient 
and energy supply has long been recognized [5], only 
recently has the divergent capacity of algal symbionts in 
translocating photosynthates and regulating host trophic 
plasticity been examined [14–16]. Moreover, studies 
relating algal symbiont genotypes to thermal stress resil-
ience of reef corals are rather limited [13, 14].

The extent to which corals adapt to a changing climate 
relies in part on the genetic variation of Symbiodiniaceae 
[17, 18] and the environmental conditions under which 
the coral–dinoflagellate mutualisms develop [19, 20]. 
Different Symbiodiniaceae strains or species are likely 
to differ in their intrinsic adaptive capacity, and stress-
tolerant traits may evolve in some opportunistic symbi-
ont variants [21]. Numerous studies have confirmed that 
corals harboring symbiont strains in the genus Durus-
dinium (formerly clade D) show greater thermal toler-
ance than corals hosting symbionts belonging to the 
genus Cladocopium (formerly clade C) [22–24]. As a 
result, thermally tolerant Durusdinium strains are often 
found to be prevalent in reefs that have survived epi-
sodes of severe mass bleaching or exposed to long-term 
stressed conditions [25]. The symbiont “switching” (i.e., 

acquirement of new, thermally resistant Symbiodini-
aceae genera) or “shuffling” (i.e., in hospite proliferation 
of stress-tolerant symbionts, usually present at low to 
undetectable levels prior to bleaching) hypotheses have 
generally been accepted to explain increased coral resil-
ience to thermal stress [9, 26]. However, recent evidence 
revealed that symbiont shuffling comes at a physiologi-
cal cost to the cnidarian host, and conspecific corals may 
acquire less photosynthates from symbionts in the genus 
Durusdinium than from symbionts in other genera, lead-
ing to significant reduction of calcification rates [27–29]. 
In this context, the trade-offs in the flow of energy and 
matter in coral–algal symbiosis are directly related to 
holobiont function in reef ecosystems [30]. However, 
the underlying ecological benefit and long-term stabil-
ity of such adaptive changes are unclear [31], and there 
remains a high degree of uncertainty over how these 
trade-offs are mediated by thermal stress [29].

Notably, symbiont recombination across broad cladal 
boundaries may not be suitable to describe all the differ-
ences in corals’ bleaching susceptibility [32]. Colonies of 
several coral species exhibit no changes in their symbiont 
communities during exposure to variable temperatures 
or bleaching stress [33, 34]. Moreover, differential bleach-
ing susceptibility has been observed in corals harboring 
thermally sensitive versus resistant symbionts within 
Cladocopium rather than symbiont switching/shuffling 
[35, 36]. In the Persian Gulf, the world’s hottest sea with 
extremely high seasonal temperatures (up to 35°C), Cla-
docopium thermophilum of C3 type is the year-round 
prevalent symbiont whereas Durusdinium is essentially 
absent [37, 38]. These findings suggest that, in addition 
to the thermally tolerant cosmopolitan symbiont general-
ist such as Durusdinium trenchii of D1a/D1-4 type [31, 
39], divergence in the physiology of opportunistic sym-
biont specialists is an equivalently important factor for 
increased coral resilience [31, 36, 38]. These contradic-
tory observations have been linked to evolutionary differ-
ences among host and symbiont species in their capacity 
to adapt and/or acclimate to heat stress [35, 36]. Alter-
natively, most corals tend not to change their dominant 
symbionts to a different genus, unless they naturally host 
multiple Symbiodiniaceae genera or the warming levels 
they experienced have been strong enough to drive sym-
biont community changes [40]. Despite the notion that 
the vast majority of corals seem to associate with one 
dominant algal symbiont, the functional importance of 
rare background symbionts remains to be determined 
[41].

Acclimatization of corals to thermal stress involves 
symbiont physiological plasticity at both inter- and intra-
genus levels, hence defining and measuring symbiont 
plasticity requires simultaneous assessment of different 
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symbiont populations while characterizing physiology 
of each specific symbiont type. However, previous stud-
ies investigating symbiotic plasticity used either isolated 
Symbiodiniaceae strains [16, 42], or symbionts within 
distinct coral species [15, 43], but rarely compared physi-
ological performance directly between different types of 
symbionts within the same coral species [9, 44]. Mean-
while, the relevance of this adaptive response is equivo-
cal owing to conflicting reports of symbiont fidelity and 
flexibility mentioned above [33, 41]. In this study, we first 
investigated the dominant symbiont types of the widely 
distributed coral Pocillopora damicornis in the southern 
Hainan Island, China. Corals in this region live in a stress-
ful local environment due to increased human activities 
[45], which can thus serve as a study site to understand 
the fate of coral–algal associations under future global 
warming scenarios. Secondly, we tested the symbiont 
shuffling hypothesis by manipulating conspecific Pocil-
lopora damicornis species dominated with distinct Sym-
biodiniaceae strains (thermally sensitive metahaplotype 
C42-C1-C1b-C1c vs. thermally tolerant D1-D4-D6) in 
a laboratory-controlled thermal stress experiment. By 
exploring physiological responses of both the coral host 
and symbiont, combined with isotopic tracing of photo-
synthetically fixed carbon and quantification of symbiont 
community change, we aimed to investigate the role of 
distinct symbiont types in mediating coral responses to 
elevated temperatures with potential implications for the 
mechanistic basis of bleaching resistance.

Materials and methods
Coral collection and maintenance
Colonies of P. damicornis were collected by SCUBA div-
ing at water depths of 3–5 m from two fringing reefs, 
Luhuitou (LHT; 18°12′7′′N, 109°28′5′′E) and Houhai 
(HH; 18°16′40′′N, 109°44′3′′E), located at the southern 
tip of Hainan Island in the South China Sea (Supplemen-
tary Fig. S1, Tables S1 and S2). Colony replicates were 
generally separated by 2–3 m across each reef. The col-
lected corals were transferred to the indoor husbandry 
facility at the Third Institute of Oceanography, Ministry 
of Natural Resources, China, and cultivated in an aquar-
ium with 1000 L of recirculated artificial seawater (ASW) 
at a temperature of 26°C and photosynthetically active 
radiation of 150 μmol photons/m2/s provided by metal 
halide lamps (Phillips, Amsterdam, Netherlands) over a 
12-h/12-h light/dark cycle. To minimize perturbations 
from environmental sampling, the coral colonies were 
grown in the aquarium for 6 months, followed by frag-
mentation and further acclimation for two more months 
prior to the experimental manipulation. No changes in 
dominant symbiont genotype were found during the 
coral maintenance [10].

Experimental setup of thermal stress simulation
Colonies of P. damicornis dominated with symbionts in 
the genus Cladocopium (hereafter PdC) or Durusdinium 
(hereafter PdD) were identified (see details below for 
Symbiodiniaceae genotyping) and chosen for the thermal 
stress simulation experiment. Triplicate distinct colonies 
of PdC (n = 3 from HH) and PdD (n = 3 from LHT) were 
each cut into 40 ramets of ~ 2–3 cm long, resulting in a 
total of 120 fragments per symbiont type. For each paren-
tal colony, the 40 ramets were distributed into six 80-L 
tanks (each containing 6–7 ramets of the same colony), 
three of which were maintained at control temperature 
of 26°C and the other three were heated to 32°C with 
a gradual increase of 1°C per hour. The heat stress was 
applied for 14 consecutive days, with water temperatures 
recorded using a HOBO temperature logger (Onset Corp., 
Bourne, MA, USA) (Fig.  1a). The coral fragments were 
fate-tracked throughout the entire experiment. Subsets of 
the fragments were used for measurements of symbiont 
photochemistry and coral calcification, Symbiodiniaceae 
count and symbiont community structure assessment, as 
well as the uptake of stable carbon isotope (13C).

Host and symbiont genotyping
Genomic DNA of the coral holobiont was extracted with 
the cetyltrimethylammonium bromide (CTAB) method 
[46] using coral tissue stripped from the skeletons of ~ 1 
 cm2 via vortex in DNA lysis buffer (10 mM Tris–HCl, pH 
8.0; 100 mM EDTA, pH 8.0; 0.5% [w/v] SDS). Coral spe-
cies was initially identified based on morphological traits 
of skeleton as discerned in the scanning electron micros-
copy [47] and then verified with PCR amplifying the 
full-length internal transcribed spacer (ITS) region (i.e., 
ITS1-5.8S-ITS2, approximately 1300 bp) of coral nuclear 
ribosomal DNA (nrDNA) using Anthozoa-specific prim-
ers [48]. The coral sequences were aligned against refer-
ence sequences for Pocillopora and closely related taxa 
from NCBI. For coral identity, PCR amplicons from all the 
colonies matched with reference sequences for P. dami-
cornis and hence confirmed their initial identification 
based on morphology (Supplementary Figs. S2 and S3).

Symbiont genotypes were determined by PCR amplify-
ing the ITS region 2 (ITS2) of Symbiodiniaceae nrDNA 
utilizing primers “ITS2-Dino” and “ITS2-rev2” [49]. PCR 
amplicons were gel-purified, cloned, and then Sanger-
sequenced. At least six fragments (~ 2–3 cm) per colony 
of at least three colonies of PdC or PdD on each reef were 
assayed prior to and at the end of the temperature manip-
ulations. For each fragment, 6–12 clones of the PCR 
amplicons were Sanger-sequenced to verify the coral 
species and the dominant symbiont types. The symbiont 
sequences were compared to a custom Symbiodiniaceae 
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ITS2 database unifying the Arif et  al. [50] and Cunning 
et al. [51] data sets [52]. Phylogenetic trees for coral ITS 
and symbiont ITS2 were reconstructed using PAUP* 
software (v4.0a build 165) with the HKY + G substitu-
tion model estimated by MrModelTest [53] based on 
alignments generated with MAFFT v7.427 software [54]. 
Haplotype networks for symbiont ITS2 were constructed 
using the program HapStar [55] with a minimum span-
ning matrix of absolute pairwise nucleotide difference 
determined by haplotypes package v1.1.2 in R (https:// 
www.r- proje ct. org/). For symbiont identity, PCR ampli-
cons from all the colonies matched with Cladocopium 
spp. or Durusdinium spp., with varying Durusdinium to 
Cladocopium ratios (Supplementary Figs. S4 and S5).

Determination of Symbiodiniaceae density
Duplicate ramets per colony (n = 6, from two of the 
three treatment tanks) were preserved at –80°C for 
Symbiodiniaceae count on a weekly interval (day = 0, 
7, 14). Coral tissue was removed from the skeleton 
using an airbrush connected to a reservoir of 0.22-μm 

pore-size filtered ASW, and the skeletons were used for 
surface area measurement afterwards. The tissue was 
homogenized and the homogenate was divided into ali-
quots for Symbiodiniaceae count (fixed in Lugol’s solu-
tion) and symbiont community structure assessment 
(stored in DNA lysis buffer). Symbiodiniaceae cells 
were counted in triplicates for a total of 36 fragments 
(one PdC and one PdD fragment per tank at 3 time 
points) using a hemocytometer (Boeco, Hamburg, Ger-
many) under a light microscope (Nikon, Tokyo, Japan). 
The Symbiodiniaceae cell counts were normalized to 
the estimated surface area of individual P. damicornis 
fragments as previously described [56]. Symbiod-
iniaceae density was determined for both healthy and 
bleached corals. The rates of coral bleaching (occurred 
only in PdC at 32°C) were calculated as the percentage 
of bleached fragments in all the remaining fragments 
at designated time points. Coral bleaching is generally 
checked with the color card or RGB methods [57], dur-
ing which corals are repeatedly taken out of the tank. 
To minimize this stressful manipulation, we arbitrarily 

Fig. 1 Experimental setup and bleaching susceptibility of P. damicornis harboring distinct genera of Symbiodiniaceae. a Schematic diagram 
showing the maintenance, fragmentation, and manipulation of P. damicornis harboring Cladocopium (PdC) or Durusdinium (PdD) under control 
(26°C, blue) or heated (32°C, red) conditions. Sampling time points are indicated with dashed vertical lines. b Morphological changes of PdC 
(1–3) or PdD (4–6) at different stages of the thermal stress. c Bleaching rates of PdC or PdD at different stages of the thermal stress. d Areal 
Symbiodiniaceae density of PdC or PdD at control (blue) or elevated temperature (red). Values are means ± standard error (n = 6). Asterisks (*) 
indicate significant difference between control and thermal stress at designated time points (Tukey’s post hoc test, p < 0.05)

https://www.r-project.org/
https://www.r-project.org/
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assessed coral bleaching by comparing heated and con-
trol corals, and corals were considered bleached only 
when the entire fragment was visibly paled.

Measurement of symbiont photosynthetic efficiency
Photosynthetic efficiency of algal symbiont was assessed 
with quantum yield of chlorophyll a fluorescence measured 
with an underwater diving-PAM fluorometer (Walz, Effel-
trich, Germany), with parameters set as follows: measuring 
light intensity = 8, signal damping = 2, gain = 6, saturating 
light pulse intensity = 8, saturating light pulse width = 1, 
actinic light intensity = 4, and actinic light width = 0:30. 
Measurements of the maximum (Fv/Fm) and effective ( �
F/Fm’) quantum yield of photosystem II (PSII) were con-
ducted every day upon 2 h into the dark and light period, 
respectively. The maximum excitation pressure over PSII 
(Qm) was calculated according to Iglesias-Prieto et al. [58]:

where Qm is a normalized metric. To isolate the effect 
of thermal stress, the Qm in the control treatment was 
subtracted from the corresponding Qm in the thermal 
stress to calculate ΔQm. Thus, ΔQm is comparable among 
different photosymbionts and reflects the relative degree 
to which they adjust PSII to the thermal stress. Triplicate 
ramets per colony (n = 9, one per treatment tank) were 
taken to measure symbiont photochemistry (twice a day). 
All measurements were conducted in triplicates per coral 
fragment in order to minimize variations.

Measurement of coral calcification rates
The same subset of coral fragments used for pho-
tosynthetic measurements were also used to calcu-
late coral calcification rates (n = 9), but on a weekly 
interval (day = 0, 7, 14). Coral calcification rates were 
determined with the buoyant weight (BW) technique 
measuring the increase in skeletal mass as previously 
described by Davies [59]. Briefly, coral ramets were 
suspended in a temperature-controlled seawater bath 
from 0.05-mm-diameter tungsten wires attached to 
the underside of an analytical balance that weighs to 
an accuracy of 0.0001 g. The balance was mounted on a 
weighing chamber sealed with transparent acrylic pan-
els. Optimal weighing conditions were obtained when 
the weighing apparatus was located in a room with sta-
ble air temperature close to that of the seawater. The 
daily skeletal mass increase was normalized to initial 
skeletal surface area (Ainitial) with the equation:

(1)Qm =1− [(�F/Fm
′)/(Fv/Fm)],

(2)Calcification rate =
BWfinal − BWinitial

Ainitial
×

1

day
× 100%

Isotopic tracing of photosynthetically fixed carbon
At the end of the thermal stress simulation experiment 
(day = 14), carbon isotopic tracing was performed in each 
control (26°C) and heated (32°C) tank with coral frag-
ments suspended in duplicated 1-L polycarbonate bottles 
filled with recirculated ASW from the same tank (n = 6, 
one fragment per bottle). A total of 24 coral fragments 
from 3 PdC and 3 PdD parental colonies (4 fragments 
per colony) were evenly distributed among the 6 tanks. 
13C-labeled sodium bicarbonate (99 atom% 13C; Cam-
bridge Isotope Laboratories, Andover, MA, USA) was 
added into each bottle at a final tracer concentration of 
70 μmol  L−1. The bottles were incubated for 24 h. Sam-
ples were harvested at the end of the incubation, followed 
by immediate snap-freezing in liquid nitrogen and stor-
age at –80°C until further processing. Meanwhile, one 
unlabeled PdC or PdD fragment was also taken from each 
tank as controls to assess the natural isotope ratios. Coral 
tissue was removed from the skeleton by an airbrush con-
nected to a reservoir of 0.22-μm pore-size filtered ASW. 
The slurry was homogenized and the host and symbiont 
fractions were separated by centrifugation and collected 
on precombusted GF/F filters following a previously 
described protocol [60]. Carbon stable isotopic values 
and organic carbon content for calculating total carbon 
biomass of coral holobiont were determined using a Delta 
V Plus isotope ratio mass spectrometry (IRMS) (Thermo 
Fisher Corporation, Waltham, MA, USA) interfaced with 
a Flash HT 2000 elemental analyzer (EA) (Thermo Fisher 
Corporation, Waltham, MA, USA). The rates of 13C 
enrichment were calculated as per Hama et al. [61]. The 
reproducibility for δ13C measurement was better than 
0.3‰. Samples with erroneous isotopic values were dis-
carded and only those with enriched 13C isotopic ratios 
higher than the natural carbon isotopic fractionation 
were considered valid. The uptake rates of carbon tracer 
(13C) in the enriched fractions (Ctracer) have all been nor-
malized to total organic carbon biomass (Ctissue) to allow 
direct comparison between corals and Symbiodiniaceae.

Characterization of symbiont community structure
To screen the relative Durusdinium to Cladocopium 
abundance of the symbionts, quantitative PCR (qPCR) 
was performed with Cladocopium- or Durusdinium-
specific primers targeting the Symbiodiniaceae nrDNA 
28S region [62] using biological hexaplicates (n = 6) of 
coral fragments harvested prior to the experiment (pre-
treatment), as well as those harvested at designated time 
points (day = 0, 7, 14) during the thermal stress manipu-
lation (control and heated). The qPCR reactions were run 
in technical triplicates on a CFX96 Real Time System 
(Bio-Rad Laboratories, Hercules, CA, USA) using iTaq 
Universal SYBR Green Supermix (Bio-Rad Laboratories, 
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Hercules, CA, USA) according to the manufacturer’s 
instructions. The ratio between Durusdinium and Clado-
copium cells was calculated using the formula:

where CT (Primer C) and CT (Primer D) are the threshold cycle 
(CT) specific to the Cladocopium and Durusdinium reac-
tion, respectively [62].

To quantify the degree of symbiont shuffling, a sym-
biont shuffling index was derived given Durusdinium 
proportion normalized to its minimum (–1, i.e., com-
plete dominance by Cladocopium) to maximum (+ 1, 
i.e., complete dominance by Durusdinium) values based 
on the symbiont relative abundance. This index is similar 
to the symbiont shuffling metric proposed by Cunning 
et  al. [12]. The symbiont community was also assessed 
using all the cloned ITS2 sequences that matched refer-
ence sequences of known Symbiodiniaceae types [52] 
based on BLAST (Supplementary Figs. S4 and S5). The 
observed dominant Symbiodiniaceae types were assem-
bled and scored given the number of their matched 
clones (i.e., abundance) in each sample. The resulting 
assignment scores were assimilated into a matrix of sym-
biont metahaplotypes, which was analyzed in a similar 
fashion to DGGE band presence/absence profiling for 
symbiont community composition [63]. As no ITS2 types 
were in common between Cladocopium- and Durusdin-
ium-dominated P. damicornis, a “dummy species” was 
added to the original abundance matrix, with value 1 for 
all samples, to counter for the effect of sparse samples. A 
non-metric multidimensional scaling (NMDS) plot was 
then constructed using this zero-adjusted Bray–Curtis 
dissimilarity [64].

Statistical analyses
To determine whether the short-term heat stress accli-
mation affects coral growth, a generalized linear mixed-
effects model was employed to compare the effects of 
fixed (temperature, time, and genotype) and random 
(tank and colony) factors [65] on the following physi-
ological traits: Symbiodiniaceae density, Fv/Fm,  ΔF/Fm’, 
calcification rates and symbiont relative abundance. The 
Shapiro–Wilk test and the Levene’s test were conducted 
to verify assumptions of normality and homogeneity of 
variances. One-way analysis of variance (ANOVA) was 
performed to compare coral bleaching rate, Symbiod-
iniaceae density, symbiont photochemistry (Fv/Fm and 
ΔF/Fm’) and calcification rate between samples exposed 
to different thermal stress time, followed by the post hoc 
Tukey’s multiple comparison test when the differences 
were significant (p < 0.05). Three-way ANOVA was per-
formed to compare the impacts of temperature, time, 

(3)D/C = 2−�CT
= 2−[CT (Primer D)−CT (Primer C)],

and symbiont genotype on Symbiodiniaceae density, 
followed by the Kruskal–Wallis test as the data violated 
the ANOVA assumptions. Linear regressions were con-
ducted to model symbiont adaptation to thermal stress 
(i.e., ΔQm), changes in symbiont relative abundance 
(Durusdinium to Cladocopium ratio) over time, as well 
as the effects of thermal treatment on translocation of 
photosynthetically fixed carbon to the hosts by different 
genera of symbiont. Principal component analysis (PCA) 
was conducted to compare the effects of multiple physi-
ological traits (Fv/Fm, ΔF/Fm’, Symbiodiniaceae density, 
calcification rate, carbon fixation, carbon translocation, 
and symbiont relative abundance) on the overall host 
response to heat stress. All statistical analyses were per-
formed with R version 4.0.3 [66].

Results
Bleaching susceptibility of P. damicornis harboring distinct 
symbionts
The conspecific  colonies of P. damicornis harboring 
genetically distinct Symbiodiniaceae strains exhibited 
differential bleaching susceptibility upon thermal stress. 
P. damicornis dominated by metahaplotype C42-C1-
C1b-C1c in the genus Cladocopium (Supplementary 
Fig. S4) started to bleach after 7 days of thermal stress 
(Fig.  1b), with the bleaching rate increasing from 26.7% 
on day 7 to 83.3% on day 14 (Fig.  1c, Supplementary 
Table S3). In contrast, P. damicornis dominated by meta-
haplotype D1-D4-D6 in the genus Durusdinium (Supple-
mentary Fig. S5) showed no sign of bleaching even after 
14 days of thermal stress (Tukey’s test, p > 0.05) (Fig. 1c), 
except that the coral polyps appeared shrunken and con-
densed (Fig. 1b). The Symbiodiniaceae cell density in PdC 
declined by 98% after 14 days of thermal stress, but that 
in PdD did not change significantly between the control 
and thermal stress (Tukey’s test, p > 0.05) (Fig. 1d, Supple-
mentary Tables S3, S4 and S5). Noticeably, under control 
temperature, Symbiodiniaceae cell density was consist-
ently higher in PdD than in PdC (Fig. 1d, Supplementary 
Tables S4 and S6).

Lineage‑specific symbiont photochemical responses 
to thermal stress
Starting on day 5, photosynthetic efficiency of the sym-
bionts in PdC was negatively affected by the thermal 
stress (Tukey’s test, p < 0.05) (Fig.  2a). The maximum 
quantum yield of photosystem II (PSII) in the heated 
group culminated in a sharp 77% decrease on day 14 rela-
tive to the control group (Fig.  2a, Supplementary Table 
S3). In contrast, no significant reduction in the symbi-
onts’ PSII quantum yield was observed in PdD under 
the thermal stress (Tukey’s test, p > 0.05) (Fig.  2a). The 
PSII adjustment to thermal stress (∆Qm) was large in 
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PdC (0.17 ± 0.04, Tukey’s test, p < 0.05) but small in PdD 
(0.02 ± 0.01, Tukey’s test, p > 0.05) (Fig. 2b). A small ΔQm 
for PdD suggests the greater capacity for the D1-D4-D6 
symbiont to engage photorepair mechanisms or effec-
tively resist photodamage.

Coral calcification rates, symbiotic carbon fixation, 
and translocation
At control temperature, the coral calcification rate in 
PdC was about three times higher than that in PdD. 
Under elevated temperature, the calcification rate in 
PdC decreased by 40% on day 7 and 50% on day 14 as 
compared to control (Tukey’s test, p < 0.05, Supple-
mentary Table S3), whereas that in PdD showed no dif-
ference between the two temperatures (Tukey’s test, 
p > 0.05) (Fig.  3a). At control temperature, the rates of 
both photosynthetic carbon fixation and subsequent 
translocation of photosynthetically fixed carbon (PFC) 
to the coral host were higher in PdC than in PdD. More-
over, the partitioning of PFC to the host was significantly 
more efficient in PdC than in PdD, as indicated by the 
different slopes of the two trend lines (Fig.  3b, Supple-
mentary Fig. S6). While this PFC partitioning efficiency 
remained constant per each holobiont under the control 
and elevated temperatures (i.e., no change in the slopes 
of the trend lines between the two temperatures) for 
both PdC and PdD (Supplementary Fig. S6), the rates of 
carbon fixation and translocation significantly slowed 
down in PdC after 14 days of thermal stress (Tukey’s test, 

p < 0.05), but appeared unaffected in PdD (Tukey’s test, 
p > 0.05) (Fig. 3b).

Symbiont dominance sustained regardless of thermal 
stress
To test potential in-tank “shuffling” of algal symbionts, 
the overall Durusdinium to Cladocopium ratio was 
used as a proxy of relative abundance of the two sym-
biont types and was monitored based on qPCR over 
the course of the experiment. Both PdC and PdD sus-
tained their initial symbiont dominance (> 99% of the 
symbiont community) regardless of the temperature 
difference (Fig.  4a). However, the sensitive qPCR assay 
revealed subtle changes in the relative abundance of the 
Durusdinium and Cladocopium symbionts, suggesting a 
“symbiont shuffling” in the background rare biosphere 
(Fig. 4b). Under thermal stress, the relative Durusdinium 
to Cladocopium ratio increased over time in both holo-
bionts, but it increased much faster in PdC than in PdD 
(Tukey’s test, p < 0.05). Under control temperature, the 
ratio increased, albeit not significantly, in PdC (Tukey’s 
test, p > 0.05), but decreased significantly in PdD (Tukeys 
test, p < 0.05) (Fig. 4b).

The symbiont community composition was fur-
ther assessed based on the cloned and annotated Sym-
biodiniaceae ITS2 sequences, by characterizing the 
dominant symbionts prior to and at the end of the tem-
perature manipulations (pre-treatment and control at 
26°C and heated at 32°C). Similar to the qPCR results, the 

Fig. 2 Photosynthetic efficiency of P. damicornis subjected to thermal stress. a Diurnal oscillations in the maximum (Fv/Fm) and effective (∆F/Fm’) 
quantum yield of PSII charge separation. b Changes in PSII adjustment to thermal stress (∆Qm). Values are means ± standard error (n = 9). Asterisks (*) 
indicate significant difference between control and thermal stress at designated time points (Tukey’s post hoc test, p < 0.05)
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symbiont community composition remained unchanged 
in both PdC and PdD throughout the experimentation 
period (Fig.  4c). The symbiont community was primar-
ily comprised of closely related taxa (1–3 nucleotide dif-
ference in their ITS2 sequences) belonging to the same 
genus, suggesting no obvious shuffling across different 
genera. The PdD was associated with the stress-tolerant 
symbionts of metahaplotype D1-D4-D6 [67], whereas 
the PdC was dominated with stress-sensitive symbionts 
of metahaplotype C42-C1-C1b-C1c [63] (Supplementary 
Figs. S4 and S5).

Discussion
Coral thermal susceptibility is correlated with intrinsic 
symbiont photophysiology
In this study, by subjecting the same coral species hosting 
genetically distinct symbionts to increased temperature, 
we were able to correlate the physiological response of 
both partners to thermal stress with no significant tank 
and colony effects (Supplementary Fig. S7 and Table 
S4). After 2 weeks of thermal stress, P. damicornis host-
ing symbionts of metahaplotype C42-C1-C1b-C1c in the 
genus Cladocopium (i.e., PdC holobiont) bleached with 
decreased rate of calcification, whereas its counterpart 
hosting symbionts of metahaplotype D1-D4-D6 in the 
genus Durusdinium (PdD holobiont) showed no signs of 
bleaching or compromised calcification (Figs. 1b and 3a). 

Concomitantly, the Cladocopium in PdC exhibited signif-
icant decrease in photosynthetic efficiency and transloca-
tion of the PFC to the coral host under thermal stress. In 
contrast, photochemistry of the Durusdinium in PdD was 
barely affected, resulting in almost identical rates of PFC 
translocation to the coral host between the control and 
thermal stress (Figs.  2a and 3b). In addition, the higher 
cell density of Durusdinium naturally harbored by PdD 
could be a way of ameliorating Durusdinium inefficiency 
in supplying PFC under control temperature, which 
is consistent with previous findings that the PFC was 
negatively correlated with the Symbiodiniaceae density 
(Fig. 1d) [35, 68–70]. On the other hand, the smaller cell 
size of Durusdinium relative to Cladocopium [2, 71] may 
contribute to density stability due to the limited symbio-
some space, facilitating PFC translocation to the coral 
host under thermal stress in PdD (Fig. 3, Supplementary 
Fig. S7) and thus favoring holobiont fitness.

Coral bleaching caused by high temperature has fre-
quently been attributed to photoinhibition of photo-
synthetic electron transport, which leads to subsequent 
photodamage to PSII and production of reactive oxygen 
species (ROS) [72]. Under ambient conditions, the pho-
tosynthetic apparatus, consisting of PSII and photo-
system I (PSI) on the thylakoid, operates normally and 
produces large quantities of oxygen that diffuse into the 
host. Elevated temperature can cause photoinhibition 

Fig. 3 Calcification rates and translocation of photosynthetically fixed carbon in P. damicornis. a Calcification rates expressed as daily skeletal 
mass increments normalized to skeletal surface area. b Translocation of photosynthetically fixed carbon from symbionts to the host at control 
and elevated temperatures, as determined with stable isotopic tracer analysis. Values for calcification are means ± standard error (n = 9). Asterisks 
(*) indicate significant difference between control and heat stressed PdC at designated time points (Tukey’s post hoc test, p < 0.05). The inequality 
sign ( ≠) indicates significant difference between corals harboring Cladocopium or Durusdinium at the beginning of the thermal stress manipulation 
(Tukey’s post hoc test, p < 0.05)
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and damage the chloroplast and photosynthetic appa-
ratus that act in concert to start the bleaching cascade 
[73]. The variation in symbiont photochemistry in our 
study is clearly a genus-specific response to multiple lev-
els of photodamage triggered by the thermal stress [24], 
where the D1-D4-D6 symbiont can survive the thermal 

stress showing unaffected quantum yields of PSII (Fv/Fm 
and ΔF/Fm’) and mild adjustment to excitation pressure 
over PSII (i.e., small ΔQm) compared with the thermally 
sensitive C42-C1-C1b-C1c symbiont showing reduced 
quantum yields and drastic PSII adjustment (i.e., large 
ΔQm) (Fig.  2). The difference between the two types of 

Fig. 4 Symbiont community structure prior to, during, and at the end of the temperature manipulations. a Lineage-specific symbiont dominance 
throughout the experimentation period. Relative proportions of Durusdinium symbionts at designated time points of the temperature manipulation 
are normalized to a range of –1 (complete dominance by Cladocopium) to + 1 (complete dominance by Durusdinium) to infer the degree 
of symbiont shuffling. Values are means ± standard error (n = 6). Standard error was 0 for PdC at 26°C both on Day 0 and Day 7. b Changes in relative 
abundance of different genera of symbionts, expressed as  log10[D/C] by calculating Durusdinium to Cladocopium ratio. Line and shaded area 
represent logarithmic regression and 95% confidence interval, respectively. c Non-metric multidimensional scaling (NMDS) ordination of symbiont 
communities constructed based on a Bray–Curtis dissimilarity matrix, given the relative abundance of dominant symbiont types detected 
during the aquarium maintenance (open dots/triangles) and at the end of temperature manipulation (solid dots/triangles). Grouping based 
on complete linkage at 90% similarity is indicated by circles for each treatment (dashed, pre-treatment 26°C; solid blue, control 26°C; solid red, heat 
32°C). D Durusdinium, C Cladocopium 
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symbionts under thermal stress could also suggest a 
greater capacity of the D1-D4-D6 symbiont to engage 
photoprotection or photorepair mechanisms in response 
to accumulated damage to PSII [23], such as rapid pro-
tein turnover [74], upregulated antioxidant activities 
[75], and adjustment of thylakoid lipid composition [76], 
which may be one of the reasons that the subsequent 
translocation of PFC from symbiont to host is unaffected 
in the PdD holobiont but significantly decreased in PdC 
(Fig.  3b) [13]. This striking difference is consistent with 
the results of several other studies of different coral and/
or algal species [9, 23], suggesting that corals’ response to 
thermal stress is highly dependent on the photochemis-
try of the specific algal symbionts they host.

Trade‑off between coral growth and thermal tolerance
Our measurements of coral skeletal growth indicate that, 
at control temperature of 26°C, PdC exhibited a 71% 
higher calcification rate than that in PdD, which corre-
lates with the higher rates of both photosynthetic car-
bon fixation and the subsequent transfer of PFC from 
the symbiont to the host (Fig. 3). Similar to our results, 
Cantin et al. observed that more PFC was translocated to 
juvenile A. millepora harboring type C1 symbiont com-
pared with the juveniles harboring Durusdinium symbi-
ont [44]. Similarly, Cladocopium was reported to fix and 
pass significantly more carbon and nitrogen to its coral 
host (Isopora palifera) than Durusdinium [77]. These data 
point to the advantage of hosting Cladocopium symbiont 
for better coral growth under non-elevated temperature 
condition. This pattern may be coral species-specific as 
Morikawa et  al. found similar results for P. damicornis 
but the opposite in other coral species [78].

However, the superior skeletal growth in PdC was lost 
after 2 weeks of thermal stress (32°C), whereas the cal-
cification rate in PdD was not affected (Fig.  3a). Simi-
larly, it has been reported that the growth benefit at 26°C 
for P. damicornis hosting metahaplotype C1b-C1c over 
D1 symbionts was reduced at 30°C [29]. The decreased 
coral skeletal growth in PdC may be interpreted as ther-
mal stress disturbing photochemistry and carbon fixa-
tion of thermally sensitive Cladocopium symbionts, 
which were largely expelled from the coral tissue, and 
thereby interfering with an important energy supply 
needed to maintain high calcification rates [79]. Harbor-
ing stress-tolerant Durusdinium may assist the coral to 
avoid bleaching under thermal stress but could also incur 
reduced coral growth (Figs.  1b and 3a). It is suggested 
that the low rates in carbon fixation and translocation in 
Durusdinium make it act as a “selfish opportunist” [80]. 
This contradicting outcome of hosting Cladocopium ver-
sus Durusdinium symbiont suggests that the gain in coral 
resilience to thermal stress contributed by a specific type 

of symbiont may come at potential trade-offs with other 
inferior physiological functions intrinsic to that symbi-
ont. From a resource allocation perspective, trade-offs 
also occur among competing traits representing physi-
ological functions of the host, such as growth, repro-
duction, and immunity [81]. As a result, many corals 
enduring thermal challenges show reductions in repro-
ductive capacity [39], translocation of sugars [44], immu-
nity to disease [82], or growth rates [29].

Favoring the proliferation of stress-tolerant but poten-
tially less efficient partners such as Durusdinium, hence, 
appears to be an option that is strongly selected under 
stressed thermal conditions [65], as seen in many sym-
biont shuffling/switching cases in the field. For exam-
ple, surveying Pocillopora spp. in the Pacific Panama 
and a range of species in the Persian/Arabian Gulf and 
Kenya found corals containing Durusdinium were more 
abundant following episodes of severe, high tempera-
ture bleaching [83]. Likewise, symbiont communities 
changed from Cladocopium- to Durusdinium-dominated 
after bleaching in Acropora millepora, hence increasing 
host thermal tolerance by 1–1.5°C [22]. A similar shift 
was observed in A. millepora in the southern Great Bar-
rier Reef following a severe bleaching event [84]. It was 
also found that Durusdinium symbionts in Montastraea 
cavernosa were undetectable by qPCR prior to a bleach-
ing event, but became dominant community members 
4–10 months post-bleaching [85]. Last but not least, the 
prevalence of Durusdinium in P. damicornis at both the 
LHT and HH sites (Supplementary Fig. S1c) was likely 
an adaptive response to increasing anthropogenic and 
environmental stress accumulated over the years in the 
southern Hainan Island [45]. Under the context of cli-
mate change, the trade-off between coral growth and 
thermal tolerance appears to be a strategic mechanism in 
response to increasing environmental perturbations.

Lineage‑specific symbiont dominance, not shuffling, drives 
distinct coral responses to thermal stress
In this study, by deliberately holding the PdC and PdD 
corals in the same aquarium to mimic the scenario of 
symbiont shuffling following a thermal bleaching event, 
we aimed to elucidate the distinct roles of different 
algal symbionts in mediating coral response to thermal 
stress. We found that both the PdC and PdD holobionts 
maintained their original symbiont dominance during 
the entire period of thermal stress (Fig.  4a), with only 
subtle changes of rare (non-dominant) symbiont types 
at background levels (< 1% of total symbiont popula-
tion) (Fig. 4b), which is different from previous studies 
[10–12]. For example, the relative Durusdinium to Cla-
docopium abundance  (log10 [D/C]) in PdC increased 
from ca.  10−7 at the start to  10−4 at the end of the 
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thermal stress. This 1000-fold increase in Durusdinium 
proportion still renders it at background level, as com-
pared to the > 99% community dominance of Cladoco-
pium (Fig. 4a, b). Despite the fluctuations in symbiont 
profiles or the lack of a single dominant variant, genus-
specific samples are similar to each other and grouped, 
regardless of the treatments, i.e., no stress induced 
cross-genus symbiont shuffling (Fig.  4c). The lack of 
symbiont shuffling from Cladocopium to Durusdinium 
dominance in PdC may be due to the 2-week thermal 
stress period that is too short to see any significant 
symbiont community changes, or the initial extremely 
low levels of non-dominant symbiont (e.g., Durusdin-
ium proportion in PdC was < 0.001% of the symbiont 
community), which often requires frequent disturbance 
or sustained warming to allow for the significant prolif-
eration of the rare, opportunistic heat-tolerant genera 
[80]. In a similar study linking to photodamage, sig-
nificant symbiont shuffling occurred when the initial 
Durusdinium proportion reached 1% of the symbiont 
community [10]. On the other hand, the Durusdinium 
community in PdD was rather stable during the long-
term aquarium acclimation (i.e., pre-treatment), and 
the relative Durusdinium to Cladocopium abundance 
was even decreased in the simulation experiment under 
non-elevated temperature condition (Fig.  4). This 
reversion away from opportunistic symbiont types is 
probably a result of inferior competitive ability (e.g., 
lower carbon fixation and translocation) of Durusdin-
ium relative to Cladocopium during this long periods 
of “undisturbed” benign conditions [85]. Community 
reversion back toward a C3-dominated community in 
bleached corals after 6 months in recovery has been 
reported [9]. Still, it is worth noting that, even with 
background shuffling of the non-dominant symbionts, 
holobiont resilience is, to a larger extent, influenced by 
the physiology and plasticity of the dominant symbiotic 
types (Figs.  3 and 4). Therefore, the main objective of 
characterizing individual symbionts alone in the coral 
holobiont in our controlled laboratory experiment is to 
differentiate the roles of Cladocopium and Durusdin-
ium in mediating coral response to thermal stress. The 
findings in this study can thus be used as a reference 
for field observations [22, 85] aiming to elucidate the 
mechanistic basis of bleaching resistance.

Apart from some probiotic bacteria [1] and endemic 
symbiont variants [38] that could provide tolerance to 
thermal stress, symbiont shuffling or switching towards 
stress-tolerant phenotypes, such as members of Durus-
dinium symbionts, remains a prevalent scheme by which 
corals adapt to climate change. While such shifts may 
help reef corals to survive warming conditions [22], non-
elevated seawater temperatures during the intervals of 

bleaching events may favor corals that harbor symbiont 
types with higher rates of symbiotic carbon fixation and 
translocation, such as C42 in this study (Fig.  3b, Sup-
plementary Fig. S6). This poses extra concerns on the 
capacity of coral resilience when facing climate change. 
As shown in our experiment, while Durusdinium propor-
tion is increasing in P. damicornis upon thermal stress, 
the overall Cladocopium dominance in PdC cannot off-
set its thermal susceptibility, manifested by much faster 
bleaching and reduced calcification and photochemical 
efficiencies. Cladocopium appears to represent the most 
species-rich and ecologically abundant genus in many 
Indo-Pacific reef coral communities [2]. Coral bleaching 
events during the last decade support the notion that the 
thermal limits of many coral species have already been 
reached and exceeded [86]. Unless the shift towards ther-
mally tolerant symbiont outcompetes the speed of tem-
perature increase towards the tipping point, the majority 
of Indo-Pacific reef-building corals dominated by ther-
mally sensitive Cladocopium species may be in peril [26].

Last but not least, while thermal tolerance is largely 
attributed to the type of symbiont in the presented study 
here, that does not mean that the host genetics could 
not be playing a significant role. In addition to in-depth 
exploration of symbiont physiology, there are areas that 
future studies could spend more time on, especially 
genomic basis underlining the holobiont response to 
thermal stress. The application of “omics” approaches 
(e.g., [87–90]) may provide more clues on how the major 
coral holobiont constituents including corals, algae, and 
bacteria interact synergistically to cope with climate 
change [89], which will undoubtedly facilitate the iden-
tification of thermally resistant coral species and inform 
conservation and restoration efforts.

Conclusions
In this study, we aim to investigate the role of Sym-
biodiniaceae in mediating coral responses to elevated 
temperatures. Based on our measurement of symbiont 
density, photochemistry, photosynthetic carbon fixa-
tion and translocation, and assessment of coral calci-
fication and bleaching susceptibility, we demonstrate 
that thermal susceptibility of P. damicornis is posi-
tively correlated with the physiological performance 
of the dominant algal symbiont it hosts. When asso-
ciating with Durusdinium symbionts of metahaplo-
type D1-D4-D6, the holobiont (PdD) was more robust 
to elevated temperature, maintaining a functional 
PSII and showing no sign of bleaching. In contrast, P. 
damicornis dominated with Cladocopium symbionts 
of metahaplotype C42-C1-C1b-C1c (PdC) showed 
disrupted symbiont photochemistry and subsequent 
translocation of fixed carbon to the host, slowdown of 
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calcification, and bleaching (Fig.  5). However, under 
ambient temperature condition, both PdC and PdD 
were healthy and there was no difference in symbiont 
photochemical efficiency between the two, except that 
calcification was faster in PdC, seemingly as a result of 
faster photosynthetic carbon fixation and subsequent 
translocation to the host. Despite the subtle changes 
in symbiont relative abundance, we did not observe 
significant symbiont shuffling during the course of the 

experiment, as both PdC and PdD maintained their ini-
tial symbiont type (> 99% of the symbiont community). 
The observed thermal susceptibility variation is clearly 
a trade-off of underlying physiological differences 
between dominant algal endosymbionts under different 
temperature regimes. Taken together, these findings 
shed new light on how dominant symbiont fidelity can 
affect coral resilience and may aid in the assessment of 
corals’ ability to persist under global climate change.

Fig. 5 A model explaining how “symbiont dominance” mediates corals’ response to thermal stress. The illustration summarizes the major findings 
in the present study, depicting how initial symbiont dominance in hospite, together with symbiont change in vivo, may affect P. damicornis 
physiology, health, and susceptibility to prolonged heat stress. a Under ambient temperature (control), the PdC exhibits higher calcification 
rate compared to PdD, due to higher rates of photosynthetic carbon fixation and translocation (indicated by large sun image and thick 
arrows) by Cladocopium as compared to Durusdinium. b Under thermal stress, the rates of photochemistry and carbon fixation are significantly 
compromised (indicated by small sun image and thin arrows) in Cladocopium, possibly due to PSII and chloroplast damage, and a significant loss 
of the Symbiodiniaceae despite a relatively faster increase in Durusdinium proportion in the symbiont community, ultimately leading to reduced 
calcification rates and coral bleaching in PdC. In contrast, photochemistry and calcification rates are only slightly reduced in the bleaching-tolerant 
PdD, possibly as a result of dominance of the thermally tolerant Durusdinium in the algal community. Coral growth is indicated with the skeleton 
size and epidermis thickness. Translocation of PFC is indicated with an arrow with the rates indicated by its thickness. Symbiont cells 
and chloroplasts are color coded to differentiate symbiont type and changes in photochemistry. Ect ectoderm, Mes mesoglea, End endoderm, Cal 
calcidodermis, Ske skeleton, PFC photosynthetically fixed carbon, D/C Durusdinium/Cladocopium, ROS reactive oxygen species
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