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Abstract 

Background The increased growth rate of young animals can lead to higher lactation performance in adult goats; 
however, the effects of the ruminal microbiome on the growth of young goats, and the contribution of the early-life 
rumen microbiome to lifelong growth and lactation performance in goats has not yet been well defined. Hence, this 
study assessed the rumen microbiome in young goats with different average daily gains (ADG) and evaluated its 
contribution to growth and lactation performance during the first lactation period.

Results Based on monitoring of a cohort of 99 goats from youth to first lactation, the 15 highest ADG (HADG) goats 
and 15 lowest ADG (LADG) goats were subjected to rumen fluid microbiome and metabolome profiling. The compari-
son of the rumen metagenome of HADG and LADG goats revealed that ruminal carbohydrate metabolism and amino 
acid metabolism function were enhanced in HADG goats, suggesting that the rumen fluid microbiome of HADG 
goats has higher feed fermentation ability. Co-occurrence network and correlation analysis revealed that Streptococ-
cus, Candidatus Saccharimonans, and Succinivibrionaceae UCG-001 were significantly positively correlated with young 
goats’ growth rates and some HADG-enriched carbohydrate and protein metabolites, such as propionate, butyrate, 
maltoriose, and amino acids, while several genera and species of Prevotella and Methanogens exhibited a negative 
relationship with young goats’ growth rates and correlated with LADG-enriched metabolites, such as rumen acetate 
as well as methane. Additionally, some functional keystone bacterial taxa, such as Prevotella, in the rumen of young 
goats were significantly correlated with the same taxa in the rumen of adult lactation goats. Prevotella also enriched 
the rumen of LADG lactating goats and had a negative effect on rumen fermentation efficiency in lactating goats. 
Additional analysis using random forest machine learning showed that rumen fluid microbiota and their metabolites 
of young goats, such as Prevotellaceae UCG-003, acetate to propionate ratio could be potential microbial markers 
that can potentially classify high or low ADG goats with an accuracy of prediction of > 81.3%. Similarly, the abundance 
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of Streptococcus in the rumen of young goats could be predictive of milk yield in adult goats with high accuracy (area 
under the curve 91.7%).

Conclusions This study identified the keystone bacterial taxa that influence carbohydrate and amino acid metabolic 
functions and shape the rumen fluid microbiota in the rumen of adult animals. Keystone bacteria and their effects 
on rumen fluid microbiota and metabolome composition during early life can lead to higher lactation performance 
in adult ruminants. These findings suggest that the rumen microbiome together with their metabolites in young 
ruminants have long-term effect on feed efficiency and animal performance. The fundamental knowledge may 
allow us to develop advanced methods to manipulate the rumen microbiome and improve production efficiency 
of ruminants.

Keywords Rumen microbiome, Microbial interaction, Keystone bacteria, Rumen metabolome, Long-term effects and 
prediction, Goats

Background
There is an increasing demand to produce goat milk 
because it consists of more medium- and short-chain 
fatty acids, vitamins, β-casein, and trace minerals, and 
less α-casein and allergens than dairy cows’ milk and is 
more suitable for infant nutrition [1, 2]. Additionally, 
goat milk and its products provide important daily food 
sources of protein, phosphate, and calcium for people in 
the developing world [3]. Many factors can affect dairy 
goat milk production and quality, including genetics [4, 
5], management [6], and feeding strategy [7]. The rumen 
serves as a bioreactor that enables animals to digest com-
plex plant fibers and polysaccharides and produce vola-
tile fatty acids (VFAs), microbial proteins, and vitamins 
[8]. Recent research has revealed that the rumen micro-
biome plays a vital role in affecting production traits of 
dairy cows, such as feed efficiency [9, 10], methane yield 
[11, 12], and milk production [13, 14]. However, the con-
tribution of the rumen microbiome to lactation perfor-
mance in goats is less understood.

Early-life rumen microbiome plays key roles in rumen 
development and microbial fermentation, which subse-
quently affects the growth and feed efficiency of young 
ruminants [15–17]. The VFAs produced by the rumen 
microbiome are vital to stimulate rumen tissue metabolism 
and epithelium development during early life [18]. It has 
been reported that rumen microbiota transplantation could 
alter the endogenous microbiota and lead to improved 
growth performance in calves and lambs [19–21]. Impor-
tantly, the preweaning and prepubertal ADG of heifers or 
goat kids have been reported to be highly correlated with 
adult milk production [22–24]. Similarly, a study revealed 
that the initial microbiota after birth has a long-lasting effect 
on the assembly process and adult composition of the rumi-
nal microbiome based on the observations during 3 years of 
the cows’ life [25]. Early-life dietary interventions in dairy 
calves can also affect microbial colonization, with long-term 
consequences for the adult cow rumen microbiota and fer-
mentation [26]. Although recent studies have remarkably 

expanded our understanding of the early-life rumen micro-
biome, there is a knowledge gap about whether and how 
highly efficient phenotypes (e.g., growth performance)-
related ruminal microbiota in the early or adolescent life of 
goats could affect microbial community dynamic succes-
sion, and subsequently affect host lactation performance. 
In addition, a comprehensive understanding of the mecha-
nisms of the rumen microbiome driving growth in dairy 
goats is still lacking.

The ruminal microbiota composition in young rumi-
nants on subsequent ruminal microbiota succession in 
adult ruminants may serve as the potential mechanism 
to determine the link between the higher growth perfor-
mance, such as ADG, in the youth period and the higher 
lactation performance in the adult period. In the present 
study, 6-month-old dairy goats with different ADG were 
used as a model to monitor their growth and perfor-
mance until first lactation and to assess the rumen fluid 
microbiota, microbiome, and metabolome using met-
ataxonomics, metagenomics, and metabolomics, respec-
tively, aiming to (i) identify the contribution of the rumen 
fluid microbiome and their metabolome to the growth 
performance of young goats; (ii) identify whether the 
rumen fluid microbiota of young goats has a long-term 
effect on rumen microbiota colonization of adult goats 
and then contributes to regulating lactation performance; 
and (iii) explore rumen fluid microbes during the youth 
period that can be used as biological markers for predict-
ing future milk production.

Results
Young dairy goats had differential growth rates and rumen 
fermentation
This study monitored the growth performance of 
99 young goats, 84 of which successfully entered 
the lactation phase (Fig.  1). The growth perfor-
mance parameters of 99 young dairy goats (187.9 ± 0.3 
days of age [mean ± standard error (SE)], Table S1), 
including body weight (23.6 ± 0.3 kg, [coefficient of 
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variation (CV)] = 12.01%), weight gain (20.6 ± 0.3 
kg, [CV] = 13.00%), and ADG (109.47 ± 1.46 g/day, 
CV = 13.21%), were highly correlated (Spearman’s corre-
lation coefficient > 0.97, p < 0.01).

The analysis of the relationship between growth per-
formance traits and rumen VFA profiles (n = 99) showed 
that several VFAs were significantly associated with these 
growth performance traits (Fig.  2a–d; Table S2). Spe-
cifically, rumen propionate and butyrate concentrations 
were positively correlated with body weight, weight gain, 
and ADG (r > 0.20, p < 0.05; Fig. 2a). The molar percent-
age of propionate was positively correlated with body 
weight, weight gain, and ADG (r > 0.25, p < 0.05; Fig. 2a, 
c), while the molar percentage of acetate, acetate to pro-
pionate ratio were negatively correlated with these traits 
(r <  − 0.28, p < 0.01; Fig.  2a, b, d). Analysis of Spearman 
correlations between growth performance traits and 
rumen free amino acids measurements (n = 99) showed 
that ADG was significantly positively correlated with the 
rumen fluid concentrations of total essential amino acids, 
His, Trp, Arg, Val, Gly, and Ala (r > 0.2, p < 0.05; Fig. 2e). 

ADG had a weak positive correlation with the rumen 
fluid concentrations of total branched chain amino acids, 
Lys, Met, Phe, Ile, Leu, and Tyr (p < 0.1).

Varied ruminal microbiota diversity and key bacteria 
related to growth rates in young dairy goats
The metataxonomic analysis of rumen fluid samples col-
lected from young dairy goats (n = 99) using 16S rRNA 
gene amplicon sequencing revealed a moderate nega-
tive association (r <  − 0.20, p < 0.05) between ADG and 
Sobs, ACE, Chao1, and Shannon indices (Fig.  3a). The 
correlation between rumen fluid bacteria and growth 
performance traits (body weight, weight gain, and ADG) 
of young dairy goats (n = 99) was also identified (Fig. 3b; 
Table S3). At the family level (relative abundance ≥ 0.1%), 
the abundances of F082, Saccharimonadaceae, and Strep-
tococcaceae were positively correlated with body weight, 
weight gain, and ADG, while Prevotellaceae were nega-
tively correlated with these growth performance traits 
of young goats (r >|0.2|, p < 0.05). Among the bacterial 
genera (relative abundance ≥ 0.1%), the abundances of 

Fig. 1 The flowchart of this study. All animals were fed the same diet, kept under the same conditions, and housed together from birth (Table S9). 
During the preweaning phase, all kids were fed milk, alfalfa hay and concentrate mixture, and the weaned animals (3 months old to ~ 13 months 
old) were fed total mixed ration (TMR) with a forage to concentrate ratio of 60:40. After delivery, goats were fed TMR with forage:concentrate rations 
of 50:50. 1,2 From 99 young goats enrolled in this study, 15 goats with the highest average daily gain (ADG) were selected as the HADG group 
(ADG: 132.5 ± 1.5 g/day); 15 goats with the lowest ADG were selected as the LADG group (ADG: 88.2 ± 1.2 g/day). 3,4 After delivery of their newborn 
offspring kids, 84 of 99 healthy lactating goats remained, and 15 goats were excluded. In the HAL group, 13 lactating goats of 15 HADG goats 
remained and were renamed the HAL group; in the LAL group, 12 lactating goats of 15 LADG goats remained and were renamed the LAL group. 5,6 
Among these 84 lactating goats, 15 lactating goats with the highest milk yield were selected as the HMP group (average daily milk yield: 2.82 ± 0.04 
kg/day), and 15 lactating goats with the lowest milk yield were selected as the LMP group (average daily milk yield: 1.51 ± 0.03 kg/day), according 
to the milk yield recorded every 7 days over the first whole lactation period ADG: average daily gain, AA: amino acid, HADG: young goats with high 
average daily gain, LADG: young goats with low average daily gain, HAL: lactating goats of HADG, LAL: lactating goats of LADG, HMP: lactating 
goats with high milk yield, LMP: lactating goats with low-milk yield
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norank F082, Candidatus Saccharimonas, Ruminococcus 
gauvreauii group, Streptococcus, and Succinivibrionaceae 
UCG-001 showed significant positive associations with 
body weight, weight gain, and ADG, and the abundances 
of Prevotella, Prevotellaceae UCG-003, unclassified 
Prevotellaceae, unclassified Rikenellaceae, and Prevotel-
laceae NK3B31 group showed significant negative asso-
ciations with these growth performance traits (r >|0.2|, 
p < 0.05).

From this animal cohort (n = 99), two groups of goats 
with divergent ADG were identified: high ADG (HADG, 
n = 15) and low ADG (LADG, n = 15) (132.5 ± 1.5 g/
day vs 88.2 ± 1.2 g/day, p < 0.001). When the rumen fluid 

microbiota was further compared between HADG and 
LADG goats, the rumen microbial community in HADG 
goats had lower alpha diversity indices (p < 0.05; Fig. S1a) 
and was clearly distinguished from that in LADG goats 
(ANOSIM R = 0.244, p = 0.001; Fig. S1b). In addition, 
compared to the LADG goats, the relative abundances 
of family F082, Saccharimonadaceae, Streptococcaceae, 
genus norank F082, Candidatus Saccharimonas, Rumi-
nococcus gauvreauii group, Streptococcus, and Suc-
cinivibrionaceae UCG-001 were significantly higher in 
the rumen of HADG goats (abundance relative ≥ 0.1%; 
p < 0.05; Fig. S1c, d). In contrast, family Prevotellaceae, 
genus Prevotella, Prevotellaceae UCG-003, unclassified 

Fig. 2 Rumen fermentation productions and their relationship with growth performance traits (n = 99). A Associations between rumen VFAs 
and growth performance traits. Left: absolute concentrations of VFAs, Right: relative abundance of VFAs. The molar percentage of acetate (B), 
propionate (C), and the acetate to propionate ratio (D) were significantly associated with ADG (Spearman’s correlation, p < 0.05). E Heatmap 
showing the association between rumen fluid free amino acids and growth performance traits (Spearman’s correlation, p < 0.05). *p < 0.05, **p < 0.01 
BW: body weight, WG: weight gain, ADG: average daily gain, EAA: essential amino acid, BCAA: branched chain amino acid, NEAA: non-essential 
amino acid
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Prevotellaceae, and unclassified Rikenellaceae were 
significantly higher in LADG goats (abundance rela-
tive ≥ 0.1%; p < 0.05; Fig. S1c, d).

Microbial interactions differed between high and low 
performance goats
As bacteria-bacteria interactions are key modulators 
that shape the rumen microbiota, we further evalu-
ated the potential microbial interactions (Fig.  4a, b) 
and identified the keystone bacterial taxa (Fig. 4c; Table 
S4) in the rumen fluid microbiota of HADG and LADG 
goats using random matrix theory (RMT)-based net-
work analysis. A total of two nodes were highly con-
nected species within their own module (a high Zi > 2.5 

and a low Pi ≤ 0.62), which may act as module hubs 
in the HADG network (Fig.  4c; Table S4). ASV752 
assigned to Candidatus Saccharimonas, and ASV4676 
assigned to Oscillospiraceae NK4A214 group, may act 
as module hubs. Nine nodes had low Zi (≤ 0.25) and 
high Pi (> 0.62) values, linked several modules together 
and acted as connector species in the HADG network 
(Fig. 4c; Table S4). For example, ASV806, and ASV1105 
were annotated to Oscillospiraceae NK4A214 group, 
and ASV4527 was annotated to Christensenellaceae 
R-7 group, which may act as connectors in the HADG 
network. In addition, three module hubs, two of which 
were annotated to Prevotellaceae UCG-003 and Chris-
tensenellaceae R-7 group, were identified in the LADG 

Fig. 3 The relationship between rumen fluid microbiota features and goat growth performance traits (n = 99). A Associations between alpha 
diversity of ruminal microbiota and growth performance traits. B Heatmap showing the association between bacterial taxa (average relative 
abundance ≥ 0.1%) and growth performance traits (Spearman’s correlation, p < 0.05, r >|0.2|), % the relative abundance of the taxa. *p < 0.05, 
**p < 0.01 BW: body weight, WG: weight gain, ADG: average daily gain
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network. Notably, ASV2928 (annotated to Prevotella) 
had high Zi (> 2.5) and Pi (> 0.62) values, was highly 
connected species within its own module and linked 
several modules together, acting as a supergeneralist 
(network hub) that was detected in the LADG network 
(Fig. 4c; Table S4).

Correlation analyses between module-based eigengenes 
and rumen VFAs were conducted to understand the rela-
tionship between individual modules and rumen fermen-
tation (Fig. 4d, e). In the rumen microbial community of 
the LADG goats, at least five modules were significantly 
correlated with the VFAs or one of their two major com-
ponents, acetate, and propionate. Module 3, 4, 5, and 6 

were positively correlated with both the molar percent-
age of acetate, and the acetate to propionate ratio (r > 0.52, 
p < 0.05), while the latter two modules were negatively cor-
related with the molar percentage of propionate (r < -0.60, 
p < 0.05). Notably, the genus Prevotella was a predomi-
nant feature in module 3, including the network hub 
(ASV2928). In addition, 4 out of 11 or 4 out of 16 nodes 
in modules 4 and 5 were assigned to the family Prevotel-
laceae. In the HADG network, only module 6 was nega-
tively associated with the molar percentage of propionate, 
and positively correlated with the acetate to propionate 
ratio (r >|0.57|, p < 0.05).

Fig. 4 Co-occurrence network of ASVs in HADG and LADG goats, and network modules associated with rumen VFAs. Co-occurrence network 
of ASVs in HADG (A) and LADG goats (B). Nodes represent an ASV, and only significant (Pearson’s correlation, p < 0.05) relationships are shown 
in solid lines. C The scatter plot shows the distribution of ASVs based on their network roles. Network modules associated with rumen VFAs in HADG 
(D) and LADG goats (E). N: no significant difference HADG: young goats with high average daily gain, LADG: young goats with low average daily 
gain, Zi: within-module connectivity, Pi: among-module connectivity
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Functional variation in the rumen fluid microbiome related 
to the growth performance of young goats
We then compared the functional capacities of the 
rumen fluid microbiome between goats with high (n = 8) 
and low (n = 8) growth performance using metagenomic 
analysis. From a total of 1,200,051,228 metagenome reads 
(75,003,202 ± 965,517 per sample), 10,278,318 contigs 
were annotated (642,395 ± 26,180 per sample).

In total, 16 significantly different KEGG pathways were 
identified, 14 of which were enriched in the rumen micro-
biome of HADG goats (p < 0.05; Fig. 5a). Among them, 13 
pathways were related to “metabolism” (first-level KEGG 
functions), including four “carbohydrate metabolism” 
pathways (TCA cycle, pyruvate metabolism, butanoate 
metabolism, and propionate metabolism), three “amino 
acid metabolism” pathways (taurine and hypotaurine 
metabolism, lysine degradation, and D-arginine and 
D-ornithine metabolism), two “lipid metabolism” path-
ways (linoleic acid metabolism, and alpha-linoleic acid 
metabolism), “energy metabolism” pathway (carbon fixa-
tion pathways in prokaryotes), “global and overview map” 

pathway (carbon metabolism), and “glycan biosynthe-
sis and metabolism” pathway (mannose type O-glycan 
biosynthesis). In the rumen fluid microbiome of LADG 
goats, N-glycan biosynthesis and adipocytokine signaling 
pathways were enriched.

Because 4 out of 16 differentially abundant KEGG 
pathways were “carbohydrate metabolism,” which pro-
duce rumen VFAs, the main energy source, we then 
analyzed genes encoding enzymes involved in the 
metabolic pathways associated with VFA biosynthe-
sis (glycolysis/gluconeogenesis, pyruvate metabolism, 
propionate metabolism, and butyrate metabolism). 
Of these identified enzymes that were significantly 
enriched in the rumen of HADG goats (p < 0.05; Fig. 5b; 
Table S5), 6-phosphofructokinase (EC2.7.1.11) and 
triose-phosphate isomerase (EC5.3.1.1) were involved 
in translating glucose-6P to pyruvate. Glycerol dehy-
drogenase (EC1.1.1.6) and propanal dehydrogenase 
(CoA-propanoylating, EC1.2.1.87) were involved in 
translating glycerone-P to propanoyl-CoA. Furthermore, 
methylisocitrate lyase (EC4.1.3.30), pyruvate synthase 

Fig. 5 Difference in functional capacities of the rumen microbiome between HADG and LADG goats (n = 8 each group). A Differences in level 
3 KEGG microbial pathways between HADG and LADG goats (Wilcoxon rank-sum test, p < 0.05). B Reconstruction of the metabolic pathway 
associated with VFA biosynthesis and methanogenesis. C Spearman’s rank correlations between the ADG-associated ASVs and the VFA-related KEGG 
pathways (p < 0.05). D Differential CAZyme functions between HADG and LADG goats based on family-level enzymes (Wilcoxon rank-sum test, 
p < 0.05) HADG: young goats with high average daily gain, LADG: young goats with low average daily gain
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(EC1.2.7.1), and acetate kinase (EC2.7.2.1) were involved 
in translating pyruvate to propionate. Notably, meth-
ylisocitrate lyase (EC4.1.3.30), which converts methyl-
isocitrate to succinate, was significantly higher in the 
HADG group. The results showed that 3-hydroxybutyryl-
CoA dehydrogenase (EC1.1.1.157), and 3-hydroxybu-
tyrate dehydrogenase (EC1.1.1.30), which can translate 
acetyl-CoA to butyrate, were also significantly higher 
in the HADG group. In contrast, aldehyde dehydroge-
nase (NAD +) (EC1.2.1.3), which is involved in translat-
ing acetyl-CoA to acetate, was enriched in the rumen 
microbiome of LADG goats (p = 0.031; Fig. 5b; Table S4). 
A Spearman’s rank correlation network further revealed 
varied relationships between ADG-associated ASVs 
and KEGG pathways (pyruvate metabolism, propionate 
metabolism, and butanoate metabolism) in the rumen 
fluid microbiome of HADG and LADG goats. A total of 
43 ADG-related ASVs showed a significant correlation 
with these three pathways; 31 HADG-enriched ASVs, 
including some belonged to Candidatus Saccharimonas 
and Ruminococcus gauvreauii, had a positive correlation 
with these three pathways; and 12 LADG-enriched ASVs, 
such as ASV2717 belonged to Prevotellaceae UCG-003, 
had negative relationships with the propionate pathway 
and butyrate pathway (Fig. 5c; Table S6).

In addition, a total of 16 significantly differential 
CAZyme gene families were identified between the 
rumen fluid microbiome of HADG and LADG goats 
(p < 0.05; Fig. 5d). Among them, 10 CAZymes that were 
involved in the degradation of starch (such as GH13_39 
and CBM41), xylan (CE2 and CE3), lignin (AA4), and 
peptidoglycan (GH24 and GH104) were enriched in 
the rumen fluid microbiome of HADG goats, while 6 
CAZymes that were involved in the metabolism of cellu-
lose (GH74 and GH66) and pectin (PL1, PL3_2 and PL9) 
were enriched in the rumen fluid microbiome of LADG 
goats.

Methanogenesis differed between high and low ADG goats
The metagenomics analysis revealed that several meth-
ane production-related archaeal species, including Meth-
anobrevibacter smithii, Methanobrevibacter curvatus, 
and Methanoregula formicica, were significantly higher 
in the rumen of LADG goats (p < 0.05; Fig.  5b; Fig. S2). 
We further verified the effects of the rumen fluid micro-
biome on rumen fermentation and methane production 
using in vitro incubation analysis using rumen fluid from 
HADG and LADG young goats (n = 15 each group). The 
results showed that HADG goats produced significantly 
more propionate, less molar percentage of acetate, less 
acetate to propionate ratio, and less methane than LADG 
animals (p < 0.05; Fig. S3).

Rumen metabolome profiling differed between high 
and low performance goats
Further comparison of rumen metabolome profiles 
between HADG and LADG goats revealed 43 metabo-
lites belonged to carbohydrates and carbohydrate con-
jugates, and amino acids, peptides, and analogs showed 
significant differences between HADG and LADG 
(p < 0.05; Table S7). Of these, 27 metabolites were signifi-
cantly higher in the rumen of HADG goats, and the rela-
tive concentrations of 16 metabolites were significantly 
higher in the rumen of LADG goats (p < 0.05; Table S7). 
Then, correlation analysis between these different metab-
olome data and ADG was performed using Spearman’s 
rank correlation. The results showed that 33 metabolites 
were significantly associated with ADG (r >|0.5|, p < 0.05; 
Fig.  6a); 23 of them were significantly higher in HADG 
and positively associated with ADG, including L-lysop-
ine, glutamylvaline, isoleucyl-hydroxyproline, threon-
inyl-glycine, valyl-hydroxyproline, methionyl-serine, 
and O-succinyl-l-homoserine, which belonged to amino 
acids, short peptides and analogs, and maltoriose, melibi-
ose, and 3-galactosyllactose, which belonged to carbohy-
drates and carbohydrate conjugates (HADG-associated 
metabolites, p < 0.05). Meanwhile, 10 metabolites, includ-
ing pheylalanyl-valine, valyl-isoleucine, and tyrosyl-isole-
ucine, were significantly higher in LADG and negatively 
associated with ADG (LADG-associated metabolites, 
p < 0.05).

The correlation analysis between ADG-related taxa 
and differential ruminal fermentation measures (Fig. 6c) 
showed that HADG-associated bacteria (Candidatus 
Saccharimonas, Ruminococcus gauvreauii group, Strep-
tococcus, and Succinivibrionaceae UCG-001) were posi-
tively correlated with the concentration of propionate, 
and the molar percentage of propionate, and were nega-
tively correlated with the molar percentage of acetate, 
and the acetate to propionate ratio (r >|0.2|, p < 0.05). 
Notably, the abundance of Ruminococcus gauvreauii 
group, Streptococcus also had a positive association 
with rumen amino acid concentration (r >|0.2|, p < 0.05). 
LADG-associated bacteria (Prevotella, Prevotellaceae 
UCG-003, unclassified Rikenellaceae, Prevotellaceae 
NK3B31 group) were positively correlated with the molar 
percentage of acetate, the acetate to propionate ratio, 
were negatively correlated with the concentration of pro-
pionate, and the molar percentage of propionate (r >|0.2|, 
p < 0.05); Prevotella, Prevotellaceae UCG-003, unclassi-
fied Prevotellaceae, and Prevotellaceae NK3B31 group 
were negatively correlated with the concentration of 
amino acids (r >|0.2|, p < 0.05).

Further analysis between ADG-associated microbi-
ota and ADG-associated rumen metabolome (Fig.  6b) 
revealed that some HADG-enriched bacteria, such as 
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Ruminococcus gauvreauii group, were positively cor-
related with nearly all HADG-associated metabolites; 
Candidatus Saccharimonas and Succinivibrionaceae 
UCG-001 were positively correlated with more than 
50% HADG-associated metabolites, and Streptococ-
cus was positively correlated with ~ 35% HADG-asso-
ciated metabolites, and those bacteria were negatively 

correlated with ≥ 50% LADG-associated metabolites 
(p < 0.05). In contrast, some LADG-enriched bacteria 
were significantly negatively correlated with ADG-asso-
ciated metabolites (p < 0.05). For example, Prevotella was 
negatively correlated with isoleucyl-hydroxyproline, and 
valyl-hydroxyproline; Prevotellaceae UCG-003 was nega-
tively correlated with melibiose and maltotriose (p < 0.05).

Fig. 6 The relationship between the ADG-associated microbiota and ruminal metabolites. A Ruminal metabolites that differed in normalized 
abundance between HADG and LADG goats (n = 8 each group) and were significantly associated with ADG (Spearman’s correlation, p < 0.05). B 
Correlations between the ADG-associated metabolites and the ADG-associated microbiota (n = 99, Spearman’s correlation). * p < 0.05, ** p < 0.01 
HADG: young goats with high average daily gain, LADG: young goats with low average daily gain
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Rumen fluid microbiota features and milk yield in adult 
goats with varied growth rates during early life
To determine whether the rumen fluid microbiota of 
young animals has long-term impacts on rumen microbi-
ota features and host performance, we then measured the 
milk production, rumen fermentation, and microbiota of 
HADG lactating goats (HAL, n = 13) and LADG lactat-
ing goats (LAL, n = 12). The growth rate of these young 
goats (n = 25) had a significant positive correlation with 
their subsequent milk yield (r = 0.36, p = 0.048). Moreo-
ver, compared to the LAL group, the milk yield, milk 
fat, protein, and lactose yields were significantly higher 
in the HAL group (p < 0.05; Fig. 7a; Fig. S4a). Compared 
to the LAL goats, the HAL goats also had a lower molar 
percentage of acetate, and acetate to propionate ratio 
(p < 0.05; Fig. 7b; Fig. S4b).

Although there was no significant difference in 
Chao1 and Shannon indices of rumen fluid microbiota 
between these two groups (Fig. S5a, b), the microbiota 
profiles of the HAL group clustered significantly dif-
ferent from that of the LAL group (ANOSIM R = 0.178, 
p = 0.002; Fig. S5c). Moreover, the family Prevotellaceae, 
genus Prevotella, and Prevotellaceae UCG-003 were sig-
nificantly higher in the LAL group (p < 0.05; Fig.  7c, d). 
The abundance of Oscillpspiraceae NK4A214 group, 

Ruminococcus, and Christensenellaceae R-7 group were 
significantly higher in the HAL group (p < 0.05; Fig.  7c, 
d), with Prevotella, Prevotellaceae UCG-003, Oscillp-
spiraceae NK4A214 group, and Christensenellaceae R-7 
group were the keystone bacteria in young goats (Table 
S4). Network module-trait relationship analysis revealed 
that in the LAL group, 5 modules (4, 6, 7, 8, and 10) were 
positively correlated with the molar percentage of acetate 
(r >|0.58|, p < 0.05; Fig. 8). The majority of nodes (ASVs) 
in two modules (4, and 8) belonged to the genus Prevo-
tella (module 4: 6 out of 16, module 8: 7 out of 14). In 
contrast, in the HAL network, module 7 and module 8 
were negatively correlated with the molar percentage of 
acetate (r <  − 0.59, p < 0.02).

The rumen keystone bacteria of young goats further 
affected host rumen microbiota features
Furthermore, the correlation between the bacteria in 
the rumen of young goats and adult goats was identified 
(genera with relative abundance ≥ 0.1%; Fig. 7e; Table S8). 
Notably, some ADG-related bacteria in the youth period 
were significantly correlated with bacteria in adult goats, 
such as Prevotella, LADG-enriched bacteria in the youth 
period, had a positive correlation with the abundance of 
Prevotella, had a negative correlation with Ruminococcus, 

Fig. 7 The influence of the rumen fluid microbiome of young goats on the rumen fluid microbiota composition and milk performance of adult 
goats. A Comparison of milk yield between the HAL and LAL groups. B The difference in the percentage of ruminal VFAs between HAL and LAL 
goats. C Distribution of abundant bacterial families. D Top 10 different genera identified by the Wilcoxon rank-sum test between HAL and LAL 
goats. Bars represent the mean ± SE. E Correlation networks showed association in the microbiota between young and lactating goats. Edge color 
represents either positive or negative associations between bacteria (p < 0.05). The genera of young goats with more than 5 edges (links) were 
retained. A, B Student’s t test, data are presented as the mean ± SE. D Wilcoxon rank-sum test. E Spearman’s rank correlation. # 0.1 < p < 0.05 *p < 0.05, 
**p < 0.01 HAL: lactating goats of HADG, LAL: lactating goats of LADG
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and Christensenellaceae R-7 group (r >|0.4|, p < 0.05) 
in the lactation period. Prevotellaceae UCG-003, the 
LADG-enriched bacteria of young goats, was signifi-
cantly correlated with more than 20 genera of adult 
goats, including Oscillpspiraceae NK4A214 group, Chris-
tensenellaceae R-7 group, and Lachnospiraceae NK3A20 
group (r >|0.5|, p < 0.05). Ruminococcus gauvreauii group, 
the HADG-enriched bacteria in the youth period, had a 
positive correlation with Ruminococcus, Oscillpspiraceae 
NK4A214 group, Christensenellaceae R-7 group in the 
lactation period, had a negative correlation with Prevo-
tella, and Prevotellaceae UCG-001 in the lactation period 
(r >|0.4|, p < 0.05).

Rumen microbiota and metabolites of young goats 
with high prediction accuracy for ADG and milk production 
traits
We then explored whether differential rumen fluid 
microbiota and metabolites associated with ADG in 
young goats can be used to predict ADG in youth, and/
or milk production in adult animals using the random 
forest model. Rumen VFAs, such as the acetate to propi-
onate ratio, the molar percentage of acetate, and propi-
onate, classified the HADG and LADG goats with high 
accuracy (AUC > 0.830; Fig.  9a). A total of 30 differen-
tial metabolites could classify high and low ADG goats 
with AUC > 0.80 (Table S7). Of these, isoleucy-tyrosine, 

Fig. 8 Co-occurrence network of rumen ASVs in HAL and LAL goats, and the network modules associated with the percent of acetate. Nodes 
represent an ASV, and only significant (Pearson’s correlation, p < 0.05) relationships are shown in solid lines HAL: lactating goats of HADG, LAL: 
lactating goats of LADG
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L-lysopine, and 3-nonenoylglycine were the top three 
features with AUC > 0.90 of rumen metabolome profiles 
(Fig. S6). Notably, we found that Prevotellaceae UCG-
003, Ruminococcus gauvreauii group, and Prevotella 
had AUC values of 0.813, 0.804, and 0.787 in classified 
HADG and LADG goats (Fig.  9b), and the top 3 ASVs 
(ASV800: Candidatus Saccharimonas, ASV793: norank 
F082, ASV2800: Prevotellaceae UCG-003) with AUC val-
ues > 0.850 (Fig. 9c).

Next, we explored whether ADG and rumen fluid 
microbiota of young goats could potentially serve as 
markers to predict adult milk yield. The results showed 
that the ADG of young goats had an AUC of 0.736 for 
classifying lactating goats with high- or low-milk yield 
(Fig.  9d). Rumen fluid bacteria, such as the top genus 
(Streptococcus) and ASV feature (ASV3010: unclassi-
fied Oscillospirales), had AUC values of 0.917 and 0.930, 
respectively, to predict milk yield. Moreover, the ADG-
related genera, Ruminococcus gauvreauii group, and 
Prevotella, also showed AUC value > 0.750 (Fig. 9e, f ) for 
milk yield prediction.

Discussion
In the present study, a large number of goats under the 
same dietary conditions and management were used to 
untangle the relationship between the rumen fluid micro-
biome and host growth rate, and revealed the microbiota 
and its metabolites of young ruminants affected their 
ADG and could have long-term implications and predict 
milk production during first lactation in dairy goats.

First, the current study identified varied complex 
interactions among rumen fluid microorganisms, and 
keystone taxa as well as their relationships with rumen 
fermentation and ADG in young goats. Compared with 
the studies conducted in dairy cows, very few studies 
have explored the rumen microbial composition and 
function in dairy goats. These few studies revealed that 
rumen microbial communities of goats play important 
roles in feed degradation and rumen fermentation [27] 
and undergo significant changes in response to shifts in 
age and diet [28, 29]. Many recent studies have inves-
tigated the potential impact of the rumen microbiome 
on cattle phenotypes (such as feed efficiency and milk 

Fig. 9 Prediction analyses based on the random forest model. Classification of host ADG using rumen metabolites (A) and microbiota (B, C) 
of young goats (n = 30), HADG vs LADG. Prediction of milk yield using ADG (D), and rumen microbiota (E, F) of young goats (n = 30), HMP vs 
LMP. ASV800: Candidatus Saccharimonas, ASV793: norank F082, ASV2800: Prevotellaceae UCG-003, ASV3010: unclassified Oscillospirales, ASV129: 
Streptococcus, ASV1191: Prevotella HADG: young goats with high average daily gain, LADG: young goats with low average daily gain, HMP: lactating 
goats with high milk yield, LMP: lactating goats with low-milk yield
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production) [9, 13]. However, the microbial community 
structure, composition, and function differ between 
goats and cattle [27, 30]. Henderson et al. [30] reported 
that microbial communities of goats clustered sepa-
rately from cattle in the rumen, with bacteria being 
the main drivers behind the observed differences. For 
example, unclassified Veillonellaceae were proportion-
ally more abundant in the rumen of goats, while the 
abundance of Fibrobacter was enriched in the rumen 
of cattle. This suggests that the influence of the rumen 
microbiome on goat growth could differ from that 
reported for cattle. The current study is a large-scale 
systemic study to reveal the rumen microbiome and 
its relationship with goat growth, and milk production 
traits.

Most previous studies on the biodiversity of microbial 
communities have been focused on the number of species 
and the abundance of species, but not interactions among 
species. However, microbiota interactions could be more 
important to ecosystem functioning than bacterial rich-
ness and abundance in complex ecosystems [31, 32]. Co-
occurrence network analysis of the rumen microbiome of 
dairy cows revealed differential microbial interaction pat-
terns between animals with different feed efficiency [33]. 
Previous studies in the rumen microbiome showed that 
the keystone species play an exceptionally important role 
in determining the structure and function of ecosystems 
[12, 34]. In the present study, we found that more net-
work modules in LADG and LAL goats than in HADG or 
HAL goats were positively correlated with the molar per-
centage of acetate. Based on network topology, we also 
found that HADG-enriched Candidatus Saccharimonas 
(module hub), LADG-enriched Prevotella (network hub) 
and Prevotellaceae UCG-003 (module hub) serve as key-
stone taxa of microbial networks in the rumen of HADG 
or LADG goats. These ADG-related keystone taxa 
together with non-ADG-related keystone taxa (Oscillo-
spiraceae NK4A214 group, and Christensenellaceae R-7 
group [module hubs and connectors]) may play impor-
tant roles in microbiota structure and rumen function. 
From ecological perspectives, module hubs and connec-
tors were close to generalists and network hubs were 
supergeneralists [35]. In this study, identifications of gen-
eralists and supergeneralists furthered the understanding 
of microbial community structure and differential micro-
bial interactions, which play an empirical rather than the-
oretical role among microbial interactions [36]. Similar 
to our findings, a recent study found that Christensenel-
laceae R-7 group, and Prevotella were the keystone spe-
cies in the network, and they may play important roles 
in the rumen of yaks at different growth stages [34]. The 
present study is among the first to document the impor-
tance of bacterial interactions and keystone species in 

shaping the rumen microbial communities and rumen 
functioning of goats.

In the lactating period, these keystone bacteria, includ-
ing Prevotella, Christensenellaceae R-7 group, Oscillo-
spiraceae NK4A214 group, and Prevotellaceae UCG-003, 
were also different between the HAL and LAL groups. 
Some specific bacteria, such as Prevotella, and Prevotel-
laceae UCG-003 of young goats, were significantly cor-
related with bacteria of adult animals, such as Prevotella, 
Oscillospiraceae NK4A214 group and Christensenel-
laceae R-7 group. Christensenellaceae, Oscillospiraceae, 
and Prevotellaceae and their genera were demonstrated 
to be keystone species for complex plant polysaccharides 
and were positively correlated with VFA concentrations 
[37–40]. These keystone species have similar reaction 
substrates and might regulate microbial interactions 
through nutritional supplementation or competition. 
Similar to our findings, Braga et  al. [41] reported that 
microbes can interact with each other for the purpose 
of co-evolution leading to adaptation and specialization 
of certain microbial taxa, which promote future altera-
tions in the microbial community. Recent studies found 
that increased growth and lactation performance could 
be achieved by increasing the abundance of rumen Oscil-
lospiraceae NK4A214 group and Christensenellaceae 
R-7 group [42–44]. These genera have been reported to 
be associated with the degradation of a diverse array of 
structural carbohydrates as well as the production of pro-
pionate and butyrate [45, 46], which may provide more 
energy and a healthy rumen environment for host. Fur-
thermore, Prevotella was the predominant, early colo-
nizer and occupied various ecological niches within the 
rumen [47–49], and early arriving species exerted strong 
priority effects, having long-lasting impacts on the devel-
opment of animal microbiomes [25].

In the present study, ADG-related genera played 
important roles in rumen fermentation (Fig.  6b, c) and 
had effects on goat growth. The abundance of Prevotel-
laceae family and its genera, which utilize various sub-
strates (such as cellulose, starch, and protein) to mainly 
produce acetate and succinate [39, 40], have shown a 
negative relationship with goat growth rate. Moreover, 
the abundance of Prevotella was found to be negatively 
correlated with milk performance [8, 50], and feed effi-
ciency [51] in ruminants. Indeed, our finding that the 
abundance of these Prevotella genera, and modules 
mainly composed of Prevotella have positive relationship 
with rumen acetate percentage provided further sup-
port for this notion (Fig. 4d, e; Fig. 6c; Fig. 8). However, 
in contrast to these findings, some studies also identi-
fied various Prevotella species associated with higher 
feed efficiency [52], and milk production [13, 53]. These 
conflicting results could be related to the large diversity 
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of Prevotella with different functions, and the different 
metabolites shaped by microbe‒microbe interactions 
(the interaction between Prevotella with other genera). 
These findings suggested that strong microbial interac-
tions of genus Prevotella with other others may increase 
rumen acetate production in LADG and LAL goats.

Candidatus saccharimonas, Ruminococcus gauvreauii 
group, Streptococcus, and Succinivibrionaceae UCG-
001, HADG-related genera, also play important roles in 
feed digestion. Streptococcus and Candidatus Saccha-
rimonas have been shown to be involved in amino acid 
biosynthesis and the metabolism of energy substrates 
[37, 54–56]. Furthermore, as a growth-related taxon in 
pigs [57], Streptococcus may also play an important role 
in promoting goat growth performance. Members of 
Succinivibrionaceae family compete with methanogens 
for hydrogen to produce succinate (a precursor of pro-
pionate) rather than methane [58], and were found to be 
associated with low methane yield [59], high ADG [60], 
and low abundance of methanogens [58] in ruminates. 
Meanwhile, our metagenome data revealed that fewer 
methanogens, such as Methanobrevibacter smithii, Meth-
anobrevibacter curvatus, and Methanoregula formicica, 
were detected in HADG goats. Together, these bacteria 
are therefore candidates for further investigation to eluci-
date their association with growth, which might provide 
insight into whether these microbes could be manipu-
lated to improve feed efficiency and the performance of 
goats.

Together, rumen keystone bacteria and early coloniz-
ers may exert priority effects, occupy ecological niches, 
and form complex microbial interactions with others, 
which will have long effects on microbiota succession, 
rumen fermentation, and host growth phenotypes. Feed 
intake is one of the key factors that affects animal growth 
performance, feed efficiency, and rumen microbiome. 
Long-term experiments should be conducted to further 
determine the relationship between feed intake, rumen 
microbiome, and feed efficiency of ruminants. Inoculat-
ing keystone species associated with feed efficiency or 
animal performance as precision probiotics in early life 
may modify microbiota colonization or composition, 
and subsequently improve animal performance. The pre-
sent study investigated the potential role of rumen fluid 
microbiome in goats at early stage in regulating rumen 
fermentation and production performance in adult dairy 
goats. However, in addition to the liquid-associated 
microbiome, rumen particle- and epithelium-associated 
microbiome also play a key role in regulating rumen 
function [61, 62]. Future research activities will be car-
ried out to comprehensively understand the role of differ-
ent kinds of microbiome in the rumen, and how different 
members of the rumen microbiota may influence each 

other, and effective microbial manipulation tools and 
techniques.

There are considerable benefits associated with under-
standing rumen function, as rumen dynamics are almost 
solely responsible for providing nutrients to the host 
animal [63]. The genes encoding CAZymes involved in 
deconstructing carbohydrates, such as starch (GH13_39 
and CBM41) and xylan (CE2 and CE3), and KEGG func-
tions in carbohydrate metabolism were enriched in the 
rumen of HADG goats, including “TCA cycle, pyru-
vate metabolism, butanoate metabolism, and propion-
ate metabolism.” The genes encoding relevant enzymes, 
such as EC2.7.1.11, which were involved in the glycoly-
sis pathway, EC4.1.3.30, EC1.1.157, and EC1.2.7.1, which 
were involved in the pyruvate, propionate, and butyrate 
metabolism pathways, were enriched in HADG goats. 
EC1.2.13, which was involved in translating acetyl-Coa to 
acetate, was less abundant in HADG goats. These results 
indicated that the microbiome of HADG goats has a 
stronger ability to degrade carbohydrates to produce 
pyruvate, and subsequently used for more propionate and 
butyrate production, rather than methane and acetate 
biosynthesis. Together, these findings clearly indicated 
that the specific microbiome functional potential related 
to carbohydrate degradation and VFA biosynthesis sig-
nificantly changes in goats with different growth rates, 
which advances the understanding of the functional roles 
of the rumen microbiome in contributing to rumen fer-
mentation and goat growth.

The present study was one of the first to explore the 
relationship between rumen metabolites, microbiota 
taxa, and growth performance of dairy goats. These find-
ings of rumen metabolite data are in good agreement 
with the rumen metagenome that more disaccharides, 
such as maltoriose, melibiose, and 3-galactosyllactose, 
which are intermediates in carbohydrate metabolism, 
and propionate and butyrate production were enriched 
in HADG goats, methane yield and acetate biosynthesis 
were enriched in LADG goats (Fig. 2 and Fig. 6). These 
disaccharides can be hydrolyzed to produce glucose for 
growth and development of the body [64]. Furthermore, 
in rumen VFA fermentation, propionate fermentation 
is the most energy efficient, due to assimilating energy 
from hydrogen and being the main precursor of gluco-
neogenesis in animals, whereas acetate production is 
accompanied by hydrogen production [65, 66]. For host 
animals, the energy recovery efficiency is increased by 9% 
when the substrate (glucose) is fermented into propion-
ate but reduced by 22% and 38% when fermented into 
butyrate and acetate, respectively [67]. Indeed, studies 
have revealed that efficient animals tend to have higher 
ruminal propionate and butyrate concentrations [9, 68]. 
Together, our data suggest that the microbiome of HADG 
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goats has a higher feed efficiency with a higher ability and 
efficiency to degrade carbohydrates to produce more 
propionate and butyrate, less acetate and methane, to 
support the host’s energy requirements. Furthermore, 
amino acids and peptides are extremely important fac-
tors affecting rumen microbial growth and microbial 
protein synthesis [69], in which microbial protein con-
tributes 60–90% of the protein absorbed at the duode-
num [8, 70]. Compared to the LADG goats, 3 amino acid 
metabolism pathways, taurine and hypotaurine metabo-
lism, lysine degradation, and D-arginine and D-ornithine 
metabolism, were enriched in the HADG goat microbi-
ome. We also found that some amino acids and peptides 
were enriched in HADG goats, including BCAAs and 
some EAAs, which (such as His, Trp, and Arg) are the 
limiting AAs for growing goats and cows [71, 72]. Moreo-
ver, we identified the associations between rumen micro-
biota and rumen microbial metabolomes and found that 
ADG-associated microbial taxa were significantly corre-
lated with carbohydrate and protein metabolism. Overall, 
our data revealed that some specific rumen taxa, such as 
Prevotella, and Streptococcus, may play important roles 
in producing small molecule metabolites and contrib-
uting to goat growth, which has rarely been reported in 
dairy goats previously.

Furthermore, the development of sequencing tech-
niques and machine learning methods facilitates the 
application of the microbiota and microbial metabo-
lites to predict host phenotypes, including for the pre-
diction of disease risk [73, 74] and performance [33]. In 
the present study, we found that rumen metabolites and 
microbes could predict host growth performance with 
high accuracy (Fig.  9a–c). Moreover, the rumen micro-
biota of young goats can also predict further milk yield 
with high accuracy (Fig. 9d,e). Notably, the random for-
est machine learning algorithm revealed that Streptococ-
cus in young goats can be a key microbial marker that 
can differentiate high- and low-milk yield goats, with 
an accuracy of 91.7%. To our knowledge, it is still chal-
lenging to predict ruminant performance using only 
early-life microbial markers in practice. Further studies 
are required to integrate various key data, such as host 
genetic data, microbiome features, and metabolites, and 
find the best combined features to improve the accuracy 
and robustness of prediction, which could help us apply 
our findings in practice in the future.

The rumen microbial community is influenced by 
multiple factors, including diet, environment, and host 
genotype. In our study, all the goats were fed the same 
diet and raised under the same feeding and management 
regimes, the interanimal variations in the rumen micro-
biome may be directly or indirectly affected by animal 
genetics. Several studies have revealed that some rumen 

microbiota are heritable and associated with host phe-
notypes [12, 75, 76]. For example, a recent study found 
that Prevotella was related to several loci on cattle chro-
mosomes 2, 6, 9, 19, 23, and 27 [76]. Future studies focus 
on revealing the relationship between rumen microbiota 
and genetic markers, which will help us use marker-
assisted selection and management to improve feed effi-
ciency, and animal performance.

Conclusion
In summary, ADG-related microbiota and microbial 
interactions affect rumen fermentation and feed effi-
ciency, and subsequently affect the energy and nutrients 
that are supplied to the host. Our study strengthens the 
notion that rumen microbial variations can lead to vari-
ations in feed efficiency, which will affect host perfor-
mance. Overall, rumen microbiome features (such as 
diversity, structure, composition, and function) were dif-
ferent among young goats with different growth rates. 
Some bacteria and archaeal species, such as members 
of Prevotellaceae family, Streptococcus, and Candida-
tus Saccharimonans, were identified for their significant 
associations with animal growth. These rumen micro-
bial variations contribute to carbohydrate and protein 
metabolism functions, and ruminal propionate, butyrate, 
and ruminal amino acid production in high ADG goats, 
which could provide more energy and nutrients for goats. 
Additionally, high ADG goats have more milk yield in the 
lactation stage. Some keystone bacteria may have long 
effects on microbiota succession, feed fermentation, and 
host phenotypes. The rumen microbiota of young goats 
identified by random forest analysis could be used as 
effective biomarkers for predicting animal performance 
(growth rate and milk yield). Thus, our results provide 
a deeper understanding of the potential influence of the 
rumen microbiome on feed efficiency and animal per-
formance, highlighting the long-term role of keystone 
bacteria in microbe‒microbe interactions and in shaping 
microbiota composition and rumen fermentation pat-
terns, and may aid in developing strategies to improve 
feed efficiency and animal performance.

Methods
Animals, grouping, and sampling
All the goats, which were fed the same diet, kept under 
the same conditions, and housed together during the 
whole experimental period, were raised in a Saanen 
goat farm in Baoji, Shaanxi (34° 41′ N, 109° 09′ E). The 
detailed feeding programs are shown and described in 
Supplementary Table S8. Animals that had been admin-
istered antimicrobial agents (antibiotics, antifungals 
or antivirals) within 3 months before sampling or had a 
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history of an infectious disease or other force majeure 
were excluded from the experiment.

A total of 99 healthy female Guanzhong goats (born in 
late January 2020) were used for the experiment (Fig. 1). 
The birth weight of all goat kids was recorded imme-
diately after birth. Herein, at the age of 6 months old 
(187.9 ± 0.3 [mean ± SE] days of age), the body weight 
of all selected goats was weighed at least two times, the 
mean body weight was calculated for each goat, and 
rumen fluid and blood samples were collected before the 
morning feeding. Individual weight gain was calculated 
as the difference between 6-month body weight and birth 
weight, and individual ADG was calculated as weight 
gain divided by the number of days.

The feed intake of HADG and LADG goats (n = 15 
each group) was measured 2 weeks before weighing 
(174.2 ± 0.4 days). In brief, feed offered to and refused 
by each goat was recorded continuously for 7 days. The 
feed samples were dried at 65°C for 48 h to obtain the 
dry matter content of the ration. Daily dry matter intake 
(DMI) per goat was calculated by multiplying daily as-fed 
intake by the dry matter content of the ration. There was 
no significant difference in DMI between the HADG and 
LADG (1.03 ± 0.03 vs 1.01 ± 0.02, P = 0.735, t test).

Then, these dairy goats were naturally oestrus and 
mated in late September (8  months old). A total of 15 
goats, who were not pregnant, or had been administered 
antimicrobial agents within 3 months before sampling, or 
had a history of infectious disease, or some other force 
majeure were excluded from the sampling. Then, since 
kidding in late February 2021, 84 remaining dairy goats 
entered the lactation period. The lactation performance 
of all dairy goats was recorded. Briefly, all 84 goats were 
milked twice daily at 0630 and 1600 h. The milk yield 
was recorded every 7 days over the first whole lactation 
period, the milk sample (2/3 from the morning and 1/3 
from the evening milking were pooled as a daily sample) 
was collected for the milk composition analysis, and the 
average milk yield, milk composition of each goat was 
used for the following analysis. Meanwhile, the rumen 
fluid sample was also collected at 2 to 3 h after the morn-
ing feeding of the 23rd week of lactation (19 months old).

Briefly, rumen fluid samples were collected via esopha-
geal tubing. The first 50 mL of rumen fluid was discarded 
to avoid saliva contamination, and the next 50 mL rumen 
fluid was strained through four layers of sterile cheese-
cloth under a constant flux of  CO2.

According to the calculated ADG from birth to 
6  months old, the 15 highest ADG goats of these 
99 goats were selected as the HADG group (ADG: 
132.5 ± 1.5 g/day), and the 15 lowest ADG goats were 
selected as the LADG group (ADG: 88.2 ± 1.2 g/day). 
After delivery of their newborn offspring kids, 84 of 

99 lactating goats remained. Among these 84 lactating 
goats, 13 lactating goats of 15 HADG goats remained 
as the HAL group; 12 lactating goats of 15 LADG goats 
remained as the LAL group. Furthermore, in order to 
explore whether the rumen fluid bacteria, VFAs and 
ADG of young goats could serve as useful biomarkers 
to predict the milk yield in adult animals, the 15 lac-
tating goats of these 84 lactating goats with the high-
est milk yield were selected and named the HMP group 
(average daily milk yield: 2.82 ± 0.04 kg/day), and 15 
lactating goats with the lowest milk yield were selected 
and named the LMP group (average daily milk yield: 
1.51 ± 0.03 kg/day), according to the milk yield recorded 
every 7 days over the first whole lactation period.

Estimation of methane production using an in vitro 
experiment using rumen fluid of young goats
To estimate the ruminal methane production of young 
goats (6 months old) with different growth rates, rumen 
fluid samples of the HADG and LADG groups (n = 15 
each group) were collected on the same day and used 
for the in vitro rumen fermentation study immediately.

The in  vitro experiment was conducted following 
the procedure of Mauricio et  al. [77], and artificial 
saliva (buffer) was prepared according to the formula 
provided by Menke et  al. [78]. Briefly, under anaero-
bic condition, approximately 1.0 g total mixed ration 
(TMR) of young goats (DM basis, shown in Table S9) 
was weighed into individual 135 mL fermentation bot-
tles, and then 20 mL collected rumen fluid from each 
goat, and 40 mL buffer was added into the fermenta-
tion bottle. Fermentation bottles, which contained the 
differential rumen fluid from different young goats 
of the HADG and LADG groups (n = 15 each group), 
were sealed with butyl rubber stoppers and aluminum 
crimp caps and placed in an incubator at 39°C for 24 
h in a simulative incubator under anaerobic condition 
(ANKOM DAISY II, Ankom Technology Macedon, 
New York, USA).

At 4, 8, 12, 18, and 24 h of incubation, the total gas of 
each bottle was separately collected. The total gas of the 
same incubation tubes collected at different times was 
mixed. The volume of the total gas produced was deter-
mined using a glass syringe. Then, approximately 15 mL 
of gas sample was taken from the collected total gas and 
injected into gas chromatography to determine the  CH4 
concentration [79, 80], and the total  CH4 production 
was calculated as  CH4 concentration × total gas produc-
tion. Furthermore, after 24 h of incubation, fermentation 
was terminated by placing bottles on ice. After opening 
the bottles, 5 mL fermentation broths were collected and 
stored at − 80°C until for VFA analysis.
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VFAs, amino acids, milk composition measurement
The concentrations of VFAs (acetate, propionate, 
butyrate, valerate, isobutyrate, and isovalerate) were 
determined using gas chromatography (Agilent 7820A, 
Santa Clara, CA, USA) with a capillary column (AE-FFAP 
of 30 m × 0.25 mm × 0.33 μm; ATECH Technologies Co., 
Lanzhou, China) according to the method described by Li 
et al. [81]. In brief, the thawed rumen fluid samples were 
centrifuged for 10 min at 16,000 × g at 4°C. Two milliliters 
of the supernatant were mixed with 25% metaphosphoric 
acid (400 μL). After standing for 4 h at 4°C, the mixture 
was centrifuged for 10 min at 16,000 × g at 4°C. Two hun-
dred microliters of crotonic acid (10 g/L) were added to 
an aliquot (200 μL) of the supernatants and then filtered 
through a 0.45-μm filter. The injector and detector tem-
peratures were set at 200°C and 250°C, respectively. The 
column temperature was increased from 45 to 150°C at 
20°C/min and held for 5 min.

Rumen free amino acid abundance analysis was per-
formed through separation and quantification by liquid 
chromatography‒mass spectrometry (LC‒MS) (Exion LC 
AC, QTRAP 5500, AB SCIEX, Framingham, MA, USA) 
with a phase column (4.6 mm × 100 mm × 2.7 μm Infin-
ity Lab Poroshell 120 EC-C18, Agilent, Santa Clara, CA, 
USA) [82]. The MS is equipped with electrospray (ESI) 
as an ion source and is an ion mode of ESI + . The main 
parameters were as follows: curtain gas, 40 psi; collision 
gas, medium; ion spray voltage, 5500 V; temperature, 
650°C; ion source gas 1, 60 psi; ion source gas 2, 60 psi. 
The LC conditions were as follows: column temperature, 
30°C; flow rate, 0.8 mL/min; automatic sampler tem-
perature, 15°C; injection volume, 5 μL; mobile phase 
A, 0.1% acetic acid + water; mobile phase B, 0.1% acetic 
acid + acetonitrile.

Milk samples were analyzed for fat, protein, and lac-
tose using a milk composition analyzer (MilkoScan FT1, 
FOSS, Denmark).

DNA extraction and 16S rRNA gene sequencing
Total DNA was extracted from rumen fluid samples of 
99 young goats and 25 lactating goats (HAL: n = 13, LAL: 
n = 12; Fig.  1) using the QIAamp DNA Stool Mini kit 
(QIAGEN, Germany) according to the manufacturer’s 
protocol. The DNA concentration was measured with a 
Nanodrop-2000 (Thermo Fisher Scientific, USA), and 
the quality was assessed by 1% agarose gel electropho-
resis. Bacterial 16S rRNA gene fragments (V3-V4) were 
amplified from the extracted DNA using the forward 
primers 338F (5′-ACT CCT ACG GGA GGC AGC AG-3′) 
and the reverse primer 806R (5′-GGA CTA CHVGGG 
TWT CTAAT-3′). All amplicons were sequenced using 
the paired-end (2 × 300 bp) method on a MiSeq platform 
(Illumina, USA) following standard protocols [83].

The raw sequences were merged with FLASH 
(v1.2.11) [84] and quality filtered with fastp (0.19.6) 
[85]. Sequences were imported into QIIME2 v2021.8 
for demultiplexing and the construction of an amplicon 
sequence variant (ASV) table using DADA2 [86]. Bacte-
rial 16S ASVs were assigned a taxonomy using the SILVA 
database (version 138) as the reference. The relative 
abundance of a taxon in the sample was the fraction of 
the taxon observed in the ASV table relative to the sum 
of all observed taxa corresponding to the sample in the 
ASV table. Alpha diversity indices, including the Sobs, 
ACE, Chao1 richness estimate, and Shannon diversity 
index, were calculated using QIIME2, and analyzed at 
the ASV level. Principal coordinate analysis (PCoA) was 
performed based on Bray‒Curtis distance, and statistical 
significance was determined using analysis of similarities 
(ANOSIM) with 999 permutations at the ASV level. Taxa 
with relative abundance ≥ 0.1% for downstream analysis 
of correlation and comparison.

Metagenome sequencing
DNA extract of HADG and LADG (n = 8 each group) was 
fragmented to an average size of approximately 400 bp 
using Covaris M220 (Gene Company Limited, China) for 
paired-end library construction. Individual sequencing 
libraries were prepared using the TruSeqTM DNA Sam-
ple Prep Kit (Illumina, San Diego, CA, USA). Metagen-
ome library sequencing was performed on an Illumina 
HiSeq4000 platform (150 bp paired-end sequencing; Illu-
mina Inc., San Diego, CA, USA).

Adapter sequences were trimmed off from the paired-
end reads using SeqPre (v1.1). Low-quality reads (qual-
ity scores < 20 or length < 50 or having N bases) were 
removed using Sickle (v1.33). Host reads were filtered 
by aligning reads against the Capra hircus genome with 
BWA (v0.7.9a) and removing reads with high-scoring 
alignments host. These high-quality reads were then 
assembled into contigs using Megahit (v1.1.2). The 
assembled contigs were subjected to prediction of open 
reading frames (ORFs) using MetaGeneMark (v2.10) 
[87]. Non-redundant contigs were identified using CD-
HIT (v4.6.1) at 95% sequence identity and 90% coverage 
[88]. The quality-filtered sequence reads were mapped 
to the representative sequences with 95% identity using 
SOAPaligner (v2.2.1) [89], and the gene abundance in 
each sample was calculated as reads per kilobase per mil-
lion mapped reads (RPKM).

Representative sequences of non-redundant gene cata-
log were aligned to the NCBI NR database using Dia-
mond (v0.8.35) for taxonomic annotations using the 
Best-hit method [90]. KEGG annotation was conducted 
using Diamond against the Kyoto Encyclopedia of Genes 
and Genomes database (v94.2). Carbohydrate-active 
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enzyme annotation was conducted using hmmscan 
against the CAZy database [91]. All these databases had 
an E-value cut-off of  1e−5 while annotating ORFs.

Analysis of rumen metabolome
The rumen fluid samples of young goats were thawed at 
4°C and extracted using methanol/acetonitrile (1:1, v/v) 
buffer at 1:2 of sample: buffer. The mixtures were vor-
texed for 30 s, and then extracted in an ultrasonic bath 
(Kunshan Ultrasonic Instrument Co. Ltd., China) at 5°C 
with an ultrasonic frequency of 40 kHz for 30 min and 
incubated at − 20°C for 30 min. After centrifugation at 
13,000 × g for 15 min at 4°C to precipitate the protein, the 
supernatants were transferred and dried using a vacuum 
evaporator. The concentrated product was resuspended 
in 100 μL of water/acetonitrile (1:1, v/v), and then sub-
jected to LC‒MS analysis using an UHPLC system 
(Q-Exactive, Thermo Fisher Scientific, USA). Quality 
control was performed via a pooled QC sample by mixing 
equal volumes (20 μL) of each sample. Chromatographic 
separations were performed on an ACQUITY UPLC 
HSS T3 column (100 mm × 2.1 mm, 1.8 μm) (Waters Co., 
USA). The column temperature was maintained at 40°C, 
and the injection volume was 2.0 μL. Eluent A was pre-
pared by mixing water/acetonitrile (5:95, v/v), and eluent 
B was prepared by mixing acetonitrile/2-propanol/water 
(47.5:47.5:5, v/v/v). The mass spectrometric data in both 
positive and negative modes were collected using an elec-
trospray ionization source.

The LC‒MS data were processed using Progenesis QI 
software to extract raw peaks, filter and calibrate baseline, 
align peaks, deconvolute, identify peaks, and integrate 
peak areas. Rumen metabolite that was present in < 50% 
of samples or with a relative standard deviation > 30% 
were removed [92]. The metabolites were annotated into 
“carbohydrates and carbohydrate conjugates,” and “amino 
acids, peptides, and analogs” (subclass) using the human 
metabolome databases [93] for downstream analysis.

Construction of microbial co‑occurrence networks based 
on random matrix theory
Microbial co-occurrence networks were constructed 
using a random matrix theory (RMT)-based pipeline 
with default parameters as described by Deng et al. [94] 
to identify microbial interactions. Briefly, the data matrix 
of standardized relative abundance, multiplied by  106 to 
satisfy the requirements of the pipeline, was uploaded to 
construct the network with default settings, including (1) 
the ASVs detected in ≤ 50% of all samples were excluded 
due to a drastic effect of ASV sparsity on the precision 
and sensitivity of network inference [95]; (2) only filling 
with 0.01 in blanks with paired valid values. The fast-
greedy modularity optimization procedure was used 

for module separation. After modules were determined, 
eigengene analysis was used to reveal higher-order 
organizations in the network structure [94, 96]. In eigen-
gene analysis, each module is represented by its singular 
value decomposition of the abundance profile called the 
module eigengene [96]. The within-module degree (Zi) 
and among-module connectivity (Pi) were calculated and 
plotted to generate a scatter plot for each network. The 
relationship between module-based eigengenes and envi-
ronmental traits was analyzed using Pearson correlation 
coefficients. The visualization of the network structure 
was performed using Cytoscape v3.8.0. In this study, we 
used the simplified classification as follows: (i) periph-
eral nodes (Zi ≤ 2.5, Pi ≤ 0.62), which had only a few links 
and almost always to the nodes within their modules, 
(ii) connectors (Zi ≤ 2.5, Pi > 0.62), and (iii) module hubs 
(Zi > 2.5, Pi ≤ 0.62). Species with either a high value of Zi 
or Pi were generalists. These included module hubs, i.e., 
highly connected species linked to many species within 
their own module, and connectors highly linked to sev-
eral modules. (iv) Network hubs or supergeneralists 
(Zi > 2.5, Pi > 0.62), acted as both module hubs and con-
nectors [35]. These connectors, module hubs, and net-
work hubs of the microbial network may play keystone 
roles in the microbial communities, which were called 
keystone species in this study.

Construction of random forest classifier
The random forest package in R was used for the ran-
dom forest analysis [97], with the rumen fluid bacteria, 
rumen metabolites, and ADG of young goats (HADG 
and LADG, HMP and LMP) being used as the inputs of 
the random forest model to classify high or low ADG 
goats, and/or predict milk yield in adult goats. Each 
genus, ASV from 16S rDNA sequence data (relative 
abundance ≥ 0.1%), metabolite from metabolome data, 
and each VFA were considered as a feature. The machine 
learning design was performed according to measure the 
description by Verhaar et al. [98]. To present overfitting, 
we used a nested cross-validation design in perform-
ing these models. In each of the 30 iterations, the data-
set was randomly split into a test set containing 30% of 
the subjects and a training set with the remaining 70%. 
Within the training set, fivefold cross-validation was 
performed to optimize the model hyperparameters. The 
resulting model was evaluated on the test set, which 
yielded an area under the receiver-operator curve (AUC). 
These were recorded for each iteration and were aver-
aged across 30 iterations. The random forest analysis was 
implemented in R using the randomForest package with 
default parameters. ROC curve results were plotted man-
ually by the true positive rate against the false positive 
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rate. ROC curves were constructed, and the AUC was 
used to designate the ROC effect.

Statistical analysis
The 16S rDNA sequence data (rumen microbial alpha 
diversity, phyla, families, and genera) and metabolome 
data (KEGG pathways, KEGG enzymes, CAZymes, and 
rumen archaea) were compared between the two com-
pare groups (HADG vs LADG, HAL vs LAL) which were 
compared using the Wilcoxon rank-sum test with the 
FDR adjusted p value < 0.05 considered significantly dif-
ferent. Phenotypic data (milking traits, and rumen VFAs) 
were compared between the two groups using t test, and 
p value < 0.05 was considered significant. Each metabolite 
from rumen metabolome data was compared using the 
Wilcoxon rank-sum test between two groups, with the 
FDR adjusted p value < 0.05, and the variable importance 
in projection (VIP) from orthogonal partial least squares 
discriminant analysis > 1 being considered significantly 
different metabolites.

Correlation analysis between rumen bacterial taxa, alpha 
diversity indices, rumen VFAs, AAs, and growth perfor-
mance traits (n = 99) was performed using Spearman’s 
rank correlation, with coefficient >|0.2|, p value < 0.05 con-
sidered significant. Correlation analysis between ADG-
related bacteria and metabolome profiles, ADG-related 
ASV and KEGG pathways (n = 16) was performed using 
Spearman’s rank correlation, with coefficient >|0.4|, as well 
as p value < 0.05 that was considered significant. Pairwise 
correlations (Spearman’s correlation, p < 0.05) were used to 
generate genus-level co-occurrence networks.
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