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Abstract 

Background Heritable rumen microbiota is an important modulator of ruminant growth performance. However, 
no information exists to date on host genetics-rumen microbiota interactions and their association with phenotype 
in sheep. To solve this, we curated and analyzed whole-genome resequencing genotypes, 16S rumen-microbiota 
data, and longitudinal body weight (BW) phenotypes from 1150 sheep.

Results A variance component model indicated significant heritability of rumen microbial community diversity. 
Genome-wide association studies (GWAS) using microbial features as traits identified 411 loci-taxon significant 
associations (P <  10−8). We found a heritability of 39% for 180-day-old BW, while also the rumen microbiota likely 
played a significant role, explaining that 20% of the phenotypic variation. Microbiota-wide association studies (MWAS) 
and GWAS identified four marker genera (Bonferroni corrected P < 0.05) and five novel genetic variants (P <  10−8) 
that were significantly associated with BW. Integrative analysis identified the mediating role of marker genera in geno-
type influencing phenotype and unravelled that the same genetic markers have direct and indirect effects on sheep 
weight.

Conclusions This study reveals a reciprocal interplay among host genetic variations, the rumen microbiota 
and the body weight traits of sheep. The information obtained provide insights into the diverse microbiota character-
istics of rumen and may help in designing precision microbiota management strategies for controlling and manipu-
lating sheep rumen microbiota to increase productivity.
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Introduction
Sheep weight is the most important growth indicator 
used in production and is directly related to meat pro-
duction [1], fat deposition [2], and reproductive perfor-
mances [3]. Global meat production and consumption 
continue to grow due to the increased demand driven 
by population growth, individual economic growth, and 
urbanization [4]. It is estimated that global meat pro-
duction will increase 76% by 2050 to meet the increased 
demand, with half of the global demand for ruminants 
coming from developing countries, particularly China, 
the largest producer and importer of sheep meat [4–6]. 
This thus poses new challenges to increase the sheep 
meat production. At the same time, the interest of the 
consumer for low-fat and healthy meat is increasing due 
to the negative impact of meat fat on human health [7]; 
however, in sheep, higher weight is often associated with 
excessive fat deposition [2]. In light of this, to balance 
yield and healthiness in sheep meat production, there is 
an urgent need to comprehensively elucidate the mecha-
nisms that control the body weight (BW) and to develop 
new breeding intervention strategies.

Although classical genetics studies suggested herit-
ability of approximately 30 to 60% for sheep BW [8–12], 
current genetic breeding and selection for BW have been 
only partially successful because the phenotype repre-
sents a complex multifactorial trait. In addition, new 
research in genome-wide association analysis (GWAS) of 
sheep weight was limited so far due to the small sample 
sizes, the relative dispersion of SNP chips, and investi-
gations conducted in complex non-laboratory settings 
such as grazing [13–15]. Therefore, it is necessary to 
conduct larger sample size GWAS and whole-genome 
sequencing studies. Furthermore, in addition to breed-
ing and selection, body weight may also be controlled 
through the regulation of the gut microbiota. In recent 
years, several studies have supported the role of the com-
mensal microbiota in the gastrointestinal tract in the 
regulation of the sheep metabolism [16] and immune 
response [17], and therefore, the hypothesis to influ-
ence the sheep BW through the manipulation of the gut 
microbiota has grown. In this regard, the rumen, which is 
primarily responsible for digestive and nutrient absorp-
tive functions in sheep, is colonized by a highly complex 
and anaerobic microbial ecosystem that is able to convert 
low-nutrient plant material through fermentation into 
essential and readily metabolites, accounting for up to 
70% of host energy requirements [18, 19].

Since the research studies were conducted by Pomp’s 
team [20], there is a growing evidence that in mammals 
[21, 22], including humans [23–25], and in agricultur-
ally relevant avian hosts [26, 27], the host genetic vari-
ation may affect the composition and structure of their 

gut microbiota. Of particular note, empirical studies on 
ruminants were focused only on cattle [28–34], while an 
association between rumen microbiota and the sheep 
genome has not been demonstrated yet, further leading 
to a lack of empirical evidence on whether host genetic 
influences on the rumen microbiota can also affect sheep 
phenotypes, such as the traits related to BW.

We therefore hypothesized that host genetics may 
influence the rumen microbial community in sheep, 
and that the same host single-nucleotide polymorphism 
(SNP) marker could similarly influence sheep weight 
through a direct mechanism and an indirect one medi-
ated by marker microbiota. To test these hypotheses, 
we performed whole-genome re-sequencing and rumen 
microbiota 16S ribosomal RNA (16S rRNA) amplicon 
sequencing from a cohort of 1150 sheep of the same sex, 
age, and breed, living on the same farm, and raised on the 
same diet. We characterized the composition of rumen 
microbiota, and we estimated the heritability. Addition-
ally, the GWAS for rumen microbial features (microbiota 
GWAS, mbGWAS) was conducted to explore the rela-
tionship between host genetics and the rumen microbiota 
in sheep. The host additive genetics and rumen microbial 
effects were investigated in relation to the sheep BW by 
estimating heritability (h2) and microbiability (m2, the 
proportion of the contribution of gut microbiota on host 
phenotypes), identifying the genetic SNP markers and 
rumen marker microbiotas significantly associated with 
BW by GWAS and microbiota-wide association studies 
(MWAS). Finally, the recursive influence of host genomic 
variations on weight was identified by combining mbG-
WAS, GWAS, and MWAS results.

Material and methods
Animals, phenotypic data and sample collection
This study included 1150 male Hu lambs reared on the 
same farm and divided into four batches over a 24-month 
period to investigate animal performance and col-
lect the samples (Fig.  1 and Table S1). Specifically, just 
after weaning, all lambs were transferred to the Minqin 
experimental farm of Lanzhou University (N38°43′41′′, 
E103°013′), and they were housed in individual feed-
ing pens (0.8 m × 1.0 m, l × w) and fed on the same diet 
(Supplementary Table 1). For each individual, BW traits 
were measured with a calibrated livestock scales (at 
06:00–08:00 am, before morning feeding) every 20 days, 
from the age of 100 days to 180 days. At the age of 180 
days and after fasting for 12 h, whole blood samples were 
obtained via the jugular vein and stored at −20 °C until 
use; each animal was slaughtered according to standard 
commercial procedures following the requirements of 
the China Council on Animal Care, and whole rumen 
content samples were collected immediately and stored 
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Fig. 1 Study design and workflow. This schematic representation highlights, for each step, the research question that we sought to answer, 
the analysis workflow, the data used, and the generalized result
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at −80 °C. The concentration of VFAs was measured 
using TRACE-1300 series GC ultra-gas chromatograph 
(Thermo Scientific, Milan, Italy) by following standard 
procedures.

Extraction of host and gut microbial DNA
Host genomic DNA was extracted from blood sample 
using the whole blood genomic DNA rapid extraction kit 
(EasyPure Blood Genomic DNA Kit; TIANGEN Bio Com-
pany, Beijing, China). All rumen content samples were 
separately thawed and homogenized again on ice, and 
then total microbial DNA was extracted from ~200 mg 
of each sample using EasyPure Stool Genomic DNA Kit 
(TransGen Biotech, EE301-01, Beijing, China) according 
to the manufacturers’ instructions. The quality of DNA 
was assessed on 1% agarose gel electrophoresis. All sam-
ples were included in the study, resulting in a total of 1150 
host DNA and 1150 rumen microbial DNA samples.

16S rRNA gene sequencing and analysis
The V3–V4 regions of bacterial 16S rRNA gene were 
amplified using specific barcoded primers (341F: CCT 
AYG GGRBGCASCAG and 806R: GGA CTA CNNGGG 
TAT CTAAT). Amplicons were sequenced NovaSeq PE250 
platform of Illumina (Novogene Biotech Co., Ltd, Beijing, 
China). Raw sequences were assigned to samples based 
on their unique barcodes and then trimmed to remove 
the barcode and primer sequences. The pair-end reads of 
each sample were assembled using FLASH [35]. The clean 
sequences underwent quality control analysis using FastQC 
software (FastQC,http:// www. bioin forma tics. babra ham. 
ac. uk/ proje cts/ fastqc/) and chimeric sequence removal 
using UCHIME (http:// drive5. com/ uchime). The filtered 
data were further processed via DADA2 method [36] in 
QIIME2 (https:// qiime2. org) to produce tables of amplicon 
sequence variants (ASVs), while the taxonomic assignment 
was performed using QIIME2 classify-sklearn algorithm 
by a pre-trained Naive Bayes classifier on 16S Silva data-
base (version 138). To avoid the interference of contingent 
opportunistic factors and low abundance feature sequence/
ASV, the table were filtered using the QIIME2 feature-table 
filter-features commands (--p-min-samples 3 and --p-min-
frequency 5), ensuring that each feature sequence was pre-
sent in at least 3 samples, and that the total sequencing 
depth for each feature sequence was greater than 5 reads. 
Prior to further downstream processing, the data were 
reduced to the minimum library size (QIIME2 feature-table 
rarefy commands: -p-sampling-depth 34,736) to obtain the 
final ASV count data for six taxonomic levels (from phy-
lum to species). Finally, we obtained a preliminary ASV 
tables of rumen microbes containing 1150 individuals and 
11,976 ASVs. These data generated 813 genera. The count 
data were further normalized to relative abundance by the 

total-sum scaling method. To further minimize the effect 
of background noise on downstream analysis, we removed 
all unclassified genera and then conducted quality control 
on genera based on the following criteria: (1) mean rela-
tive abundance > 0.0001% and (2) occurrence in more than 
3 samples. The final genus-level dataset comprises 430 
unique bacterial genera.

Alpha diversity metrics, including the Richness, Chao1, 
ACE, and Shannon index, were calculated based on the 
ASV table using the “diversity” function in the Vegan R 
package (https:// rdrr. io/ cran/ vegan/). The principal coor-
dinates analysis (PCoA) utilizing the Bray-Curtis dissimi-
larity matrix was calculated using the “pcoa’” function in 
the ape R package (https:// cran.r- proje ct. org/ web/ packa 
ges/ ape/ index. html).

Whole‑genome sequencing and data processing
The 1150 host qualified DNA samples were subjected 
to whole genome resequencing at the Novogene facility 
(Novogene Co., Ltd., China). Each DNA sample was ran-
domly fragmented into 350-bp fragments using a Cova-
ris crusher, followed by library preparation and repairing 
the ends of the DNA fragments, adding of polyA tails and 
sequencing adaptors, and PCR amplification according 
to the manufacturer’s instructions for the TruSeq Nano 
DNA HT Sample preparation kit (Illumina USA). The 
PCR amplification products were then purified using the 
AMPure XP system, initially quantified using Qubit3.0, 
and the library was diluted to 1 ng/μl. The insert size and 
effective concentration of the library were then meas-
ured using the Agilent 2100 Bioanalyzer and real-time 
fluorescence PCR, respectively. The selected libraries 
were sequenced using the Illumina HiSeq X Ten platform 
(PE150). After resequencing, low-quality reads were 
removed to obtain high-quality clean data using Trimmo-
matic (v0.36). We applied the following filtering criteria to 
eliminate adapters and low-quality bases: reads containing 
more than 10% unknown nucleotides (N), reads contain-
ing more than 50% low-quality bases (Q-value < 5), and 
reads containing more than 10 nucleotides aligned to the 
adaptor sequence with up to two mismatches. The clean 
reads were mapped against the sheep reference genome 
(Oar_v1.0) using Burrows-Wheeler-Alignment Tool 
(BWA) [37] with the command bwa mem -M. Duplicate 
reads were then marked and removed using SAMBAMBA 
(https:// github. com/ lomer eiter/ samba mba) and indexed 
in SAMtools (http:// github. com/ samto ols/ samto ols). Var-
iant detection was performed using the Genome Analysis 
Toolkit (GATK, https:// softw are. broad insti tute. org/ gatk/). 
Specifically, first gVCF files for each sample using HAp-
lotypeCaller were generated, and then genotypes were 
called using GenotypeGVCFs. Finally, the SNPs identi-
fied were subjected to rigorous quality control using the 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://drive5.com/uchime
https://qiime2.org
https://rdrr.io/cran/vegan/
https://cran.r-project.org/web/packages/ape/index.html
https://cran.r-project.org/web/packages/ape/index.html
https://github.com/lomereiter/sambamba
http://github.com/samtools/samtools
https://software.broadinstitute.org/gatk/


Page 5 of 17Wang et al. Microbiome          (2023) 11:197  

VariantFiltration module using the following criteria: (1) 
QD > 10.0, (2) MQ > 40.0, (3) FS < 60.0, (4) MQRank-
Sum > −12.5, (5) ReadPosRankSum > −8.0. Subsequently, 
the SNP datasets generated above (71,403,155 unfiltered 
SNP loci) were controlled for quality using vcftools with 
the following parameters: --remove-indels, --minDP 3, 
--min-alleles 2, --max-alleles 2, --max-missing 0.3, and 
--maf 0.05. Following these steps, a total of 23,409,311 
SNPs distributed over 27 chromosomes and 1150 sheep 
were obtained for subsequent analysis  (n_autosomal SNPs = 
23,112,008,Table S10).

Core and keystone microbiota
The rumen microbial genera with a prevalence [preva-
lence = (the number of sheep samples in which a specific 
genus was detected/total number of sheep samples) × 
100%] equal to 100% were defined as the core microbi-
ota of sheep, which are the specific rumen genus present 
in all individuals (n = 1150) when they are considered 
core microbiota. To unravel the patterns of interaction 
between rumen microbiotas at the genus level, a micro-
bial co-occurrence network was constructed to identify 
keystone taxa by calculating for each node the within-
module connectivity (Zi) and among-module connec-
tivity (Pi) [38, 39]. In details, we excluded rumen genera 
with a summed relative abundance of less than 0.01% and 
a prevalence of less than 1.5%, and then we calculated the 
Spearman correlation factors between microbial genera 
based on centered log ratio (CLR)-transformed data using 
the R package Hmisc (https:// CRAN.R- proje ct. org/ packa 
ge= Hmisc). Correlation coefficients (in absolute value) 
greater than 0.6 and correlation coefficient matrices with 
P_adj (Benjamini-Hochberg) less than 0.05 were retained 
for network building, and networks were constructed 
in the igraph package (https:// github. com/ igraph/ rigra 
ph) followed by visualization as co-occurrence networks 
in Gephi software. Subsequently, we calculated the net-
work modularity and module division using the igraph 
R-package, and we identified the network nodes accord-
ing to their within-module connectivity (Zi) and among-
module connectivity (Pi). We defined each node as one 
of four types: (1) peripheral nodes (Zi < 2.5, Pi < 0.62), 
(2) connectors (Zi < 2.5, Pi > 0.62), (3) module hubs (Zi > 
2.5, Pi < 0.62), and (4) network hubs (Zi > 2.5, Pi > 0.62). 
Connectors, module hubs, and network hubs are gener-
ally considered to be the keystone genera.

Investigation of the association between host genetics 
and the rumen microbiota
Mantel test
Based on the filtered SNPs dataset, we used the method 
proposed by Yang et  al. [40] to construct a genetic 

relationship matrix (GRM) of 1150 individuals using 
GCTA v1.94.1 software [41]. Later, a microbial rela-
tionship matrix (MRM) of these 1150 individuals was 
constructed based on a normalized (z-value) dataset of 
rumen microbial ASVs using the formula described by 
Wen et al. [42] and a customized R script by Tang et al. 
[43]. Based on this, we used the Mantel test to search 
for the correlation between GRM and MRM using 
Pearson correlation (9999 permutations).

Estimation of rumen microbial heritability
Subsequently, we conducted an estimation of rumen 
microbial heritability  (h2) at the genus level. We first 
excluded rumen genera that were present in less than 
1.5% of the sheep samples, resulting in the retention 
of 290 genera. Subsequently, we classified microbial 
traits using a threshold of 60% prevalence, as described 
by Wen et al. [26]. Genera present in less than 60% of 
the sheep samples were considered binary genera traits 
(present or absent), while genera present in more than 
60% of the samples were considered quantitative genera 
traits (relative abundance). In addition, we produced a 
CLR transformation for quantitative traits data to avoid 
spurious results. We estimated  h2 of 300 microbial fea-
tures (5 alpha indexes, top 5 PCoA scores, 209 binary 
traits and 81 quantitative traits) based on GRM using 
restricted maximum likelihood (REML) analysis imple-
mented in GCTA and using birthplace, rearing season, 
and the top five principal components (PCs) as covari-
ates. The estimation model is as follows:

In the above equation, y is the vector of observations 
for rumen microbial traits;b is the vector of fixed 
effects;a is the vector of additive genetic effects follow-
ing a distribution of N(0,Gσ2a), where G is GRM and σ 2

a  
is the additive genetic variance; and e is the vector of 
residual effects following a distribution of N 0, Iσ2e  , 
where I is an identity matrix and σ 2

e  is the residual vari-
ance. X and W  are incidence matrices for b and a , 
respectively. The  h2 was estimated as σ

2
a

σ
2
p
 , where σ2p is the 

phenotypic variance. A likelihood ratio test (LRT) was 
used to test whether the heritability of a given pheno-
type was significant (PLRT < 0.05).

Microbiota genome‑wide association studies (mbGWAS)
For significantly heritable microbial features above  (h2, 
PLRT < 0.05), a mbGWAS analysis was performed using 
the mixed linear model (MLM) implemented in the 
rMVP R package [44] (https:// github. com/ xiaol ei- lab/ 
rMVP). To minimize potential sources of bias in the 

(1)y = Xb+Wa + e

https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://github.com/igraph/rigraph
https://github.com/igraph/rigraph
https://github.com/xiaolei-lab/rMVP
https://github.com/xiaolei-lab/rMVP
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analyses, we excluded SNPs located on the sex chro-
mosomes for mbGWAS. Furthermore, to avoid the risk 
of false positives, we excluded bacterial genera with a 
prevalence below 30% before conducting mbGWAS 
for binary traits. Finally, we carried out mbGWAS to 
detect SNP-microbial features associations for 80 her-
itable microbial features  (h2, PLRT < 0.05,nine heritable 
microbial community traits, 64 heritable quantita-
tive genera traits, and seven heritable binary genera 
with a prevalence ranging between 30 and 60%) using 
23,112,008 autosomal SNPs and 1150 animals. For 
each mbGWAS, the model included birthplace, rear-
ing season, and top three PCs as covariates. We first 
used a genome-wide suggestive significant P-value 
threshold of 1 ×  10−6 to select marker genetic variants 
that showed association with microbial features. This 
threshold was selected to maximize the strength of 
genetic instruments. Subsequently, we set a genome-
wide significant threshold of 1 ×  10−8, along with a 
Bonferroni-adjusted study-wide significance level of 
0.05/NSNPs (0.05/23,112,008 = 2.163378e-09) for sig-
nificant associations. We used Ensemble Variant Effect 
Predictor (VEP; https:// www. ensem bl. org/ vep) for 
variant annotation and functional annotation.

Evaluating effects of host genetics and the rumen 
microbiota on body weight
Heritability and microbiability
To gain a better understanding of the relative contribu-
tion of host genetics and rumen flora to the sheep BW 
variation, the  h2 and microbiability (m2) were exam-
ined for all weight phenotypes using the GRM and 
MRM described above, respectively. Phenotypic herit-
ability was first estimated using a same model to that 
used for the rumen microbial heritability, as described 
above. However, in this case, the trait of interest ( y ) in 
the model [31] represents the vector of observations for 
weight phenotypes. The  m2 was the concept that corre-
sponds to the heritability, and it was used to assess the 
proportion of the total phenotypic variance explained 
by the gut microbiota [45, 46]. The estimation model is 
as follows:

In the above equation, y is the vector of observations 
for weight traits; m represents the random effect of 
rumen microbiota following a multinomial distribution 
of N(0,Mσ 2

m) , where M is the MRM and σ 2
m is the 

rumen microbial variance; Z is incidence matric for m . 
The  m2 was estimated as σ

2
m

σ
2
p

 . Other parameters were 
consistent with the parameters in model 1 described 

(2)y = Xb+ Zm + e

above. In this study, it referred specifically to the part 
of the weight phenotypic variation caused by rumen 
microbiota, as operationalized by using MRM instead 
of GRM in GCTA.

Here, we considered both sources, host genetics and 
rumen microbiome, as simultaneous components of 
the total phenotypic variation. Briefly, we expanded the 
model by incorporating both the GRM and MRM as 
input matrices. The extended estimation model is repre-
sented as follows:

The parameters were consistent with the parameters 
described above.

GWAS and microbiota‑wide association studies (MWAS)
Subsequently, we pinpointed the marker SNPs and 
marker microbiotas associated with body weight at 180 
days of age in sheep. Phenotypic GWAS were conducted 
using the method described in mbGWAS, with a signifi-
cant genome-wide P-value threshold of 1 ×  10−8 and a 
suggestive significant genome-wide P-value of 1 ×  10−6. 
As for marker rumen genera, the filtered genus-level 
dataset described above was used, and statistical analyses 
on the associations between these 290 genera and body 
weight at 180 days of age were performed in R using the 
two-part microbiota-wide association model described 
by Wen et al. [26] and Fu et al. [47]. The first part of the 
model in our study targeted binary traits, which were 
named as binary traits based on the presence or absence 
of the bacterial genus. Specifically, a relative abun-
dance greater than zero was coded as 1 (present), while 
equal to zero was coded as 0 (absent), obtaining a sam-
ple prevalence of less than 60%. The second part of the 
model is focused on the quantitative traits, and it is com-
monly used for regression analyses between phenotype 
and abundance of bacterial genera with sample preva-
lence greater than or equal to 60%. The MWAS model is 
described as follows:

where y is the 180-day-old weight value after adjustment 
for birthplace and rearing season. The first three PCs 
were also used as a covariate in the association analyses 
to adjust for population substructure. β1 and β2 repre-
sent the regression coefficients for the binary and quan-
titative models, respectively. b is the binary trait, q is the 
CLR-transformed bacterial genus abundance, and e is the 
residual effect. The final calculated P-values were sub-
jected to multiple comparisons using a Bonferroni cor-
rection, setting the threshold P adj-value to 0.05.

(3)y = Xb+Wa + Zm + e

{

y = β1b+ e
y = β2q + e

https://www.ensembl.org/vep
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Results
Landscape of core and keystone rumen microbiota 
composition
To identify symbiotic interactions, if any, between the 
host and rumen microbiota, the microbial genera that 
could be critical for the organization and maintenance of 
the rumen ecosystem were investigated. After low-qual-
ity genera were filtered out, a total of 430 unique genera 
were identified, among which, 17 genera comprised the 
core rumen microbiota (genera present in 100% of indi-
viduals; animal cohort information, see Table S1) and 
the cumulative abundance accounted for more than 75% 
of the total microbial abundance in the rumen (includ-
ing Christensenellaceae R-7 group, Clostridia UCG-014, 
Eubacterium coprostanoligenes group, Eubacterium 
ruminantium group, F082, Fibrobacter, Lachnospiraceae 
ND3007 group, Lachnospiraceae NK3A20 group, Muri-
baculaceae, NK4A214 group, Prevotella, Prevotellaceae 
UCG-001, Rikenellaceae RC9 gut group, Ruminococcus, 
Saccharofermentans, Treponema, and Erysipelatoclostri-
diaceae UCG-004; Fig. 2 and Table S2). A co-occurrence 
network of rumen microbial communities was analyzed 
using a Spearman rank correlation coefficient matrix 
based on significant (PBenjamini-Hochberg < 0.05) and strong 
(|r| > 0.60) values to identify co-occurrence patterns. 
These data were crucial to identify 15 connectors as 

keystone genera with high connectivity between micro-
bial communities (Fig.  2 and Table S3). Altogether, the 
genera that were identified showed a pivotal role in the 
rumen microecosystem as potential drivers of micro-
biota structure and function, particularly Christensenel-
laceae R-7 group, Lachnospiraceae NK3A20 group, and 
NK4A214 group, who were identified in both the core 
microbiota and keystone taxa.

Heritability of rumen microbial features
To investigate whether host genetics may impact the 
rumen microbiota, the Mantel test was used to examine 
the possible associations between the genetic relation-
ship matrix (GRM) and microbial relationship matrix 
(MRM). These analyses identified significant associa-
tions between the host genome and rumen microbiota 
(Mantel statistic r: 0.1122, P-value: 1e-04), which indi-
cated that host genetics can modulate specific taxa of the 
rumen microbiota. Subsequently,  h2 was estimated for 
300 rumen microbiota features in 1150 sheep to explore 
the relative proportion of total variation in microbiota 
community regulated by host genetics. These included 
ten measures of microbial community trait [amplicon 
sequence variant (ASV) richness, Chao1, ACE, Shannon 
index, Firmicutes:Bacteroidetes (F:B) ratio, and the first 
five principal coordinates (PCoAs) of the Bray-Curtis 

Fig. 2 Compositional profile of rumen bacterial communities in sheep at the genus level
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dissimilarity metric; Table S4]. A total of 81 single-taxon 
traits (taxa as quantitative traits), representing the rela-
tive abundance of individual microbiota genera, were 
detected at high sample prevalence in over 60% of ani-
mals. The  h2 value was also estimated for 209 binary 
traits that reflected the presence or absence of a bacterial 
genus in a sample (limited to genera detected in 1.5–60% 
of animals, treated as low-abundance rumen micro-
biota). All microbial genera included in the estimation 
of  h2 accounted for over 91% of the total rumen micro-
bial abundance, with single-taxon traits accounting for 
89.88% (Fig. 3a).

We found that 64% (52/81) of the quantitative gen-
era and nine community traits were significantly herit-
able [likelihood ratio test (LRT); PLRT <0.05)]. The 76% 
(13/17) of the core genera and 80% (12/15) of keystone 
taxa were also found among heritable taxa, and a simi-
lar proportion was obtained using a centered log-ratio 
transformation (CLR) for the correction of potential 

constitutive artifacts (69%, the CLR transformed quan-
titative genera: 56/81). Ultimately, a total of 79% of 
the high-prevalence genera were heritable [64/81; 82% 
(14/17) core microbes and 87% (13/15) keystone taxa] 
(Fig. 3b and Table S5). Binary rumen genera only rep-
resented 1.25% of the total abundance but could also be 
connected to host genome, with 22% (47/209) identified 
as heritable but were largely limited by their prevalence. 
These heritable genera showed significant heritability 
estimates ranging from 0.09 to 0.68 (Fig. 3c); the  h2 was 
the highest for Candidatus Liberibacter (0.68, PLRT = 
2.42E-07) which had a very low relative abundance and 
prevalence, whereas heritability was lowest for Caldal-
kalibacillus (0.09, PLRT = 5.00E-02). Among the herit-
able core genera, Christensenellaceae R-7 group had 
the highest heritability (0.58, PLRT = 1.07E-08), while 
F082 had the lowest value (0.10, PLRT = 0.10). Four of 
these heritable core genera (F082, Muribaculaceae, 
Prevotella, and Rikenellaceae RC9 gut group) belonged 

Fig. 3 a Cumulative relative abundance and number of bacterial genera in the rumen of sheep at different prevalence levels. b Percentage 
of heritable rumen microbial genera in sheep. The red dashed line indicates mean heritability. c Heritability estimates for microbial features
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to phylum Bacteroidetes, one (Fibrobacter) belonged 
to Fibrobacterota, and the rest were Firmicutes. Pos-
sibly the most intriguing observation was that rumen 
microbial community structure, diversity, richness, 
and composition overview were all moderate to high 
heritability traits, with heritability as high as 0.51 for 
both ASV richness and ASV Chao1 and the first four 
PCoAs (cumulatively explaining 54.72% of the overall 
variance in rumen microbiota composition) all hav-
ing a heritability above 0.2. Members of Firmicutes in 
the rumen represent the most predominant heritable 
taxa, followed by Bacteroidota (Table S5). The cumula-
tive total abundance of heritable genera was as high as 
73%, with an average prevalence of 57%. Additionally, 
the F:B ratio, which can reflect obesity in humans and 
other mammals, was also heritable (0.15, PLRT = 0.02). 
Overall, these values indicate that rumen microbes are 
largely heritable, and that the possible effects of host 
genetics on the rumen core microbiota and keystone 
taxa appear to be nearly universal.

Large‑scale GWAS identified host genetics that profoundly 
affect sheep rumen microbiota
To gain a deeper understanding of the impact of host addi-
tive genetics on rumen microbiota, we investigated the 
association between 23,112,008 autosomal genetic vari-
ants and 80 rumen microbiota features that were signifi-
cantly heritable  (h2, PLRT < 0.05) in a cohort of 1150 sheep 
(see “Material and methods”: “mbGWAS”). Finally, a total 
of 411 associations involving 405 loci that associated inde-
pendently with 1 or more of the 80 rumen metabolites 
at significance (P < 1 ×  10−8). Using a more conservative 
Bonferroni-corrected study-wide significant P-value of 
2.163378e-09 (0.05/23,112,008), we were able to identify 171 
associations, which involved a total of 171 genomic loci and 
28 microbiota features (as shown in Fig. 4 and Table S7).

According to the genome-wide suggestive significant 
threshold of P < 1 ×  10−6, we identified 6845 SNP loci, of 
106 were associated with two or more microbiota features 
(Fig.  4 and Table S7). Of these, 2709 SNPs were located 
within the genes. These suggestive significant SNPs were 

Fig. 4 Genome-wide association of sheep genetics and heritable rumen microbial variations. Manhattan plot of host genomic associations 
with microbial features with at least one genome-wide significant association (P < 1 ×  10−6). The y-axis shows the −log10 transformation 
of the association P-value observed at each tested variant. The x-axis shows the genomic position of variants. The thresholds of study-wide (0.05/
NSNPs; P = 2.163378e-09) and genome-wide (P = 1 ×  10−8) significance are shown with horizontal lines. The autosome variants were annotated 
by Ensembl Variant Effect Predictor
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widely and evenly distributed across all autosomal chro-
mosomes (Table S7). The average number of genetic vari-
ants for each microbiota trait was 86. The most significant 
associations were Prevotellaceae Ga6A1 group with the 
SNP: rs405050318 (P = 3.13E-13). Both genetic variants, 
rs427324596 and rs417318619, exhibit associations with 
six distinct microbiota traits. For the four alpha-diversity 
indexes and F:B ratio index, a total of 217 SNP loci and 
259 associations were observed. Among these, two SNPs 
(rs427324596 and rs417318619) exhibited significant 
associations with all four indexes simultaneously. Fur-
thermore, 6423 SNPs were significantly associated with 
71 rumen genera (6504 associations), with 51.66% (3318 
no redundant loci) of these SNPs associated with Eubacte-
rium nodatum group, Anaerovorax, Prevotellaceae UCG-
003, Moryella, UCG-005, Ruminococcus gauvreauii group, 
Prevotellaceae Ga6A1 group, Pseudobutyrivibrio, RF39, 
and UCG-002. The selection of candidate genes for her-
itable rumen microbes further increases the feasibility of 
inducing a particular microbiota in the production chang-
ing the breeding techniques, including the regulation of 
host phenotypic and production performances based on 
the control that the heritable rumen taxa may have on ani-
mal performances.

Proportion of variation in sheep body weight explained 
by host genetics and rumen microbiota
To explore to which extent the host additive genetics and 
rumen microbiota contributed to weight traits in sheep, 
we calculated  h2 and microbiability (m2) estimates for the 

six BW traits using the same GRM and MRM described 
above, respectively (Fig.  5a and Table S8). We found all 
BW traits to have upper moderate to high heritability, 
ranging from 36 for 100-day-old weight to 61% for birth 
weight, with a heritability of 39% for 180-day-old weight 
(Fig.  5a and Table S8). As with heritability, the  m2 was 
between 0 and 1 and with increasing  m2 values, a major 
contribution of rumen microbiota to the traits was dem-
onstrated. After correction for host genetics, 180-day-old 
weight had a moderate microbiability estimate of 20%. 
The  m2 for birth weight obtained using rumen microbiota 
data collected at 180-day-old was nonsignificant, and the 
mean  m2 for BW at other ages was 20%, ranging from 17% 
for 100-day-old weight to 24% for 100-day-old weight.

We further considered both host genetics and rumen 
microbiome as simultaneous components of the total 
phenotypic variation and calculated the  h2 and  m2 of 
body weight traits. The results from these models were 
largely consistent (Fig.  5a and Table S8). The combined 
contribution of host genetics and rumen microbiota to 
the 180-day-old weight phenotype was 52%. Specifically, 
the heritability was estimated to be 0.35, indicating the 
proportion of phenotypic variance attributed to host 
genetics. Additionally, the microbiota contribution was 
estimated to be 0.17, indicating the proportion of pheno-
typic variance attributed to the rumen microbiota.

Heritable rumen microbes affect sheep weight
Above, we demonstrated that host genetics can influ-
ence the rumen microbial community in sheep, and 

Fig. 5 a Heritability  (h2) and microbiability  (m2) for weight traits in sheep. b Manhattan plot shows the results of microbiota-wide association 
studies (MWAS). Four bacterial taxa were significantly associated with body weight at 180 days of age in sheep (Bonferroni-corrected P-value < 0.05). 
Red labels indicate that the bacterial genus is a core microbe, and green labels indicate that the bacterial genus is a keystone taxon. c and d A linear 
model was fitted to identify the association between rumen marker genera and BW. e Correlation patterns showing the rumen marker genera 
associated with rumen volatile fatty acids and rumen morphology
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that together with rumen microbiota, may contribute to 
sheep BW. Later, a two-part model for the MWAS analy-
sis between rumen microbiota and BW in sheep [26, 
47] was used to identify which indicator of microbiota 
taxa may regulate this mechanism. From this analysis, 
four last genera were identified (Fig.  5b and Table S9), 
including Lachnospiraceae ND3007 group, Rikenellaceae 
RC9 gut group, Syntrophococcus, and Oribacterium, 
which were all heritable and significantly associated 
with 180-day-old weight (Bonferroni corrected P < 
0.05). Among them, Lachnospiraceae ND3007 group 
and Rikenellaceae RC9 gut group emerged as moder-
ately heritable core taxa, explaining 10.85% and 10.32% 
of variance on 180-day-old weight (Fig. 5c & d), respec-
tively. By contrast, the linear fit correlation coefficients 
for the potential core and keystone genera Oribacterium 
(prevalence = 99.91%) and Syntrophococcus (prevalence 
= 99.57%) were both over 9.8%.

To investigate the potential relationships among BW-
related microbial markers and rumen metabolic profiles, 
Spearman’s rank correlation analysis was performed 
between the selected bacterial genera and rumen vola-
tile fatty acids (VFA) profile, rumen papillae length 
and width, and muscle thickness (Fig.  5e). This analy-
sis showed that total VFAs (sum of all individual VFAs) 
shared a positive correlation with Syntrophococcus but 
were negatively correlated with Lachnospiraceae ND3007 
group, Rikenellaceae RC9 gut group, and Oribacterium. 
Acetic acid was negatively correlated with Lachno-
spiraceae ND3007 group. Propionic acid levels were posi-
tively correlated with Syntrophococcus and Oribacterium 
but negatively correlated with Rikenellaceae RC9 gut 
group. Likewise, the abundance of candidate genera was 
significantly associated with rumen histomorphology. 
In particular, Lachnospiraceae ND3007 group and Ori-
bacterium were positively associated with rumen papil-
lae length, Rikenellaceae RC9 gut group was correlated 
with rumen papillae width, Syntrophococcus was nega-
tively correlated with rumen papillae width, and Rikenel-
laceae RC9 gut group shared a negative relationship with 
rumen muscle thickness (Fig.  5e). Overall, these four 
weight-related indicator taxa and their association with 
metabolic profiles further emphasized the central role 
of heritable rumen microbiota, specifically core and key-
stone taxa, in the host phenotype and rumen microbiota 
metabolism in sheep.

Genome‑wide association study reveals novel loci 
controlling sheep weight
We next conducted GWAS to identify the SNPs loci in 
the host genome linked to BW in sheep, using the phe-
notypic data from the same cohort of 1150 animals and 
the same autosomal SNPs dataset used for the mbGWAS. 

A total of five SNP loci were identified to be significantly 
associated with the body weight of sheep at 180 days 
old, at a significance level of P < 1 ×  10−8, all located 
on OAR 9. With a more moderate genome-wide sug-
gestive significant P-value of 1 ×  10−6, we identified 94 
SNPs, spanning OARs 1, 2, 4, 6, 9, 10, 13, 15, 16, and 23 
(Fig. 6a and Table S10). The most significant association 
was observed with the intergenic SNP, rs413796993 (P 
= 6.99E-14), on OAR 9 at 38007144bp. The second most 
significant SNP (rs417240663; P = 3E-10) was located on 
OAR 9 at 38659928bp, in an intron of the XKR4 gene, 
which cumulatively harbored 3 significant and 16 sugges-
tive significant SNPs. Notably, we observed that several 
regions in OAR 6 and OAR 9 together contained more 
than 84% (79/94) of the marker SNPs. Eight of these 
loci were located within an ~900-kb region on OAR 6 
(33.97–34.88 Mb), including four located in introns of 
BMPRIB, one in introns of PDLIM5, and one in introns of 
UNC5C. Additionally, two SNPs were located in a 72.66-
kb region between 42.21 and 42.28 Mb on OAR 6, both 
in the intron of LCORL. On OAR 9, a large region span-
ning ~4.8 Mb (37.42–42.23 Mb) was found to contain 
60 SNPs, 33 of which were located within seven genes, 
including ATP6V1H, LYPLA1, RP1, XKR4, SDCBP, TOX, 
and CA8; a SNP located in KCNQ3 was also identified on 
OAR 9. In addition, four of the 15 SNPs on other auto-
somes were also located in introns, such as rs399594440 
in UNC80 on OAR2, 10-74576409 (variant ID unknown) 
in GPC5 on OAR10, rs425587495 in NRP1 on OAR13, 
and rs417185097 in EXT2 on OAR15. Altogether, the 
analyses described, which were based on a large sample 
size and with a reduced environmental interference, led 
to the identification of genetic regions and novel candi-
date genes that significantly may influence BW in sheep, 
which provide new molecular markers for breeding 
efforts to regulate sheep growth and development and 
thus improve meat production.

Recursive influence of host genetics on rumen microbiota 
drive sheep weight
Although host genetics and rumen microbiota jointly 
contribute to the sheep weight, our results showed that 
the host genetics and the rumen microbiota are not inde-
pendent, and that their effects on weight traits are also 
not independent and unlinked, while there are some 
weight-associated microbial features that are controlled 
by the weight-associated genetic variants. In this case, the 
sheep genome may have both direct and indirect (marker 
microbiota-mediated) effects on weight trait, and this 
phenomenon was defined as a “recursive” scenario. To 
this regard, we investigated the host genetic aspects that 
may be responsible for this scenario and the SNPs loci 
that may have both direct and indirect effects on sheep 
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weight. To address this question, the resultant data from 
GWAS, mbGWAS, and MWAS were combined and 
analyzed. Based on finding above showing that the four 
microbial features were significantly associated with 180-
day weight (MWAS identified), we found that all had 
moderate to strong  h2 (0.16–0.40, PLRT < 0.05), and 306 
SNPs affecting these four marker genera were identified 
(mbGWAS identified; Table S11), indicating an “indi-
rect’” scenario for the control of phenotypes by genetic 
variants, i.e., host genetics indirectly influencing sheep 
weight through the control of weight-associated micro-
biota. Subsequently, we compared the overlapping loci 
of marker microbiota-associated SNPs in “indirect” sce-
nario (mbGWAS identified) and weight-associated SNPs 
(GWAS identified) to identify host genetics that influ-
ence weight through a “recursive” model. Intriguingly, 
we found that the rs405307925, located at 40,691,375 bp 
on OAR 9 (Fig. 6, Tables S7–S11), appeared in both the 
mbGWAS signals sets of the Lachnospiraceae ND3007 
group (the marker genera most strongly associated with 
180-day-old weight) and the 180-day-old weight GWAS 
signals sets. Therefore, this represents the first time that 
a “recursive” scenario of genomic markers influencing 
the phenotypes was identified using a locus overlap algo-
rithm in sheep. To identify more potential “recursive” 
scenarios, we then used a Kruskal-Wallis test to examine 
the differences in BW within marker microbiota-associ-
ated SNPs (mGWAS identified) genotypes in the “indi-
rect” scenario described above. Finally, we identified six 
genetic markers (PKruskal–Wallis test < 0.01; Table S12) that 
have the potential to recursive impact the body weight in 

sheep. These recursive loci consist of rs405307925, which 
is situated on the TOX gene, as well as rs425633529 
and rs604806950, which are located on the GLRX3 and 
PRR14 genes, respectively.

Discussion
Body weight represents the most economically impor-
tant trait for sheep production, and it may be strongly 
influenced by host genetics and rumen microbial ecosys-
tem. However, these studies were only focused on single 
effects, that is to say only the independent influence of 
host genome or the microbiota. Therefore, whether the 
host genetics may interact with the rumen microbiota 
to influence BW in sheep has remained largely unknown 
to date. Here, we described a relationship between host 
genome, rumen microbiota, and BW phenotype in 1150 
sheep subjected to the same diet and management condi-
tions. To gain better insights into this topic, we described 
the core and keystone structure of the rumen microbi-
ota. We calculated the  h2 of the rumen microbiota, and 
mbGWAS was performed to identify the influence of 
host genetics on individual rumen microbial genera. The 
 h2 and  m2 were also estimated for BW, identified host 
genetics loci, and rumen microbiota affecting BW. The 
different causal scenarios in which genetic markers may 
influence the BW phenotype were analyzed using the 
locus overlap algorithm and Kruskal-Wallis test. To our 
best knowledge, this is the first study that reports a large 
association between host genome and rumen microbiota 
and BW in sheep to date. Our study provided detailed 
guidelines on the combined use of microbiota and host 

Fig. 6 a and c Genome-wide association analysis (GWAS) for body weight at 180 days of age and Lachnospiraceae ND3007 group (the marker 
genera most strongly associated with 180-day-old weight) in sheep. The horizontal red solid line indicates the genome-wide significance (P < 
1 ×  10−8) thresholds. b and d Magnified view of the region of interest. e Comparison of the body weight at 180 days old of different genotypes 
of the rs405307925 SNP of TOX. f Comparison of the Lachnospiraceae ND3007 group in rumen of different genotypes of the rs405307925 SNP of TOX 
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genome information in order to predict the complex 
traits and the reliability of parameter inferences.

Mantel tests are a widely used method in microbi-
ome analysis to examine the macroscopic correlations 
between host genetics and gut microecological varia-
tion. In this study, a significant correlation was observed 
between the host genome kinship matrix and the rumen 
microbiota relationship matrix, which is consistent with 
previous findings in human feces [48] and mice [49]. 
However, it is important to note that the Mantel test used 
to investigate the impact of host genetics on shaping the 
overall structure of the rumen microbiome has its limita-
tions. The Mantel test is a matrix-based method that can 
only detect linear relationships within the matrix while 
disregarding nonlinear interactions [50]. Furthermore, 
the rumen microbiota community is highly complex and 
diverse, with intricate interactions between different spe-
cies that can influence the magnitude of the correlation 
coefficient. Therefore, despite the weak but significant 
correlation observed, it still suggests that the host genetic 
background plays a role in shaping the structure of the 
rumen microbiota.

In this study for the first time, the heritability of the 
rumen microbiota has been investigated on sheep, and 
it was demonstrated that the rumen microbial commu-
nity diversity was heritable, consistently with previously 
studies in cattle [29], demonstrating a higher  h2 than 
those reported for cattle. This finding may be attributed 
to three main factors: firstly, differences between host 
species,secondly, the more control for environmental 
factors and covariates in the design and analysis of the 
current study [21, 51] and thirdly, higher detection of 
variants than SNP chips following the resequencing. All 
together, these observations also indicated that most of 
the variation in rumen microbial communities is due to 
host genetics in sheep. On the other hand, estimating 
bacterial heritability provided new perspectives in iden-
tifying taxa that were closely related to host but previ-
ously unidentified, such as Candidatus Liberibacter and 
Longimicrobiaceae, both of which showed a heritabil-
ity above 50% but for which no host interactions were 
detected. However, we found that the heritability of the 
very low-abundance rumen taxa in sheep was limited 
by their prevalence in the population (most taxa were 
present in < 10% of samples). This may be due to which 
the effective sample size and efficacy of genetic analyses, 
and therefore very large sample sizes and more sensi-
tive microbial community sequencing technologies (e.g., 
metagenomic and metatranscriptomic approaches), will 
be beneficial to address this issue in the future.

We next focused on the BW value, which was meas-
ured at 180 days of age, the typical age for slaughter in 
commercial meat lambs. Host genetics explained 39% 

of the total phenotypic variation, and indeed, the effect 
of the rumen microbial communities on sheep BW 
was 20% following the consideration of host genetics. 
These results highlighted the need for additional com-
prehensive analyses based on the genome and rumen 
microbiota. We therefore used MWAS to screen rumen 
microbes associated with BW, and we identified four 
heritable bacterial genera. Interestingly, these taxa 
derived from a core or keystone microbial subsets, sug-
gesting that ecologically important core and keystone 
taxa play a role in the development of BW phenotypes 
in sheep. The increase in major VFAs is beneficial for 
the animal, and Syntrophococcus produced major VFAs 
that are absorbed through the rumen wall to sustain 
the energy requirements [52, 53]. Oribacterium has 
been found to be an obesogenic bacterium in human 
and rat studies [54, 55], and the increasing of Oribacte-
rium in the rumen of cattle may promote the synthesis 
of a variety of fatty acids [56]. For example, the changes 
in propionate concentrations are correlated with the 
changes in the abundance of most marker genera. Pro-
pionate is the main precursor of hepatic gluconeogen-
esis in ruminants and is effectively involved in their 
energy balance [57].

By applying large-scale GWAS, two signal peaks on 
chromosomes 6 and 9 in sheep were observed. The 
OAR6 signalling peak region included an orthologous 
region that has been clearly associated with body size in 
a variety of mammals [58]. We replicated the relation-
ship between the LCORL gene and BW in sheep found 
by Al-Mamun and colleagues [59]. Biologically relevant 
genes localized to the OAR9 signalling peak region 
were KCNQ3, ATP6V1H, LYPLA1, and XKR4. KCNQ3 
modulates M-currents in NPY/AgRP neurons, affect-
ing neuronal excitability and stimulating the physiologi-
cal appetite, thereby it contributes to the energy balance 
[60]. The ATP6V1H gene is involved in mediating the 
regulatory bone formation [61], and SNPs in ATP6V1H 
were previously reported to affect feed efficiency in beef 
cattle [62]. LYPLA1 has been identified as a potential 
candidate gene associated with lipid-related biological 
processes [63]. XKR4 encodes an XK-related protein in 
the XK-Kyle blood group complex. XKR4 variants which 
were associated with economically important traits such 
as growth, and feed efficiency, have been widely detected 
in cattle, but not in sheep [64]. In addition, some interest-
ing regulatory candidates were identified, with BMPR1B 
(also known as FECB and ALK-6), TOX, and SDCBP the 
ones of major interest. Several studies have demonstrated 
the key role of TOX and SDCBP on carcass weight, fertil-
ity, and feed efficiency traits in cattle [65]. An important 
gene involved in glucose metabolism is CA8 [66], while 
NRP1 is involved in the regulation of organ development 
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and function [67]. Furthermore, PDLIM5 encodes a 
cytoskeleton-associated protein that plays an important 
role in cell proliferation and differentiation in a variety 
of tissues and cell types [68], while PTTG1IP was previ-
ously reported to be a selectively spliced gene associated 
with chicken muscle development [69]. The EXT2 gene 
encodes an essential component of the glycosyltrans-
ferase complex required for the biosynthesis of acetyl 
heparin, which in turn regulates the signalling involved 
in bone formation [70]. UNC80 is one of the subunits 
of the NALCN complex, which is associated with global 
dysplasia [71]. Although our analysis has identified sev-
eral SNPs and genes previously not reported using the 
GWAS analysis, functional validation of these variants is 
required.

Following an integrated analysis of GWAS, mbG-
WAS, and MWAS results, our study described a 
recursive scenario of host genetics influencing phe-
notype, based on the hypothesis that the same SNPs 
are directly associated with animal phenotype able 
to influence the composition of the rumen flora and 
consequently also the host phenotype. We identified a 
recursive scheme in which rs405307925, located within 
the TOX gene, affects sheep BW, and its indirect 
effects are mediated through the Lactococcus ND3007 
group. Notably, this is also the first report in which the 
SNPs discovered in the target phenotypic GWAS were 
overlapped with those in the GWAS of microbes asso-
ciated with the target phenotype. Here, although the 
biological function of the TOX gene in sheep has not 
yet been reported, it is noteworthy that three previous 
studies described the key role of the TOX gene in regu-
lating the immune T -cell function [72–74]. Although 
rumen microbes play an important role in host immu-
nity and metabolism, multiple immunological mecha-
nisms are put in place by the host to avoid microbial 
ecological dysregulation. Therefore, we hypothesized 
that the host genetics may regulate the immune sys-
tem, controlling the complex rumen microbes. Future 
research will be needed to elucidate these complex 
mechanisms.

This study has some limitations. While it was con-
ducted using the most dominant breed of sheep in 
China, Hu sheep, generalizing the findings to other 
breeds, may require additional considerations. As all 
study animals were males, the applicability to other gen-
ders of sheep may be limited. Additionally, the exact 
mechanism underlying the “recursive” scheme remains 
elusive. In future studies, a combination of metabo-
lomics, metagenomics, and gene editing techniques will 
be employed to investigate the mechanisms involved in 
this recursive scenario.

Conclusions
In this study, we explored the association of host genetic 
variation and rumen microbiota and its impact on sheep 
BW. Using large-scale GWAS and MWAS, novel candi-
date genes and heritable rumen indicator taxa that poten-
tially affect sheep BW were identified. Furthermore, our 
results supported the hypothesis that host genetics influ-
ences the composition of the rumen microbiota, with an 
intricate network involving host genetics, rumen micro-
biota, and sheep weight traits. Additionally, we identified 
six SNP loci that influence sheep BW through a “recur-
sive” model. Of particular interest is rs405307925, located 
within the TOX gene, which can affect BW both directly 
and indirectly by influencing the relative abundance of 
the Lachnospiraceae ND3007 group, which in turn affect 
the BW through the production of VFAs. Our work is the 
first study that explored the host genetic-rumen micro-
biota-phenotype relationships on a large-scale sheep 
population, which was sufficiently attenuated from other 
factors such as environment and diet. These observa-
tions will provide a reliable and detailed guide that can be 
helpful for the combined use of rumen microbiota, and 
genomic information useful for predicting complex traits 
and parameter inferences, which may be useful for devel-
oping breeding strategies to improve sheep BW.
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