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Abstract 

Background Goat is an important livestock worldwide, which plays an indispensable role in human life by provid‑
ing meat, milk, fiber, and pelts. Despite recent significant advances in microbiome studies, a comprehensive survey 
on the goat microbiomes covering gastrointestinal tract (GIT) sites, developmental stages, feeding styles, and geo‑
graphical factors is still unavailable. Here, we surveyed its multi‑kingdom microbial communities using 497 samples 
from ten sites along the goat GIT.

Results We reconstructed a goat multi‑kingdom microbiome catalog (GMMC) including 4004 bacterial, 71 archaeal, 
and 7204 viral genomes and annotated over 4,817,256 non‑redundant protein‑coding genes. We revealed patterns 
of feeding‑driven microbial community dynamics along the goat GIT sites which were likely associated with gastro‑
intestinal food digestion and absorption capabilities and disease risks, and identified an abundance of large intestine‑
enriched genera involved in plant fiber digestion. We quantified the effects of various factors affecting the distribution 
and abundance of methane‑producing microbes including the GIT site, age, feeding style, and geography, and identified 
68 virulent viruses targeting the methane producers via a comprehensive virus‑bacterium/archaea interaction network.

Conclusions Together, our GMMC catalog provides functional insights of the goat GIT microbiota through microbi‑
ome‑host interactions and paves the way to microbial interventions for better goat and eco‑environmental qualities.
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Background
The goat (Capra hircus) is an economically important 
livestock animal across the world [1, 2] and plays an 
indispensable role in human life by providing meat, milk, 
fiber, and pelts [3]. Today, about 1000 goat breeds and 
more than one billion goats are kept globally according to 
the Food and Agriculture Organization (FAO) of United 
Nations [4]; among all countries, China ranks among the 
highest in the world with about 140 million goats (http:// 
www. fao. org/ corp/ stati stics/ en/).

Microbial consortia in the herbivore gastrointesti-
nal tract (GIT) have important functional roles for their 
ruminant hosts; for example, forage grass, hay, corn, and 
silage could be first processed by the rumen microbiota 
and then utilized by the hosts [5]. Previous studies had 
focused on lignocellulose breakdown and their relation to 
rumen microbiota [6, 7], but recent studies showed that 
GIT microbiota could have significant effects in the over-
all food digestion and nutrient absorption [8–10]. In our 
study in buffalo, we reported that the cellulose-digesting 
flora changed along the digestion of buffalo gastrointes-
tinal tract [10]. It is thus conceivable that the microbial 
compositions are different at different GIT sites and often 
associate with the functions of the latter. In addition to 
the GIT sites, other factors are known to contribute sig-
nificantly to host-associated microbiomes, including age 
[11], feeding style [12], geographical location [13], and 
host species [10, 14–17].

A useful strategy to explore novel microbial linages is 
metagenomic next-generation sequencing (mNGS) on 
environmental samples, followed by the reconstruction 
of metagenome-assembled genomes (MAGs). This strat-
egy has been recently used to reconstruct MAGs from 
pig [18], chicken [19, 20], mouse [21], cattle [22], buffalo 
[10], ruminants [9], and human [23], which offered the 
researchers the opportunity for quickly accessing these 
unexplored microbiomes and revealing functional inter-
actions between the microbial ecology and the GIT sites 
of interest. However, despite a few studies on individual 
GIT sites [7, 24, 25] or using a few animals [9], systematic 
exploration of the microbial ecology across all goat GIT 
sites with a large number of goats is still unavailable.

In this work, we present a comprehensive survey (497 
samples) on the microbial ecology covering different GIT 
sites, ages, feeding styles, and geographical locations 
from 268 goats. We submitted these samples for mNGS 
and generated ~ 3  Tb of raw sequence data. We recon-
structed a total of 4075 bacterial and archaeal genomes 
metagenome-assembled genomes (MAGs) and 7204 
viral genomes, and annotated 4,817,256 non-redundant 
protein-coding genes. We found that 43.71% (n = 1781) 
of the MAGs and 90.91% (n = 6549) of the viral genomes 
were novel under the threshold of 95% average nucleotide 

identity (ANI) with public genomic datasets, and 20.70% 
(n = 997,417) of the proteins had no homologs in public 
protein databases (eggNOG and CAZyme databases), 
indicating novelty of our datasets. Through comparative 
metagenomic analysis, we identified known and novel 
associations between microbes and the goat GIT sites 
and investigated the contributions of environmental and 
host factors to the microbial diversity. We constructed a 
comprehensive virus-bacterium/archaea interaction net-
work and identified 68 lytic viruses targeting the meth-
ane-producing species. Together, we filled the gap in 
goat microbial ecology research by providing catalogs of 
multi-kingdom microbial (bacterial, archaeal, and viral) 
genomes and encoded-proteins. We believe these results 
and resources will facilitate further studies on functional 
and/or phenotypical impacts of microbiota in goat and 
related ruminants, and pave the way to microbial inter-
ventions for better goat production and eco-environmen-
tal quality.

Methods
Sample collection
In total, 497 samples were collected from 268 goats, 
including 259 intestine content samples from nine sites 
along the gastrointestinal tract (GIT) including rumen, 
reticulum, omasum, abomasum, duodenum, jejunum, 
ileum, cecum, and colon (Fig.  1a) and 238 rectum fecal 
samples (Table S1). The 259 content samples were taken 
from 30 slaughtered adult goats in Guangxi province, 
China (Table S1). The 238 rectum fecal samples were 
taken from the 238 live goats of three developmental 
stages (1, 6, and 12  months old; Table  S3), two feeding 
styles (indoor feeding and grazing; Table  S4), and four 
geo-locations (Yunnan, Sichuan, Guangxi, and Hainan 
provinces of China; Table S5). Of note, the nine GIT sites 
can be grouped into three broader sections, including 
stomach (rumen, reticulum, omasum, abomasum), small 
intestine (duodenum, jejunum, ileum), and large intes-
tine (cecum, colon). Details of the samples are given in 
Table S1. All samples were immediately frozen after col-
lection in liquid nitrogen and stored at − 80 °C until DNA 
extraction.

DNA extraction, library construction, and metagenomics 
sequencing
Three grams of each sample was taken for DNA extrac-
tion. DNA was extracted by a bead-beating method using 
a mini-bead beater (Biospec Products; Bartlesville, USA), 
followed by phenol–chloroform extraction [29]. The 
total DNA was precipitated with ethanol, and the pellets 
were suspended in 50 μL of Tris–EDTA buffer (Vazyme, 
Nanjing, China). DNA was quantified using a Nano-
Photometer® (IMPLEN, CA, USA) following staining 
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using a Qubit® 2.0 Flurometer (Life Technologies, CA, 
USA). DNA samples were stored at − 80 °C until further 
processing.

Library preparation was performed according to the 
TruSeq DNA Sample Preparation Guide (Illumina, 
15,026,486 Rev. C) method and procedure using 500 ng 
DNA as template. Qualified libraries were selected and 

subjected to the Illumina NovaSeq 6000 for pair-ended 
sequencing with read length of 150 base pairs (PE150).

Estimation of numbers of microbes in different GIT 
sections
We adopted a method to estimate the numbers of each 
bacteria cell in different GIT sections of goat based on 
qPCR using a standard curve. Briefly, to construct a 
standard curve for the bacteria, we cloned a conserved 
region (27f/1492r) [30] of the 16S rRNA gene using Q5 
High-Fidelity DNA Polymerase (New England Biolabs, 
Massachusetts, USA) according to the reported prim-
ers (16S clone primer: forward-AGA GTT TGA TCC TGG 
CTC AG reverse-TAC GGC TAC CTT GTT ACG ACTT) 
[31]. Cloned fragments were purified by OMEGA Gel 
Extraction Kit (Omega Bio-Tek, USA) and ligated to 
pEASY-Blunt simple vector (TransGen Biotech, Beijing, 
China; M13 primer: forward-TGT AAA ACG ACG GCC 
AGT  reverse-CAG GAA ACA GCT ATG ACC ).

A standard curve and an equation were then generated 
by linear regression, as detailed below:

After ligating the 16S sequence into the pEASY-Blunt 
vector, we transformed Escherichia coli and selected 
positive clones. Positive transformants were identified by 

Sanger sequencing. Subsequently, we cultured E. coli har-
boring the positive plasmids and extracted the pEASY-
16S plasmids using a kit (Endo-Free Plasmid Mini Kit I 
D6948, OMEGA). After a serial dilution (twofold) of the 
plasmids, PCR amplification was performed to obtain the 
CT value. The copy number was then calculated using 
the formula:

By calculating the copy number, we plotted the CT 
value on the x-axis and the logarithm of copies/μl on the 
y-axis, fitting a standard curve. The equation of the fitted 
standard curve was:

When the  R2 (amplification efficiency = 2, standard 
curve equation is: y =  − 0.3408x + 12.079) of the standard 
curve (Fig. S10) is more than 0.99, it will be considered 
acceptable for quantitative analysis (Bacteria quantifica-
tion primer [32]: forward-ACT CCT ACG GGA GGCAG 
reverse-GAC TAC CAG GGT ATC TAA TCC).

The DNA extracted from the GIT samples were 
used as templates for qPCR analysis. Real-time PCR 
was performed using the7500 Real-Time PCR System 
(Applied Biosystems, USA) detection system with fluo-
rescence detection of SYBR green dye. Components 
of qPCR included the 16S forward and reverse prim-
ers mentioned above (10um/ul), 50 ng DNA samples, 
2 × AceQqPCR·SYBR Green Master Mix 10ul (Vazyme, 
Nanjing, China) and DNase-free water to 20 μ L for 40 
cycles (denaturation at 95℃ for 30 s, annealing at 60℃ 
for 15 s, and extension at 72℃ for 35 s, with a total of 
40 cycles). The CT values of the bacteria in the samples 

Sample concentration (ng/µl)× 10− 9× 6.02× 1023/bp× 660 = copies/µl

y = −0.3408x + 12.079 with an R2 = 0.9961

(See figure on next page.)
Fig. 1 Reconstruction of the multi‑kingdom microbial genomes of the goat gastrointestinal tract (GIT). a Sample collection along the goat 
GIT. A graphical representation of goat is shown with its GIT highlighted. The arrows along the GIT indicate the flow of food. The numbers 
in the parentheses next to the GIT site names indicate the samples obtained for this study. The GIT sites were divided into four sections in this 
study, namely stomach (rumen, reticulum, omasum, and abomasum), small intestine (duodenum, jejunum, and ileum), large intestine (cecum 
and colon) and rectum (fecal samples). The numbers beside the section names indicate the estimated numbers of microbes per nanogram 
DNA. b The rarefaction analysis of the unique number of bacterial/archaeal MAGs and viral genomes (Y‑axis) as a function of sequenced samples 
(X‑axis). The rarefaction curves for bacterial, archaeal, and viral genomes are shown in blue, green, and red, respectively (“Methods”). c Composition 
and quality of the genomes in the goat multi‑kingdom microbiome catalog (GMMC), including 4004 bacterial and 71 archaeal MAGs and 7204 viral 
genomes. For GMMC MAGs, the quality criteria are defined by Bowers et al. [26]; complete: ≥ 90% completeness and ≤ 5% contamination according 
to CheckM [27] and at least 18 tRNA, high quality: ≥ 90% completeness and ≤ 5% contamination, medium quality: ≥ 80% completeness and ≤ 10% 
contamination, low quality: quality score (defined as the estimated completeness of a genome minus five times its estimated contamination) ≥ 50. 
For viral genomes, the quality is evaluated using CheckV [28]. d Contig N50 and N90 lengths (in bp) of GMMC genomes. e The mapping rates 
of clean reads to the GMMC genomes. The Wilcoxon rank sum test was used to show the statistical significance between groups; *** P < 0.001. f 
Percentages of novel bacterial and archaeal MAGs in GMMC as compared with public datasets at 95 and 99% average nucleotide identity (ANI) 
(“Methods”). g Mapping rates of metagenomic clean reads to the GMMC genomes as compared public datasets including the reference microbial 
genomes from the NCBI (BFAP, the combination of reference genomes including bacterial, fungal, archaeal, and protozoan reference genomes 
from the NCBI database) and MAGs of selected model organisms. The Wilcoxon rank sum test was used to show the statistical significance 
between groups; **** P < 0.0001)
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were detected by qPCR, and the bacterial copy numbers 
were converted by substituting into the standard curve 
equation.

Please consult Table S9 for the resulting equation of the 
standard curve, the CT values, and numbers of bacteria 
in each GIT section.

Fig. 1 (See legend on previous page.)
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Quality control and removal host‑ and food‑associated 
genomes
We submitted all samples for pair-end metagenomic and 
obtained a total of ~ 3 Tb of raw reads. Raw reads were 
trimmed by Trimmomatic (v 0.39) [33] with the options 
“ILLUMINACLIP: TruSeq2-PE. fa:2:30:10 SLIDING-
WINDOW:15:30 MINLEN:110 TRAILING:30 AVG-
QUAL:30,” followed by removal of reads that could be 
aligned to the host (Capra hircus, GCF_001704415.1) 
[34] or food (Zea mays, GCF_000005005.2; Med-
icago truncatula, GCF_000219495.3 and Glycine max, 
GCF_000004515.5) [35–37] genomes using Bowtie2 
(v 2.3.5.1) [38]. Overall, a median of ~ 1.3G bases were 
removed from each sample. The remaining paired “clean 
reads” were then used for further analyses.

Generation and quality assessment 
of metagenome‑assembled genomes (MAGs)
Unless otherwise stated, default parameters were used for 
metagenome assembly. In brief, each sample was assem-
bled using metaSPAdes (v 3.13.0) [39] with the options 
“-k 35,45,55,65,75,85,95,105 -t 20 -m 180” and MEGA-
HIT (v 1.2.8) [40]. Co-assemblies were also performed on 
combined samples according to their respective groups 
(i.e., samples of the same GIT site, age, feeding style, or 
geo-location) by using MEGAHIT (v 1.2.8) [40].

BWA-MEM (v 0.7.17) [41] was used to map clean reads 
back to the filtered assembly, and Samtools (v 1.9) [42] 
was used to convert the aligned results to BAM format. 
A script “jgi_summarize_bam_contig_depths” from the 
MetaBAT2 (v 2.12.1) [43] package was used to calculate 
coverage from the resulting BAM files. Metagenomic 
binning was applied to both the single-sample assemblies 
and the co-assemblies using MetaBAT2. The single-sam-
ple assembly binning produced a total of 24,122 bins, and 
the co-assembly binning produced a further 18,588 bins. 
All 42,710 bins were combined and dereplicated using 
dRep (v 2.3.2) [44]. The dRep dereplication workflow was 
used with options “dereplicate -nc 0.1 -p 20 -comp 80 
-con 10 -str 100 -strW 0,” and this workflow also requires 
HMMER (v 3.3) [45], PRODIGAL (v 2.6.3) [46], pplacer 
(v 1.1.alpha19) [47], ANIcalculator (v 1) [48], MUM-
mer (v 3) [49], and Centrifuge (v 1.0.4) [50]. In prefil-
tering, bins assessed by CheckM (v 1.1.1) [27] as having 
both completeness ≥ 80% and contamination ≤ 10% were 
retained for pairwise dereplication comparison. Only the 
highest scoring MAG from each secondary cluster was 
retained in the dereplicated set. For our dataset, 4075 
dereplicated MAGs were obtained.

Identification and quality evaluation of viral genomes
Viral genomes were identified by a bioinformatics pipe-
line similar to Luis et  al. [51]. Briefly, after assembly, 

contigs of ≥ 1.5 kb were used to identify viral sequences 
using VirSorter2 (v 2.1) [52] with the options ‘–include-
groups "dsDNAphage, ssDNA" –min-score 0.7’ and 
VirFinder (v 1.1) [53] with default parameters. Contigs 
were identified as viruses by both VirSorter2 (v 2.1) [52] 
and VirFinder (v 1.1) [53] (score ≥ 0.6 and p < 0.05). The 
completeness of the viral contigs was estimated using 
CheckV (v 0.8.1) [28]; 12,355 viral contigs with > 50% 
completeness were clustered into species-level viruses 
operational taxonomic units (vOTUs) on the basis of 
95% ANI and 85% alignment fraction (AF) of the shorter 
sequence similar to Nayfach S et  al. [54]. In total, 7204 
putative viral genomes of length > 5kb were identified.

Taxonomic assignments of the MAGs and viral genomes
Taxonomic assignments of the 4075 bacterial/archaeal 
MAGs were performed using the GTDB-Tk (v 1.2.0) [55] 
using the “classify_wf” workflow. The results were visual-
ized in GraPhlAn (v 1.1.3) [56] as a phylogenetic tree.

To taxonomically classify the viral genomes, VirusTaxo 
(https:// github. com/ omics- lab/ Virus Taxo, downloaded at 
19th April, 2022) [57] was used to compare the nucleo-
tide sequences against those in the prebuilt database of 
VirusTaxo and assign a genome to a known viral genus 
at an entropy index threshold of < 0.5. A Demovir script 
(https:// github. com/ fearg alr/ Demov ir; downloaded at 
6th January, 2022) was then used to predict family and 
order ranks for the remaining genomes by searching for 
viral marker genes at the amino acid level.

We referred the 4004 bacterial and 71 archaeal MAGs 
and 7204 viral genomes as to the goat multi-kingdom 
microbiome catalog (GMMC).

Mapping clean reads to GMMC and reference microbial 
genomes from selected model organisms
To show the GMMC genomes could improve the coverage 
of goat microbial reads, public microbial genome data-
sets were first downloaded, including the MAGs from the 
buffalo GIT [10], ruminants GIT [9], goat feces [24], cat-
tle rumen [22], pig gut [58], human gut [23], chicken gut 
[59], and a set of genomes combined from the bacterial, 
archaeal, fungal, and protozoan reference genomes from 
the NCBI RefSeq [60] (referred as to BFAP). Then BWA-
MEM (v 0.7.17) [41] was used to map the clean reads to 
these public datasets and the GMMC genomes. A map-
ping rate was calculated for each sample as the percentage 
of clean reads mapped to each of the datasets by Samtools 
(v 1.9) [42] with the “flagstat” option.

Comparing the GMMC genomes with the sequences 
in public datasets
To reveal the novelty of the GMMC bacterial and 
archaeal MAGs, fastANI (v 1.1) [61] was used to calculate 

https://github.com/omics-lab/VirusTaxo
https://github.com/feargalr/Demovir
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the ANI between the GMMC MAGs and the sequences 
in the abovementioned databases. Different ANI thresh-
olds were used in this study, including 95 and 99%.

The fastANI tool (v 1.1) [61] was also used to calcu-
late the ANI between the GMMC viral genomes and the 
sequences in several public viral databases including the 
Gut Virome Database (GVD) [62], Metagenomic Gut 
Virus (MGV) [54], Gut Phage Database (GPD) [51], and 
NCBI viral Reference genomes, Release 201 (Fig. S2a, 
downloaded at 6th July, 2020). Different ANI thresholds 
were used in this study, including 95 and 99%.

Gene annotation and functional characterization 
of non‑redundant proteins
All contigs were annotated for protein-coding genes 
using MetaGeneMark (v 3.38) [63] and Prokka (v 1.14.5) 
[64] with the options “–metagenome –kingdom Bacteria 
–force –norrna –notrna –cpus 20.” A total of 4,817,256 
non-redundant protein-coding genes were obtained by 
CD-HIT (v.4.8.1) [65] with the option “-c 0.95 -aS 0.90.” 
Salmon (v 0.10.1) [66] was used to estimate the coverage 
of genes.

To annotate these genes, HMMER (v 3.3) [45] was 
used to compare the protein sequences with those in the 
Carbohydrate-Active Enzymes database (CAZymes) [67] 
with default parameters and a threshold of p < 0.05. egg-
NOG-mapper (v 0.12.7) was also used to annotate these 
genes against the eggNOG database (v 5.0) [68].

tRNA genes were annotated using tRNAscan-SE (v 2.0) 
[69], and 16S rRNA genes were predicted using barrnap 
(https:// github. com/ tseem ann/ barrn ap, v 0.9).

Calculation of the relative abundance for GMMC genomes
To calculate the relative abundance of each GMMC 
genome, clean reads of each sample were mapped to the 
GMMC genomes using BWA-MEM (v 0.7.17) [41] with 
default parameters. After converting the resulted SAM 
files to BAM format using Samtools (v 1.9) [42], the 
coverage of each genome was determined. An in-house 
R script was used to calculated transcripts per million 
(TPM) for each genome. The relative abundances for 
higher taxonomic levels such as genus, family, and order 
were also determined by summing up the abundances of 
their daughter clades according to the phylogenetic tree 
provided by GTDB-Tk.

Rarefaction analyses of the GMMC genomes 
and non‑redundant protein‑coding genes
An in-house R script was used to perform the rarefac-
tion analyses [70] for the bacterial, archaeal, and viral 

genomes and the non-redundant protein-coding genes, 
respectively. Briefly, a threshold of TPM > 100 was used 
to determine whether a genome or gene was present in 
a sample. n samples were randomly selected from the 
497 samples and the unique genomes and genes were 
counted; here n ranged from 1 to 497 and the sampling 
for each n was repeated 100 times. Then the numbers of 
unique genomes and genes were plotted as a function of 
the sample size (i.e., n using a R package ggplot2 [71].

Analysis of microbial diversity between sample groups 
and effects of host and environmental factors
To calculate and visualize differences among groups (e.g., 
different GIT sites, ages, feeding styles, and geographi-
cal locations), a non-metric multidimensional scaling 
(NMDS) method and ANOSIM analysis were used to 
compare the microbial diversities between groups [18, 
59]. They both used the relative abundance profiles of the 
GMMC genomes and were implemented in the R pack-
age “vegan” (v 2.5.7) [72].

The permutational multivariate analysis of variance 
(PERMANOVA) [73] implemented in the R package 
“vegan” was used to determine the impacts of various 
host and environmental factors to the microbial diversi-
ties of the GMMC genomes (single- and multiple-factor 
analysis), including the GIT site, age, feeding style, and 
geography.

Identification of differentially abundant taxa 
between groups
The linear discriminant analysis (LDA) implemented 
in the LEfSe tool [74] was used to identify differential 
taxa between groups of samples. The LDA score > 2 and 
p < 0.05 were used as the cutoff for selecting the differen-
tial taxa. Wilcoxon test was used to validate the statistical 
significance in the relative abundances (TPMs) of the dif-
ferential taxa between groups.

Trend analysis of F/B ratio
To identify trend clusters of the F/B ratio (Firmicutes_all 
to Bacteroidota, Firmicutes_all is the combination of Fir-
micutes, Firmicutes_A, Firmicutes_B and Firmicutes_C, 
also called Bacillota) along the goat GIT sites, a R package 
Mfuzz [75] was used to cluster the 23 goats that at least 
had samples from seven out of nine GIT sites. Two clusters 
were obtained that could clearly separate the F/B ratios.

Lifestyle and host analysis of the GMMC viruses
DeePhage (v 1.0) [76] was used to predict the lifestyles of 
the GMMC viruses. According to the DeePhage score, 
the viruses were classified as virulent/lytic (score ≥ 50) or 
temperate (score < 50). To predict viral-host relationships 

https://github.com/tseemann/barrnap
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between the 7204 viral and 4075 bacterial/archaeal 
GMMC genomes, the following four methods were used.

(1) CRISPR-spacer matches. CRISPR spacers of the 
bacterial/archaeal GMMC genomes were identi-
fied using CRT (v 1.2) [77] and MinCED (v 0.4.2, 
https:// github. com/ ctSke nnert on/ minced). The 
union of the CRISPR spacers was then aligned to 
the GMMC viral genomes using blastn (v 2.5.0) [78] 
with options of “-word_size 10 -dust no -max_tar-
get_seqs 10,000.” Matches with mismatch ≤ 1 and 
alignment length > 95% spacer length were retained.

(2) Nucleotide sequence similarity searches. Blastn was 
used to compare the GMMC viral and bacterial/
archaeal genomes. A putative viral-host relationship 
could be established if their nucleotide sequences 
shared > 90% identity over > 500 bp similar to Nay-
fach et al. [79].

(3) Binning results. A viral-host relationship could also 
be established if the viral contig was binned into the 
MAGs based on the MetaBAT2 binning results.

(4) k-mer similarities. A VirHostMatcher (v 1.0.0) [80] 
tool by default parameters (k-mer length = 6bp) 
was used to predict the viral-host relationships 
based on k-mer similarities between the viral and 
host genomes. A virus was predicted to have host 
relationship with MAGs if the VirHostMatcher 
score ≤ 0.25; up to five hosts would be taken from 
the predicted results.

Statistics
In addition to the aforementioned software, we utilized R 
packages ggplot2 [81], UpSetR [82], pheatmap [83], and 
ggpubr [84]; and adjusted the phylogenetic trees by using 
the itol [85].

Unless otherwise specified, the Wilcoxon rank sum 
test model was used to show the statistical significance 
between groups, and the statistical data were derived 
from 497 goat gut microbiome sequencing data obtained 
through our sequencing.

Results
Construction of the goat multi‑kingdom microbiome 
catalog (GMMC)
To provide a comprehensive overview of the microbes 
associated with the gastrointestinal tract (GIT) of goat, 
we collected a total of 497 samples (Table S1) from ten 
GIT sites, including 259 content samples from nine GIT 
sites in three sections, namely stomach (rumen, reticu-
lum, omasum, abomasum), small intestine (duodenum, 
jejunum, ileum), and large intestine (cecum, colon; 
Table  S2), and 238 rectum fecal samples that spanned 

three developmental stages (1-, 6-, and 12-month old; 
Table  S3), two feeding styles (indoor feeding and graz-
ing;  Table  S4), and four geographical locations (Yun-
nan, Sichuan, Guangxi and Hainan provinces of China; 
Table  S5). We estimated the numbers of each bacteria 
cell were  107 ~  109/g  106 ~  107/g and  107 ~  109/g for the 
stomach, small intestine, and large intestine, respectively 
(Fig. 1a).

After removing vector sequences, low-quality bases, 
short reads, and the host and food genomes, we obtained 
in total 2.7 Tb clean data with on average 36,730,204 
reads and 5,485,416,272 bases per sample (Table S6). 
We assembled the clean reads and grouped the obtained 
contigs into a total of 42,710 bins (also known as metage-
nome-assembled genomes, MAGs). Then we derepli-
cated the MAGs at an ANI of 99%, filtered out those 
of ≤ 80% completeness or contamination of ≥ 10%, and 
obtained a total of 4,075 MAGs longer than 200kb. We 
annotated them using GTDB-Tk [55] and identified a 
total of 4004 bacterial and 71 archaeal MAGs (Table 
S7). Among which, ~ 47% were of high-quality with 
completeness > 90% and contamination < 5% (Fig.  1c) 
according to the criteria defined by Bowers et  al. [86], 
and nine were 100% completeness (Table S7). 97.89% of 
the MAGs contained multiple tRNA genes (tRNA type 
number ≥ 10, Table S7) with each contained ~ 15.9 tRNA 
types. However, only 83 MAGs contained one or more 
full-length 16S rRNA gene (Table S7) and 276 MAGs 
encoded partial 16S rRNA genes, likely because that the 
short-read assemblies could not assemble such highly 
similar regions. Overall, the 4075 MAGs were on average 
2.17Mb in size (0.61 Mb ~ 7.13Mb; Table S7) with a mean 
N50 length (the sequence length of the shortest con-
tig at 50% of each MAG total length; Fig. 1d) of 43.97kb 
(4.30kb ~ 1.04Mb; Table S7); they encoded 494 to 5897 
protein-coding genes with a mean of 1,802 (Table S7). In 
addition, we also annotated a total of 12,355 putative viral 
contigs (mostly bacteriophages) using a bioinformatics 
pipeline similar to Luis et al. [51] and dereplicated them 
into 7204 non-redundant viral genomes at an ANI of 95% 
with a minimal length of 5kb. Among which, 18.86% were 
of high-quality with completeness > 90% according to a 
CheckV tool [28]. Interestingly, we did not identify any 
eukaryotic genomes using methods similar to Paul et al. 
[87], suggesting that either the eukaryotic genomes were 
very rare in our samples or our methods were not opti-
mized for recovering these genomes. Rarefaction analysis 
results suggested that we had collected enough samples 
for recovering bacterial and archaeal genomes in the goat 
GIT, as indicated by Fig. 1b and Fig. S5b that the numbers 
of non-redundant bacterial, archaeal, and viral genomes 
plateaued around 100 samples. Together, we referred 
the 4004 bacterial and 71 archaeal MAGs and 7204 viral 

https://github.com/ctSkennerton/minced
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genomes as the goat multi-kingdom microbiome catalog 
(GMMC).

To check whether the GMMC genomes could improve 
the coverage of goat GIT associated microbial genomes, 
we used them to recruit the clean sequencing reads 
and found that 81.8% of the reads could be mapped to 
the GMMC genomes, including 80.5 and 12.8% could 
be mapped to the bacterial/archaeal MAGs and viral 
genomes, respectively (Fig. 1e). The overall read mapping 
rate was significantly higher than most public microbial 
genome databases including those from the ruminants 
GIT [9], goat feces [24], cattle rumen [22], pig gut [58], 
human gut [23], chicken gut [59], and a combined data-
set of bacterial, fungal, archaeal, and protozoan reference 
genomes from the NCBI database [60] (BFAP, Methods; 
Fig. 1g).

We then analyzed the novelty of the GMMC genomes 
by comparing them with the sequences in the above-
mentioned public datasets and also annotating using the 
GTDB-Tk [55]. At ANI thresholds of 95 and 99%, 43.71% 
(n = 1781) and 87.21% (n = 3554) of the GMMC bacte-
rial/archaeal MAGs were novel respectively (i.e., they did 
not have nucleotide identities above the thresholds with 
sequences in any of the public database including GTDB 
and those used in Fig.  1g; in addition, at the same ANI 
thresholds, 90.91% (n = 6549) and 96.23% (n = 6933) of 
the viral genomes were novel as compared with several 
public viral databases including the Gut Virome Database 
(GVD) [62], the Metagenomic Gut Virus (MGV) [54], the 
Gut Phage Database (GPD) [51], and NCBI viral Refer-
ence genomes, Release 201 (Fig. S2a, downloaded at 6th 
July, 2020).

In summary, we assembled a GMMC catalog includ-
ing 4004 bacterial and 71 archaeal MAGs and 7204 viral 
genomes that better represented the goat gastrointestinal 
microbiota while contained a significant proportion of 
novel genomes.

Taxonomic and functional annotation of the GMMC genomes
We first assigned the taxonomic classifications to the 
bacterial and archaeal MAGs in the GMMC using 
GTDB-Tk [55]. Of the 4075 MAGs, all could be assigned 
to their respective kingdoms (bacterial, n = 4004; 
archaeal, n = 71) and most could be assigned to known 
taxonomy at the phylum, class, order, and family lev-
els (Fig.  2a, c). However, at the species level, only 451 
(11.07%) of the MAGs could be classified as known spe-
cies (Fig. 2c), indicating most the MAGs were previously 
unidentified (i.e., not present in the GTDB database), 
consistent with our analysis using the ANI (Fig.  1f ). At 
the phylum level, the bacterial MAGs were dominated 
by Firmicutes_A (n = 1503) and Bacteroidota (n = 1479), 
followed by Verrucomicrobiota, Proteobacteria, and 

Spirochaetota. All members of Firmicutes_A belonged 
to the class Clostridia, which included the orders Oscil-
lospirales (n = 867), 4C28d-15 (n = 281), Lachnospirales 
(n = 236), and Lachnospiraceae (n = 225). All members 
of Bacteroidota belonged to the class Bacteroidia, which 
included the orders Bacteroidales (n = 1474) and Flavo-
bacteriales (n = 5: containing only the family UBA1820). 
Species in the order Verrucomicrobiota were divided into 
three classes, Lentisphaeria (n = 180), Verrucomicrobiae 
(n = 61), and Kiritimatiellae (n = 45). All archaeal MAGs 
were known methane producers belonging to the phy-
lum Thermoplasmatota (n = 37), Halobacterota (n = 30), 
and Euryarchaeota (n = 4). It is noteworthy that our prior 
buffalo study revealed a greater count of Halobacterota 
MAGs (n = 84) compared to Euryarchaeota (n = 24) [88]. 
These findings suggest higher strain diversity within 
Halobacterota relative to Euryarchaeota among rumi-
nants. Additionally, in terms of relative abundances, we 
observed Halobacterota MAGs in only 48.89% (243/497) 
of the goat samples, while Euryarchaeota MAGs were 
present in 90.34% (449/497) of goat samples. This further 
reinforces the prevailing notion of Methanobrevibacter is 
a widely prevalent and important classification in rumi-
nant animals [89].

A ruminant GIT bacterial/archaeal genome catalog 
(the Ruminant Catalog hereafter) was recently con-
structed from multiple organisms including six goats 
[9]; we thus also compared this catalog with our GMMC 
MAGs in more details. Overall, 56.37% (n = 2297) of the 
GMMC MAGs had ANI < 95% with those in the Rumi-
nant Catalog (Fig. S3a; Table S7); among these, 1241 were 
Firmicutes (Firmicutes and Firmicutes_A) and mainly 
from the orders of Oscillospirales (53.26% out of the 1241 
MAGs), 4C28d-15 (14.75%), and Lachnospirales (14.18%) 
(Fig. S3b). Importantly, species in the orders of Oscillo-
spirales and Lachnospirales are known to have digestive 
functions [90, 91], while 4C28d-15 is known to be abun-
dant in the rumen [92]. These results suggested that our 
GMMC MAGs could significantly expand the public 
databases with functionally important microbial taxa.

We next annotated the GMMC viral genomes by using 
VirusTaxo [57] and Demovir tools (https:// github. com/ 
fearg alr/ Demov ir; downloaded at 6th January, 2022). 
And we assigned 75.67% of them to known taxonomi-
cal clades (Fig.  2b, S4); among which, 602 viruses were 
assigned to the family of Poxviridae, followed by Mimi-
viridae (n = 573), Microviridae (n = 477), and Siphoviri-
dae (n = 120). The overall taxonomic distribution was 
similar to the other metagenome-derived viral catalogs in 
humans including the GVD, MGV, and GPD.

We annotated a total of 7,645,971 protein-coding 
genes from all the GMMC genomes and dereplicated 
them into a non-redundant set of 4,817,256 genes at a 

https://github.com/feargalr/Demovir
https://github.com/feargalr/Demovir
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95% amino-acid similarity threshold using CD-HIT [65]. 
Rarefaction analysis showed that the numbers of genes 
plateaued at ~ 150 samples, suggesting our samples were 
sufficient for recovering most of these genes; similar 
trends were found for both the content and fecal samples 
(Fig. S5a). We queried their protein sequences against 
popular databases and annotated 79.27% (58.09% were 
assigned to known functions; Fig. 2d, e, f ) and 4.02% of 
them according to the eggNOG [68] and CAZyme [67] 
databases, respectively. Together, 20.70% (n = 997,417) of 
the genes had no homologs in public protein databases 
and 48.05% were not assigned to known functions by 
either database, suggesting that almost half of the pro-
teins may code for novel functions.

Microbial community dynamics along goat GIT were driven 
by diet and associated with functional burdens and disease 
risks of GIT sites
We next evaluated factors influencing the goat GIT 
microbiota at the community composition level (i.e., 
the members and their relative abundances of a com-
munity) [93], including the GIT site, geography, host 
age, and feeding style. We observed that the GIT site 
exerted the strongest effect, followed by geography, age, 
and feeding style using both the single- and multiple-
factor permutational multivariate analysis of variance 
using PERMANOVA (“Methods,” P < 0.001; Fig.  3a); we 
obtained similar trends using both methods and on both 
the bacterial/archaeal and viral genomes.

To examine whether samples from the same GIT sec-
tion, i.e., stomach, small intestine, large intestine, and 
rectum (fecal samples), could have similar community 
compositions, we performed a non-metric multidi-
mensional scaling (NMDS) analysis on between-sample 
dissimilarities (Bray–Curtis) using the relative abun-
dances of the GMMC MAGs as input. We found sig-
nificant clustering according to the GIT site (analysis of 
similarities (ANOSIM); bacterial/archaeal: R = 0.1867, 
P < 0.001; viral: R = 0.0167, P < 0.002; Fig. 3b). As shown 
in Fig. 3b, samples from the large intestine and rectum 
clustered together and were separated from those from 
the stomach, which was expected. These results sug-
gested distinctive microbial compositions at different 
GIT sections.

We then examined the microbial dynamics along 
the goat GIT in more details. Overall, Firmicutes_all 
(i.e., the combination of Firmicutes, Firmicutes_A, 
Firmicutes_B and Firmicutes_C, also called Bacil-
lota) and Bacteroidota were the two most abundant 
phyla, accounting for 51.27 and 25.82% of total rela-
tive abundances, respectively (Fig.  3c). Despite sig-
nificant between-sample variations in the microbial 
compositions, we observed that the Firmicutes_all to 
Bacteroidota ratios (F/B ratios) of the stomach samples 
remained mostly constant and were comparable within 
and between the four stomach chambers (i.e., rumen, 
reticulum, omasum, abomasum) (Fig. 3c). The F/B ratios 
started to show significant within-site fluctuations from 
the small intestine (Jejunum) and further to the down-
stream GIT sites (Fig.  3c). To explore the underlying 
contributing factors, we applied a de novo clustering 
analysis on the F/B ratio dynamics along the goat GIT 
and obtained two clusters using 23 goats that at least 
had samples from seven out of nine GIT sites (Fig. 3d). 
The cluster 1 showed relatively low and comparable F/B 
ratios in the stomach and large intestine, with a sudden 
peak in the small intestine, especially the jejunum and 
ileum. Conversely, cluster 2 showed a steady increase 
of the F/B ratio along the goat GIT (Fig. 3d). We com-
pared the diets of the two groups and found that most 
of the goats in the cluster 1 were fed with silage whereas 
most goats of cluster 2 were fed with grass (Fig. 3d and 
S6). Previous studies suggested that the Firmicutes_all 
and Bacteroidota species represented digestive versus 
absorptive capacities [94, 95]; therefore, the F/B ratio 
dynamics indicated different digestion/absorption bur-
dens along the goat GIT sites, i.e., in this case, the fer-
mented silage was absorbed in the small intestine in 
advance, whereas the grass feed was gradually absorbed 
along the intestinal tract of goats. Our results thus 
were consistent with the fact that the silage feed was 
easier to digest [96] so that only a few GIT sites were 
involved in the digestive process (hence the high F/B 
ratios), whereas the grass feed was harder to digest and 
required more GIT sites to be involved.

The two F/B ratio trends along the goat GIT were also 
associated with distinctive disease risks. We compared 
the relative abundance of different genera in the two 

Fig. 2 Taxonomic and functional annotation of the GMMC genomes. a The phylogenetic relationship among the 4004 bacterial and 71 archaeal 
MAGs in the GMMC and their taxonomic classification according to GTDB‑Tk [20]. The annotations from inside to outside represent annotations 
of species level (different colors represent different phyla), unclassified genus (in red), and unclassified species (in red). b Taxonomic among the 7204 
viral genomes, color‑coded by the viral phyla. The stars at the internal and leaf branches indicate unclassified rank by VirusTaxo and Demovir. c 
Classification rates of bacterial (right) and archaeal (left) MAGs in GTDB at different taxonomic levels. d–f Annotations of the non‑redundant proteins 
using the CAZymes (e) and eggNOG (f) databases; Venn diagram (d) shows the overlap of the annotated protein‑coding genes between eggNOG 
(green) and CAZyme (Orange); pies show the proportions of proteins annotated by these two methods (left) and the overall categories (right)

(See figure on next page.)



Page 10 of 20Cao et al. Microbiome          (2023) 11:219 

Fig. 2 (See legend on previous page.)
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clusters along the GIT sites and found that the relative 
abundance of Odoribacter and Campylobacter in cluster 
1 at jejunum increased significantly (Fig.  3e). Campy-
lobacter is a landmark genus causing enteritis [97], 
indicating increased disease risks. Conversely, the Odori-
bacter has been shown to able to effectively limit intesti-
nal inflammation [98], this indicates that the microbiota 
in the jejunal digestion site of goats has the potential role 
of resisting intestinal inflammation.

Distribution and variation of microbial taxa along the goat 
GIT
We next explored the distribution and variation in the 
annotated microbial taxa along the goat GIT in more 
details, especially those with known functions in methane 
production and cellulose digestion [99, 100]. We identi-
fied a total of 311 genera that showed significant abun-
dance variations among the four GIT sections (two-group 
Wilcoxon rank sum test, p < 0.05). Among which, all four 
methane-producing genera were differential distributed, 
including Methanomethylophilus, Methanocorpusculum, 
Methanobrevibacter_A and ISO4-G1 (Fig. 4a). Interestingly, 
Methanomethylophilus was the only genus that showed the 
highest relative abundance in the stomach group than other 
sections, whereas the other genera showed either increas-
ing abundances from stomach (lowest) to rectum (highest) 
such as the Methanocorpusculum, or varied distributions 
along the GIT such as the Methanobrevibacter_A and 
ISO4-G1 (Fig.  4a; see also Fig. S7 for their trends in the 
individual GIT sites). These results suggested that GIT sec-
tions other than the stomach were also involved in methane 
production, consistent with our previous observations in 
the buffalo GIT microbiota [10].

We also observed significant variations in the anno-
tated cellulose-digestive bacteria, including six genera of 
Prevotella, Fibrobacter, Faecalibacterium, Acetivibrio_A, 
Ruminiclostridium_E, and Paraprevotella. The first two 
genera, i.e., Prevotella and Fibrobacter, showed higher 

relative abundance in the stomach and small intestine, 
whereas the other four genera showed higher abun-
dances in the downstream sections (i.e., large intestine 
and rectum; Figs. 4a and S7). These functional bacterial 
genera reflect the trend of host-microbe interactions 
in goats, where they collectively contribute to digestion 
and absorption functions across different gastrointesti-
nal locations. For example, it has been reported that the 
Prevotella species played a pivotal role in hemicellulose 
digestion and were involved in starch, cellulose, hemi-
cellulose, and pectin conversion in Bovine rumen [101], 
whereas the Fibrobacter species were involved in cellu-
lose digestion with Prevotella species together [101, 102].

Because the cellulose digestive capabilities of the GIT 
microbiome were essential to the goat development and 
qualities, we next set out to identify novel genera that 
have putative cellulose digestive functions. We corre-
lated the abundances of the CZAyme categories involved 
in the glycoside hydrolases (GHs), i.e., enzymes related 
to cellulose digestion [103] with those of the individual 
genus. We identified 185 genera (out of the 311 differ-
ential taxa) that showed significant positive correlations 
with at least one GHs category (Pearson correlation coef-
ficient R ≥ 0.5, P < 0.05). We found that 49 out of the 185 
genera (26.5%) were reported to have cellulose diges-
tive capabilities, covering all such genera that we anno-
tated in the GMMC (Table S7), supporting the validity 
of our methods; the remaining 136 genera (73.5% out of 
185) thus were worth further investigated. Surprisingly, 
65.95% of these genera had higher relative abundance in 
the sections of the large intestine and rectum (15.68% in 
the large intestine group, 50.27% in the rectum group), 
whereas only 28.65% had higher relative abundance in 
the stomach, supporting the important role of the down-
stream GIT sections (i.e., large intestine and rectum 
group) in cellulose digestion. Further work is needed to 
experimentally validate the capacities of these genera and 
their substrate specificities.

(See figure on next page.)
Fig. 3 Microbial community dynamics along goat GIT and the influence of diet. a Factors contributed significantly to the overall microbial 
community compositions as determined by multiple‑factor analysis results using bacterial and archaeal (left) and viral (right). Horizontal 
bars represent the amount of inferred variance (adjusted R2) explained by each identified covariate. All factors were found to be significantly 
associated with gut microbial variations (P = 0.001). b Non‑metric multidimensional scaling (NMDS) analysis based on between‑sample Bray–Curtis 
dissimilarities shows the relationships among the samples from the four goat GIT sections. c Overall Firmicutes_all to Bacteroidota (F/B) ratios (top) 
and the detailed relative abundances of top phyla (bottom) in the goat samples, grouped according to their GIT sites and sections. d Distinctive 
trends of F/B ratios along the GIT sites revealed by clustering analysis and the impact of feed types; each line represent a goat that had samples 
from more than seven out of nine GIT sites, color‑coded according to different diets (green: grass feed, yellow: silage feed), with the red line 
representing the inferred trend. The pie chart shows the proportions of the dietary groups of the goat in the corresponding cluster. e Relative 
abundances of genus in two F/B clusters with goat GIT sites. The relative abundances were calculated as reads count per million sequenced 
clean reads (TPM, log10 transformed; “Methods”). The Wilcoxon rank sum test was used to show the statistical significance between groups. ns: 
no significance, * P < 0.05, ** P < 0.01, *** P < 0.0001, **** P < 0.0001
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Variation of goat GIT microbiota associated with age, feeding 
style and geography
Factors other than the GIT site also significantly affected 
the overall microbial community compositions of goat 
GIT microbiota, such as the age, feeding, and geography 
(Fig. 3a). For example, we observed significant clustering 
of the fecal samples into their respective groups in NMDS 

analysis (Fig.  5a–c), including the developmental stages 
(1, 6, and 12 months old; Table S3), feeding styles (indoor 
feeding and grazing; Table S4), and geo-locations (Yun-
nan, Sichuan, Guangxi, and Hainan provinces of China; 
Table S5); similar trends were found for both the bacte-
rial/archaeal and viral genomes (Fig. 5a–c) and consistent 
with the multiple-factor PERMANOVA analysis (Fig. 3a).

Fig. 3 (See legend on previous page.)
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We thus also explored the microbial taxa affected by 
these factors in more details. We identified a total of 350 
bacterial/archaeal the genera shown in the figure are 
those that exhibited significantly abundant differences in 
at least one between-group comparisons, with 201, 99, 
and 114 genera that could be attributed to the age, feeding 
style, and geography, respectively (Fig.  5d). Interestingly, 
we observed significant overlaps among these groups of 

genera (54 genera showed significant relative abundance 
differences in all four factors). For example, feeding-asso-
ciated genera were almost a subset of the age-associated 
ones, while they both overlapped significantly with the 
geography-associated ones (Fig.  5d). These results were 
in fact expected because all three factors were related to 
differences in the dietary structure. For example, goats 
older than 6 months would switch from milk-enriched 

Fig. 4 Distribution and variation of functionally important genera along the goat GIT. a Variation of methane‑producing (with yellow headers) 
and cellulose‑digestive (with green headers) genera along the goat GIT; their relative abundances were calculated as reads count per million 
sequenced clean reads (TPM, log10 transformed; “Methods”). Their differential distribution was identified between groups by using LEfSe (see 
“Methods”); the Wilcoxon rank sum test was used to show the statistical significance between groups. ns: no significance, * P < 0.05, ** P < 0.01, 
*** P < 0.0001, **** P < 0.0001. b Genera whose relative abundances showed significant positive correlations with those of the CZAyme categories 
involved in cellulose digestions in different GIT sites. The heatmap color indicates the correlation coefficients (r); significant positive correlation 
results with r ≥ 0.5, and P < 0.05 was retained. Pie chart shows the GIT sites in which the genera showed the highest relative abundance and GHs 
classification. * indicates the genera that were not previously annotated to have cellulose digestive capabilities
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to forage-enriched diet, causing significant increase of 
methane producers as well as cellulose-digesting spe-
cies (Fig. 5e); the effects of which on the GIT microbiota 
would be like those between the grazing (grass-enriched 
diet) and indoor feeding (silage-enriched diet) types 
(Fig.  5e). We thus were tempted to speculate that the 

overlapped genera were related to the core traits of the 
goats such as the food digestion and nutrient absorption 
efficiencies and the methane emission, and would be uni-
versally important. Conversely, the factor-specific genera 
such as those associated only with the age would play 
important roles during goat development.

Fig. 5 Variation of goat GIT microbiota associated with age, feeding style, and geography. a–c Non‑metric multidimensional scaling (NMDS) based 
on Bray–Curtis dissimilarities (“Methods,” subsets (samples at line 262–499) as indicated in Table S1) show significant clustering of samples according 
to the goat age (a), feeding style (b), and geography (c), respectively. d The Venn and upset diagram shows the shared and unique relationships 
among differentially abundant genera across various factors (including the age, feeding style, geography, and GIT sections), the genera shown 
in the figure are all genera that exhibit differences in at least one factor. e Variation of the methane production and cellulose digestion‑related 
genera attributed to different age, feeding style, and geography groups. Yellow and green represent methane production and cellulose 
digestion‑related genera, respectively. Differential taxa were identified between two groups using linear discriminant analysis effect size (LEfSe) 
analysis (“Methods”); the Wilcoxon rank sum test was used to test the statistical significance between groups. ns: no significance, * P < 0.05, ** 
P < 0.01, *** P < 0.0001, **** P < 0.0001
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Host prediction of the GMMC virome and identification lytic 
viruses targeting methane producers
Because most viruses have host ranges at species levels 
[104], they are ideal tools for precision manipulation of 
goat GIT bacteria and archaea. We thus also predicted 
hosts for the GMMC viruses using four different meth-
ods, including CRISPR-spacer and homology-based 
methods, a VirHostMacher tool [105], and a binning-
based method. In total, 4202 viral genomes (58.3% out of 
total) could be assigned to their bacterial/archaeal hosts 
(i.e., MAGs in the GMMC) by at least one method. We 
observed little overlaps among the methods in terms of 
viral-host relationships, consistent with previous results 
[106]. In total, only 5.7% viral-host relationships were 
supported by two or more methods (Fig.  6a). Overall, 
1321 viruses (31% out of the 4202 with predicted hosts) 
were predicted to have only one host and could be clas-
sified as specialist (Fig.  6b), whereas the rest of viruses 
were associated with two or more hosts and were clas-
sified as generalists. Among all the MAGs, 1216 in Bac-
teroidota were predicted to be hosts for the GMMC 
viruses, followed by Firmicutes_A (n = 871), Proteobac-
teria (n = 248), and Verrucomicrobiota (n = 229). At the 
genus level, the most assigned hosts were Prevotella 
(n = 552), followed by Alistipes (n = 500), RF16 (n = 480), 
F082 (n = 334), and Akkermansia (n = 196). Many of 
the functionally important genera were targeted by the 
viruses including Prevotella (cellulose-digesting genus 
[107]), Alistipes, Akkermansia (host immune function 
[108, 109]), and RF16 (feed digestion [110]), suggest-
ing important regulatory roles in the goat GIT microbial 
structures and functions.

Viruses could be ideal agents to suppress the growth of 
methane-producing species [111]; however, so far only a 
few methanogen viruses have been identified (ref [112] 
and references therein). We thus screened all the viruses 
and identified a total of 104 that targeted the methano-
gens (Fig.  6d). Sixty-eight of the viruses were putative 
lytic ones (virulent or uncertain virulent) according to 
a DeePhage tool [113] (Methods) and could target the 
methanogens from all the four genera identified in this 
study. In addition, five viral-host relationships were sup-
ported by two or more methods, including those between 

four lytic viruses and three methanogens (Fig. 6d). There 
results added support for future efforts on targeted iso-
lation of the viruses and experimental validation of their 
virulence against the methanogens.

Discussion
Goats are important ruminant livestock whose micro-
biomes along the gastrointestinal tract (GIT) are known 
to play important roles for digestion, absorption, and 
beyond [1–3]. Despite recent significant advances in 
microbiome studies, a comprehensive survey on the 
goat microbiomes covering GIT sites, developmental 
stages, feeding styles, and geographical factors is still 
unavailable. In this study, we filled this gap by collecting 
and expensively analyzing a goat metagenomic dataset 
consisting of 497 samples, covering ten GIT sites, three 
developmental stages, two feeding styles, and four geo-
graphical locations. Based on this dataset, we built a goat 
multi-kingdom microbiota catalog (GMMC) consisting 
4004 bacterial, 71 archaeal, and 7204 viral genomes, and 
annotated a total of 4,817,256 non-redundant protein-
coding genes. The GMMC genomes contained significant 
proportions of novel ones, especially when compared 
with the two recent goat microbiome datasets [9, 24] 
(Fig.  1g) and significantly increased the coverage of the 
goat microbiome sequencing reads over the public data-
sets (Fig. 1e).

In addition to the data novelty, our analyses on the 
GMMC data also revealed several important implications 
that could be generalized to other ruminants.

First, we revealed a diet driven microbial community 
dynamic pattern along the goat GIT that was associated 
with goat intestine food digestion and absorption capaci-
ties and disease risks. More specifically, cluster 1 was 
mainly driven by silage feeding and associated with lower 
digestive burdens (e.g., processed feed requires less chew 
and intestinal capacities for digestion and absorption) of 
the large intestine but high enteritis risks for the jejunum 
(Fig. 3d, e, Fig. S6); conversely, cluster 2 was driven by the 
grass feeding and associated with higher digestive bur-
dens of the large intestine. Future work is thus needed to 
determine if similar patterns could be observed in other 
ruminants.

Fig. 6 Host prediction of GMMC virome and identification of lytic viruses that target methane producers. a Overlaps of the prediction results 
on viral‑host interactions using four different methods. The size is the number of viral‑host interactions. Pie chart showing the proportion of viral 
genomes whose host(s) could predicted by these methods. b Distributions of the viruses as a function of their number of predicted hosts. The 
viruses could be divided into specialist (number of hosts = 1) and generalist (number of hosts > 1). c Distribution and characteristics of the viruses 
as a function of the taxonomic classification of their hosts, including the genome size, annotation rate, host specificity, and lifestyles. The 
lifestyles were predicted using DeePhage [76] and classified into two groups (virulent: score ≥ 50, temperate: score < 50). d Interaction network 
between viruses and methane producers (i.e., archaea). The solid line and the red dashed line indicate the connections predict by one method 
and by two methods, respectively

(See figure on next page.)
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Second, we showed that factors including age, feed-
ing style, and geography also exerted significant impacts 
on the intestinal microbiota but most of the affected 
microbial taxa were directly or indirectly related to those 
affected by the feeding styles. For example, 54 out of the 
350 differential genera related to at least one of the fac-
tors such as GIT site, age, and geography overlapped 
with those related to the feeding styles (Fig.  5d), espe-
cially those involved in methane production and cellulose 
digestion. We thus speculate that the overlapped genera 
were related to the core traits of the goats such as the 
food digestion and nutrient absorption efficiencies and 
the methane emission, and would be universally impor-
tant, whereas the factor-specific genera such as those 
associated only with the age would play important roles 
during goat development. Given the importance of GIT 
microbiota in ruminants, we expect to find similar pat-
terns in all these animals.

Last, we obtained 68 lytic viruses targeting methane-
producing species in all four archaea genera by mining 
the GMMC catalog (Fig.  6d; Table S8). Previous stud-
ies suggested that viruses targeting methane producers 
could be useful to reduce methane emissions [111] but 
we lacked methods to identify such viruses at large scales 
(ref [112] and references therein). Our results thus pro-
vided a feasible method and would encourage researchers 
to mine similar resources for other important ruminants 
including buffalo [10] and cattle [22].

Despite the aforementioned advancements, it is impor-
tant to acknowledge the limitations of our dataset, primarily 
attributed to the relatively short read length of the mNGS 
platform used. Recent studies have demonstrated signifi-
cant improvements in assembly quality and the ability to 
obtain higher proportions of complete MAGs through long-
read sequencing platforms such as PacBio and Nanopore, 
as observed in studies conducted on chickens [114] and 
humans [115, 116]. While our study achieved a consider-
able proportion of high-quality MAGs (47%), there is poten-
tial for further improvement by leveraging the capabilities 
offered by 3rd-generation sequencing platforms.

Together, our assembly and analyses of the GMMC cat-
alog provided functional insights of the goat GIT micro-
biota that could potentially apply to other ruminants and 
pave the way to microbial interventions for better goat 
and eco-environmental qualities.

Conclusions
We have provided the goat multi-kingdom microbi-
ome catalog (GMMC) including bacterial, archaeal, 
viral genomes, and encoded-proteins and identified key 
microbial taxa important for key traits of the goat and 
their influencing factors, and many lytic viruses that 
could target methane producers.
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