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Abstract 

Background Exploring metagenomic contigs and “binning” them into metagenome‑assembled genomes (MAGs) 
are essential for the delineation of functional and evolutionary guilds within microbial communities. Despite 
the advances in automated binning algorithms, their capabilities in recovering MAGs with accuracy and biological 
relevance are so far limited. Researchers often find that human involvement is necessary to achieve representative 
binning results. This manual process however is expertise demanding and labor intensive, and it deserves to be sup‑
ported by software infrastructure.

Results We present BinaRena, a comprehensive and versatile graphic interface dedicated to aiding human opera‑
tors to explore metagenome assemblies via customizable visualization and to associate contigs with bins. Contigs are 
rendered as an interactive scatter plot based on various data types, including sequence metrics, coverage profiles, 
taxonomic assignments, and functional annotations. Various contig‑level operations are permitted, such as selection, 
masking, highlighting, focusing, and searching. Binning plans can be conveniently edited, inspected, and compared 
visually or using metrics including silhouette coefficient and adjusted Rand index. Completeness and contamination 
of user‑selected contigs can be calculated in real time.

In demonstration of BinaRena’s usability, we show that it facilitated biological pattern discovery, hypothesis genera‑
tion, and bin refinement in a complex tropical peatland metagenome. It enabled isolation of pathogenic genomes 
within closely related populations from the gut microbiota of diarrheal human subjects. It significantly improved 
overall binning quality after curating results of automated binners using a simulated marine dataset.

Conclusions BinaRena is an installation‑free, dependency‑free, client‑end web application that operates directly 
in any modern web browser, facilitating ease of deployment and accessibility for researchers of all skill levels. The 
program is hosted at https:// github. com/ qiyun lab/ binar ena, together with documentation, tutorials, example data, 
and a live demo. It effectively supports human researchers in intuitive interpretation and fine tuning of metagenomic 
data.
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Background
The rapid advancement in high-throughput sequencing 
technologies has led to the discovery of an enormous 
amount of new biodiversity from uncultivated micro-
bial populations [1]. Extracting population genomes 
from heterogenous microbial communities is essential to 
understand the contribution of defined microbial lineages 
to host and environmental processes. Genome-resolved 
metagenomic studies have provided valuable insight into 
understanding microbial links to biogeochemistry [2–5], 
connections to human health and disease [6–8], and 
discovery of novel microbial groups [9, 10]. Exploration 
of such datasets can quickly become cumbersome [11–
15], comprising hundreds of metagenome-assembled 
genomes (MAGs) with associated sequence characteris-
tics, functional potential, and abundance across samples.

The building blocks of this comprehensive data are con-
tigs, the minimum units of a genomic sequence derived 
from the assembly of metagenomic reads. Using charac-
teristics such as nucleotide composition and sequencing 
depth, similar contigs can be grouped into “bins” repre-
sentative of microbial populations’ genomes (i.e., MAGs). 
Despite the wealth of automatic binning tools [16–19], an 
intermediate step which can contextualize multiple layers 
of user-specified information for inspection of contig-to-
bin assignment is necessary for reliable conclusions to be 
made. This human-guided step can greatly improve the 
quality of bins and subsequent inferences made from 
the contained biological information [1, 20–22]. This 
is because human brains are highly effective in pattern 
recognition [23], which was only recently challenged by 
algorithms in limited tasks [24], and this ability can be 
further enhanced by a priori knowledge of the biological 
systems. It has been accepted that exploratory data anal-
ysis [25], as characterized by heavy employment of data 
visualization and human involvement, is essential for 
understanding complex datasets, removing noise, discov-
ering patterns, and generating hypotheses [26], and this 
cannot be replaced by any uniform algorithmic workflow.

Therefore, software infrastructure that helps human 
researchers in exploring metagenomic assemblies and 
defining bins (MAGs) is much needed [27]. Multiple 
tools have been developed to provide interactive visu-
alization of metagenomes [28–32] (reviewed below), 
which can facilitate this process. However, few are explic-
itly designed with the goal of maximizing human pro-
ductivity. Most tools constrain usability either through 
computational skill thresholds, or a relatively inflex-
ible workflow, or a lack of study-specific customizable 
features.

To address this gap, we present BinaRena (“bin arena”), 
a comprehensive, highly customizable interactive graphi-
cal interface dedicated to human-guided exploration and 

binning of metagenomes. A visual representation of con-
tigs is rendered as a scatter plot, displaying flexible types 
of data such as sequence metrics, coverage profiles, k-mer 
frequency, taxonomic assignment, feature annotation, 
existing binning outputs, and other metrics appropriate 
to the researcher. Integration of multiple layers of contig 
characteristics can aid delineation of microbial commu-
nity members and improve overall binning results. The 
BinaRena program is free of installation, dependency, 
and a web server, making it exceptionally convenient for 
deployment and use. Licensed under BSD-3-clause, Bina-
Rena’s source code is hosted at https:// github. com/ qiyun 
lab/ binar ena, together with comprehensive documenta-
tion, tutorials, example data, and a fully functional live 
demo.

To demonstrate BinaRena’s functionality and how it 
improves microbiome research, we analyzed one syn-
thetic and two real-world metagenomic study cases. Spe-
cifically, we (1) analyzed the first metagenome available 
of a complex open tropical peatland from Maquia (MAQ) 
within the Pastaza-Marañón Foreland Basin, a globally 
important carbon reservoir in the Amazon, (2) reana-
lyzed metagenomes confounded by multiple pathogens 
from fecal samples of traveler’s diarrhea (TD) patients 
[33], and (3) quantified the systematic improvement of 
binning results using the gold standard CAMI2 marine 
dataset [19]. We show that BinaRena significantly facili-
tated pattern discovery, hypothesis generation, strain-
level isolation, and bin refinement that were otherwise 
not achievable or overlooked by automatic workflows.

Implementation
Design and functionality of BinaRena
BinaRena is an installation-free, client-end web applica-
tion. The user may simply double click “BinaRena.html” 
in the downloaded package to launch the program, which 
is literally a single webpage running in the user’s web 
browser, and does not require a web server running in 
the backend. In this sense, it is analogous to bioinformat-
ics programs like Krona [34] and EMPeror [35]. BinaRena 
eliminates the need to execute a script for  webpage con-
struction, allowing users to simply drag and drop data 
files into the browser window to load them. This design 
minimizes the efforts for deployment and preparation, 
especially for nontechnical users, and computer systems 
with restrictions. The BinaRena program is written in 
pure JavaScript, without using any third-party frame-
works or libraries. This ensures the program’s flexibility 
in behavior and functionality and allows the developing 
team to optimize the code for improved performance in 
rendering and calculation, which is important for han-
dling modern metagenomic datasets, which usually 
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contain tens to hundreds of thousands of contigs and 
many properties.

The main workspace of BinaRena is an interactive scat-
ter plot, with data points representing contigs from an 
assembly (Fig. 1). The plot appearance is defined by five 
aesthetics: x- and y-axes, size, opacity, and color, each of 
which can be customized in the interface based on user-
provided data that are relevant in delineating or relating 
contigs. For example, plotting GC% by coverage, compar-
ing per-sample abundance profiles, and k-mer frequency-
based dimensionality reduction are all helpful for contig 
clustering [28, 32, 36]. Reference-based properties such 
as taxonomic assignment and functional annotation fur-
ther inform the biology of contigs. BinaRena enables con-
venient toggling among these characteristics. The user 
may further specify data transformation, data range, and 
color map (for both discrete and continuous data) in the 
interface. The program implements multiple transforma-
tion methods to deal with various types and distributions 
of biological data, including square and cube (root), loga-
rithmic and exponential, logit and arcsine, and ranking, 
all of which can be easily triggered from a dropdown 

menu. The user may move and zoom the plot with mouse 
and/or keyboard, just like navigating a typical digital 
map. All panels can be uncollapsed to screen corners to 
minimize distraction during data exploration.

The contig data can be provided as one integrated data 
table, or as multiple tables or mappings sequentially 
appended to the same dataset, which improves flex-
ibility and lowers the challenge in preparing input files. 
BinaRena accepts four data types: numeric, categorical, 
feature set, and descriptive. The feature set data type, 
provided as comma-separated strings, lets the user spec-
ify gene content of each contig, annotated either for gen-
eral purpose (such as KEGG [37] Ontology, or KO) or to 
address specific research questions (such as phylogenetic 
markers [38], antimicrobial resistance genes, mobile 
genetic elements, or members of a specific metabolic 
pathway).

BinaRena further lets the user specify feature groups, 
defined by a list of member features that constitute a 
group. Then the program can calculate the completeness 
and redundancy (a.k.a., contamination) of user-selected 
contig groups in real time. This significantly improves the 

Fig. 1 A screenshot of the main interface of BinaRena. The program is displaying the MAQ dataset, consisting of 262,705 contigs obtained 
from a co‑assembly of six tropical peatland metagenomes. X‑ and y‑axes represent t‑SNE embeddings based on tetranucleotide frequencies. Marker 
size (radius) is proportional to the cube root of contig length. Marker opacity is proportional to the logarithm of sequencing depth (coverage) 
in one sample. Colors are assigned to the 10 most frequent phyla binned from DASTool. A binning plan consisting of 277 bins pre‑computed 
by DASTool is loaded in the program, allowing the user to explore and manipulate individual bins by adding/removing individual contigs. 
A spatially distinct cluster of 3461 contigs putatively representing multiple Nitrososphaeria MAGs is currently selected by the user. The properties 
of the selected contigs are summarized in a side panel. The distribution of coverage is displayed as a histogram. Red‑edged text boxes indicate 
functional components of the BinaRena interface
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convenience and flexibility to assess the quality of a puta-
tive bin with or without a specific biological question, as 
in contrast to currently adopted protocols which are usu-
ally performed when bins are already defined. It should 
be noted, however, that BinaRena does not consider 
marker gene collocation as CheckM does [38]; therefore, 
their results are not identical, albeit highly correlated 
(Fig. S1); thus, the former can serve as a first-pass check, 
while the latter is still recommended post-binning.

BinaRena offers a variety of controls for exploring the 
metagenomic dataset. Contigs can be selected by mouse 
clicking or by drawing a polygon to contain multiple 
contigs. The selection is retained as the aesthetics are 
toggled, allowing the user to explore the same contigs 
of interest using different data. With a single keystroke 
or button, the selected contigs can be highlighted using 
choice of colors to indicate user interest, they can be 
“masked” such that they are both hidden from the plot 
and excluded from subsequent manipulations and cal-
culations, and they can be “focused” such that only them 
but no other contigs are visible, which facilitates user 
concentration. These operations can be “undone” to 
revert to previous status. Contigs can be searched based 
on their numeric and categorical properties as well as 
features they carry.

The properties of selected contigs are summarized in 
a side panel by user-specified methods that make most 
sense for the nature of data. Examples are as follows: 
“length” is the sum of contig lengths. “GC” is the average 
of GC contents weighted by length. The category (such 
as taxonomic group) of multiple contigs is determined by 
the majority rule, optionally weighted by length, with the 
fraction annotated as a suffix (e.g., “Firmicutes (80%)”). 
Aside from the scatter plot, there is a mini-interactive 
histogram displaying the distribution of a user-desig-
nated numeric property (such as coverage) of the selected 
contigs. The user can use mouse dragging to filter the 
contigs by data range (such as a peak of coverage values). 
This function is useful for refining a contaminated bin.

BinaRena provides handy controls for assigning contigs 
to bins that represent putative MAGs. The user can create 
a binning plan de novo or edit binning plans computed 
by external programs. Bins are displayed in an inter-
active table and summarized by their total length and 
abundance per sample. Using one keystroke or button, 
the user can add or remove selected contigs to or from 
individual bins. BinaRena implements two algorithms for 
the evaluation and comparison of binning plans. It cal-
culates the silhouette coefficient [39] to assess the confi-
dence of assigning contigs to individual bins. The results 
can be visualized instantly as color depth to provide an 
intuitive view of the bin confidence profile. The program 
also calculates the adjusted Rand index [39] to assess the 

consistency between pairs of binning plans. Both metrics 
are widely used in cluster analysis. However, BinaRena’s 
ability to calculate them during exploration significantly 
supports the user effort.

BinaRena can output various types of files to support 
the sharing and reporting of analysis results. The bin-
ning plans and the contig data of individual bins can be 
exported as TSV table files. The scatter plot along with 
legends and axes can be exported as a PNG bitmap image 
or an SVG vector image for post-processing and publi-
cation. Critical information of a run, including filtering 
thresholds and calculation results, is logged and can be 
exported as a text file. At any moment during a run, a 
“checkpoint” can be exported as a JSON file, which can 
later be loaded back to resume the same interactive view 
of the dataset. These features facilitate the reproduction 
of BinaRena results.

Besides the main program, BinaRena provides multi-
ple Python scripts to aid data preparation. They include 
utilities to count k-mers from contig sequences, followed 
by dimensionality reduction using PCA, t-SNE, and 
UMAP to infer coordinates of contigs in a scatter plot. 
These three analyses were enabled by calling the com-
mon Python libraries scikit-learn and umap-learn. They 
also include utilities to convert common metagenomics 
tool outputs into the table format. Examples are SPAdes 
[40] and MetaHIT [41] assemblies, GTDB-tk [42] line-
age strings, Kraken [43] taxonomic assignments, GFF-
formatted genome annotations, and CheckM [38] marker 
gene maps. The software’s documentation includes a 
tutorial demonstrating an entire workflow from raw 
sequencing data to processed input files for BinaRena. 
A video introduction to BinaRena’s functionality is pro-
vided in Data S1.

Comparison with existing tools
Here, we review multiple existing tools for interactive 
visualization of metagenomic contigs and compare them 
with BinaRena. Anvi’o [28] is an integrated multi-omics 
platform that is most known for an interactive sector 
graph depicting sequence composition and per-sample 
abundance of contigs with the ability to add customiz-
able layers, allowing users to explore classification, evo-
lutionary, and functional capacity patterns of the dataset. 
This visualization method is highly effective for explor-
ing contig distribution among samples but less so for 
the relationships among contigs. The complexity in set-
ting up a server and executing command-line workflows 
to prepare for visualization may challenge nontechni-
cal users. The visualization tool ICoVeR [29] is for user-
guided refinement of existing binning plans. It renders 
a line graph depicting per-sample abundance of a co-
assembly, as well as other numeric metrics. It supports 
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generation of scatter plots and histograms using several 
clustering and ordination algorithms; however, these 
plots are for exploring variables instead of contigs. The 
ggKBase [30] workflow is suitable for manual binning. 
It employs an interactive wheel for selecting taxonomic 
groups and a histogram for selecting metric ranges (also 
supported by BinaRena). Collectively, BinaRena’s interac-
tive scatter plot of contigs does not overlap with Anvi’o, 
ICoVeR, and ggKBase but instead may serve as a comple-
ment to current metagenomics workflows that use these 
tools. BusyBee Web [31] is a web server that performs 
the entire binning workflow. Its interface displays contigs 
as a scatter plot, which is mainly for exploring pre-com-
puted (by the server) bins, and does not support complex 
contig and bin operations. Likewise, it displays CheckM-
calculated bin quality metrics, rather than evaluates bin 
quality interactively as BinaRena does. We would like to 
note that BusyBee Web’s predecessor, VizBin [36], was 
the original source of inspiration to the development of 
BinaRena. To our knowledge, Elviz [32] is the most com-
parable existing tool to BinaRena. The Elviz server is inte-
grated into the JGI portal, which provides convenience 
but also imposes restrictions to the user. It emphasizes 
on assessing the taxonomy and functions of contigs, but 
it can be repurposed for editing bins. An itemized com-
parison of BinaRena and Elviz is provided in Table S1, 
showing that the former is notably more feature rich. 
Finally, an obvious advantage of BinaRena compared with 
all these tools is the ease of deployment. In summary, we 
believe that BinaRena is a unique bioinformatics tool for 
the task it aims to achieve.

Results
Exploring microbial populations responsible for nutrient 
cycling in the Maquia peatland
Extensive tropical peatland formations have been 
reported in the Pastaza-Marañon basin in the Peruvian 
Amazon [44], among which the “open peatland” con-
stitutes a unique category which is devoid of trees but 
dominated by arbustive vegetation [45]. Given their role 
sequestering organic carbon in their soils and to under-
stand their microbial functions [46], we sampled an 
open peatland (Maquia: MAQ) for metagenomic evalu-
ation. Quality-filtered reads from all six samples were 
co-assembled, and subsequent contigs were binned 
using automatic binners MaxBin [16] and MetaBAT [17], 
yielding 251 and 345 total bins, respectively. The two 
results were consolidated using DASTool [18], yielding 
276 total bins. These bins span 25 phyla. BinaRena was 
used to render placement of contigs from this assembly 
(contigs ≥ 2000 bp) with t-SNE based on tetranucleotide 
frequency (Fig. 1). The contig aesthetics (size, color, and 
opacity) are associated with common properties such as 

contig length, taxonomic classification, and abundance in 
a sample from depth = 10 cm (see “Materials and meth-
ods”). This initial view revealed that many contigs are 
associated with taxonomic groups from Proteobacteria, 
Acidobacteria, and Actinobacteria. Additionally, Methy-
lomirabilota, Desulfobacterota, and Nitrospirota form 
two distinct tight clusters. BinaRena’s polygon tool was 
used to select a distinct cluster of contigs, representing 
multiple populations of Nitrososphaeria. Classified under 
phylum Thermoproteota, Nitrososphaeria are ubiquitous 
terrestrial ammonia-oxidizing archaea [47].

Genome-resolved metagenomics is widely used to 
understand potential biological mechanisms within an 
ecosystem and its distribution across the community. 
Nitrogen cycling within tropical peatlands is relatively 
understudied, yet there is evidence that it is closely inter-
connected with the release of greenhouse gasses from 
these environments [48, 49]. Here, we used BinaRena 
to explore the distribution of nitrogen cycling genes 
involved in pathways such as dissimilatory nitrate reduc-
tion, denitrification, nitrification, and nitrogen fixation. 
Visualization in BinaRena supports quick identifica-
tion of contigs containing genes for the previously listed 
pathways of interest (Fig.  2A). The distinct cluster of 
Nitrosophaeria contigs contains copies of both the nosZ 
and nirK (cluster 1). Additionally, a different cluster of 
Nitrosophaeria contigs (cluster 2) was found with cop-
ies of amoABC, which is consistent with culture-based 
studies [50] of Nitrososphaeria as an ammonia oxidizer. 
Overall, BinaRena assisted in identification and quantifi-
cation of the importance of Nitrosophaeria potentially in 
the MAQ nitrogen cycle.

To understand how there might be differences in 
nitrogen cycling populations across the 100-m tran-
sect, we focused on two high- and one medium-quality 
bins (defined following [1]) inferred by DASTool that 
were identified as capable of dissimilatory nitrate reduc-
tion (Streptosporangiales: 96.77% complete/3.83% con-
taminated, calculated by CheckM, same below) and 
denitrification (Nitrososphaerales: 76.79%/0.93% and 
Thermoanaerobaculales: 94.12%/4.2%) (Fig. 2B–D). Con-
tigs in the Thermoanaerobaculales MAG form a distinct 
cluster in the BinaRena graph representing the cover-
age profile at both 10  cm and 20  cm depths at location 
1 (Fig.  2B). This MAG is predicted to carry out nitrite 
reduction (nirK), a suboxic process [51], and likely why 
we find it at a higher abundance at 20 cm in the soil. How-
ever, abundance of this MAG progressively decreases in 
location 2 and then location 3 (17.92 × to 4.41 × to 0.07 ×). 
Conversely, the Streptosporangiales MAG is found 
at very low abundance at both locations 1 and 2 but 
becomes abundant at 10 cm (5.2 ×) and 20 cm (14.12 ×) 
depths in location 3. While we observed spatial variation 
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in the abundance of both the Thermoanerobaculales and 
Streptosporangiales MAGs, there was minimal variation 
detected in Nitrososphaerales. The Nitrososphaerales 
was the most abundant MAG across all three locations 
(31.83 × , 33.94 × , 18.79 ×) at 20 cm depth. It is interesting 
to consider what environmental factors are contributing 
to the change in abundance of both the Thermoanaero-
baculales and Streptosporangiales MAGs. However, this 
falls outside the scope of this study but demonstrates 
BinaRena’s utility in hypothesis generation.

BinaRena is capable of restructuring contig placement, 
expediting identification of dynamics between popula-
tions while also supporting MAG refinement by identify-
ing potentially misplaced contigs (and genetic potential). 
The recently discovered genus of Sulfotelmatobacter is 

potentially capable of carrying out dissimilatory sulfite 
or sulfate respiration [52], with implications for organic 
matter decomposition and greenhouse gas production. 
The Sulfotelmatobacter MAGs recovered using the three 
automated binners exhibited relatively high contamina-
tion and/or low completeness and lacked genes involved 
in sulfur metabolism (Fig. S2). To improve MAG quality, 
we selected all contigs associated with these five MAGs 
and contigs that were classified as Koribacteraceae and 
then subsequently visualized using the t-SNE at k = 6 
(Fig. 2E). We found most contamination (from contig-to-
MAG selection) coming from contigs classified as Alp-
haproteobacteria (280), Gammaproteobacteria (61), and 
Bathyarchaeia (15), which were selected and removed. 
After removal, we reassessed the distribution of contigs 

Fig. 2 Distribution of nitrogen cycling genes and exploration of Sulfotelmatobacter populations in the MAQ dataset. A An overview of the entire 
assembly. The x‑ and y‑axis represent t‑SNE embeddings based on tetranucleotide frequencies. Marker size (square root) and opacity are 
proportional to the number of KOs assigned to each contig that is associated with the previously described nitrogen pathways, and the color 
represents that pathway. B–D BinaRena‑exported SVG images (rasterized) depicting the change in abundance of the Streptosporangiales MAG 
(pink), Thermoanaerobaculales MAG (yellow), and Nitrososphaerales (green). The x‑axis represents coverage at depth 10 cm, while the y‑axis 
represents coverage at depth 20 cm. The only edits to raw files generated by BinaRena were an increase in font size, changes to legend text, 
and resizing of the plot area to decrease white space. E Subset of contigs classified as Koribacteraceae or were assigned to one of the five 
Sulfotelmatobacter MAGs is plotted using t‑SNE (k = 6) and colored by class. The size is proportional to the contig length, and opacity 
is the cube for coverage in location 3, depth 20 cm. Arrows are pointing at regions with contigs of potential contamination. F Contigs in E 
that have been filtered to a range of 54–64% GC (inset). All other aesthetics remain the same. G Contigs highlighted in yellow were selected 
based on high abundance in location 3, depth 20 cm using the histogram (inset). All other aesthetics remain the same except for size which 
is proportional to the cube root of the amount of sulfur genes found on contigs. The red arrow is pointing at the potentially missing contig 
from the Sulfotelmatobacter MAG
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and selected those that fell within a tight range of GC 
content (54–62%, based on MAGs generated from the 
automatic binners, as well as what has been previously 
published on this group [52]) and were removed using 
BinaRena.

There were three visually distinct clusters of contigs, 
but binning these resulted in either low completeness 
or high contamination (worse than the automated bin-
ners) (Fig. 2F). To better account for differences between 
populations, we further focused on contig abundance 
across location and depth. Using BinaRena’s interactive 
histogram, we separated contigs that were at high abun-
dance in location 3 at 20  cm depth (Sulfotelmatobacter 
are predicted anaerobes, and the MAGs from the auto-
mated binners were the most abundant in location 3 at 
20 cm) (Fig. 2G). This retained 1034 contigs with a total 
size of 3.98 Mbp and an average of 13.95 × coverage. Fur-
thermore, the completeness and contamination of this 
MAG marginally increased to 58.55% and 3.41%, respec-
tively. This MAG comprised 78.66% of the MetaBAT no. 
229 bin and 99.4% of the Maxbin no. 235_sub bin from 
DASTool. While quality only slightly increased, the MAG 
now contained genes for dissimilatory sulfate respiration 
(dsrAB) (Fig.  2G, red arrow). These genes were previ-
ously found by MaxBin (no. 235) but were removed by 
DASTool. To support their placement within this bin, 
both dsrA and dsrB genes were blasted, and the top ten 
matches belong to an uncultured sulfate-reducing organ-
ism. This 2139-bp-long contig does not cluster with the 
rest of the contigs (based on t-SNE k = 6) but has con-
sistent coverage across metagenomes with the excep-
tion of MAQ_050_10_MG (Fig. S2F).We suggest that 
contig misplacement by the automated binners, due to 
challenges with binning contigs ≤ 2000 bp [21], could be 
caused by the elevated abundance of this contig within 
MAQ_050_10_MG. This elevated coverage might indi-
cate natural variation within Sulfotelmatobacter popu-
lations, such as copy number, which is undetectable by 
automated binners. By implementing both targeted clas-
sification, GC% and depth metrics (for what is known 
about Sulfotelmatobacter), we were able to recover a 
more complete representation of the ecosystem. In sum-
mary, BinaRena directly facilitated the curation of this 
MAG, which prior to human intervention lacked biologi-
cal significance.

Separating closely related pathogenic microbes 
in traveler’s diarrhea gut metagenomes
Travelers’ diarrhea (TD) is an intestinal disorder caused 
by infection during traveling [53]. Identification of infec-
tious agents is of epidemiological importance but chal-
lenging due to the diverse and unpredictable pathogenic 
profiles [54]. In a previous study, Zhu et  al. studied the 

metagenomes of a TD cohort, and discovered multiple 
putative pathogens, some of which were confounded by 
closely related organisms in the same sample [33]. The 
current study provides a revisit to the question using 
the BinaRena program, as exemplified by two difficult 
samples.

Sample no. 76 was characterized by the co-infection of 
multiple putative pathogens under the genera of Escheri-
chia, Enterobacter, Klebsiella, and Citrobacter, all belong-
ing to the family of Enterobacteriaceae [33]. Automated 
binning algorithms, dependent on sequence similarity, 
struggle with the task of assigning contigs to appropri-
ate genomes, particularly when there is high evolution-
ary proximity between populations [38]. The relatively 
shallow sequencing depth (2.92-Gbp raw reads in total) 
further adds to the difficulty in recovering MAGs of rea-
sonable quality. We performed visual observation of the 
assembly in BinaRena, showing that t-SNE and UMAP 
at k = 6 provided the most apparent visual consistency 
between contig clustering pattern and taxonomic assign-
ment (Figs. 3A, B, S3). By cross-comparing the two views, 
we selected a cluster of contigs that were mainly assigned 
to Enterobacteriaceae using BinaRena’s polygon selection 
tool. BinaRena reported that this cluster contains 4293 
contigs totaling 19.9 Mbp, with an average coverage of 
47.62 × (weighted by contig length). A total of 98.42% of 
the length was assigned to family Enterobacteriaceae. By 
assessing CheckM’s Enterobacteriaceae-specific marker 
genes (n = 297), BinaRena determined that this cluster 
has completeness = 84.85% and contamination = 137.37%, 
indicating the presence of multiple genomes (Table S2, 
same below). Coloring by genus clearly showed that this 
cluster contains contigs assigned to all four pathogenic 
genera, which are visually distinguishable but hard to 
separate (Fig.  3C, D). The histogram of contig coverage 
showed several peaks, again implicating the presence 
of multiple genomes (Fig.  3E, inset). We separated the 
high-end peak by mouse-dragging six bins out of 20 in 
the interactive histogram (Fig.  3E, inset). This retained 
644 contigs (4.47 Mbp, 136.4 ×), with 95.87% of its length 
assigned to genus Escherichia (Fig. 3E). They are 78.11% 
complete and 6.40% contaminated. Next, we used Bina-
Rena’s search tool to identify and remove non-Gam-
maproteobacteria contigs, and contigs assigned to the 
other three pathogenic genera (Enterobacter, Klebsiella, 
and Citrobacter), which are presumably contaminations. 
This left 611 contigs (4.30 Mbp, 137.5 ×), with complete-
ness = 75.42% and contamination = 3.70%, which we con-
sider as a putative MAG of Escherichia (Fig. 3F), a taxon 
containing common causative pathogens for TD [54].

We then explored binning plans generated by auto-
matic binners (MaxBin, MetaBAT, and DASTool). Bina-
Rena’s information panel indicates that MaxBin’s bin no. 
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001 (642 contigs, 4.44 Mbp, 136.7 × , 76.77% complete, 
6.06% contaminated) has the highest consistency with 
the manually isolated Escherichia MAG as detailed above 
(97.08% of the latter length was shared between the two; 

Jaccard index = 0.901) (Fig.  3G). However, this bin con-
tains multiple “outlier” contigs that are approximate to 
other clusters indicated by both k-mer signature and 
taxonomic assignment, implicating contaminations (Fig. 

Fig. 3 Extraction of a pathogenic Escherichia coli MAG from several closely related organisms in the metagenome from the gut of a travelers’ 
diarrhea patient (sample no. 76, with 2.92‑Gbp raw reads, 10,910 contigs totaling 69.5 Mbp). Marker size (radius) is proportional to the cube root 
of contig length. Marker opacity is proportional to the cube root of contig coverage. Colors were assigned to the most abundant taxa in the sample. 
The assembly data (A, B) was explored using alternative dimensionality reduction methods (t‑SNE for A, C, E–H; UMAP for B, D, both based on k‑mer 
(k = 6) frequencies). A distinct blob of Enterobacteriaceae contigs (A, dashed line) were selected (C, D) and filtered based on its coverage profile 
(C, inset), resulting in a putative E. coli bin (E), which was further filtered by taxonomy (exemplified by arrows in E) to improve purity (F). In parallel, 
the corresponding bin inferred by MaxBin (G) was filtered by spatial pattern and taxonomy to retain a purer bin (H)
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S4A). Therefore, we manually refined this bin by remov-
ing the “outlier” contigs using polygon and then by taxo-
nomic filtering as detailed above (Fig.  3H). The curated 
bin has 607 contigs (4.23 Mbp, 138.2 ×), with complete-
ness = 74.07% and contamination = 3.03%, and has higher 
consistency with the manually extracted MAG (Jaccard 
index = 0.952). In parallel, MetaBAT recovered a bin (403 
contigs, 88.89% complete, 30.98% contaminated) that 
was a mixture of a portion of Escherichia contigs and a 
clearly separate cluster of contigs that were assigned to 
genus Faecalibacterium, a common commensal compo-
nent of the gut microbiota [55]. This observation points 
to putative chimerism (Fig. S4B). Finally, the ensemble 
method DASTool kept the MetaBAT bin, and stripped 
the shared part from the MaxBin bin, leaving only 304 
contigs (39.06% complete, 2.36% contaminated) (Fig. 
S4C), a result that is suboptimal.

In parallel, we investigated sample no. 50076, charac-
terized by the co-infection of multiple Escherichia coli 
strains [33]. An overview of the assembly in BinaRena 
supports a clear E. coli dominance pattern (Fig. S5A). 
Among the 27 bins inferred by MaxBin, seven have more 
than 50% of their total length assigned to genus Escheri-
chia; however, four of them are less than 2% complete as 
evaluated by BinaRena using CheckM’s E. coli-specific 
marker genes (n = 1628). The remaining three have a 
total length between 1.2 and 1.7 Mbp, average coverage 
between 2100 and 3100 × , completeness between 18 and 
41%, and contamination below 0.5% (Table S3). These 
metrics indicate that they are highly incomplete E. coli 
genome;  the relatively even coverage values and the a 
priori knowledge that E. coli genomes are usually 4.5–5.5 
Mbp long [56] led us to postulate that these bins may be 
parts of one E. coli genome. Similarly, MetaBAT inferred 
two E. coli bins (one was retained by DASTool), each of 
which also seemingly partial (Table S3). These results 
expose the limitation of automatic methods which often 
fail to resolve strain-level variation [19], from resolu-
tion issues with sequence/coverage metrics, and produce 
either fragmented/incomplete or “mega” bins. There-
fore, we resorted to de novo binning using BinaRena. 
Similar to the method described above, we first selected 
the cluster of contigs that were dominantly assigned to 
Escherichia, with 554 contigs, 6.89 Mbp, 1939 × , 98.40% 
complete, and 4.91% contaminated (Fig. S5B). These met-
rics indicate that there may be secondary E. coli genomes 
mixed in it, which is also evident from the multimodal 
pattern of the contig coverage histogram (Fig. S5A, inset). 
Likewise, we selected the top five bins out of 20 (cover-
age ≥ 1110 ×), resulting in 309 contigs, 5.07 Mbp, 2515 × , 
98.03% complete, and 1.29% contaminated (Fig. S5C). 
Compared with the automatically inferred bins, this bin 
notably better represents a complete E. coli genome that 

dominated the patient’s gut among other less abundant E. 
coli strains.

Systematic improvement of binning results using 
the CAMI2 marine metagenomes
We further demonstrated that BinaRena can help to effi-
ciently and systematically improve bin quality of an entire 
dataset. For this purpose, we used the synthetic marine 
metagenomic dataset from the 2nd CAMI challenge, a 
gold standard for assessing the performance of metagen-
ome binning algorithms [19]. A researcher, with no prior 
experience with the CAMI2 dataset, worked on each bin-
ning plan generated by MaxBin, MetaBAT, and DASTool. 
Briefly, contigs associated with each bin were highlighted, 
and then the x- and y-axes were toggled (between both 
PCA and coverage profiles) to identify potential mis-
placed contigs. The binning plans pre- and post-curation 
were evaluated using the silhouette coefficient and the 
adjusted Rand index (ARI), both calculated in the Bina-
Rena interface, and the completeness and contamina-
tion scores calculated by CheckM (outside BinaRena). It 
should be noted that the researcher was agnostic about 
these metrics during curation, as this functionality was 
not implemented until after the curation process.

Comparative analysis showed that after curation using 
BinaRena, the binning plan was visibly more consistent 
with the clustering pattern of contigs, as indicated by 
silhouette (Fig. 4A, B). BinaRena’s capability of calculat-
ing and visualizing silhouette as the user modifies the 
binning plan is useful for curation (although not used in 
this analysis). A portion of contigs were filtered out from 
the bins during curation (Fig. 4C), accompanied by infre-
quent deletion of entire bins (Fig. 4D). The removed con-
tigs were usually small; therefore, the loss in the total bin 
length was moderate (Fig. 4E). As evaluated by ARI, the 
post-curation binning plans are notably more consistent 
with the ground truth genome assignment, as compared 
to the pre-curation ones (Fig.  4F). For example, ARI of 
the DASTool-inferred bins increased from 0.729 to 0.982, 
suggesting that the latter are a nearly perfect subset of 
the true genomes. The quality of curated bins following 
the adopted standard [1] suggested a notable increase 
in the number of all publishable MAG categories (high, 
medium, and low quality) (Fig.  4G). These results indi-
cate a substantial improvement in the overall quality of 
binning plans using BinaRena.

Discussion
We developed BinaRena to support researchers to more 
effectively and comprehensively visualize and operate 
on metagenomic datasets. In this work, we have dem-
onstrated that BinaRena can assist human researchers 
to quickly identify patterns at the community scale with 
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taxonomic and functional relevance in addressing biolog-
ical questions while also isolating relevant MAGs from 
the background. In addition, we have illustrated issues 
that can arise from solely using automated binners, and 
that the use of BinaRena can aid in both identification 
and improvement from abovementioned issues. Even 
when  used as a de novo binner, BinaRena could yield 
MAGs with comparable or even better quality than the 
best result of several automatic binners. Meanwhile, it 
is effective in curating binning plans computed by auto-
matic binners and achieving improved quality of the 
recovered MAGs.

BinaRena’s ease of operation and versatility facilitate 
metagenomic analysis for both novice and expert users. 
Being a dependency-free, client-end single web page, 
BinaRena is among the easiest of all bioinformatics tools 
in terms of deployment and use. This characteristic also 
grants potential for effortless integration of BinaRena 
into current metagenomics workflows. In contrast to 
the simplicity of start-up, BinaRena has rich features 
that permit complex operations on metagenomic data. 
Meanwhile, the program’s deliberate user interface (UI) 
design provides an efficient and comfortable workspace 

for human operators, and this is of importance because 
the exploration of complex data requires labor and con-
centration. Noting its high customizability, we envision 
that BinaRena may also be useful in other research tasks 
involving classification, clustering, and/or ordination, 
although further work is needed to establish this point.

While being a useful tool for microbiome researchers, 
BinaRena is not meant to replace automatic binners. The 
analysis is highly impacted by human behavior, which 
could introduce bias. Careful documentation and rea-
soning (as done in this work) ensure reproducibility of 
one analysis, but do not warrant generalization of the 
protocol to other cases. We recommend the adoption of 
BinaRena in addition to automatic workflows, the results 
of which are also useful input for BinaRena, as demon-
strated above. On top of all, BinaRena is suitable for 
data overview, hypothesis generation, and sanity check 
of analysis results. Beyond, BinaRena lets the researcher 
focus on individual MAGs that are of high relevance 
to the research topic. Lastly, BinaRena can help if the 
research goal is to maximize the quality of an entire bin-
ning plan, although this would require significant human 
labor.

Fig. 4 Curation of entire binning plans on the CAMI2 marine dataset. A and B The gold standard assembly was visualized using PCA 
on tetranucleotide frequencies, showing DASTool‑binned contigs pre‑ (A) and post‑ (B) curation using BinaRena. Contigs are colored 
by the silhouette coefficient calculated by BinaRena. Marker size (radius) is proportional to the cube root of contig length. Marker opacity 
is proportional to the 4th power root of average contig coverage of 10 samples. C–G Metrics of three binning plans (generated by DASTool, MaxBin, 
and MetaBAT, respectively) pre‑ and post‑curation. C Total number of contigs in bins. D Total number of bins. E Total length of contigs in bins. F 
Adjusted Rand index between each binning plan and the ground truth as calculated by BinaRena. G Numbers of high‑, medium‑, and low‑quality 
MAGs, defined following [1] based on CheckM‑inferred completeness and contamination scores. Specifically, high quality: ≥ 90% complete, < 5% 
contaminated; medium quality: ≥ 50% complete, < 10% contaminated; and low quality: < 50% complete, < 10% contaminated. Bins that do not 
match any catalog (i.e., ≥ 10% contamination) are excluded
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The pursuit of decoding complex metagenomic data 
and deconvoluting them into original organismal enti-
ties is of central importance yet so far challenging. Bina-
Rena represents progress in one direction of multiple 
to the solution of this problem. Future efforts should be 
attributed to better integration of algorithms and human 
factors into a semi-supervised workflow that simulta-
neously achieves high accuracy, interpretability, and 
reproducibility.

Conclusions
We present BinaRena, a software tool for interactive 
visualization and operation of metagenomic contigs, to 
facilitate discovery of biological patterns and recovery of 
metagenome-assembled genomes (MAGs). Engineered 
with a strong focus on human factors, it lets the user 
observe various characteristics of large metagenomic 
datasets, and efficiently manipulate contig-bin assign-
ments, as well as assess contig group properties and 
MAG quality metrics which can help with human deci-
sion-making. BinaRena effectively complements algorith-
mic workflows and benefits researchers of all technical 
levels in various types of microbiome studies.

Materials and methods
The Maquia peatland dataset
The Maquia peatland (MAQ) metagenomes were sam-
pled in the Yanayacu-Maquia Conservation Conces-
sion, Peru (6°22′ S 74°53′ W), in October 2015. Six 
samples were collected from soil cores at three spatial 
intervals 50  m apart at depths of both 10 and 20  cm. 
DNA extraction was performed using the MicroSoil kit 
(QIAGEN, CA, USA) following the general protocol 
proposed by the earth microbiome project [57]. High-
throughput sequencing was performed on an Illumina 
NovaSeq platform at JGI, NM, as part of their 2015 
Community Sequencing Program. Sequencing data 
were processed using Trimmomatic v0.40 [58]. Quality-
trimmed sequencing data were deposited at JGI for MAQ 
(Ga0314862-Ga0314867).

The travelers’ diarrhea dataset
The travelers’ diarrhea (TD) dataset [33] contains 29 
metagenomic samples, sequenced from fecal materials of 
individuals who traveled from the USA to Mexico or India 
between 2005 and 2010. Twenty-two subjects developed 
TD but were tested negative for common TD pathogens, 
implicating the presence of novel pathogens, whereas 
the remaining seven were healthy. We reanalyzed the 
published sequencing data (NCBI PRJNA382010) using 
currently adopted workflows (see below). The metagen-
omes were assembled separately due to the lack of shared 
pathogenic profiles. Two samples, no. 76 and no. 50076, 

which were shown to contain closely related pathogens 
[33], were selected for demonstrating BinaRena’s func-
tionality in this study.

The CAMI2 marine dataset
The 2nd CAMI challenge [59] marine metagenomes (Illu-
mina) gold standard assembly (GSA) was retrieved from 
PUBLISSO (https:// doi. org/ 10. 4126/ FRL01- 00642 5521). 
It contains 10 samples, simulated to represent microbial 
communities at different seafloor locations of a marine 
environment. Contigs that are at least 2000  bp, totaling 
159,957 contigs, 1.816 Gbp, were used for binning. The 
per-sample abundance values were used in this study to 
assist manual curation of binning plans. The ground truth 
genome assignments were retrieved from the CAMI 
GitHub repository (https:// github. com/ CAMI- chall 
enge), under the following: second_challenge_evaluation/
tree/master/binning/genome_binning/marine_dataset/
data/ground_truth/.

Assembly and automatic binning of metagenomic datasets
Both MAQ and TD metagenomes were co-assembled 
using MegaHit v1.2.9 [41] using the “–meta” preset. 
Resulting contigs were filtered based on a minimum 
length of 2000 bp and an average coverage greater than 
1 × over 90% of the contig length. Metagenomic reads 
from each sample were mapped back to contigs using 
Bowtie2 v2.3.5.1 [60], and depth profiles were generated 
using the “jgi” script provided in MaxBin2 v2.2.7 [16]. For 
all four datasets (MAQ, TD, and marine), filtered contigs 
were binned using MetaBAT2 v2.2.15 [17] and MaxBin2 
[16] with default settings. Results from these binning 
plans were consolidated using DASTool v1.1.3 [18]. 
Resulting MAGs were assessed for quality using CheckM 
v1.1.3 [38], and GTDB-tk v1.7.0 [42] was used to deter-
mine taxonomy of all bins. Bins with both completeness 
and contamination scores equal to zero according to 
CheckM were not investigated.

Data preparation for BinaRena
Length, coverage, GC content, and k-mer frequencies 
(k = 4, 5, and 6) of individual contigs were calculated 
using previously published scripts [16, 61]. The k-mer 
frequency profiles were subject to three mainstream 
dimensionality reduction methods: PCA [62], t-SNE [63] 
(implemented in scikit-learn v1.0.2), and UMAP [64] 
(implemented in umap-learn v0.5.3). Prior to the t-SNE 
analysis, the dataset was processed using PCA to retain 
50 dimensions. The Barnes-Hut approximation [65] was 
used to accelerate the t-SNE calculation, following pre-
vious works [36, 66, 67]. The UMAP analysis was also 
based on the same 50 PCA-reduced dimensions. Contigs 
from the MAQ and TD datasets were annotated using 

https://doi.org/10.4126/FRL01-006425521
https://github.com/CAMI-challenge
https://github.com/CAMI-challenge
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KofamScan v1.3.0 [68] against KOfam release 2022–03-
01. Taxonomy was assigned to contigs using Kraken2 
v2.1.2 [43] with default settings against the GTDB release 
202 [69].

Availability and requirements

• Project name: BinaRena
• Project home page: https:// github. com/ qiyun lab/ 

binar ena
• Operating system(s): Platform independent
• Programming language: JavaScript
• Other requirements: A modern web browser 

(Chrome, Firefox, Safari, Edge, etc.)
• License: BSD-3-clause
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CAMI  Critical Assessment of Metagenome Interpretation
MAG  Metagenome‑assembled genomes
MAQ  Maquia peatland
PCA  Principal component analysis
TD  Travelers’ diarrhea
t‑SNE  T‑Distributed stochastic neighbor embedding
UMAP  Uniform manifold approximation and projection
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Additional file 1: Fig. S1. Correlation between completeness (A) and 
redundancy (contamination) (B) values calculated by BinaRena and 
CheckM. A total of 596 bins recovered by MaxBin and MetaBAT from the 
MAQ dataset were evaluated. The CheckM marker gene set for domain 
Bacteria was used, which contains 104 genes arranged in 58 sets. The 
regression line (black) is plotted in each panel. The Pearson’s correlation 
coefficient (r) and its p‑value are marked under the plot. Fig. S2. Sulfotel-
matobacter MAGs identified by three automatic binners. Scatter plots 
were defined by t‑SNE on k‑mer (k = 6) frequencies. Marker size (radius) is 
proportional to contig length. Marker opacity is proportional to the cube 
root of contig coverage in location 3 at depth of 20cm. A. MaxBin’s result. 
B, C. MetaBAT’s results. D, E. DASTool’s results which are both subsets of 
MaxBin results. D came from a bin with high redundancy (contamina‑
tion) (40.89%) and only classified to the family level (Koribacteraceae) and 
E is a subset of panel A. F. Multi‑panel scatter plot representing contig 
coverage across metagenomes for curated Sulfotelmatobacter MAG. Gray 
circles represent contigs without dsrAB, while the red circle represents 
the potentially misplaced contigs with dsrAB. Fig. S3. Various views of 
the TD metagenome #76. Three dimensionality reduction methods, PCA, 
t‑SNE, and UMAP, were applied to k‑mer frequency profiles with k = 4, 5, 
and 6. In addition, the coverage (log) was plotted against GC content and 
contig length (log). Marker size (radius) is proportional to the cube root 
of contig length. Except for the last two plots (in which contig coverage 
is the y‑axis), marker opacity is proportional to the square root of contig 
coverage. Colors are assigned to the top nine most abundant families. The 
color codes are identical to that of Fig. 3A, B. Fig. S4. Comparison of an 
Escherichia MAG identified by three automatic binners. Scatter plots were 
defined by t‑SNE on k‑mer (k = 6) frequencies. Marker size (radius) is pro‑
portional to the cube root of contig length. Marker opacity is proportional 
to the square root of contig coverage. A. MaxBin’s result (see also Fig. 3G), 

which has the highest consistency with the manually identified MAG 
(Fig. 3F). B. MetaBAT’s result (also DASTool’s primary result), which contains 
a proportion of the Escherichia contigs plus a separate contig cluster 
assigned to genus Faecalibacterium (dashed circle). C. DASTool’s secondary 
result (equivalent to the MaxBin bin excluding the MetaBAT bin). Fig. S5. 
Recovery of a pathogenic Escherichia coli MAG from TD sample #50076 
(19.82 Gbp raw reads, 9,816 contigs totaling 62.2 Mbp), which contains 
multiple E. coli strains. Scatter plot was defined by t‑SNE on k‑mer (k = 
6) frequencies. Marker size (radius) is proportional to the cube root of 
contig length. Marker opacity is proportional to the cube root of contig 
coverage. Colors were assigned to the top 14 most abundant genera in 
the sample. A. View of the entire assembly. A cluster of contigs mainly 
assigned to Escherichia was selected (dashed polygon). B. The selected 
cluster of contigs. Its coverage profile exhibits a multi‑modal pattern 
(inset of A). Therefore, the top five out of 20 bins of the histogram were 
retained. C. The retained contigs, which represent a putative E. coli MAG. 
Table S1. Comparison of functionality of BinaRena and Elviz. Table S2. 
Metrics of contig clusters / bins in TD sample #76 calculated by BinaRena. 
Table S3. Metrics of contig clusters / bins in TD sample #50076 calculated 
by BinaRena.

Additional file 2. Data S1.
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