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Abstract 

Background There is a growing body of evidence suggesting that disturbance of the gut-brain axis may be one 
of the potential causes of major depressive disorder (MDD). However, the effects of antidepressants on the gut micro-
biota, and the role of gut microbiota in influencing antidepressant efficacy are still not fully understood.

Results To address this knowledge gap, a multi-omics study was undertaken involving 110 MDD patients treated 
with escitalopram (ESC) for a period of 12 weeks. This study was conducted within a cohort and compared to a refer-
ence group of 166 healthy individuals. It was found that ESC ameliorated abnormal blood metabolism by upregu-
lating MDD-depleted amino acids and downregulating MDD-enriched fatty acids. On the other hand, the use 
of ESC showed a relatively weak inhibitory effect on the gut microbiota, leading to a reduction in microbial richness 
and functions. Machine learning-based multi-omics integrative analysis revealed that gut microbiota contributed 
to the changes in plasma metabolites and was associated with several amino acids such as tryptophan and its 
gut microbiota-derived metabolite, indole-3-propionic acid (I3PA). Notably, a significant correlation was observed 
between the baseline microbial richness and clinical remission at week 12. Compared to non-remitters, individu-
als who achieved remission had a higher baseline microbial richness, a lower dysbiosis score, and a more complex 
and well-organized community structure and bacterial networks within their microbiota. These findings indicate 
a more resilient microbiota community in remitters. Furthermore, we also demonstrated that it was not the composi-
tion of the gut microbiota itself, but rather the presence of sporulation genes at baseline that could predict the likeli-
hood of clinical remission following ESC treatment. The predictive model based on these genes revealed an area 
under the curve (AUC) performance metric of 0.71.

Conclusion This study provides valuable insights into the role of the gut microbiota in the mechanism of ESC 
treatment efficacy for patients with MDD. The findings represent a significant advancement in understanding 
the intricate relationship among antidepressants, gut microbiota, and the blood metabolome. Additionally, this study 
offers a microbiota-centered perspective that can potentially improve antidepressant efficacy in clinical practice. 
By shedding light on the interplay between these factors, this research contributes to our broader understanding 
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of the complex mechanisms underlying the treatment of MDD and opens new avenues for optimizing therapeutic 
approaches.

Keywords Major depressive disorder, Gut microbiota, Antidepressants, Sporulation gene

Background
Major depressive disorder (MDD) is a debilitating men-
tal illness that affects approximately 350 million people 
worldwide [1, 2]. Selective serotonin reuptake inhibitors 
(SSRIs) are considered as the first-line treatment option 
for patients with MDD [3]. However, it is important to 
note that the remission rate associated with SSRIs can 
be as low as one-third [4, 5]. Although metabotype and 
pharmacogenomics have been proposed as potential fac-
tors that could contribute to the variability in antidepres-
sant response [6, 7], the exact underlying mechanisms 
and predictive markers for this heterogeneity have not 
been fully understood thus far. Therefore, it is impera-
tive to thoroughly investigate the factors associated with 
the effectiveness of antidepressant treatment in order to 
enhance the prognosis of patients diagnosed with MDD.

Multiple studies conducted by our research team, as 
well as other researchers, have indicated that the dys-
function of the gut-brain axis could potentially contribute 
to the development of MDD. This dysfunction is associ-
ated with various metabolic changes both in the periph-
ery and central nervous systems. Specifically, it involves 
disruption of amino acid and carbohydrate metabolism, 
alterations in glycerophospholipid metabolism and dis-
turbances in bile acid metabolism [8–11]. However, only 
few studies have focused on the relationship between the 
therapeutic effects of antidepressants and the gut micro-
biome. Previous studies have suggested that, apart from 
their direct effects on serotonergic neurons in the gastro-
intestinal (GI) tract [12], SSRI antidepressants may pos-
sess antimicrobial effects that lead to the disruption of 
the integrity and stability of the gut microbiome [13, 14]. 
In recent years, the modulatory effects of antidepressants 
on the gut microbiota have been observed in human and 
animal models [15–17]. Mice treated with antidepres-
sants (fluoxetine, escitalopram, venlafaxine, duloxetine or 
desipramine) display changes in the diversity and compo-
sition of the gut microbiota, including reduced richness 
and abundances of Ruminococcus and Adlercreutzia [15]. 
Conversely, gut microbes can also influence individual 
responses to drugs by chemically modifying and altering 
the bioavailability, bioactivity or toxicity of the drug [18]. 
Indeed, there is evidence suggesting that specific bacteria 
can accumulate the antidepressant duloxetine intracellu-
larly, leading to reduced drug availability and potentially 
impacting its effectiveness. This phenomenon, known as 

bioaccumulation, can result in altered drug metabolism 
within the bacteria that have accumulated the drug [19]. 
However, most of the previous studies have primarily 
focused on in vitro and in vivo aspects, and there is a rel-
ative scarcity of clinical studies specifically conducted on 
patients with MDD who are undergoing antidepressant 
treatment. In a particular study with a limited sample size 
of 30 patients with MDD, the researchers observed that 
patients whose depressive symptoms improved, as indi-
cated by a Hamilton Depression Rating Scale (HAMD) 
score greater than 50%, exhibited a significant decline 
in alpha diversity of the gut microbiome [17]. Many 
previous studies have primarily focused on examining 
the changes in single "omics", such as analyzing the gut 
microbiota composition or investigating gene expression 
patterns in the brain. However, this narrow focus limits 
our understanding of the complex interactions between 
the gut microbiota and the brain. To gain a more compre-
hensive understanding, it is crucial to conduct systemic 
research that considers the simultaneous changes across 
different “omics” aspects. Integrating data from multiple 
omics can provide a more holistic view of the molecular 
interactions and pathways involved in the gut-brain axis. 
Furthermore, the lack of biomarker-based prediction 
of antidepressant efficacy poses a significant challenge. 
Identifying reliable biomarkers that can predict individ-
ual response to antidepressant treatment is essential for 
personalized medicine approaches in MDD.

To address this knowledge gap, we performed a lon-
gitudinal multi-omics analysis of fecal and plasma sam-
ples from 110 patients with MDD in order to investigate 
the effects of escitalopram (ESC, a SSRI antidepressant) 
on gut microbiota and the relationship between gut 
microbiota and ESC efficacy. Firstly, we conducted a 
comprehensive analysis of longitudinal changes in gut 
microbial composition, microbial functions, and both 
fecal and plasma metabolite profiling over a 12-week 
period of antidepressant treatment. Next, we investi-
gated the role and contribution of the gut microbiota 
in mediating antidepressant remission. Lastly, we 
explored the potential of the baseline gut microbiota 
as a predictive factor for clinical antidepressant remis-
sion. By analyzing the initial microbial composition of 
individuals before treatment, we sought to determine 
if specific microbial markers or patterns could serve 
as indicators for the likelihood of achieving remission 
with antidepressant therapy.
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Results
Clinical characteristics and data collection
One hundred and ten MDD patients (41 males and 69 
females) who received ESC monotherapy from a large 
cohort were included in this study [20–22]. At the same 
time, 166 healthy individuals (68 males and 98 females) 
were matched as healthy controls (HCs). It is worth 
noting that a majority of these individuals were selected 
from our previously published study [11]. The overall 
workflow of this study is shown in Fig. 1. There were no 
significant differences in age, sex and BMI between the 
MDD and HC cohorts (all P > 0.05) (details of all indi-
viduals are presented in Table S1). After 12  weeks of 
ESC treatment, the 17-item Hamilton Depression Rat-
ing Scale (HAMD-17) scores of MDD patients were sig-
nificantly reduced (P < 0.05). Among them, 56 patients 
(50.91%) achieved remission (defined as remitters with 
HAMD-17 ≤ 7) and 54 patients (49.09%) remained in 
a non-remission state (defined as non-remitters with 
HAMD-17 > 7). The internationally recognized stand-
ard for defining remission is when the score on the 
Hamilton Depression Rating Scale (HAMD-17) is less 
than or equal to 7 [4, 23]. The reliability and validity of 
the HAMD-17 have been tested on the Chinese popu-
lation [24]. With the exception of education level and 

baseline HAMD score, there were no significant dif-
ferences in other baseline characteristics between the 
remitters (R) and non-remitters (NR) groups (Table 
S2). Among the recruited subjects, a sub-cohort of 59 
patients with MDD (34 R and 25 NR) and 84 HCs had 
completed the “Diet and Lifestyle Questionnaire”. This 
questionnaire covers various aspects, including medical 
history, dietary preferences, smoking, antibiotics and 
probiotics. No significant differences in these potential 
confounders were observed between the two popula-
tions (Tables S3 and 4).

A total of 285 stool and 321 plasma samples were 
collected from MDD patients at baseline, week 2 and 
week 12 after ESC treatment. For HCs, 166 stool and 
plasma samples were collected at baseline, respec-
tively. All the stool samples were subjected to shotgun 
metagenomic sequencing and non-targeted metabo-
lomics. Meanwhile, the plasma samples were also sub-
jected to non-targeted metabolomics. In total, 4.86 Tb 
of metagenomic data were generated in this study, with 
an average of 10.58 Gb per sample. After removing low-
quality reads and host DNA, there was an average of 
93.5% high-quality sequences remaining, with a range 
of 57.6% to 96.2%. Finally, 353 fecal metabolites and 323 
plasma metabolites were obtained.

Fig. 1 Overview of the study design. The workflow schematic diagram for this study illustrates the details of sample groups and multi-omic data 
collection. MDD patients were treated with ESC for 12 weeks, and treatment outcomes were evaluated at week 2 (early) and week 12 (endpoint). All 
patients were divided into remitter (R, HAMD-17 ≤ 7) and non-remitter (NR, HAMD-17 > 7) groups according to the HAMD-17 score at week 12
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ESC treatment ameliorates the dysregulation of plasma 
metabolites in MDD
The overall plasma metabolic signatures of MDD patients 
were significantly different from those of HCs, as illus-
trated by PCA (PERMANOVA, Euclidean distance, 
p = 0.001, Fig. 2A). Compared to HC group, MDD group 
showed enrichment in 7 metabolites and depletion in 37 
metabolites (q < 0.1; Fig.  2B). MDD patients were char-
acterized by higher levels of organic acid metabolites 
(most of these belong to fatty acid), such as 3-hydroxy-
butyric acid, palmitelaidic acid, 2-hydroxybutyric acid, 
palmitic acid, and linoleic acid, as well as lower levels of 
amino acid metabolites, including L-tyrosine, L-phenyla-
lanine, L-alanine, L-valine, L-proline, L-methionine and 
glutamate.

PERMANOVA was simultaneously employed to 
analyze the changes in plasma metabolites after ESC 
treatment. In this scenario, PERMANOVA tests were 
implemented using a mixed-model design, with sub-
ject ID included as a blocking factor ("strata") to control 
for repeated sampling. It was observed that significant 
changes in overall metabolic characteristics occurred 
at week 12, but not at week 2 (Euclidean distance, week 
2, p = 0.31; week 12, p = 0.032; as illustrated by PCA in 
Figure S1A). Next, to  clarify  the  relationship  between 
plasma metabolome and drug efficacy, PC1 (11.1% vari-
ation), PC2 (8.24% variation) and PC3 (5.11% variation) 
were obtained from the principal component analysis 
(PCA) data of plasma metabolome profiling. Then, the 
relationship between HAMD-17 scores and different 
principal components was established using linear mixed 
model (LMM). The model demonstrated that HAMD-
17 score was significantly negatively correlated with PC3 
(coefficient β = -0.2, p = 0.0101). These findings suggest 
that the changes in plasma metabolome are associated 
with depressive symptoms.

To examine the alterations in plasma metabolic com-
ponents after ESC treatment, the linear mixed mod-
els (LMMs) were carried out, which incorporated visit 
week, age, sex, education, BMI, and month of disease 
duration as fixed effects, and subject ID as random 
effect. Using a significant threshold of q value < 0.1, we 
identified changes in 4 and 8 plasma metabolites after 
2 and 12  weeks of treatment, respectively (33 and 39 if 
using p < 0.05). As shown in Fig. 2C, various amino acid 
metabolites were upregulated, including L-tyrosine, 
L-methionine, L-phenylalanine, L-alanine and L-tryp-
tophan. An important observation to highlight is that 
L-tryptophan serves as the precursor for the neurotrans-
mitter 5-hydroxytryptamine (5-HT), commonly known 
as serotonin. L-tryptophan has the ability to pass through 
the blood–brain barrier, and plasma levels of tryptophan 
are generally regarded as a reliable indicator of central 

5-HT activity [25]. Interestingly, despite the ESC treat-
ment, we did not observe an increase in serum 5-HT 
levels. However, our findings revealed that another gut 
microbiota-derived metabolite of tryptophan [26, 27], 
indole-3-propionic acid (I3PA), was markedly upregu-
lated. I3PA has recently been reported to promote nerve 
regeneration and repair [28]. In contrast, organic acids 
(most of these belong to fatty acid) were significantly 
down-regulated, including stearic acid, oleic acid, linoleic 
acid, 2-hydroxybutyric acid, palmitelaidic acid, 4-deoxy-
erythronic acid, 3-hydroxybutyric acid, phenol and pal-
mitic acid. Fisher exact test showed that the up-regulated 
metabolites were enriched in HC-enriched metabolite 
sets, while the down-regulated metabolites were enriched 
in MDD-enriched metabolite sets (p = 6.73e-05). Of 
note, 6 up-regulated and 2 down-regulated metabolites 
overlapped with HC-enriched metabolites, while 0 up-
regulated and 6 down-regulated metabolites overlapped 
with MDD-enriched metabolites. Taken together, these 
findings imply that ESC treatment ameliorates the dys-
regulation of plasma metabolites in MDD patients by up-
regulating amino acid metabolism and down-regulating 
fatty acid metabolism.

Furthermore, we examined the differential effects of 
ESC treatment on the blood metabolome in R and NR 
groups separately using LMMs. After controlling baseline 
plasma 5-HT levels and confounding effects, we found 
that the 5-HT level in R group was higher than that in NR 
group after ESC treatment (barely significant, p = 0.077; 
Figure S1B). Interestingly, the “good” metabolites (HC-
enriched metabolites, such as L-tyrosine, L-tryptophan, 
and I3PA) and “bad” metabolites (MDD-enriched metab-
olites, such as stearic acid, oleic acid, and linoleic acid) 
were up-regulated and down-regulated only in R group 
(Fig. 2D). In addition, primary bile acids (cholic acid and 
chenodeoxycholic acid), which can be metabolized by 
gut microbiota and play an important role in regulating 
the gut-brain axis [29], also exhibited different trends 
between subgroups (Figure S1C). These results indicated 
that the changes in plasma metabolites after ESC treat-
ment were different between the R and NR groups, which 
may be attributed to the treatment outcome of ESC. It 
is worth highlighting that some of the metabolites that 
showed alterations in response to the treatment, includ-
ing tryptophan and I3PA, are metabolites associated with 
the gut microbiota. This observation strongly suggests 
the involvement of the gut microbiota in the mechanism 
of action of ESC.

ESC treatment exerts an inhibitory effect on gut microbiota
Next, we focused on the effects of ESC on the gut micro-
biota. As shown in Fig.  3A, ESC treatment significantly 
reduced the richness at the species level, but not at the 
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Fig. 2 The dysregulated plasma metabolome of MDD patients, and the effect of ESC treatment on plasma metabolites. a Principal component 
analysis (PCA) based on plasma metabolomic profiles revealed a significant difference between the plasma metabolic signatures of MDD patients 
and those of HCs (PERMANOVA, Euclidean distance, P = 0.001). b Volcano plot of regression coefficients for the differences in metabolite levels 
between MDD patients and HCs. Multivariate regression models were used to explore the associations between plasma metabolites and disease 
status, statistical significance was determined by q value < 0.1. Compared with HCs, the MDD group was characterized by 7 up-regulated 
metabolites and 37 down-regulated metabolites, these metabolites were mainly involved in organic acid and amino acid. c Heatmap showing 
the average abundance of 41 plasma metabolites, which were significantly changed at week 2 or week 12 after ESC intervention, as determined 
by linear mixed models (LMM). Heatmap row annotation showing the colored coefficients derived from LMMs (Baseline vs. W2 and Baseline vs. 
W12) and multivariate regression models (MDD vs HC). The coefficients have different colors of blue (down-regulated or enriched in HC) and red 
(up-regulated or enriched in MDD). Significant differences are indicated by * p < 0.05, ** p < 0.01, *** q < 0.1. d Longitudinal changes in 6 plasma 
metabolites (from c), which exhibited differential trends between the R and NR groups. The P values were obtained from LMMs applied to grouped 
data of R and NR
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gene level. Upon subgroup analysis, we observed that the 
decrease in microbial richness was specifically evident in 
NR group from baseline to week 12. However, it is impor-
tant to note that at the gene level, there was a temporary 
increase in richness observed from baseline to week 2. 
In R group, there was no significant change in richness 
at the species or gene level. Moreover, the richness of R 
group was significantly higher than that of NR group at 
both baseline and week 12, but consistently lower than 
that of HC group. Similarly to the richness analysis, we 
observed a similar trend in the Shannon index (Figure 
S2A). These results serve as a reminder that the effect of 
ESC on the gut microbiota varied between the R and NR 
groups, as well as between the short-term (baseline to 
week 2) and long-term (baseline to week 12) treatment 
periods.

PERMANOVA results showed that the gut micro-
bial composition changed significantly at week 12  (con-
strained PERMANOVA,  R2 = 0.0046, p = 0.034), but 

not at week 2 (Fig. 3B). Our observations indicated that 
even at week 12, there remained a noticeable distinc-
tion in microbial composition between MDD patients 
and HCs at week 12 (Bray–Curtis distance,  R2 = 0.027, 
p = 0.00033). This suggests that ESC treatment did not 
effectively shift the gut microbiome of MDD patients 
towards a healthier or more similar state to that of HCs. 
However, HAMD-17 score was negatively correlated 
with PCoA1 (LMM, coefficient β = -3.39, p = 0.05), which 
indicted a significant association between the remission 
of depressive symptoms and changes in the gut micro-
biota. To further explore whether the changes in the 
gut microbiota of MDD patients were directed towards 
a healthier state, we estimated a dysbiosis score (DS) for 
each MDD sample, using HC samples as a reference, 
and calculated the median value of Bray–Curtis distance 
between the MDD and HC cohorts [30]. Our findings 
revealed a significant negative correlation between the 
DS and species richness (Figure S2B). Overall, DS did not 

Fig. 3 Effects of ESC treatment on the gut microbiome. a Changes in microbial richness at species and gene level from baseline to week 12 in ALL, 
R and NR groups, with HC as reference. ALL included the samples from both R and NR groups. The table presents detailed results from longitudinal 
comparisons using LMM, with visit week coefficients and P values. b Principal coordinate analysis (PCoA) plots based on the metagenomic profiles 
of different groups. c Changes in dysbiosis score (DS) from baseline to week 12 in the R and NR groups. NR was significantly higher than R at week 
12 (P = 0.031). d Heatmap showing the average abundance of 24 species, which were significantly changed at week 2 or week 12 after ESC 
intervention, as determined by linear mixed models. Heatmap row annotation showing the colored coefficients derived from LMMs (Baseline vs. W2 
and Baseline vs. W12) and multivariate regression models (MDD vs HC). The coefficients have different colors of blue (inhibited or enriched in HC) 
and red (promoted or enriched in MDD). Significantt differences are indicated by * p < 0.05, ** p < 0.01, *** q < 0.1. e Venn diagram of significantly 
downregulated metaCyc pathways in ALL (q < 0.25), R (q < 0.25) and NR (q < 0.25) groups after ESC intervention
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alter significantly from baseline to week 12 (p = 0.276). 
However, DS was higher in NR group than in R group 
at baseline and week 12, with a significant difference at 
week 12 (p = 0.031; Fig. 3C). In light of the findings, ESC 
did not improve the overall gut microbial status, but NR 
group had a more disturbed gut microbiota compared to 
R group.

At the individual taxa level, our analysis revealed sig-
nificant changes in specific species following ESC treat-
ment. Specifically, from baseline to week 2, we observed 
the promotion of five species and the inhibition of seven 
species. Similarly, from baseline to week 12, ESC treat-
ment resulted in the promotion of six species and the 
inhibition of nine species (Fig.  3D). In contrast to the 
previous findings regarding plasma metabolites, we did 
not observe any enrichment of the promoted or inhib-
ited species in both HC and MDD cohorts. Among 
the species that showed significant alterations follow-
ing ESC treatment, it was observed that several of them 
belonged to spore-forming bacteria, including Clostrid-
ium disporicum, Turicibacter sanguinis, Eubacterium 
hallii, Coprococcus comes and Clostridium perfringens. 
A previous study reported that spore-forming bacteria, 
such as T. sanguinis and Clostridiaceae, could interact 
with enterocytes to increase 5-HT production, while 
SSRIs could inhibit SERT on the surface of T. sanguinis 
and affect its absorption of 5-HT, thereby increas-
ing the concentrations of 5-HT in the intestine [31]. In 
our study, T. sanguinis (q = 0.057) and Clostridiaceae 
(q = 0.12) were also significantly reduced from baseline 
to week 2, with Clostridiaceae only showing a decrease 
in R group (q = 0.078) rather than NR group. Given the 
relationship between spore-forming bacteria and SSRIs, 
we further investigated the changes in sporulation genes 
after ESC intervention. In view of this, we obtained the 
sequences of 66 sporulation signature genes from a pre-
vious study [32], and 51 of the 66 genes could be hit by 
our non-redundant gene catalogue using BLAST. The 
abundance of the 51 sporulation genes was obtained by 
summing up the abundance of each hit gene. It was found 
that sporulation genes were significantly down-regu-
lated and this down-regulation pattern occurred only 
in the R group (Figure S2C). After performing the taxo-
nomic assignment, the majority of the sporulation genes 
were annotated to the order Clostridiales, accounting 
for approximately 74.74% of the assignments. Another 
noteworthy observation in our study was the significant 
increase in the Firmicutes phylum, which is a phylum 
known to encompass several members of spore-forming 
bacteria [33], from baseline to week 2 (q = 0.0089), par-
ticularly in the NR group (q = 0.039; Figure S2D). In addi-
tion to the observed increase in Firmicutes from baseline 
to week 2, our analysis revealed a positive correlation 

between the change in Firmicutes abundance and the 
change in species richness (Figure S2E). Furthermore, 
considering the transient increase in richness specifi-
cally from baseline to week 2 in the NR group, this result 
implies that the increase in richness may be related to the 
concurrent increase in Firmicutes abundance during that 
period.

Among the bacterial species affected by ESC treatment, 
we also found some species that changed differentially 
between the R and NR groups (Figure S2F), including 
Intestinibacter bartlettii, E. hallii, Roseburia intestinalis, 
and Phascolarctobacterium faecium. I. bartlettii, a bac-
terium that is known to have potentially harmful effects 
[34], exhibited a greater decrease in the R group follow-
ing ESC treatment. Notably, at week 12, the NR group 
showed a higher abundance of I. bartlettii compared 
to the R group. On the other hand, E. hallii showed an 
increase in the R group and a decrease in the NR group. 
At week 12, the R group had a higher abundance of E. 
hallii compared to the NR group, although the differ-
ence approached significance (p = 0.067). A noteworthy 
finding in our study is the depletion of E. hallii in MDD 
patients compared to HCs. This observation is consist-
ent with our previous study [11], further reinforcing the 
association between the reduced abundance of E. hallii 
and MDD risk. E. hallii, as a key species within the intes-
tinal trophic chain, has the potential to strongly influence 
the metabolic balance as well as the gut microbiota/host 
homeostasis through the production of different short 
chain fatty acids (SCFAs) [35]. Furthermore, our analy-
sis revealed that R. intestinalis (p = 0.087) and P. faecium 
(p = 0.058), both known as SCFA-producing bacteria, 
exhibited a higher overall abundance in R group than in 
NR group [36, 37].

In terms of microbial functions, the changes in meta-
bolic pathways were analyzed using MaAsLin2, with 
the subject as a random effect. After ESC treatment, 
145 pathways were significantly altered in all samples, 
of which 143 pathways were down-regulated (q < 0.25). 
Further subgroup analysis showed that 17 pathways 
were down-regulated in NR group, whereas no pathway 
was altered in R group (using a significance threshold of 
q < 0.25, Fig.  3E). Considering the known antimicrobial 
properties of SSRIs [31], we also determined the impact 
of ESC on antimicrobial resistance (AMR) genes. our 
findings revealed an overall up-regulated trend of AMR 
genes following ESC treatment. Specifically, out of the 15 
ESC-altered genes analyzed, 11 of them showed upregu-
lation, using a significance cutoff of p < 0.05 (Table S5). In 
contrast to the overall up-regulated trend of AMR genes 
observed after ESC treatment, our analysis revealed that 
only a specific AMR gene family, namely the major facili-
tator superfamily (MFS) antibiotic efflux pump, showed 
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significant up-regulation in R group when using a sig-
nificance threshold of q < 0.25. It has been reported that 
antidepressants could induce resistance to multiple anti-
biotics by inducing the expression of efflux pumps [38]. 
Taken together, these findings suggested indicate that 
ESC treatment exerts an inhibitory effect on microbial 
functions, particularly in NR group, whereas R group 
showed greater resistance to ESC perturbation, which 
may be more conducive to drug efficacy.

As the fecal metabolome can provide a functional 
readout of the gut microbiome, GC–MS-based metabo-
lomic analysis was simultaneously performed to compare 
the microbial metabolic signatures after ESC treatment. 
Although there was an obvious effect of ESC on micro-
bial composition and functions, we did not observe sig-
nificant changes in fecal metabolites after FDR correction 
(using a significance threshold of q < 0.1). When using 
p < 0.05 as the significant threshold, 22 fecal metabolites 
significantly altered at week 12, but all had q > 0.5 after 
FDR correction. In the NR group, we observed only 9 
significant changes in fecal metabolites from baseline to 
W2 (q < 0.25, Table S6). These findings were consistent 
with a significant change in gene diversity from baseline 
to W2 only in the NR group (Fig. 3A). However, this con-
sistency disappeared from baseline to W12, possibly due 
to metabolomic technical bias or biological confounding 
factors that we were unable to account for or capture. 
Therefore, we redirected our focus towards exploring the 
association between the plasma metabolome and the gut 
microbiome in the subsequent part of our study.

Integration network of plasma metabolome and gut 
microbiome
The aforementioned findings suggest that ESC treatment 
influenced both the gut microbiome and the plasma 
metabolome. These results align with previous findings 
indicating that the gut microbiota can play a role in mod-
ulating individual plasma metabolite profiles, with the 
extent of influence varying depending on the specific dis-
ease or condition [39, 40]. Thus, we continued to explore 
the association between the two sets of omics data. 
We first performed a Procrustes analysis using sample 
matched omics data from both HC and MDD cohorts, 
respectively. The results revealed a weak correspondence 
between the plasma metabolome and gut microbiome in 
MDD patients (Monte Carlo P value = 0.013) and HCs 
(Monte Carlo P value = 0.092; Fig. 4A). As anticipated, we 
observed a stronger correlation between the fecal metab-
olome and gut microbiome in both MDD (Monte Carlo 
P value = 0.0445) and HC (Monte Carlo P value = 5e-04) 
cohorts (Figure S3A). Given the lack of significant over-
all association between the plasma metabolome and gut 
microbiome, we speculate the association is more likely 

to occur at the individual level between the metabolite 
and gut microbiota, rather than an overall inter-omics 
association.

To address this hypothesis, we employed a machine 
learning framework as proposed in a previous study [41]. 
This framework implements lasso penalized regression 
to characterize potential biologically meaningful asso-
ciations between genes and gut microbiota. By applying 
this approach, we aimed to explore specific relationships 
between plasma metabolites and gut microbiota that 
could contribute to our understanding of the underly-
ing biological mechanisms of depressive symptoms. The 
lasso regression uses shrinkage to perform feature selec-
tion, retaining only a few taxa associated with a plasma 
metabolite. Through this approach, we discovered 169 
significant plasma metabolite-taxa associations in the HC 
group, while 680 associations in the MDD group (q < 0.1; 
Figure S3B). These represent associations between 40 
plasma metabolites and 119 gut microbes in HCs (Table 
S7), and between 60 metabolites and 219 gut microbes 
in MDD patients (Table  S8). An interesting observa-
tion was made regarding the overlap of associations 
between plasma metabolites and gut microbiota in the 
two populations. Specifically, there were no shared asso-
ciations between the HC and MDD groups, with only six 
metabolites found to be associated with microbial taxa in 
both populations (Figure S3B). This lack of overlap sug-
gests that the potential biological associations between 
plasma metabolites and gut microbiota differ between 
the two populations. However, given that the lasso model 
is sensitive to small variations of the predictor variable 
(gut microbe), the difference between the two popula-
tions may be partly attributed to the selection method 
[41]. Additionally, our analysis revealed a significant dif-
ference in the variance of plasma metabolites explained 
by gut microbiota between the MDD and HC groups, 
with a higher variance explained in the MDD population 
(Fig.  4B). These results suggest that gut microbes have 
a stronger impact on plasma metabolites in individuals 
with MDD compared to healthy controls. Overall, MDD-
specific patterns are detected in the associations between 
the plasma metabolite and gut microbiota.

Next, to further establish the association between indi-
vidual plasma metabolites and gut microbiota, glmmL-
asso models were constructed using all MDD samples. 
For each metabolite, the glmmLasso model was fitted 
to select the potentially associated bacterial species, and 
these selected features were further fitted to the LMM 
model to assess its significance levels (see Methods). A 
total of 255 significant associations were found between 
109 metabolites and 139 species after FDR correction 
(q < 0.1, Table S9). As shown in Fig. 4C and Table S9, 19 
metabolites altered by ESC treatment were associated 
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with bacterial species, and the number of up-regulated 
metabolites was much higher than that of down-regu-
lated metabolites. For example, L-tryptophan was asso-
ciated with Parabacteroides goldsteinii and Streptococcus 
thermophilus. The latter belongs to tryptophan-metab-
olizing bacteria, which contains tryptophanase that can 
maintain the growth and survival of bacteria through 
tryptophan metabolism, and the metabolites produced 
by these bacteria can regulate microbial diversity and 
confer benefits to the host [42–44]. In our analysis, we 
found that I3PA was associated with Bacteroides plebeius 
and Streptococcus cristatus. Furthermore, we observed 
that I3PA was significantly positively correlated with spe-
cies richness (Fig. 4D). Taken together, the above findings 
suggest a potential correlation between altered plasma 
metabolites and gut microbes after ESC treatment, in 
which amino acid metabolism and tryptophan deriva-
tives may play an important role.

Baseline microbiome characteristics of different remission 
groups
One of the primary objectives of our study was to 
investigate the predictive potential of gut microbiota 

for antidepressant efficacy. In line with this objective, 
we aimed to compare the microbiome characteristics 
between the R and NR groups at baseline. Although PER-
MANOVA analysis showed that there was no significant 
difference in microbial composition between the two 
subgroups at baseline (p = 0.51; Fig.  5A), the microbial 
richness of R group was significantly higher than that of 
NR group at both species (p = 0.017) and gene (p = 0.019) 
levels (Fig. 5B). Furthermore, species richness was nega-
tively correlated with the HAMD-17 at baseline (Figure 
S4A). The Shannon index also exhibited a similar trend 
(p = 0.082, p = 0.002), although there was no significance 
at the species level (Figure S4B). Indeed, diversity within 
the gut microbiota has been reported to play a positive 
role in promoting microbial resilience and enhancing 
its stability [45]. To further estimate the resilience of the 
microbial community, we constructed microbial interac-
tion networks for both R and NR groups using sparCC, 
and found that the community structure and bacte-
rial networks in R group were more complex and better 
organized than those in NR group (Figure S4C). Then, 
we compared the resilience of the two networks by ran-
domly removing nodes to simulate ‘ecological attacks’ to 

Fig. 4 Association between plasma metabolome and gut microbiome. a Multiple dimensional scaling (MDS) plot of procrustes analysis showing 
overall association between plasma metabolome and gut microbiome in MDD and HC cohorts, with individual samples being connected 
by a line. Euclidean distance was used for plasma metabolome (green circles), while Bray–Curtis distance for gut microbiome data (red circles), 
and the procrustes  m2 statistic results were labeled. b Compared to HCs, the variance of plasmas metabolite explained by gut microbiota 
was significantly higher in MDD patients. The extent of variance explained was quantified using the r.2 statistic derived from a lasso model. c 
Association network between plasma metabolites and microbial species generated from glmmLasso models. The analysis presented only those 
metabolites that showed significant alterations in response to ESC treatment. Node size indicates degree, different shapes represent metabolites 
(circles) and microbes (triangles), different colors of nodes represent up-regulated (red) and down-regulated (green) after ESC intervention, negative 
correlations are shown in blue, while positive correlations are shown in red. d Scatter plot revealing the spearman’s correlation between the species 
richness and indole-3-propionic acid (I3PA) at three visit weeks. The significant positive correlations were only observed at baseline and week 12
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the network [46]. Natural connectivity was used to assess 
the robustness of the remaining networks [47]. Although 
under ‘attacks’, natural connectivity was consistently 
higher in the R network compared to the NR network 
(Figure S4D). These results supported a more resilient 

bacterial community in R group. In addition, we observed 
that several spore-forming taxa were more abundant 
in R group than in NR group, including Clostridiaceae, 
Eubacterium rectale and C. comes (P < 0.05; Fig.  5C). 
Spore-forming bacteria can resist external environmental 

Fig. 5 Microbiome comparison between the R and NR groups at baseline. a PCoA plot showing no significant difference in microbial composition 
between the R and NR groups using Bray–Curtis dissimilarities (PERMANOVA P = 0.5). b Richness difference of microbial species (left) and gene 
(right) between the R and NR groups at baseline, with HC as reference. c Volcano plot of regression coefficients for gut microbial species 
in remission group. Multivariate regression models were used to explore the associations between gut microbiota and clinical remission. A p-value 
of < 0.05 was considered statistically significant. In R group, the higher abundance species are shown in blue dots, while lower abundance species 
are shown in red dots. d Heatmap showing the average abundance of 22 sporulation genes, of which 11 were enriched in R group, as determined 
by multivariate regression models. Heatmap row annotation showing the colored coefficients derived from MLR models (R vs NR). The coefficients 
have different colors of blue (enriched in NR) and red (enriched in R). Significant differences are indicated by * p < 0.05. e Heatmap of co-abundance 
groups (CAGs) of differentially abundant genes between the R and NR groups at baseline. Gene abundance is indicated by color gradient (red 
indicates the highest abundance, white indicates zero, and blue indicates the lowest abundance)
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stimuli, promote gut microbiota reconstruction, and 
restore intestinal homeostasis [48]. It is intriguing to 
note that E. rectale, a core gut commensal species, con-
sistently showed higher abundance in R group compared 
to NR group at three visit weeks, and its abundance was 
positively correlated with species richness at baseline 
and week 12 (Figure S4E&F). As a strict anaerobe, E. rec-
tale can promote host gut health by producing butyrate 
and other SCFAs from indigestible fibers [49], and has 
recently been identified as psychobiotics to maintain 
and improve mental health [50]. Similar to the situa-
tion of spore-forming bacteria, the abundance of most 
sporulation genes (11 out of 22 sporulation genes that 
occur in at least in 20% of baseline samples) was higher 
in R group than in NR group (q < 0.1, Fig.  5D). In addi-
tion, 18 out of 22 sporulation genes showed a significant 
positive correlation with the species richness (Table S10). 
Thus, we speculate that microbial sporulation may con-
tribute the resistance of gut microbiota to ESC-induced 
perturbation.

To better understand the microbial differences between 
the R and NR groups at baseline, we compared the abun-
dances of non-redundant genes between the two sub-
groups using the Wilcox test, and obtained a total of 
32,231 differential genes (p < 0.01). The differential genes 
were clustered into co-abundance groups (CAGs) using 
the canopy clustering algorithm and the CAGs were then 
subjected to taxonomic annotation. As shown in Fig. 5E, 
the majority of the differential genes were annotated to 
Clostridales (78.40%). Compared to NR group, the CAG-
annotated species, butyrate-producing bacteria including 
Ruminococcus lactaris, Faecaecalibacterium prausnitzii, 
E. rectale and Romboutsia were enriched in R group. 
Butyrate exhibits a positive impact on the balance of the 
gastrointestinal tract by inhibiting inflammation and car-
cinogenesis, strengthening various components of the 
colonic defence barrier, and reducing oxidative stress [51, 
52]. Besides, the beneficial bacteria annotated by CAG, 
such as Bifidobacterium animalis and Lactobacillus san-
franciscens, were also enriched in R group. Our results 
support the notion that the overall gut microbiome sta-
tus of R group may be better than that of NR group at 
baseline.

Sporulation genes as a predictor of MDD remission 
in response to ESC
To explore the predictive potential of the gut microbiota 
at baseline for treatment remission in MDD patients, we 
constructed prediction models using three different fea-
ture sets (taxa, diversity and sporulation gene) derived 
from the baseline samples.

To explore the predictive potential of the gut microbi-
ota at baseline for treatment remission in MDD patients, 

we constructed prediction models using three different 
feature sets (taxa, diversity and sporulation gene) derived 
from the baseline samples.To ensure an unbiased evalu-
ation of the model performance, we employed nested 
cross-validation in this study (Figure S5A, see Methods). 
Nested cross-validation is a technique that incorporates 
both model selection and hyperparameter optimization-
procedures within the evaluation process. Model per-
formance was assessed using the area under the curve 
(AUC) of the receiver operating characteristic (ROC). 
In our modelling results, microbial taxa showed a low 
performance (mean AUC = 0.61; Fig.  6A). However, the 
highest mean prediction performance was achieved by 
the sporulation gene model (mean AUC = 0.736) in com-
bination with a ten outer loop model (AUC = 0.710, ROC 
plotted by merging all outer loop test results; Fig.  6B). 
Considering the potential influence of ESC on sporula-
tion genes, we also predicted the clinical remission of 
MDD patients based on the changes in sporulation genes 
from baseline to week 2. The results demonstrated that 
the mean AUC and joint AUC were 0.734 and 0.701, 
respectively, indicating a moderate to good predictive 
performance for the model (Figure S5B).

Discussion
In this study, we present a human research endeavor 
aimed at exploring the effects of antidepressants on the 
gut microbiota and human metabolism, as well as inves-
tigating the potential involvement of the gut microbiota 
in antidepressant efficacy. To achieve this, we collected 
multi-omics data from a longitudinal cohort comprising 
110 individuals. Our findings revealed that antidepres-
sant treatment had a positive impact on the blood meta-
bolic status of patients diagnosed with MDD. Moreover, 
we observed that antidepressant use led to a reduction 
in both microbial diversity and function within the gut 
microbiota. Furthermore, our study uncovered a sig-
nificant finding that the characteristics of the baseline 
gut microbiota can serve as predictors of antidepres-
sant efficacy. This discovery holds great importance as it 
provides a foundation for comprehending the role of the 
overall gut ecosystem in the effectiveness of antidepres-
sants. Identifying these predictive markers within the gut 
microbiota opens up new possibilities for personalized 
treatment approaches for patients with MDD.

Consistent with the main findings of a previous meta-
analysis [53], our results demonstrated that patients 
with MDD exhibited distinct blood metabolic signa-
tures. Amino acid metabolism and lipid metabolism were 
obviously perturbed in the peripheral blood of MDD 
patients, and ESC treatment partially reversed the meta-
bolic dysregulation by up-regulating several amino acids 
and down-regulating fatty acids. Among the upregulated 
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amino acids identified in the study, L-tyrosine and L-phe-
nylalanine are of particular interest. Both of these amino 
acids serve as precursors for the synthesis of catechola-
mine neurotransmitters in the brain. The use of L-tyros-
ine as a treatment for depression has been investigated 
in a previous study [54]. Contrary to the findings of a 
previous meta-analysis [55], our study revealed different 
results regarding the levels of L-tryptophan in patients 
with MDD. Specifically, we did not observe lower levels 
of L-tryptophan in MDD patients compared to controls. 
and its level was increased after antidepressant exposure. 
L-tryptophan is a precursor of serotonin, and has been 
negatively correlated with depression severity in other 
studies [55]. L-tryptophan is considered an important 
biomarker for depression and has been investigated as a 
potential predictor of treatment response to antidepres-
sants. L-tryptophan can also be used to represent the 
serotonin levels in the brain [25]. Although some stud-
ies have shown that the peripheral blood level of 5-HT 
decreases after treatment with antidepressants [56], 

our results do not support this conclusion. In fact, our 
study indicates a nearly significant increase in 5-HT lev-
els among patients who achieved remission compared 
to those who did not respond as well to the medication. 
However, a recent research suggests that depression may 
not be associated with low serotonin levels [57]. To estab-
lish a more comprehensive understanding of the impact 
of ESC on serum 5-HT levels, further larger-scale studies 
with a diverse participant population are warranted. Our 
results showed that lipid metabolism dysfunction might 
play an important role during MDD. Fatty acids may pro-
mote depression through multiple pathways, including 
biological stress and inflammation [58, 59]. Overall, ESC 
treatment improves depressive symptoms by altering 
neurotransmitters and relieving depression-associated 
lipid metabolism pathways.

Among the metabolites altered by antidepressants, 
I3PA is a derivative of tryptophan that is metabolized by 
gut microbiota. I3PA levels were significantly depleted 
in patients with MDD but significantly increased after 

Fig. 6 Predictive values of gut microbiome features at baseline on the clinical remission of MDD patients. a AUC boxplot of 10 outer loop testing 
results for each feature set, random forest was used to train data, mean AUC ranging from 0.56 to 0.73 (Taxa: AUC = 0.65; Alpha diversity: AUC = 0.63; 
Sporulation gene: AUC = 0.736; Sporulation gene delta between W2 and baseline: AUC = 0.734). b Concatenated ROC curve of 10 outer loop testing 
results using RF model based on sporulation genes
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ESC intervention. These results are consistent with pre-
vious studies that have also observed similar changes in 
I3PA levels following antidepressant treatment [56]. I3PA 
is an aryl hydrocarbon receptor (AHR) agonist that can 
activate AHR transcriptional activity and regulate gut 
and brain inflammation [60, 61]. A recent study found 
that the gut microbiota-produced IPA could protect the 
microglia from inflammation, thus promoting neural 
regeneration and repair [62]. These findings imply that 
the gut microbiota may have a significant role to play in 
the mechanism behind the improvement of depression 
through antidepressant treatments.

In this study, we observed that ESC had an inhibitory 
effect on the gut microbiota, as evidenced by a decrease 
in microbial richness and a disruption in most micro-
bial functions. This finding is consistent with a previous 
in  vitro study on the interaction between antidepres-
sants and bacteria showing that ESC has some antibiotic 
properties [63]. Other studies on antidepressants have 
also demonstrated a reduction in the diversity of the gut 
microbiota [15, 17]. However, the results of this study are 
not consistent with a previous study conducted by Xie 
et al. [16], which showed an increase in microbial diver-
sity in mice after treatment with ESC. Indeed, the dis-
crepancy between the findings of the two studies could 
be attributed to several factors, including the diversity 
index used in the analysis or differences in experimental 
subjects. To gain a better understanding of these discrep-
ancies, further investigation is necessary. McGovern et al. 
reviewed the antibacterial properties of SSRIs, and found 
that different SSRIs can have varying effects on antibac-
terial activity, with ESC being associated with the least 
impact [64]. The results of this study provide some sup-
port for the antibacterial effect of SSRIs, as there was an 
overall increase in antibiotic resistance genes. However, 
it is important to note that this increase was not statis-
tically significant after applying FDR correction. Recent 
studies have shown that antidepressants can induce anti-
biotic resistance [38, 65], and in line with this, the expres-
sion levels of efflux pump-related genes were elevated 
in R group. However, this effect was not observed in all 
individuals, suggesting that the impact of antidepres-
sants on the microbiota may vary between individuals. 
There were notable differences in the changes in diversity 
between the R and NR groups, with the former showing 
a trend towards decreased species richness, but with little 
significance, and gene richness had recovered to baseline 
levels within 12 weeks. Functional changes also differed 
between the two groups, with NR showing a greater 
functionality decline. This is similar to other studies on 
antibiotics, which suggest that the recovery of the gut 
microbiome after antibiotic usage is mediated by spe-
cific bacterial species [66]. Typically, alterations in the 

functionality of the gut microbiota would be anticipated 
to have an impact on the composition of fecal metabo-
lites. However, in our study, we did not observe signifi-
cant changes in the fecal metabolome that corresponded 
to these alterations. Instead, the most notable shifts in 
fecal metabolites seemed to occur in the NR group over a 
short period. We speculate that there may be unidentified 
confounding factors that are impeding these biological 
changes in fecal metabolites. To confirm this speculation, 
additional research with more stringent experimental 
controls is necessary. Collectively, this study suggests that 
the response of different bacterial groups to the inhibi-
tory effects of ESC may play a role in its efficacy as an 
antidepressant, and the potential variability in the impact 
of antidepressants on the gut microbiota between indi-
viduals. Further research is needed to delve deeper into 
these mechanisms and uncover the specific ways by 
which antidepressants affect the gut microbiota compo-
sition, diversity, and function. This knowledge can aid in 
the development of more targeted approaches, such as 
personalized probiotic interventions or co-administra-
tion of medications that modulate the gut microbiota, to 
enhance the therapeutic efficacy of antidepressants.

Our integrative analysis yielded insights into the 
potential significant role played by gut microbiota in the 
effectiveness of antidepressants. The results obtained 
from both the procrustes analysis and lasso indicated 
a stronger connection between blood metabolites and 
gut microbiota in individuals with MDD, implying that 
gut microbiota might contribute to depression by influ-
encing blood metabolites. Although our analysis using 
GLMMLasso revealed associations between specific 
blood metabolites and gut bacterial species, we cannot 
yet draw a definitive conclusion regarding the precise 
biological mechanism underlying the interactions among 
antidepressants, gut microbiota, and blood metabolites. 
Nevertheless, the observed associations, especially those 
involving L-tryptophan and I3PA, present a hypothetical 
pathway through which antidepressants could potentially 
impact their efficacy via the gut microbiota. Accord-
ing to this pathway, antidepressants may exert an influ-
ence on the gut microbiota, leading to alterations in the 
tryptophan metabolic pathway, which in turn ameliorates 
depression. Previous studies have reported that  the dis-
turbance of tryptophan metabolism is an essential factor 
contributing to the pathology of depression [67, 68]. Our 
results indicated that there was a positively correlation 
between species richness and I3PA. This further supports 
the potential involvement of gut microbiota in the patho-
physiology of depression through the modulation of tryp-
tophan metabolism.

To analyze the disparities in gut microbiota between 
remitters (R) and non-remitters (NR) at the start of the 
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study, we employed a multivariate linear regression 
model. This model took into account various factors 
known to influence gut microbiota, such as age, gender, 
BMI, and duration of depression. Although there were 
statistically significant differences in educational attain-
ment between the R and NR groups, we disregarded it as 
it was deemed biologically irrelevant to gut microbiota. 
Additionally, there was a variation in the baseline level 
of HAMD-17 between the R and NR groups. However, 
we excluded it from the model due to its high collinear-
ity with the grouping factor. Existing literature indicates 
a connection between baseline HAMD-17 and remission 
outcomes for patients [69, 70]. Additionally, consider-
ing the minor one-point difference in HAMD-17 scores 
between the R and NR groups, with both groups falling 
within the range of moderate severity (a HAMD-17 score 
above 17 and up to 24 signifies moderate severity), we 
believe that any systemic bias introduced by excluding it 
would be negligible. It was found that the R group exhib-
ited higher diversity and a more robust microbial net-
work compared to the NR group. This increased diversity 
and stronger network structure in the R group suggested 
that they had better resilience or resistance to the effects 
of the antidepressant. It is important to note that simi-
lar observations of higher diversity providing resistance 
to drugs or diseases have been reported in other studies 
[45, 69]. Based on our findings, it is suggested that one 
potential reason for the higher resistance observed in the 
R group is the presence of spore formation. Spore forma-
tion is a critical mechanism used by bacteria to withstand 
external disturbances and adverse conditions. Previ-
ous studies on fluoxetine have shown that gene expres-
sion related to spore formation became more active after 
intervention [31]. Spore-forming bacteria, such as E. rec-
tale, are considered core bacteria in the gut microbiota 
[70, 71] and our analysis revealed that these bacteria 
were more abundant in the R group across all three time 
points. In addition, we also found that spore formation 
genes were significantly correlated with species richness. 
Spore-forming bacteria can also promote the 5-HT bio-
synthesis in colonic enterochromaffin cells (ECs), which 
provide 5-HT to the mucosa, lumen, and circulating 
platelets [72]. Based on machine learning models related 
to spore formation-related genes, their model perfor-
mance was also better than others and can be used as a 
potential biomarker for drug efficacy.

Nevertheless, this study has some limitations. First, 
due to logistical constraints, we were not able to design a 
longitudinal control group, which may have confounded 
the effects of time and medication. However, previous 
studies have shown that the gut microbiota is relatively 
stable over a short period of time [73, 74]. Second, this 
was an observational study and we did not strictly control 

for factors such as patients’ lifestyle and diets but rather 
recorded, which may have introduced confounding vari-
ables that influence the observed biological findings to 
some extent. The grouping of R and NR was based on 
international standards, which can be subjective to some 
extent. It is possible that employing more extreme or 
stringent criteria for grouping could unveil additional 
differences in treatment efficacy between these groups. 
Finally, although we mitigate model bias and provide a 
more robust evaluation of our classification model, it is 
essential to validate the model in other populations to 
assess its generalizability.

Conclusions
In summary, through a longitudinal study involving 
MDD patients, we conducted a comprehensive analysis 
of multi-omics data to investigate the role of gut micro-
biota in remission following ESC treatment. Our analy-
sis of the blood metabolome revealed that ESC treatment 
ameliorated abnormal blood metabolism by up-regulat-
ing MDD-depleted amino acids and down-regulating 
MDD-enriched fatty acids. Moreover, ESC exerted weak 
inhibitory effects on the gut microbiota, however, remit-
ters exhibited more resilient microbial community than 
non-remitters due to higher species richness and sporu-
lation mechanism. Additionally, our findings indicate 
that the gut microbiota play a role in shaping the vari-
ability of the blood metabolome and are associated with 
several metabolites (e.g., L-tryptophan and I3PA) that are 
upregulated following ESC treatment. Our data support 
the notion that an improved gut microbiota profile can 
contribute to the effectiveness of antidepressant treat-
ment, specifically in the case of ESC. Overall, this study 
provides new insights into the interconnected relation-
ship between antidepressant medication, blood metabo-
lome alterations, and the gut microbiome in patients 
with MDD. By shedding light on these mechanisms, our 
findings have the potential to enhance our understand-
ing of how ESC exerts its therapeutic effects in alleviating 
depression. Furthermore, this knowledge can aid in the 
development of improved treatment strategies for MDD 
by targeting the gut microbiota and modulating the asso-
ciated blood metabolome.

Materials and methods
Study design
A total of 276 individuals  (aged 18 to 65) were selected, 
including 166 HCs and 110 MDD patients. The patients 
included in the study were required to meet the Diag-
nostic and Statistical Manual of Mental Disorders, 4th 
Edition (DSM-IV) criteria for major depressive disorder 
(MDD). The diagnosis was determined based on the Chi-
nese version of the Mini-International Neuropsychiatric 
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Interview (MINI), which was consistent with the meth-
odology used in our previous studies [21, 22]. HCs 
were recruited through advertisements,  and were also 
screened using the MINI to ensure that they did not 
meet any of the criteria for DSM-IV Axis I psychiatric 
disorders. The exclusion criteria were as follows: (i) indi-
viduals with pre-existing conditions such as diabetes, 
thyroid disease, cardiovascular disease, or cancer; (ii) 
alcohol  or  drug  abuse, and/or  acute intoxication; (iii) a 
history of bipolar disorder, schizophrenia, schizoaffective 
disorder, or other Axis I psychiatric disorders; (iv) preg-
nancy or breastfeeding;  (v) a history of antibiotic use or 
changes  in  diet habits  within one  month prior to  sam-
pling. The study protocol was approved  by the Human 
Research and Ethics Committee of Beijing Anding Hospi-
tal (No. 2017-24), Capital Medical University (China). All 
participants provided written informed consent prior to 
the commencement of the study.

Treatment and measurements
All MDD patients were treated with ESC for a period of 
12  weeks. Previous studies have confirmed the efficacy 
and acceptability of ESC, which is one of the most com-
monly prescribed medications for patients with MDD in 
Asian countries [75–77]. According to the clinical prac-
tice guidelines, the dosing regimen for ESC in this study 
involved a titration process. The initial dose of ESC was 
set at 5 mg per day, and within a period of 7 days, it was 
gradually increased to a range of 10–20 mg per day. Once 
the optimal dose was determined, it remained stable for 
the duration of the 12-week trial [78]. No other medica-
tions were allowed during the study period. The HAMD-
17 was used to assess the severity of MDD, which was 
rated by experienced and trained independent raters. All 
patients were evaluated at baseline and after 12 weeks of 
ESC treatment. The Diet and Lifestyle Questionnaire was 
used to assess participants’ habitual dietary intake and 
lifestyle (Table S11).

Metagenomic sequencing of fecal samples
DNA extraction, library construction and metagen-
omic sequencing of the fecal samples were performed 
as described previously [11]. Total genomic DNA was 
extracted from stool samples using the E.Z.N.A. Soil 
DNA Kit (Omega Bio−tek, Norcross, GA, USA) accord-
ing to the manufacturer’s protocol. After genomic 
DNA extraction, the concentration and purity of DNA 
samples were determined using TBS−380 and Nan-
oDrop2000, respectively. DNA integrity was detected 
using 1% agarose gel electrophoresis. The DNA extract 
was fragmented by Covaris M220 (Gene Company Lim-
ited, China) and the resulting fragments (approximately 
300 bp) were screened and used to construct paired−end 

libraries. The paired−end library was then constructed 
using NEXTFLEX ® Rapid DNA−Seq (Bioo Scientific, 
Austin, TX, USA). Adapters containing the full com-
plement of sequencing primer hybridization sites were 
ligated to the blunt−end of fragments. Paired−end 
sequencing was performed using the Illumina NovaSeq 
platform (Illumina Inc., San Diego, CA, USA) according 
to manufacturer’s instructions (www. illum ina. com) at 
Shanghai Majorbio Bio−pharm Technology Co. Ltd.

Gas chromatography—mass spectrometry
The fecal samples and plasma samples were prepared 
for metabolite extraction and derivatization pre-treat-
ment. The derivatives were stored at ambient tempera-
ture for 30  min, and then analyzed using the Agilent 
7890A-5975C GC–MS platform (Agilent, USA). The 
derivatized samples were injected into the GC–MS sys-
tem in non-split mode with an injection volume of 1 μL. 
The samples were separated on an HP-5MS capillary 
column (30  m × 0.25  mm × 0.25  μm, Agilent J&W Sci-
entific, Folsom, CA, USA), and then detected by mass 
spectrometry. The data were acquired in a full-scan mode 
(m/z 50–600). To avoid the effects caused by fluctuations 
in the instrument signal, a random order was used for 
continuous sample analysis. The raw data obtained from 
GC–MS were pre-processed by ChromaTOF software (v 
4.34, LECO, St Joseph, MI), and the three-dimensional 
matrices were exported in a CSV format. The response 
intensity of the mass spectrometry peaks was then nor-
malized. The integrated data matrix was imported into 
SIMCA-P + 14.0 software package (Umetrics, Umeå, 
Sweden), and unsupervised principal component analy-
sis (PCA) was performed to determine the overall distri-
bution among the samples and the stability of the whole 
analysis process. Then, supervised (orthogonal) partial 
least squares analysis (OPLS-DA) was conducted to iden-
tify the discriminant metabolites with the significance 
threshold of variable importance plot (VIP)å 1.0 and 
P < 0.05. The OPLS-DA models were validated by permu-
tation analysis (200 times).

Metagenomic data
Raw paired-end reads were initially trimmed and fil-
tered using Trimmomatic (v0.39)  [79]. The trimmed 
reads were then host-filtered using BWA MEM 
(v0.7.17-r1188) [80]. Metagenome assembly was pro-
cessed by MEGAHIT (v1.1.3) with default parameters 
[81]. The sequence data of each sample were assem-
bled separately. Genes present in the assembled con-
tigs were identified using MetaGeneMark [82], and the 
redundant genes were then removed (CD-HIT) [83], 
resulting in a non-redundant microbial gene catalogue 
of 8,568,218 genes. Taxonomic assessment of genes was 

http://www.illumina.com
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performed using a fast LCA algorithm implemented 
in SqueezeMeta [84]. This database searches for the 
last common ancestor of the hits for each query gene 
based on the results of the Diamond search against the 
GenBank nr database. For functional annotation, the 
eggNOG was annotated by aligning genes to eggNOG 
database using eggnog-mapper (v2.1.3) [85]. Antibi-
otic resistance genes (ARGs) were annotated by align-
ment against the Comprehensive Antibiotic Resistance 
Database (CARD) using RGI (v5.1.1) [86]. A total of 66 
sporulation signature genes were obtained from previ-
ous research [87]. Heuristic based bidirectional best hit 
analysis was performed to detect potential sporulation 
genes in non-redundant gene catalogue using BLAST.

To estimate the abundance of sporulation genes in each 
sample, high quality reads were mapped onto the non-
redundant gene catalogue. Custom scripts were used 
to quantify their relative abundance using reads/kilo-
base/million mapped reads (RPKM). The abundances of 
KEGG orthology (KO), KEGG pathway, eggNOG orthol-
ogy, Antibiotic Resistance Ontology (ARO), and sporula-
tion genes were calculated by summing the abundances 
of all the items falling within each category.

Taxonomic profiling was performed on the high-quality 
reads using MetaPhlAn3 against the mpa_v30_CHOC-
OPhlAn_201901 database [88]. Functional read profiling 
was performed using HUMAnN3 [88]. Low-abundance 
filters were applied to eliminate taxonomic and func-
tional features that were present in less than 0.1% and 
0.001% of the total abundance, respectively, among at 
least 10% of the individuals. To address compositional 
effects in microbiome datasets, the centered log ratio 
(CLR) transformation was performed on our taxonomic 
and functional data.

Microbiome data dissimilarity index was used to esti-
mate between-sample diversity (beta diversity) based on 
the species-level relative abundance profiles. Diversity 
metrics and ordinations were performed using the phy-
loseq package [89]. Several diversity indexes were used to 
estimate species diversity within individual metagenomic 
samples (alpha diversity). The Bray–Curtis microbiome 
composition was visualized by Principal Coordination 
Analysis (PCoA).

Metabolomic data
Only metabolites present in > 10% of the samples were 
analyzed. The metabolites were normalized by log trans-
formation, and then scaled using the Pareto scaling 
method. Pareto scaling involves dividing each variable 
by the square root of its standard deviation. It is able to 
reduce the weight of large fold changes in metabolite sig-
nals, which is more significant than auto scaling [90].

Statistical analysis
Permutational Multivariate Analysis of Variance (PER-
MANOVA) tests (4,999 permutations and “adonis2” 
function in the “vegan” package) were employed to assess 
the overall effect of ESC treatment on multi-omics data. 
For the longitudinal data, PERMANOVA was imple-
mented using a mixed-model design. Individual identity 
was included as a blocking factor (“strata”) to control for 
repeated sampling. To assess between-sample variation, 
Euclidean distance was used for the metabolome, while 
Bray–Curtis distance for the microbiome.

Longitudinal changes in omics features (including micro-
bial diversity/other indices, microbial taxa, microbial func-
tions, plasma metabolites and fecal metabolites) across 
different time points were assessed using linear mixed 
model (LMM). The model included age, sex, BMI, MDD 
duration and visit week as fixed effects, and subject ID as 
the random effect [omics feature ~ age + sex + BMI + MDD 
duration + visit week + (1 | subject ID)]. We also repeated 
this analysis using MaAsLin2, which supports multivari-
able association analysis with repeated measures in lon-
gitudinal data. Two models were further used to assess 
differences between the remitter (R) and non-remitter 
(NR) groups after ESC treatment (adjusted by baseline 
abundance) [omics feature ~ age + gender + BMI + MDD 
duration + baseline + group + (1 | subject ID)], and the dif-
ference in change (slope) from baseline to week 12 between 
the R and NR groups, with the interaction term visit week-
by-group [omics feature ~ age + sex + BMI + MDD dura-
tion + visit week * group + (1 | subject ID)].

The association between each individual feature and 
remission group at the three time points was estimated 
using multivariate linear regression. To correct for con-
founding, the regression model also included age, sex, 
BMI and MDD duration. CLR transformation was con-
ducted on the microbiome data to break the composi-
tionality of the data and normalize skewed distributions 
of microbiome features. The Benjamini–Hochberg cor-
rection was used to control for multiple testing. All data 
were considered significant at FDR < 0.1, unless specifi-
cally stated. All statistical analyses and visualization were 
performed in R (version 4.2.0).

Integration analysis with Lasso and glmmLasso
Lasso penalized regression was used to determine the 
associations between metabolites and microbial taxa in 
both HC and MDD cohorts, as illustrated in gene-microbi-
ome and serum metabolomic-microbiome [41, 91]. Briefly, 
the metabolite-based LASSO model employed the scaled 
abundance of each metabolite as a response and the CLR-
transformed abundance of microbiome taxa as predic-
tors to identify the metabolites associated with microbial 
taxa. The model leveraged leave-one-out cross-validation 
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to estimate the optimization parameter λ, which was used 
to fit the final model on the cohort dataset. R package 
glmnet (version 2.0–13) was used to implement the lasso 
regression model (version 2.0–13) [92]. The lasso model 
was then inferred using a regularized projection method 
known as declassified lasso. This approach employs the R 
package "hdi" to calculate 95% confidence intervals and P 
values for the coefficients associated with each microbe 
that exhibited an association with a specific metabolite. 
The Benjamini-Hochberg (FDR) method was used to cor-
rect for multiple hypothesis testing.

To establish a connection between longitudinal 
plasma metabolites and gut microbiota, the mixed 
effects least absolute shrinkage and selection operator 
(mixed effects LASSO) approach was conducted using 
the glmmLasso function in the R package glmmLasso 
[93]. The specific model used for this analysis is as fol-
lows: metabolite ~ taxa1 + taxa2 + … + taxaN + age + gen-
der + BMI + drug use + (1|subject ID). The best lambda 
was selected from a lambda loop from 0 to 200 and 
incremented by 1 as the smallest model BIC. To ensure 
robustness and account for potential sampling variabil-
ity, the model was repeated 100 times. In each iteration, a 
random sample comprising 70% of the total samples was 
used. Finally, the linear mixed model was re-fitted specif-
ically for the features that had non-zero mean coefficients 
in order to determine their significance.

Random forest with nested cross‑validation
To assess the predictive potential of multi-omics fea-
tures for remission prediction, a random forest algorithm 
was performed on the microbial taxa and function pro-
files using the R package caret [94]. To overcome perfor-
mance bias and ensure reliable model selection, a nested 
cross-validation approach was employed. This technique 
combines both model selection and hyperparameter opti-
mization procedures. The outer loop serves for assessing 
the quality of the model, while the inner loop serves for 
model/parameter selection. In our case, the outer loop was 
repeated 10 times, resulting in 10 different test sets. For 
each iteration, feature selection, as performed by mRMR 
[95], was implemented in the outer train set, and the 
best model was selected in the inner layer via leave-one-
out cross-validation (LOOCV). The area under the curve 
(AUC) was used to measure the model’s performance.
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Additional file 1: Fig. S1.Changes in plasma metabolome/metabolites 
after ESC intervention. a Principal coordinate analysis (PCA) plots based on 
the plasma metabolic signatures of MDD subjects at baseline, week 2 and 
week 12. b Post-treatment difference in serotonin between the R and NR 

groups after adjustment for baseline. c Longitudinal changes in cholic acid 
and chenodeoxycholic acid, which exhibited differential trends between 
the R and NR groups. The P values were obtained from LMMs applied 
to grouped data of R and NR. Fig. S2. Effects of ESC intervention on the 
gut microbiome. a Changes in microbial Shannon at species and gene 
level from baseline to week 12 in ALL, R and NR groups. ALL included 
the samples from both R and NR groups, Shannon of HC was used as 
the reference value. The table presents detailed results from longitudinal 
comparisons using LMMs, with coefficients and P values. b Scatter plot 
showing a significant negative correlation (spearman) between the spe-
cies richness and DS at three visit weeks. c Heatmap of altered sporulation 
genes at week 2 and week 12 after ESC intervention in ALL, R and NR 
groups, as determined by LMMs. The coefficients have different colors 
of grey (high) and red (low). Significant differences are indicated by * p 
< 0.05, *** q < 0.1. d Longitudinal changes in Firmicutes from baseline 
to week 12 in ALL, R and NR groups after ESC intervention, and its abun-
dance was significantly increased in the ALL and NR groups from baseline 
to week 2. e Scatter plot showing the spearman’s correlations between 
visit weeks (delta) of Firmicutes and species richness. f Plot revealing the 
effects of visit week × group interaction on the four species. The P values 
were derived from LMMs involving visit week x group interaction. Fig. S3. 
Integration analysis results of fecal metabolome and gut microbiome. a 
Multiple dimensional scaling (MDS) plot of procrustes analysis showing 
overall association between fecal metabolome and gut microbiome in 
MDD and HC cohorts, with individual samples being connected by a 
line. Euclidean distance was used for fecal metabolome (blue circles), 
while Bray-Curtis distance for gut microbiome data (red circles), and the 
procrustes m2 statistic results were labeled. b Venn diagram showing 
few overlaps of association between plasma metabolites and microbial 
species. Only 6 microbiota-associated plasma metabolites were shared 
between the MDD and HC cohorts. Fig. S4. Microbiome comparison 
between the R and NR groups. a The spearman’s correlation between the 
species richness and HAMD-17 scores at baseline. b Differences in the 
Shannon values of microbial species (left) and gene (right) between the R 
and NR groups at baseline, with HC as reference. c Species co-abundance 
network of the R and NR groups constructed by SparCC. The community 
structure and network in R group was more complex and well-organized 
than those in NR group at baseline (only coefficients > 0.5 and coefficient 
< -0.5 are displayed), Color represents phylum level. d Natural connectiv-
ity to assess the robustness of microbial ecological interaction networks 
for sequential node removal. The order of node removal was random 
or ordered by degree or betweenness centrality. Natural connectivity is 
shown as a function of the relative size of the network. e Boxplot of the 
differential abundance of Eubacterium rectale between the R and NR 
groups at three visit weeks. f The spearman’s correlation between the 
species richness and abundance of E. rectale at three visit weeks. Fig. S5. 
Nest cross-validation schematic diagram for the construction of predic-
tion models. a For each dataset, the samples were divided into train set, 
validation set and test set. Nested cross validation was composed by two 
loops: outer loop and inner loop. The outer loop serves for assessing the 
quality of the model, while the inner loop serves for model/parameter 
selection. The outer loop was repeated 10 times, resulting in 10 different 
test sets. For each iteration, feature selection was implemented in the 
outer train set, and the best model was selected in the inner layer via 
leave-one-out-cross-validation (LOOCV). The area under curve (AUC) was 
used to measure model’s performance. b The combined ROC curve of 10 
outer loop testing results obtained from RF model based on the changes 
in sporulation genes from baseline to week 2.)
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