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Abstract 

Background In the last few years, considerable attention has been focused on the plastic-degrading capability 
of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste manage-
ment. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect 
gut microbiome to identify genes with plastic-degrading potential is still lacking.

Results In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have 
proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been consid-
ered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics 
was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial 
community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes 
of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics 
significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation 
of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly 
enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning elec-
tron microscopy and 1H nuclear magnetic resonance analyses on plastics.

Conclusions In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae 
is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae 
as “bioincubators” to isolate microbial strains and enzymes for the development of innovative plastic biodegradation 
strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pio-
neering synthetic biology approaches.
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Background
Accumulation of plastics in the environment that are 
fragmentated into micro- and nanoparticles by biotic 
and abiotic processes represents a global concern since 
as it has a dramatic impact on ecosystems [1–5]. There-
fore, it is crucial that traditional synthetic plastics are 
replaced by biodegradable and bio-based polymers [6, 7] 
and that the sustainability of plastic products is improved 
by developing integrated strategies to reuse, recycle, and 
recover petroleum-based plastics [8]. Unfortunately, 
efficient and eco-friendly methods to dispose or recycle 
plastics and plastic-containing wastes are still unsatisfac-
tory [9–11]. However, innovative and challenging solu-
tions for biological recycling of plastics have recently 
been proposed to ensure a more bio-based, low-impact, 
and circular management of these polymers. In this con-
text, using microbial enzymes to degrade plastics has 
been widely explored [5, 8, 12, 13]. Microbes produc-
ing plastic-degrading enzymes have been isolated from 
the most disparate sources, such as marine ecosystems, 
soil, plastic landfills, and invertebrates [13–19]. Although 
some insects are able to chew plastics from food packag-
ing [20–22], their potential to degrade ingested plastics 
has only been described in 2014 for Plodia interpunctella 
larvae [23]. Since that report, a polyethylene (PE)- or pol-
ystyrene (PS)-degrading capacity was reported in several 
insect larvae and a few bacterial strains with PE- or PS-
degrading activity have been isolated (e.g., [23–27]). It is 
worth mentioning that the vast majority of these studies 
concerned the greater waxworm Galleria mellonella, the 
mealworm Tenebrio molitor and the superworm Zopho-
bas atratus. While the eating habits of waxworms (i.e., 
they feed on beeswax, which is composed of hydrocar-
bons as alkanes and alkenes) endow these insects with 
the ability to digest and derive energy from plastics 
[28–33], evidence indicates that gut microbiota plays an 
essential role in degrading plastics in other insects (e.g., 
[25, 34–39]), with a few exceptions [40]. Nevertheless, 
an in-depth characterization of the microbial commu-
nity in insects reared on plastics at a compositional (i.e., 
whether plastics are able to shape the microbiota at spe-
cies and strain level) and genomic (i.e., whether and how 
microbial genomes are enriched in plastic-degradation 
functions) level is still lacking.

The larvae of Black Soldier Fly (BSF), Hermetia illu-
cens (Diptera: Stratiomyidae), are able to grow on a wide 
variety of organic substrates, including side streams and 
wastes, and their gut microbiota is significantly shaped 
by the composition of the rearing substrate [41–45]. 
The close relationship between diet and gut microbiota, 
which contributes to host fitness, for instance, by sup-
plying essential nutrients and facilitating food digestion 
[46–48], gives rise to the intriguing prospect of finely 

shaping the microbiota by manipulating the diet to select 
specific biological functions. Despite the fact that the 
extraordinary feeding plasticity and the high biocon-
version capability of BSF larvae are increasingly gaining 
attention [49–53], the possibility of exploiting this insect 
for degrading and/or bioconverting plastic waste, sup-
ported by the selection of specific plastic-degrading func-
tions in its microbiome has never been explored.

The aim of the present study was to investigate whether 
the microbiome of BSF larvae could be a source of plas-
tic-degrading functions. Our results indicate that BSF 
larvae fed on PE- or PS-based rearing substrates show an 
astonishing dynamism as holobionts as the ingestion of 
plastics significantly shapes the composition of their gut 
microbiota at the species and strain level, and the micro-
biome is enriched in specific plastic-degrading functions. 
Notably, metagenomics evidence is supported by both 
ultrastructural polymer alterations and 1H nuclear mag-
netic resonance (1H NMR) analysis, which confirm the 
actual degradation of plastics. This study, considering for 
the first time genomic information about both cultur-
able and unculturable microorganisms, emphasizes the 
effectiveness of BSF larvae not only in bioconversion pro-
cesses, as already demonstrated for many byproducts and 
organic wastes, but also as a rich source of genes coding 
for enzymes with a polymer-degrading capability that 
can be evolved and improved to open new scenarios for 
developing innovative, effective, and green bio-tools for 
plastic disposal and recycling.

Methods
Insect rearing
BSF eggs were collected from a colony established in 
2015 at the University of Insubria (Varese, Italy) and 
maintained as reported in [42]. Briefly, the eggs were 
laid on a Petri dish (9 × 1.5  cm) with a standard diet 
(STDd) widely used for fly larvae rearing [54], composed 
of wheat bran (50%), alfalfa meal (20%), and corn meal 
(30%) mixed in the ratio 1:1 dry matter/water. Eggs were 
maintained in a humid chamber at 27 °C until hatching, 
and after emergence, BSF larvae were reared on STDd 
for 4 days in the presence of nipagin (methyl 4-hydroxy-
benzoate) to avoid mold growth (a 18% w/v stock solu-
tion in absolute ethanol was prepared; 1  ml of a 1.7% 
v/v dilution in water of the stock solution was added 
to each gram of STDd). The larvae were then placed in 
plastic boxes (16 × 16 × 9  cm) containing STDd with-
out nipagin until the 10th day after hatching (defined 
as time zero, Tzero), at which time larvae (approximate 
weight of 70  mg) were transferred to the experimental 
rearing substrates (i.e., AGARd, PEd, and PSd, where “d” 
stands for diet) for 2  weeks, while control larvae were 
maintained on STDd until 25% of insects reached pupal 
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stage. Briefly, agar-based diets containing PE (particles 
major axis between 400 and 1000  µm) or PS (particles 
major axis between 400 and 800  µm) powder (Pow-
derex, Italy) were prepared by dissolving 4% (w/v) agar 
powder (Merck, DE) in hot (95 °C) distilled water; then, 
the solution was cooled to 60  °C, and 20% (w/v) of the 
polymer was added to the agar solution. When the sus-
pension reached room temperature and solidified, the 
diet was mechanically mashed. AGARd was prepared 
with the same procedure without adding polymers. 
Before transferring the larvae to the experimental rear-
ing substrates, they were kept on STDd for 6 days after 
the weaning period as preliminary experiments showed 
that once moved to AGARd, PEd, and PSd they did not 
gain weight (Additional file 1: Figure S1). This procedure 
allowed larvae to reach dimensions ensuring that proper 
amounts of DNA could be recovered from midgut con-
tent for metagenomics analysis.

Batches of 150 larvae were placed in a plastic box 
(14 × 14 × 7.5  cm), and fed ad  libitum with STDd, 
AGARd, PEd, and PSd. At least 3 independent groups 
of 150 larvae, derived from eggs laid by females of dif-
ferent generations, were set up for each diet. The larvae 
were maintained at 27.0 ± 0.5 °C, 70 ± 5% relative humid-
ity, in the dark. For STDd, fresh diet was added every 
4 or 5  days until larvae reached the last instar; sam-
ples of 30 randomly selected individuals were weighed 
every 2–4  days until 25% of insects reached the pupal 
stage. Samples of 30 randomly selected larvae reared on 
AGARd, PEd, and PSd were weighed 7 and 14 days after 
the beginning of rearing on the experimental substrates. 
Before weighing, larvae were washed in tap water to 
remove substrate residues and then wiped dry.

Scanning electron microscopy analysis
After rearing BSF larvae on PEd and PSd for 2 weeks, 
the substrates were collected to evaluate any structural 
alterations on the surface of the plastic particles (post-
rearing samples). PEd and PSd kept in the same con-
ditions without the larvae served as controls. All diet 
samples were stored at − 20  °C until use. Moreover, 
nonagarized PS and PE particles (i.e., plastic powders) 
were analyzed, too. After thawing, samples were placed 
in cell strainers (40-μm mesh size) (BD Biosciences, 
Milan, Italy) and extensively washed with 100  mM 
NaCl and Milli-Q water. Samples were then mounted 
on stubs, gold-coated with a Sputter K250 coater, and 
finally analyzed with a Scanning Electron Microscope 
(SEM)-FEG XL-30 microscope (Philips, Eindhoven, 
The Netherlands) (Centro Grandi Attrezzature, Univer-
sity of Insubria). For each condition, the analysis was 
performed in triplicate.

Metagenomic analyses of the midgut content of BSF larvae
DNA was extracted from the midgut content of larvae 
at different time points (Tzero, after 2  weeks for larvae 
reared on AGARd, PEd, and PSd, and on actively feed-
ing last instar larvae reared on STDd; see legend to Fig. 1 
for details). Analysis was performed on this region of the 
gut as the midgut is the main site of digestion and micro-
organisms present in the lumen of this tract can signifi-
cantly contribute to exploitation of the rearing substrates. 
Before DNA extraction, larvae were washed with 70% 
ethanol in distilled water and then dissected under a ster-
eomicroscope using sterile tweezers and scissors to avoid 
cross-contamination of the samples. For the dissection of 
each larva, a new Petri dish was used, and tweezers and 
scissors were washed with 70% ethanol. The midgut was 
isolated in sterile phosphate-buffered saline (137  mM 
NaCl, 2.7  mM KCl, 4.3  mM  Na2HPO4, and 1.4  mM 
 KH2PO4; pH 7.4) in a sterile Petri dish (5.5 × 1.3 cm). The 
midgut content enclosed in the peritrophic matrix (PM) 
was isolated from the midgut and immediately frozen 
in a 1.5-ml tube in dry ice. For each diet and time point, 
samples (each sample is made of pools of 15–30 PMs) 
were collected and stored at − 80  °C until DNA extrac-
tion. Sample numbers (at least 12 and 6 samples for 16S 
rRNA sequencing and shotgun metagenomics, respec-
tively, for each rearing substrate) guaranteed the quality 
of the sequencing data obtained. The exact number of 
samples for each experiment and conditions are reported 
in figures and legends for 16S rRNA sequencing and in 
Additional file 2: Table S1 for shotgun metagenomics.

DNA was extracted following the Standard Operat-
ing Procedures developed by the International Human 

Fig. 1 Growth curves of BSF larvae reared on standard diet 
(STD samples), agar-based substrates containing polyethylene 
(PE) and polystryrene (PS), and agar (PE, PS, and AGAR samples, 
respectively). After hatching, larvae were reared on standard diet 
or after 10 days (Tzero) were moved from this diet to agar-based 
substrates containing PE or PS (or moistured agar that served 
as control) for 2 weeks
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Microbiome Standard Consortium (SOP_07; www. micro 
biome- stand ards. org). Total DNA was purified using 
the NucleoSpin gDNA Clean up kit (Macherey–Nagel, 
Dueren, Germany) and quantified by Qubit fluorom-
eter using the Qubit dsDNA High-Sensitivity Assay kit 
(Thermo Fisher Scientific, MA, USA).

The V3–V4 region of the 16S rRNA gene was amplified 
using primers S-D-Bact-0341F5’- CCT ACG GGNGGC 
WGC AG and S-D-Bact-0785R5’-GAC TAC HVGGG TAT 
CTA ATC C [55] as described previously [56]. Briefly, the 
following PCR conditions were used: an initial denatura-
tion at 95 °C for 3 min, followed by 25 cycles of 95 °C for 
30 s, 55 °C for 30 s, 72 °C for 30 s, and a final extension at 
72 °C for 5 min.

Amplicon libraries were sequenced by Novogene 
(Cambridge, UK) on a MiSeq platform, leading to 
2 × 250  bp, paired-end reads. For shotgun metagen-
ome sequencing, a subset of microbial DNA samples 
used for 16S rRNA analysis were randomly chosen (6 
Tzero, 6 STD, 18 AGAR, 14 PE and 20 PS samples, each 
obtained from pooling 15–30 PMs). DNA libraries were 
sequenced on Illumina NovaSeq platform, generating to 
2 × 150  bp, paired-end reads. Host reads contamination 
was removed mapping reads to the H. illucens genome 
(NCBI Accession Number: PRJEB37575) by using the 
Best Match Tagger (BMTagger; https:// www. westg rid. ca/ 
suppo rt/ softw are/ bmtag ger). All raw data are available in 
Additional files or on NCBI with the accession numbers 
provided in “Availability of data and materials.”

Bioinformatics analyses
Demultiplexed forward and reverse 16S rRNA gene reads 
were joined by using FLASH [57]. Reads with a Phred 
score < 20 were trimmed by PRINSEQ 0.20.4 [58] and 
those shorter than 300  bp were discarded. High-quality 
reads were analyzed by QIIME 1.9 [59], with a pipeline 
described previously [56]. Briefly, operational taxonomic 
units (OTU) were picked at 97% of identity using a de 
novo approach and the uclust method, and taxonomic 
assignments were obtained by using the RDP classifier 
and the Greengenes database [60]. OTU tables were rare-
fied to the lowest number of sequences per sample.

Shotgun metagenomics reads were quality-filtered 
using PRINSEQ 0.20.4: reads with bases having a Phred 
score < 20 were trimmed and those < 75  bp were dis-
carded. High-quality reads were imported in mOTUs2 
[61] to obtain species-level, quantitative taxonomic pro-
files. The standard mOTUs database was used for taxo-
nomic assignment.

High-quality reads were assembled independently 
using MEGAHIT v. 1.2.2 ([62]; options: -m 0.85 –
min-contig-len 1000 –k-list 21,33,55,71,81,91) and 
contigs > 1000  bp were used to predict genes by using 

MetaGeneMark v. 3.26 [63]. Assembly results are 
reported in Additional file 2: Table S1. Predicted genes 
were aligned (using DIAMOND v. 2.0.4 and the option 
–very-sensitive; [64]) against a custom database includ-
ing known microbial genes potentially involved in plas-
tic degradation (see “Custom database preparation”). 
An e-value cutoff of 1e − 5 was applied, and a hit was 
required to display > 95% of identity over at least 50% 
of the query length. To obtain the gene abundance, 
short reads were mapped to the genes using Bowtie2 
(options: –very-sensitive-local –no-unal; [65]) and the 
number of mapped reads was normalized using the 
RPKM method (reads per kilobase per million mapped 
reads) and considering the formula (number of hits for 
gene a/gene a length)/total number of mapped reads 
per sample) as reported by [66].

In order to obtain contig coverage, reads of each 
sample were also mapped against the contigs recon-
structed for that sample, using Bowtie2 (options: –
very-sensitive-local –no-unal). Contigs (> 1500  bp) 
were binned using MetaBAT2 v. 2.12.1 with stand-
ard parameters [67], and the quality of Metagenome-
Assembled Genomes (MAGs) was estimated with 
CheckM v. 1.1.3 [68]. Only MAGs with > 50% com-
pleteness and < 5% contamination were retained for 
further analyses. MAGs binned in this study were clus-
tered to a genomic database including 107,442 high-
quality MAGs previously reconstructed from human 
metagenomes [69] and 185,939 genomes from isolates 
downloaded from NCBI RefSeq on May 2020. Pair-
wise genetic distances between genomes were calcu-
lated using Mash (version 2.0; option ‘‘-s 10,000’’ for 
sketching; [70]). A Mash distance < 5% from any of the 
database genomes was considered to place the MAG 
within the relative species-level genome bin (SGB). 
When a MAG showed > 5% distance from any reference 
genomes, it was considered a novel species (unknown 
SGB, uSGB). In this case, the taxonomic assignment 
was made at genus (> 5% and < 15% distance), family 
(> 15% and < 25% distance), or phylum (> 25% distance) 
level. These thresholds were used accordingly to [69]. 
To define subspecies, pairwise average nucleotide iden-
tities (ANI) were estimated between genomes falling 
in the same SGB through FastANI [71] and clustered 
using the Partitioning Around Medoid (PAM) algo-
rithm in R, as described recently [72]. The number of 
subspecies was estimated by identifying the optimal 
number of clusters for each SGB, using the prediction.
strength function in R package fpc. We required the 
number of clusters to be supported by a prediction 
strength ≥ 0.8. RAxML 8.0 [73] was used to generate 
species-specific phylogenetic trees, which were visual-
ized in iTOL v. 5.5.1 [74].

http://www.microbiome-standards.org
http://www.microbiome-standards.org
https://www.westgrid.ca/support/software/bmtagger
https://www.westgrid.ca/support/software/bmtagger
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Custom database preparation
To prepare a database for aligning of the genes predicted 
from shotgun metagenomics, preliminary bibliographic 
research was carried out to individuate target proteins/
genes involved or putatively involved in plastic polymer 
degradation. These targets (i.e., laccase, DyP-type peroxi-
dase, lignin peroxidase, manganese peroxidase, versatile 
peroxidase, alkane hydroxylase, and alkane monooxyge-
nase) were used as keywords to mine available databases 
(NCBI, https:// lcced. bioca tnet. de/) and the information 
was manually refined for duplicates. A detailed file with 
gene or protein names and accession numbers is reported 
in Additional file 3: Table S2.

Proton nuclear magnetic resonance analysis
To evaluate changes due to degradation processes in PE 
after BSF larvae rearing, 1H NMR analysis was carried 
out. Post-rearing PEd (i.e., PE-based rearing substrate 
where larvae were reared for 2  weeks), PEd (PE-based 
rearing substrate kept in the same rearing conditions 
for 2  weeks without the larvae), and the relative con-
trols (i.e., AGAR-based rearing substrate where larvae 
were reared for 2  weeks, and AGAR-based diet kept in 
the same rearing conditions for 2 weeks without the lar-
vae) were analyzed. All the samples were freeze-dried. 
Before conducting the liquid-state 1H NMR analysis, 
samples (30 mg) were extracted with 2 ml of deuterated-
chloroform. The samples were sonicated (30  min) and 
filtered through 0.22-μm polyvinylidene fluoride filters 
before loading into an NMR tube. 1H NMR spectra were 
acquired at 25 ± 1 °C, with tetramethylsilane as an inter-
nal standard, through a 9.4-Tesla Bruker Avance Mag-
net (Bruker Biospin, Rheinstetten, Germany) equipped 
with a BBI probe operating at the resonance frequen-
cies of 400  MHz for 1H. Spectra were analyzed using 
MestReNova software. 1H NMR spectra were processed 
by doubling the number of data points to increase the 
spectral digital resolution (zero-filling). Furthermore, the 
signal-to-noise ratio was enhanced by applying a Lor-
entzian weighing function with a line broadening equal 
to 0.60 Hz (apodization). The transformed spectrum was 
therefore phased (zero- and first-order phase correction) 
and the baseline adjusted. Finally, the chemical shift of 
the internal standard was set to zero.

Statistical analysis
Differences in the overall microbiome taxonomic compo-
sition according to diet were assessed by PERMANOVA 
(Permutational Multivariate Analysis of Variance, adonis 
function, vegan R package) computed on Jaccard dis-
tance matrix (p < 0.05). Alpha diversity indices were 
computed on mOTUs species-level table by using the 
vegdist function (vegan R package). Comparisons of 

taxa, alpha-diversity indices, or gene abundance between 
groups were carried out using pairwise Wilcoxon tests 
and results were considered significant at p < 0.05. Clas-
sical multidimensional scaling (MDS, cmdscale func-
tion, stats R package) was carried out on ANI distance 
matrices.

Results
BSF larvae develop on plastic‑based diets
BSF larvae were reared on agarized diets containing PE 
or PS (agar alone served as control diet). The consist-
ence of the agarized substrates allowed the larvae to 
burrow and move into the diet, which are important 
features for their gregarious habits [75]. As preliminary 
experiments showed that BSF larvae were able to sur-
vive and complete their development on diets contain-
ing agarized plastics only (Additional file  1: Figure S1) 
and the aim of this study was to select a plastic-degrad-
ing microbiome rather than to exploit the insects’ abil-
ity to reduce and bioconvert plastic waste, no additional 
nutrients were added to the substrate. BSF larvae were 
reared on standard diet (STDd) or moved from STDd 
to agarized substrates containing PE (PEd) or PS (PSd), 
or on agar alone (AGARd, used as control) after 10 days 
(Tzero). Compared to larvae reared on STDd that devel-
oped and all pupated within about 20  days, larvae 
moved to PEd, PSd, and AGARd did not gain weight 
(Fig.  1) and reached the pupal stage about 10–15  days 
later (Additional file  1: Figure S1), as has consistently 
been shown in other species [24, 25, 34, 38, 76].

Clear structural alterations are present on PS and PE 
surfaces after BSF larvae rearing
SEM analysis was performed to evaluate alterations on 
the surface of plastic particles after BSF larvae rearing. 
The surface of PS and PE particles used to prepare the 
rearing diets appeared mostly smooth (Fig.  2A, B). The 
same features were observed in control samples (i.e., PS- 
and PE-based rearing substrates kept for 2  weeks with-
out the larvae) (Fig. 2C, D; Additional file 1: Figure S2). 
In contrast, micro- and nanoscale cavities and pits on the 
surfaces were visible in post-rearing samples (Fig. 2E, F; 
Additional file  1: Figure S2). The hardness of the mate-
rial and the size of the surface alterations (less than 1 µm) 
suggest that structural alterations occurred in the gut 
lumen, rather than by mechanical damage due to insect 
mouthparts.

Rearing BSF larvae on plastic‑based diets significantly 
and deeply shapes their gut microbiota
A preliminary analysis was performed to offer a picture 
of the microbiota composition in plastic-ingesting BSF 
larvae using 16S rRNA gene sequencing, which is the 

https://lcced.biocatnet.de/
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most widely used sequencing approach. In only 2 weeks, 
plastic-containing substrates significantly affected the 
composition of the gut bacterial community compared to 
larvae maintained on STDd, both at Tzero and afterwards 
(referred to as “Tzero” and “STD” samples, respectively) 
(Figs. 3A and 4A, Additional file 1: Figure S3), as assessed 
by PERMANOVA computed on Jaccard distance matrix 
(p < 0.05). Considering the taxonomic composition at 
the phylum level (Fig.  3A), Actinobacteria, which were 
poorly represented in the microbiota of BSF larvae reared 
on STDd, became dominant in larvae reared on AGARd, 
PEd, and PSd (referred as “AGAR”, “PE”, and “PS” samples, 
respectively) (p < 0.05). In particular, Actinomycetales 
and Bifidobacteriales orders accounted for up to 50% of 
the midgut microbiota of BSF larvae reared on plastics 
(Fig.  4A). Actinobacteria species are known to survive 
during exposure to adverse environmental conditions 
and to produce enzymes with a broad substrate speci-
ficity that confer the ability to these microorganisms to 
degrade both natural and synthetic complex substances 

that cannot be easily transformed by other mechanisms 
[77, 78]. In addition, a relevant change was observed for 
Verrucomicrobia, which were absent in larvae reared on 
STDd (Tzero and STD samples), and reached 7.9 and 5.8% 
in PE and PS samples, respectively (Additional file 1: Fig-
ure S3, Fig. 3A; p < 0.05). This phylum was almost exclu-
sively represented by Luteolibacter, a genus comprising, 
to the best of our knowledge, only 10 described species 
[79] (Fig. 4A). Interestingly, BSF larvae reared on PE and 
PS were characterized by a relatively complex gut micro-
biota (Figs. 3A, 4A, Additional file 1: Figure S3) compared 
to caterpillars (e.g., G. mellonella, and P. interpunctella) 
and beetle larvae (e.g., T. molitor and Z. atratus) that 
showed the dominance of Firmicutes and Proteobacteria 
(e.g., [23, 26, 80, 81]).

Taxonomic profiling of shotgun metagenomes by a map-
ping-based approach was also performed. The profiling 
showed that bacterial diversity in AGAR, PE, and PS sam-
ples significantly increased compared to larvae reared on 
STDd (Additional file 1: Figure S4). A taxonomic profiling 

Fig. 2 Scanning electron microscopy analysis. Morphology of masterbatch polyethylene (PE) and polystyrene (PS) particles used to prepare 
the rearing substrates (non agarized particles) (A, B). Morphology of plastics in the rearing substrate without the larvae (control) (C, D) 
and after rearing the larvae for 2 weeks (post-rearing) (E, F). Bars: 5 μm
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of shotgun metagenomes by a mapping-based approach 
was also performed. The profiling showed that bacte-
rial diversity in AGAR, PE, and PS samples significantly 
increased compared to larvae reared on STDd (Addi-
tional file 1: Figure S4). This may be linked to the strongly 
nutrient-deprived environment present in the gut lumen 
of larvae reared on AGARd, PEd, and PSd. Indeed, nutri-
tional starvation may pose a challenge to the gut microbes, 
thus favoring extensive interspecies communication and 
metabolic networking and the establishment of a more 
complex community [82–84]. The phylum-level abun-
dances of control samples almost mirrored those obtained 

by 16S rRNA sequencing (Fig.  3A, B). At species level, 
some Actinobacteria, Microbacterium spp., which were 
almost absent in controls and present in AGAR-, PE-, 
and PS-fed larvae (Figs.  3D, E and 4B), have the docu-
mented ability to biodegrade complex polymers (e.g., 
hydrocarbons, cellulose, hemicellulose, lignin, and chitin) 
[85–87]. Moreover, among Actinobacteria, it is worth not-
ing that a Gordonia sp. increased up to about 10% only in 
insects reared on PE, indicating that it may be involved in 
degrading this polymer (Figs. 3F and 4B). This evidence is 
intriguing as Gordonia spp. are able to catalyze biotrans-
formation and biodegradation of recalcitrant substances, 

Fig. 3 Midgut microbiota and microbiome composition of BSF larvae reared on standard diet (STDd), agar or agar-based substrates containing 
polyethylene (PE) or polystyrene (PS). Midgut content was isolated from larvae reared on standard diet for 10 days (Tzero samples) and from larvae 
that were then moved to PEd or PSd (PE and PS samples, respectively), or AGARd (AGAR samples) for 2 weeks or left on STDd (STD samples) 
for 4 days from Tzero (i.e., when the larvae reached the last instar and were still actively feeding). Taxonomic composition at phylum level (% relative 
abundance) obtained by 16S rRNA gene sequencing (A), mapping metagenomics reads against marker genes through mOTUs (B), and assigning 
taxonomy to metagenome-assembled genomes (MAGs; C). Boxplots of major changes in the abundance of species belonging to the most 
represented phyla determined by shotgun metagenomics read-mapping, are also shown (D–J)
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including hydrocarbons and plasticizers [88–94]. A signifi-
cant increase of a Sphingobacterium sp. (Bacteroidetes) in 
BSF larvae reared on plastics was observed (i.e., absent in 
controls and increased to up to 4–5% of the microbiota) 
(Figs. 3G and 4B). Among other phyla, abundance of Pae-
nibacillus spp. (Firmicutes) and Acidovorax sp. MR-S7 
(Proteobacteria) increased with plastic consumption, par-
ticularly in PS (Figs.  3H–J and 4B). Interestingly, some 
Acidovorax strains have been described as effective biode-
graders of aromatic compounds, such as cyclic and polycy-
clic hydrocarbons [95–98], while Paenibacillus, previously 
isolated from hydrocarbon-contaminated soils [99], could 
have a high biotechnological potential owing to its cellulo-
lytic and ligninolytic activity [100–102] and for producing 
enzymes involved in PE degradation [16, 103–105].

The identification by functional metagenomics of genes 
putatively involved in the degradation of plastics 
is supported by chemical evidence
A major factor rendering the microbial biodegradation 
of petroleum-based plastics difficult is their high hydro-
phobicity which hampers microbial cell adhesion and 
the effective activity of the secreted hydrophilic enzymes 
[12, 106]. For this reason, the first and most important 
step in plastic biodegradation is oxidizing the polymer, 

which leads to the formation of hydrophilic groups (e.g., 
hydroxyl and carbonyl groups), enhancing microbial deg-
radation performance and breakage of the polymer. Then, 
bacteria can internalize and metabolize these degrada-
tion products [17, 107, 108]. Several microbial enzymes 
were reported to mediate the first step of plastic biodeg-
radation, mostly peroxidases (i.e., DyP-type, manganese, 
lignin, and versatile peroxidases), multicopper oxidases 
(i.e., laccases), and alkane monooxygenases as alkane 
hydroxylases [12, 17, 106, 109]. Thus, metagenomes 
were mined to search for those genes that are potentially 
involved in upstream PE and PS degradation.

Genes encoding DyP-type peroxidases were signifi-
cantly enriched in PE and PS compared to Tzero, STD, and 
AGAR samples (Fig. 5A), and those encoding multicop-
per oxidases were significantly more abundant in PE than 
in other samples (Fig. 5B). Enrichment was also observed 
for alkane monooxygenase sequences, which increased in 
both PE and PS samples compared to all the other groups 
(Fig.  5C). According to the results, the most significant 
changes were associated with PE ingestion.

To support the effective oxidation of plastics, as pre-
dicted by metagenomic analysis, chemical modifications 
of PE in post-rearing substrate (post-rearing PEd) were 
studied by 1H NMR analysis (Additional file  1: Figure 

Fig. 4 Microbiome composition of Tzero, STD, AGAR, PE, and PS samples determined by 16S rRNA gene sequencing (A) and shotgun metagenomes 
taxonomic profiling (B). Heatplots show the average relative abundance (%) of microbial taxa (OTUs collapsed at genus level or above; (A) or species 
(B) with an average relative abundance > 0.5% in at least one group



Page 9 of 18De Filippis et al. Microbiome          (2023) 11:205  

S5). Indeed, using this technique, we could characterize 
PE degradation through oxidation in culture and within 
the insect gut [34, 104, 110, 111]. PEd, AGARd, and post-
rearing AGARd served as controls (Additional file 1: Fig-
ure S5; Fig. 6). Peaks resonating at around 5.3 ppm arose 
from the resonance of protons in alkene compounds and 
those within 0.9–2.9 ppm indicated the occurrence of ali-
phatic molecules [34, 112]. Although both the 1H NMR 
spectra of PEd and post-rearing PEd generally showed 
similar profiles, some clear differences were observed 
(Fig. 6). Indeed, post-rearing PEd spectra showed a new 
peak at around 5.4 ppm in a region associated with alk-
ene bonds (C = C − H), absent in PEd (Fig. 6A). Similarly, 
the peaks around 2.62–2.48 ppm were only observed in 
post-rearing PEd and can be attributed to the resonance 
of protons in alcohols (C − OH) or to those bound to 
alfa carbon atoms (i.e., in terminal position) in unsatu-
rated allyl (HCαH = C) and carbonyl (HCαC = O) moie-
ties (Fig. 6B) [25, 113]. These peaks were not observed in 
spectra of post-rearing AGARd, indicating that they did 
not result from larvae contamination (e.g., frass and exu-
viae) or the extraction method. Overall, 1H NMR analysis 
revealed that PE was subjected to oxidation, which is the 
key step in biodegrading PE and petroleum-derived poly-
mers in general [103, 114].

Genome reconstruction highlights the presence of several 
unknown species in BSF larval midgut
In all, 1547 MAGs were reconstructed by employing a 
metagenome-assembly approach, passing the thresholds 
for being defined as medium quality (MQ) according to 
recent guidelines (completeness > 50% and contamina-
tion < 5%; [115]). The 1547 genomes were clustered into 

species-level genome bins (SGBs), using an all-versus-
all genetic distance quantification followed by clustering 
and identification of genome bins spanning a 5% genetic 
diversity. With this approach, we obtained 136 SGBs. 
Among them, 76 SGBs (including a total of 957 MAGs, 
about 62%) displayed > 5% genetic distance from the clos-
est reference genome and therefore they represented 
species without any publicly available genomes from 
isolate sequencing or previous metagenomic assem-
blies (unknown SGBs, uSGBs). Only 590 (about 38%) 
of the MAGs represented at least partially known SGBs 
(kSGBs) that included one or more genomes in public 
databases (Fig. 7; Additional file 1: Figure S6).

The phylum-level taxonomy could be assigned to 
almost all the MAGs. Although the overall taxonomic 
composition at phylum level reflected that obtained 
by metagenome sequencing (Fig.  3A, B), we identified 
27 MAGs belonging to Armatimonadetes (uSGB78), 
which were only present in AGAR, PE, and PS samples 
(Fig.  3C). In addition, one SGB (uSGB17) was assigned 
to Verrucomicrobia phylum. These two phyla were 
not detected using the metagenome mapping-based 
approach (Fig. 3B), highlighting the scarce availability of 
reference genomes from insect gut in public repositories 
and the importance of this approach to detect uncharac-
terized species.

Most of the SGBs were exclusive of BSF larvae grown 
on standard diet (Tzero and STD samples; e.g., kSGB1302, 
kSGB1308, and uSGB1313) or AGAR, PE, and PS sam-
ples (e.g., kSGB3, kSGB6, and uSGB19), and only few of 
them contained MAGs binned from all the groups (e.g., 
uSGB7, kSGB10, uSGB14; Additional file  4: Table  S3), 
highlighting the strong selection occurring at species 

Fig. 5 Boxplots showing abundance (expressed as reads per kilobase per million mapped reads, RPKM) of sequences related to genes encoding 
for DyP-type peroxidases (A), multicopper oxidases (B), alkane monooxygenase (C) in Tzero, standard (STD), AGAR, polyethylene (PE), and polystyrene 
(PS) samples. Significance was determined by pairwise Wilcoxon tests. Only p-values < 0.1 are reported
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level in response to the diet. In some cases, the SGB was 
exclusively found in PS and AGAR (e.g., uSGB12, iden-
tified as a Bacteroidetes species), or in PE and AGAR 
samples (e.g., uSGB77, identified as Brevundimonas sp.), 
while kSGB445 (Gordonia rubripertincta) and uSGB687 
(unidentified Actinobacteria) were found only in PE or 
in PE and PS samples, respectively (Additional file  4: 
Table S3).

Finally, evidence of a selection at subspecies level 
in response to diet was found. Based on prediction 

strength > 0.8 and PAM clustering, uSGB13 (unknown 
species from Actinomycetaceae family) and kSGB224 
(Sphingobacterium thalpophilum) genomes could be 
divided into at least two subspecies each. Interestingly, 
one of the subspecies in uSGB13 was exclusive of larvae 
grown on STDd, while the second was found in AGAR, 
PE, and PS samples (Fig. 8A, B). In contrast, MAGs from 
kSGB224 were not recovered in AGAR (except for one 
sample), but a subspecies exclusive of PE and PS was 

Fig. 6 Chemical analysis.1H NMR spectra of controls (i.e., AGARd, post-rearing AGARd, and polyethylene diet (PEd)) and post-rearing PEd 
with indicated significant chemical shifts for alkene bonds (A), and for alcoholic or unsaturated allyl and carbonyl moieties (B)
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identified, highlighting a selection driven by plastic-con-
taining diet (Fig. 8C, D).

Discussion
Several bacterial taxa with the potential ability to degrade 
petroleum-derived compounds, such as oils and plastics, 
have been related to the presence of these molecules in 
the environment where these microorganisms grow (e.g., 
landfill, soil, water, and insect gut). However, their abil-
ity to effectively degrade these recalcitrant molecules 
has only been shown for a few of them [13, 106, 116]. In 
recent years, insects (i.e., caterpillars and beetle larvae) 
have gained attention as plastic degraders thanks to their 
gut microbiota and have been proposed as a solution for 
developing innovative strategies for managing plastic 
waste [17, 106, 116]. Analyzing the structure of microbial 
communities exposed to PE and PS plastics constitutes 
the starting point for evaluating their biodegradation 

potential, while deciphering the underlying mechanisms 
is pivotal and has hardly been explored [5, 12, 13]. Recent 
work attempted to depict the gut microbiome in an 
insect reared on plastics; however, only a limited number 
of bacterial DNA sequences were obtained [117].

Here we used for the first time a saprophagous fly larva 
as a model (i.e., BSF larvae, the most widely used insect 
in bioconversion processes) to estimate the potential of 
its microbiome in plastic degradation. The BSF larval 
microbiome may represent a source of enzymes with 
novel and important functions and with industrial value 
thanks to some peculiarities of this insect. Indeed, as its 
midgut luminal pH ranges from 2 to 8.5, and as larvae 
have a gregarious habit that increases the temperature 
of the rearing substrate, their digestive enzymes show an 
optimal activity at about 45 °C [42, 118].

Growth on plastic-based substrates profoundly changed 
the composition of BSF larval microbiota, which is 

Fig. 7 Phylogenetic tree of the 1547 MAGs reconstructed from metagenomes of BSF larval midgut and divided into 136 species-level genome 
bins (SGBs). From inside to outside, the rings are colored according to phylum-level taxonomy; rearing substrate (Tzero, standard (STD), AGAR, 
polyethylene (PE), and polystyrene (PS) samples); presence of a reference genome in the SGB (known, kSGB or unknown, uSGB)
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associated with a change in the surface of PE and PS par-
ticles: these particles appeared rough and cracked com-
pared with the controls. In particular, the microbiota of 
larvae reared on PE and PS plastics was characterized 
by a significant increase in Actinobacteria compared 
with the control diet. It is worth pointing out that about 
half of the bacterial species that have been identified 
as n-alkane degraders so far are Actinobacteria [85]. In 
addition, we demonstrated that alkane hydroxylase and 

monooxygenase genes were significantly enriched in the 
microbial community of PE- and PS-fed BSF larvae, as 
were multicopper oxidase and laccase  genes. This evi-
dence supports the importance of oxidation reactions in 
plastic degradation and, as these enzymes are especially 
active on aromatic compounds, their presence may be 
critical for oxidizing PS aromatic rings. Plastics with a 
C–C backbone (e.g., PE and PS) are highly stable; there-
fore, oxidation represents the key, initial step for their 

Fig. 8 Selection from species-level genome bins (SGBs) at subspecies level occurs in response to diet. MAGs belonging to uSGB13 (unknown 
species from Actinomycetaceae family; A, B) and kSGB224 (Sphingobacterium thalpophilum; C, D) cluster according to the larvae diet in classical 
multidimensional scaling (MDS) carried out on ANI genetic distance matrix (A, C) and in phylogenetic trees (B, D). Colors indicate the sample type 
(Tzero, standard (STD), AGAR, polyethylene (PE), and polystyrene (PS))
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further biodegradation [12, 17, 106, 109]. Bacterial oxi-
dation of complex synthetic polymers is mediated by 
enzymes that are exploited to catalyze the breakdown of 
natural polymers with a similar structure (as hydrocar-
bons and lignin): interestingly, only a limited number of 
enzymes are responsible for this activity, and they are well 
conserved among different microbes [12, 17, 106, 109]. In 
particular, PE and PS degradation has been reported for 
microbial enzymes that are responsible for the oxidation 
and degradation of n-alkanes (i.e., alkane hydroxylases as 
alkane monooxygenases) [85, 119, 120], and lignin (class 
II peroxidases as lignin, manganese, versatile, and DyP-
type peroxidases, and multicopper oxidases as laccases) 
[12, 86, 121–124].

Interestingly, although most multicopper oxidases with 
biotechnological potential are fungal in origin, from Act-
inobacteria have been isolated some of the few bacterial 
counterparts [125–127], as the laccase isolated from the 
actinomycete Rhodococcus ruber that has been reported 
to degrade PE [128]. The enrichment of multicopper oxi-
dase and DyP-type sequences in the bacterial commu-
nity of plastic-exposed BSF larvae is of extreme interest 
from a biotechnological point of view as these enzymes 
are increasingly finding application in biodegradation, 
bioremediation, and discoloration processes [121, 126, 
127, 129]. It is worth mentioning that bacterial laccases 
are more interesting from the perspective of application 
than their fungal counterparts as they show a higher tol-
erance to a wider range of temperature and pH, a broader 
range of substrate specificity, shorter generation times, 
and easier manipulation for cloning and expression in a 
host [121, 126, 127, 129]. Unfortunately, though, bacterial 
laccases, peroxidases, and multicopper oxidases are less 
common than fungal ones and, in this respect, BSF larvae 
may help to improve the enzymes toolkit with biotechno-
logical potential [12, 86, 121–123, 126, 127, 129].

In the present work, the changes in the genetic pool 
of the gut microbial community exposed to PE and PS 
strongly indicate that oxidative activity plays a key role 
in microbiome adaptation to plastics. Importantly, the 
functions predicted by microbiome analysis were cor-
roborated by 1H NMR, which unequivocally showed 
changes in PE chemical features, i.e., the presence of 
hydroxylic and carbonylic groups absent in controls. 
This evidence was also supported also by alterations 
of the surface of the plastics. In addition to identifying 
enzymes able to degrade complex polymers and pollut-
ants, gut microbiota of BSF larvae reared on plastics 
(alone or in combination) may thus represent a starting 
point for developing bacterial degrading consortia. The 
sharp increase in previously uncharacterized species in 
such microbiota points to the high potential for isolat-
ing bacterial species and strains which have peculiar 

and useful features. Indeed, MAG reconstruction high-
lighted that about 50% of the microbial community of 
the BSF larval gut is characterized by unknown spe-
cies and that this proportion increases up to 70% when 
reared on plastic-containing substrates. Our results 
suggest that a strain-level selection may also occur in 
response to plastic-based diets, demonstrating the 
importance of selecting not only species but appropri-
ate strains for plastic-degrading consortia.

Consortia isolated from marine water, soil, and landfills 
exhibited higher biodegradation activity on plastics such 
as PE, PS, and PET than did single species [130–133]. 
Moreover, as biodegradation of PE and PS mainly proceeds 
by oxidation catalyzed by different enzymes, it should be 
more efficient to convert them into monomers species 
with complementary metabolisms can cooperate. Recalci-
trant polymers can be effectively oxidized by a microbial 
consortium with the cooperation of different enzymatic 
activities [12, 133] or by different enzymes produced by 
a single bacterium, as shown in a recent transcriptomic 
analysis where transcription of genes encoding both lac-
case-like and alkane monooxygenase enzymes increased 
upon exposure of a Rhodococcus sp. strain to PE [134].

Conclusions
We have demonstrated that the gut microbial commu-
nity of BSF larvae reared on PE and PS is characterized 
by high taxonomic diversity and genomic heterogene-
ity, suggesting that a network of mutualistic, synergistic, 
and competitive interactions is established both at the 
intraspecies and interspecies level. Thus, the BSF larval 
gut microbiota represents an optimal ecological niche 
for isolating enzymes and microbial strains with opti-
mized plastic-degrading ability. Importantly, unraveling 
microbial genomes in the gut of the highly polyphagous 
BSF larvae reared on substrates of interest (as complex 
natural and synthetic polymers) may reveal new func-
tions within the “unculturable” community and enable 
us to isolate enzymes for novel and bio-based industrial 
applications.
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