
Shtossel et al. Microbiome          (2023) 11:181  
https://doi.org/10.1186/s40168-023-01623-w

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Microbiome

Recipient-independent, high-accuracy 
FMT-response prediction and optimization 
in mice and humans
Oshrit Shtossel1*, Sondra Turjeman2, Alona Riumin2, Michael R. Goldberg3,4, Arnon Elizur3,4, Yarin Bekor1, 
Hadar Mor2, Omry Koren2 and Yoram Louzoun1* 

Abstract 

Background Some microbiota compositions are associated with negative outcomes, including among others, 
obesity, allergies, and the failure to respond to treatment. Microbiota manipulation or supplementation can restore 
a community associated with a healthy condition. Such interventions are typically probiotics or fecal microbiota 
transplantation (FMT). FMT donor selection is currently based on donor phenotype, rather than the anticipated 
microbiota composition in the recipient and associated health benefits. However, the donor and post-transplant 
recipient conditions differ drastically. We here propose an algorithm to identify ideal donors and predict the expected 
outcome of FMT based on donor microbiome alone. We also demonstrate how to optimize FMT for different required 
outcomes.

Results We show, using multiple microbiome properties, that donor and post-transplant recipient microbiota dif-
fer widely and propose a tool to predict the recipient post-transplant condition (engraftment success and clinical 
outcome), using only the donors’ microbiome and, when available, demographics for transplantations from humans 
to either mice or other humans (with or without antibiotic pre-treatment). We validated the predictor using a de novo  
FMT experiment highlighting the possibility of choosing transplants that optimize an array of required goals.

We then extend the method to characterize a best-planned transplant (bacterial cocktail) by combining the predictor 
and a generative genetic algorithm (GA). We further show that a limited number of taxa is enough for an FMT to pro-
duce a desired microbiome or phenotype.

Conclusions Off-the-shelf FMT requires recipient-independent optimized FMT selection. Such a transplant can be 
from an optimal donor or from a cultured set of microbes. We have here shown the feasibility of both types of manip-
ulations in mouse and human recipients.

Background
In recent decades, the relationship between the human 
gut microbiota and its host health has been shown in a 
wide range of conditions, ranging from metabolic dis-
orders through autoimmune diseases to mental health 
disorders [1–6]. The relationship is not only correlative: 
fecal microbiota transplantation (FMT) has been suc-
cessful in transferring phenotypes to germ-free (GF) 
mice in a range of experiments [7–16]. Several studies 
have found connections between disease states, specific 
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bacterial taxa, and key metabolic pathways directly asso-
ciated with these taxa; however, the transition to specific 
mechanisms of action to treat or completely prevent ail-
ments remains elusive.

Often, finding specific bacterial strains or metabolites 
to prescribe is challenging, as the microbiota is a complex 
community. Furthermore, clinical studies include real-
life noise, unlike experimental setups with GF animals 
or under extremely controlled environments. Ensuring 
subsequent colonization of a single strain in the milieu of 
other microbes is challenging, and predicting the specific 
microbe’s functionality within the complex microbiota 
is nearly impossible. Full personalization of microbe-
based treatments is still cost prohibitive and may even be 
unnecessary.

Restorative FMT is a common treatment for CDI 
(Clostridioides difficile infection) and is studied in a large 
variety of other conditions [17]. FMT is the transfer of a 
donor’s gut microbiome content to a recipient. In human 
recipients, transplantation is often performed after a 
course of antibiotics to clear out the recipient’s own dys-
biotic microbiome, thus increasing the probability of 
colonization [18, 19]. In mice, FMT is most often per-
formed on GF or antibiotic-treated mice, though studies 
in untreated animals are growing.

Early evidence of FMT dates back nearly 2000 years 
[20] with more recent anecdotal use of the method, dur-
ing World War II, among soldiers, to prevent diarrhea 
[21]. Formally, the use of FMT in the medical field was 
first documented in 1958 [22]. With the advent of micro-
biome research, this treatment method has regained clin-
ical interest [23, 24]. Currently, FMT has been clinically 
trialed and approved to treat recurring CDI [25]. Ongo-
ing clinical research includes the following: improving 
the response to immunotherapy treatment [26], improv-
ing the quality-of-life of autistic children [27], main-
taining weight loss [16], and even restoring the normal 
neonate microbiome after birth via cesarean section [28].

A successful FMT is often characterized by an 
improvement in some quantitative disease symptom(s) or 
pathology, but other technical markers, like colonization 
success (overall richness or of specific microbes), can also 
be used to mark success or predict efficacy [29]. In gen-
eral, a healthy microbiome is a diverse one [30–33]; thus, 
an ideal donor may be one that induces a high microbial 
richness in the recipient, and a successful FMT would be 
one in which a maximum number of key microbial taxa 
colonize the recipient’s gut [34], although recent studies 
have also demonstrated that the abundance of certain 
species might be just as important as overall richness 
[35, 36]. Finally, one may aim to choose an FMT donor 
not based on post-transplant microbiome but rather 

associated with a post-transplant condition (fewer clini-
cal symptoms) [37].

Tools to help identify key donors that will likely pro-
vide rich microbiota colonization are of high relevance in 
clinical practice, and the ability to predict a priori which 
taxa are most likely to engraft from complex and diverse 
donor microbiota can be helpful in selecting donors for 
diseases in which “beneficial” microbes have already been 
identified. However, evidence suggests that colonization 
of the donor microbiota in the host is not always linear 
[26], and the mechanisms and dynamics dictating which 
donor microbes can be engrafted in the recipient are 
poorly understood.

Initial studies that are able to track the transmission 
of donor strains to the recipient have been performed 
on only very few donor-recipient pairs [38]. The com-
pletion of larger FMT trials and advances in strain-level 
metagenomics will enable deeper analyses to unravel 
general FMT engraftment efficiency patterns across 
diseases and may lead to the development of statistical 
models to predict the post-FMT microbiome composi-
tion [36], but in the absence of such rich datasets, a more 
nuanced approach than linear assumptions based on 
donor richness and abundance profiles is required.

Current approaches in modeling engraftment have 
two main limitations: first, the vast majority of previous 
investigations remained confined to single cohorts [36, 
39–43], with limited cross-cohort and cross-condition 
generalizability.

Second, even existing cross-cohort manipulation out-
comes require information on the recipient. For example, 
a recent systematic meta-analysis of 24 studies that inves-
tigated FMT in different clinical settings and for which 
some post-FMT recipient outcomes, such as Shannon 
diversity, species composition, and species presence were 
provided, predicted these outcomes using both the donor 
and recipient (baseline) microbiome and demographic 
data [35]. Such methods cannot be used for off-the-shelf 
solutions.

Off-the-shelf solutions or one-size-fits-all treatments 
(at least for a certain family of diseases), which is one 
of the major ambitions in the clinic [44], require recipi-
ent-independent optimization of the FMT. We here test 
whether such an optimization is possible, using only 
donor data to predict species richness and taxa preva-
lence and abundance in FMT-recipient mice and humans. 
We then extend the analysis to the prediction of trans-
plant clinical outcomes beyond microbiome properties 
in humans. Finally, we use this approach to reconstruct 
an ideal synthetic microbiota that could theoretically be 
used for microbiota manipulation instead of fecal matter 
from a human donor.
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To that end, we developed iMic (image microbiome) an 
algorithm to predict transplant outcomes (either engraft-
ment success or the improvement in clinical conditions), 
based on microbial characterization of the human fecal 
donor samples alone. iMic is developed for mouse and 
human recipients. We then validated our model by per-
forming an FMT experiment in antibiotic-treated mice, 
transplanting ideal and sub-optimal human donor sam-
ples, as identified by iMic. These models were then 
combined and extended in a genetic algorithm (GA) to 
predict optimal synthetic off-the-shelf microbiome com-
positions for transplants.

Methods
Experimental datasets
We built algorithms based on microbiome data (16S 
rRNA sequences) from human-to-GF transplants from 
1 unpublished and 3 published FMT experiments, where 

human fecal matter was transplanted to GF mice, and in 
human-to-human transplants (see Tables  1 and 2). The 
experiments are described in more detail in the Sup-
plementary Methods, but the human-to-GF cohorts 
included FMT of stools from patients with gestational 
diabetes [12], food allergy (unpublished data), antibiotic 
exposure [13], and undergoing chemotherapy [15]. Six 
more human-to-human cohorts with clear clinical out-
comes of improving a variety of clinical symptoms (e.g., 
inflammatory bowel disease (IBD) [37], as measured by 
Mayo score [45], the response to PD-1 therapy in patients 
with melanoma and others) were analyzed (2 16S cohorts 
and 4 shotgun metagenomics, see Table  3). Stool sam-
ples from mice were collected weekly following FMT and 
characterized by sequencing the V4 region of 16S rRNA 
gene, as described in the Supplementary Methods. Some 
of the published datasets were downloaded from the 
NCBI (National Center for Biotechnology Information) 
website via our homemade microbiome downloading 
and analysis package named YAMAS https:// github. com/ 
Yarin Bekor/ YaMAS, also available through PyPI https:// 
pypi. org/ proje ct/ YMS/.

ML nomenclature
In order to facilitate the understanding of the more 
machine learning (ML)-oriented terms in the text, we 
here provide a short description of the main ML terms 
used in the manuscript.

Table 1 Characteristics of all human-to-GF cohorts

Name Condition Number 
of FMTs

Reference

GDM GDM 30 [12]

Allergy IgE-mediated food allergies 18 [46]

Chemotherapy Chemotherapy for breast cancer 159 [15]

Baby Antibiotic treatment dur-
ing the neonatal period

48 [13]

Table 2 Characteristics of all published human-to-human datasets

Accession number Disease Abx Sample size Number of FMTs 16S region Reference

ERP021216 CDI T 86 20 V4 [47]

PRJDB4959 IBD F 28 10 V1V2 [48]

PRJNA221789 CDI T 20 10 V1-V3 [49]

PRJNA238042 CDI T 22 11 V3-V5 [50]

PRJNA238486 CDI T 23 3 V6 [51]

PRJNA380944 IBD T 83 21 V4 [52]

PRJNA412501 IBD T 52 19 V3V4 [53]

PRJNA428898 IBD F 35 9 V4V5 [54]

Table 3 Characteristics of all published human-to-human cohorts with a clear clinical outcome

Accesstion number Disease Success definition Number of 
FMTs

16S vs WGS Reference

PRJEB46777 UC Simple clinical colitis activity index scores ( ≤ 2) 43 WGS [55]

PRJEB46779 Antibiotics resist-
ance (AR)

Decline in the number of symptoms 33 WGS [55]

PRJNA672867 Melanoma Response to PD-1 therapy 26 WGS [56]

PRJEB36140 IBS Decline in the number of symptoms 30 WGS [57]

CRA004875 IBD Mayo score 103 16S [37]

https://github.com/YarinBekor/YaMAS
https://github.com/YarinBekor/YaMAS
https://pypi.org/project/YMS/
https://pypi.org/project/YMS/
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• Model. The model is the mathematical relation 
between any input (in our case the donor microbi-
ome amplicon sequence variants―ASVs) and the 
appropriate output (in our case the class of the sam-
ple/the phenotype of the recipient post-FMT). In 
ML, the model usually contains a set of parameters 
called weights, and the ML trains the model by find-
ing the weights that for which the model is in best 
agreement with the relation between the input and 
output in the “Training set.”

• Training set. The part of the data used to train the 
model. The quality of the fit between the input and 
output data on the training set is not a good measure 
of the quality of the model, since it may be an “over-
fit.”

• Overfitting. A problem occurring when a model pro-
duces good results on data in the training set (usu-
ally due to too many parameters) but produces poor 
results on unseen data.

• Validation set is a separate set from the training set 
that is used to monitor but is not used for the train-
ing process. This set can be used to optimize some 
parts of the learning process including setting the 
“hyperparameters.”

• Test set. Data used to test the model that is not used 
for either hyperparameter optimization or the train-
ing. The accuracy estimated on the test set is the 
most accurate estimate of the accuracy.

• Model hyperparameters are adjustable values that are 
not considered part of the model itself in that they 
are not updated during training but still have an 
impact on the training of the model and its perfor-
mance. To ensure that those are not fitted to maxi-
mize the test set performances, the hyperparameters 
are optimized using an internal validation set.

• 10-fold cross-validation (referred to as 10 CVs)―
a resampling procedure used to evaluate machine 
learning models on a limited data sample. The data 
is first partitioned into 10 equally (or nearly equally) 
sized segments or folds. Subsequently, 10 iterations 
of training and validation are performed such that 
within each iteration a different fold of the data is 
held-out for validation, while the remaining 9 folds 
are used for training.

• Receiver operating characteristic curve (ROC)―a 
graph showing the performance of a classification 
model at all classification thresholds. This curve 
plots two parameters: true positive rate (TPR―the 
probability that an actual positive will test positive) 
and false positive rate (FPR―the probability that an 
actual negative will test positive).

• Area under the ROC curve (AUC). The (AUC) is a 
single scalar value that measures the overall perfor-

mance of a binary classifier. The AUC value is within 
the range [0.5–1.0], where the minimum value repre-
sents the performance of a random classifier and the 
maximum value would correspond to a perfect clas-
sifier (e.g., with a classification error rate equivalent 
to zero). It measures the area under the ROC curve 
we define above.

• Genetic algorithm (GA). GA is a method for solving 
constrained and unconstrained optimization prob-
lems that uses iterations of selection and modifica-
tions on a family of solutions. Here, we optimize the 
best-planned transplant (bacterial cocktail) by com-
bining a simple GA model with the iMic predictor.

Models
We trained our models (described in full in the Supple-
mentary Methods) on all datasets together by zero-pad-
ding the missing taxa. Data pre-processing, merging (to 
the species level), and normalization were performed fol-
lowing the MIPMLP protocol [58] (see Supplementary 
Methods for a detailed explanation). To identify an ideal 
donor, we predicted for each recipient (1) the post-FMT 
Shannon diversity, (2) the frequency of different taxa in 
post-FMT recipients (at the order and species levels) and 
binary species presence or absence, and (3) improvement 
in clinical condition. A specific model was built to predict 
the relative abundance or prevalence of each taxon sepa-
rately, considering only donor microbiota characteristics. 
These models were also validated based on data collected 
in a human-to-antibiotic-pretreated mouse validation 
experiment. The same models were applied to 6 clinical 
human-to-human FMT studies (see the  “Experimental 
datasets” section and Table 3). We trained our model to 
predict each clinical outcome separately at different time 
points post-FMT. Furthermore, we developed a mixed 
model using data from donors to FMT responders and 
non-responders across all shotgun cohorts [55–57].

Comparison of donor and recipient microbiome samples
In several cohorts, the same donor stool was given to 
multiple recipients, resulting in multiple post-FMT 
recipient properties (e.g., Shannon diversity) for the same 
donor. To compare the effect of the donor microbiome 
vs the recipient, we defined the similarity between sam-
ples as the Euclidean distance between the MIPMLP [58] 
preprocessed order frequency of two recipients from the 
same group or as the difference between the Shannon 
diversity of two recipient samples from the same group. 3 
groups were defined:

• Same donor - same recipient (SDSR). All distances 
between samples of a single recipient, collected at 
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different time points post-FMT, to measure the tem-
poral variation in a recipient.

• Same donor - different recipients (SDDR). All dis-
tances between all the different recipients that 
received FMT from the same donor and were sam-
pled at the same time point post-FMT. This measures 
the effect of the recipient’s background on its post-
FMT microbiome.

• Different donors - different recipients (DDDR). All 
distances between recipients that received a trans-
plant from different donors, and were sampled at the 
same time point. This adds the effect of the donor to 
the effect of the background.

Validation experiment
The validation experiment consisted of 4 steps:

Step A ―Predicting recipient microbiota properties post‑FMT
A large cohort of candidate donors D was assembled 
from gut microbiome data previously characterized. Each 
sample in D was passed through the MIPMLP-preproc-
essing, as above, with the “mean” merge method applied 
to the species level and a log-normalization. The 7 days 
post-FMT expected outcome of the transplant with each 
donor sample was computed using the pre-trained iMic 
model.

Step B―Group definition for the FMT validation experiment
The donor cohort was run through the ideal donor iden-
tification model described above, and the donors were 
divided according to their expected post-FMT microbi-
ome richness: 8 optimal adult donors and 16 sub-opti-
mal donors, 8 of which were children (least optimal) 
and 8 of which were adults (also sub-optimal and bio-
logically more relevant as donors than children) were 
selected. Then, a human-to-mouse FMT experiment was 
performed.

Step C―FMT experiment
Briefly, 48 Swiss Webster mice were raised under con-
ventional conditions in the animal facility at the Azrieli 
Faculty of Medicine, Bar-Ilan University, with controlled 
temperature (22◦ C) and light cycle (12 h light and 12 h 
dark). The mice had free access to food and water. At 6 
weeks of age, they received antibiotics for 2 weeks (cipro-
floxacin (0.04 g), metronidazole (0.2 g), and vancomycin 
(0.1 g)) via their drinking water (400 ml, changed every 
3 days). At week 8, after antibiotic treatment, stools were 
taken, and the mice were randomized into 3 groups (16 
mice each). There were 4 cages of male mice for each 
group (8 mice total) and 4 cages of female mice for each 
group (8 mice total) for a total of 8 cages (16 mice) per 

group. After the mice were separated into groups, they 
were weighed (as a general parameter of recipient state) 
and then two FMTs were carried out 1 week apart. Cage-
mates received FMTs from the same human donor. Fecal 
samples from mice were collected weekly for 6 weeks 
following FMT, and microbiota were characterized by 
sequencing the V4 region of the 16S rRNA gene (see Sup-
plementary Methods for details).

We repeated the analysis (not the experiment) by 
dividing the transplants only from adults based on the 
expected order frequencies. We only analyzed orders that 
were predicted with high accuracy (Fig. 3A, step B).

Step D―Recipient samples analysis
Following microbiota characterization, recipients’ feces 
were collected at 8 weeks (8W), 10 weeks (10W), and 
15 weeks (15W). DNA was extracted from all mice fecal 
samples, using the MagMAX Microbiome Ultra-Kit 
(Thermo Fisher, Waltham, MA) according to the manu-
facturer’s instructions and following a 2-min bead beat-
ing step (BioSpec, Bartlesville, USA). The V4 region of 
the bacterial 16S rRNA gene was amplified by polymer-
ase chain reaction (PCR) using the 515F (AAT GAT ACG 
GCG ACC ACC GAG ATC TAC ACG CT) barcoded and 
806R (TAT GGT AAT TGT GTG YCA GCMGCC GCG 
GTAA) primers [59] with a final concentration of 0.04% 
of each primer and 0.5% of PrimeSTAR Max DNA Pol-
ymerase (Takara-Clontech, Shiga, Japan) in 50µ l total 
volume. PCR reactions were carried out by 30–35 cycles 
of denaturation (95◦C), annealing (55◦C), and exten-
sion (72◦C), with final elongation at 72◦ C. PCR products 
were purified using XP magnetic beads (Beckman Coul-
ter, Indianapolis, IN) and quantified using the Picogreen 
dsDNA quantitation kit (Invitrogen, Carlsbad, CA). Sam-
ples were then pooled in equal amounts, loaded on 2% 
agarose E-Gel (Thermo Fisher, Waltham, MA), purified, 
and sent for sequencing using the Illumina MiSeq plat-
form (Genomic Center, Azrieli Faculty of Medicine, Bar-
Ilan University, Israel). Microbiota properties (Shannon 
diversity and orders’ frequency) were calculated at 1 week 
(referred to as 10W) post-FMT and 6 weeks (referred to 
as 15W), post-FMT.

Synthetic community compilation by generative GA
To identify an ideal synthetic community for microbi-
ota manipulation that would increase the richness and 
have a high probability of engraftment, we used a GA 
[60] to first identify donors that would result in an opti-
mal recipient outcome (microbial richness or specific 
bacterial order engraftment). To this end, we simulated 
2083 donor profiles from the actual donor cohort data, 
as described in the Supplementary Methods. Then, 100 
donors were randomly selected, and we modeled the 
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predicted richness of recipients of FMTs from the simu-
lated donors, as described in the Supplementary Meth-
ods. The aim of the model was to generate the optimal 
synthetic community for a given outcome, while mini-
mizing non-zero taxa, though no minimum number of 
taxa was required. The 30 donors with the highest loss in 
the maximization task and the 30 donors with the low-
est loss in the minimization task were then chosen for the 
creation of the next generation (Fig. 6A, step D), namely 
the creation of an optimal synthetic microbiota. In the 
next generation, the same process was performed, and 
to enrich the variability of children, we added mutations 
and recombination with a probability of 0.3 (see Supple-
mentary Methods). Then, synthetic FMT performance 
was again tested, and ideal “parents” were again selected. 
This generative process of creating simulated microbiota 
continued for 25 generations, as we found convergence to 
occur after this many iterations. Details of GA modeling 
considerations and methods are presented in the Supple-
mentary Methods.

Statistics and validation
R2 score
To evaluate the performance of our predictors, we calcu-
lated the R2 metric on external test sets using 10 cross-
validations (CVs). We reported the average R2 score of 
the 10 runs. Then, we applied an ANOVA test to check 
whether the performances of the models were signifi-
cantly different. If ANOVAs were significant, we used 
one-sided T-tests for pairwise comparisons.

Spearman correlation coefficient (SCC)
To evaluate the performance of our predictors, we cal-
culated the SCC metric on the external test set using 10 
CVs. We reported the average SCC of the 10 runs. Then, 
we applied an ANOVA test to check whether the perfor-
mances of the models were significantly different. If the 
ANOVA were significant, we kept comparing by a one-
sided T-test.

Area under the ROC curve (AUC)
To evaluate the performance of our predictors on the 
absence-presence species task, we calculated the AUC 
metric on the external test set. Then we applied a one-
sided T-test between the RF (random forest) model and 
the iMic model.

Biological relevance test
To assess the biological relevance of our donor-picking 
algorithm (according to the predicted Shannon diversity), 
we compared the predicted recipient richness of the clin-
ically defined FMT “successes” and “failures” by applying 
a two-sided T-test.

Same donor condition distribution
In a second scenario, we examined the actual distribu-
tion of conditions based on donor strain colonization 
in recipients undergoing FMT. To analyze this distribu-
tion, we utilized data from the 5 aforementioned condi-
tions as well as additional data from the study conducted 
by Schmidt et  al. [61]. For each donor, we assessed the 
number of successful transplants among all the trans-
plants associated with that donor. This analysis pro-
vided insights into the efficacy and variability of FMT 
outcomes.

Results
FMT studies
To investigate the relationship between the donor micro-
biome and FMT outcomes, we conducted an analysis of 
transplants involving the transfer of stool samples from 
human donors to either GF mice or humans across 12 
different cohorts (Fig.  1A). To ensure our findings are 
general enough, we combined data from multiple experi-
ments within each cohort separately (i.e., human-to-GF 
and human-to-human cohorts). In each experiment, we 
analyzed recipient stool samples several weeks post-FMT, 
as well as from the human donors. Both the recipient and 
human donor samples underwent 16S sequencing (see 
the “Methods” and Supplementary Methods for sequenc-
ing, pre-processing, and combination of samples).

For the human-to-GF cohorts, we analyzed 4 cohorts 
(Table  1). The first cohort, denoted as Gestational Dia-
betes Mellitus (GDM), was previously reported by Pinto 
et al. [12]. The second cohort consisted of stool samples 
from patients with IgE-mediated food allergies, desig-
nated as Allergy [46]. The third cohort involved a chem-
otherapy experiment referred to as Chemotherapy [15]. 
Lastly, we included a cohort that examined the long-term 
impact of antibiotic treatment during the neonatal period 
and early childhood on child growth, denoted as Baby 
[13].

We also analyzed 8 human-to-human cohorts [47–54] 
(Table  2). In some experiments, the recipients received 
antibiotic treatment (ABX), which included the follow-
ing projects: ERP021216, PRJNA221789, PRJNA238042, 
PRJNA238486, PRJNA380944, and PRJNA412501. In 
contrast, other experiments involved recipients who did 
not undergo antibiotic treatment, such as PRJDB4959 
and PRJNA428898.

Given that various transplant experiments employed 
different outcome measurements, we initially focused on 
identifying outcomes that were shared between experi-
ments and could be generalized across multiple scenar-
ios. For instance, we examined the engraftment success 
by assessing post-FMT recipient Shannon diversity, as 
well as the post-FMT relative abundances of different 
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Fig. 1 Relations between donor and recipient microbiomes. Note along the figure light blue represents analyses based on the human-to-GF 
cohorts, and light orange represents analyses based on the human-to-human cohorts. A Schematic figure of the raw relations between the donor’s 
samples properties and the recipient’s samples post-FMT treatment. The properties we followed during this analysis were the Shannon, the order’s 
relative abundances, and the species relative abundances and presence or absence. Each color represents a cohort. The raw relations were 
measured by calculating the SCC between the property in a donor sample and a recipient sample. B Scatter plot of the number of donors vs 
the number of recipients in each cohort over the human-to-GF cohorts, where GDM was marked with an asterisk (*), Allergy was represented 
by a triangle symbol, Chemotherapy was marked with an X, and Baby with a dot. C Scatter plot of the number of donors vs the number of recipients 
in each cohort over the human-to-human cohorts. D, E Similarity Shannon differences (D) and Euclidean distance between two recipients 
preprocessed ASVs (order-level) vectors in the human-to-GF cohorts (E). The rightmost bar, SDSR, represents the distances between samples 
of the same recipient (GF mouse) and the same donor (measures the time variability); the middle bar represents the distances between samples 
of different recipients (GF mice) that got FMT from the same donor, SDDR (measures the effect of the recipient background); and the leftmost 
bar represents the distances between samples of different recipients (GF mice) that received FMT from different donors, DDDR (measures the effect 
of the donor), with a significant hierarchy of distances. The lowest distances are within the same donor/recipient, followed by the same donor, 
followed by different donors. F, G Similarity Shannon differences (F) and Euclidean distance between two recipients’ preprocessed ASVs (order-level) 
vectors in the human-to-human cohorts (G) before and post-FMT. The rightmost bar represents the distances between samples of the same 
mouse and the same donor (SDSR, samples along time), the middle bar represents the distances between samples of different mice that got FMT 
from the same donor (SDDR), and the leftmost bar represents the distances between samples of different mice that received FMT from different 
donors (DDDR), with a clear and significant hierarchy of distances. The lowest distances are the same donor/recipient, followed by the same donor, 
followed by different donors ( ∗ p < 0.05 , ∗∗ p < 0.01 , ∗ ∗ ∗ p < 0.001 ). When comparing the results before the transplant, there is no difference 
between the groups (before in plots F and G). H, I Scatter plots of donor’s Shannon vs recipient’s Shannon in human-to-GF cohorts (H) 
and human-to-human cohorts (I). The black line represents the y = x line of a perfect match between the donor and recipient properties and each 
shape represents a different dataset according to the shapes in B and C. Similar results for all the orders are in Supplementary Material Figs. S4 
and S5. J, K All donor-recipient orders and Shannon diversity SCCs in the human-to-GF cohorts (J) and the human-to-human cohorts (K)
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taxa at the order or species level and their binary pres-
ence or absence. We then further directly studied the 
clinical impact of the FMT.

Relation between donor and recipient microbiome 
properties
We first tested for a relation between the donor and 
recipient microbiome. In several cohorts (e.g., the Baby 
cohort and all the human-to-human cohorts), the same 
transplant (stool of the same donor) was applied to mul-
tiple recipients (Fig.  1B, C). These recipients may have 
different properties (e.g., Shannon diversity or orders 
relative abundances). To compare the effect of the donor 
microbiome on the post-FMT microbiome, we defined 
the similarity between samples as the Euclidean distance 
between the MIPMLP preprocessed order frequency of 
two recipients from the same group or as the difference 
between the Shannon of two recipients samples from the 
same group.

3 groups were defined:

• Different time points within the same recipient 
(SDSR). Distances between the samples of a certain 
recipient at different time points post-FMT to meas-
ure the temporal variation in a recipient.

• Same donor - different recipients (SDDR). Distances 
between all the different recipients that received the 
FMT from the same donor at the same time point. 
This measures the effect of the recipient’s back-
ground on its microbiome.

• Different donors - different recipients (DDDR). Dis-
tances between recipients that received a transplant 
from different donors at the same time point. This 
adds the effect of the donor to the effect of the back-
ground.

In the human-to-GF cohorts, there was no initial recipi-
ent microbiome. However, the recipient may have micro-
biome-independent factors affecting the outcome. In the 
human-to-human cohorts, to ensure that we really study 
the effect of recipient background vs donor microbiome 
and not basal differences in human recipients, we again 
compared the distances between the SDDR group and 
the DDDR group of the recipient after antibiotic treat-
ment and before the FMT and there were no significant 
differences (Fig. 1F and G “Before”). In both the human-
to-GF and human-to-human cohorts and in the Shannon 
diversity and relative abundance differences, there were 
no significant differences between the SDSR and SDDR 
groups (Fig. 1D, E and F, G “After”).

However, the differences were significantly lower 
in the groups with FMT from the same donor (SDSR 
and SDDR) than in all other groups (Fig.  1D, E and F, 

G “After” one-sided T-test with p-value < 0.05 for the 
composition and p-value < 0.01 for the Shannon in the 
human-to-GF cohorts and (p-value < 0.01) for the Shan-
non or (p-value < 0.0001) for the compositions in the 
human-to-human cohorts). To summarize, the donor’s 
microbiome influence is stronger than the recipient’s 
background, even in human recipients that exhibit a 
diverse initial microbiome.

Given the effect of the FMT properties on the recipient, 
one may suggest that the donor and recipient taxa com-
positions are highly similar, and as such donors that have 
the maximal frequency of a given order or a high diversity 
should be chosen to reach the same goal in the recipient. 
To examine the relations between donor and recipient 
properties, we computed the SCC between the Shannon 
diversity (distribution information can be found at Sup-
plementary Material Fig. S1A and C) or the order relative 
frequencies of the donors and the recipients post-FMT 
(distribution information can be found at Supplementary 
Material Fig. S1B and D and S2-S3). In the human-to-GF 
cohorts, SCCs were low for all properties (|SCC| < 0.4) 
except for the relative abundance of the Verrucomicro-
biales order (Fig. 1H and J and Supplementary Material 
Fig. S2). The SCCs were higher in the human-to-human 
cohorts than in the human-to-GF cohorts with an aver-
age SCC of 0.439 (Fig. 1J, K), as expected given the similar 
host. One can thus infer (except for the Verrucomicrobi-
ales and some orders in the human-to-human cohorts) 
that the post-FMT recipient microbiome is significantly 
different than the donor microbiome.

Given the low correlations observed between donor 
and post-FMT recipient microbiomes but the significant 
connection between them, more advanced algorithms 
are required to predict transplant microbiome properties 
based on FMT composition.

Prediction of recipient post‑FMT microbiome properties 
from donor microbiome
To test whether post-FMT engraftment success, meas-
ured by microbiome properties (Shannon diversity, 
orders and species frequency, and species presence) can 
be predicted using the donor sample composition, we 
tested 7 different multivariate predictors using the donor 
preprocessed ASVs (see experimental setup in Supple-
mentary Methods) as concatenated with the number of 
days post-FMT as an input to these models to predict 
different microbiome properties of the recipient post-
FMT such as Shannon diversity, 10 (human-to-GF) or 30 
(human-to-human) different orders’ relative abundances, 
50 (human-to-GF) or 100 (human-to-human) most fre-
quent species relative abundances, and their binary pres-
ence or absence.
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The models tested included simple models such as a 
K-nearest neighbors regression (KNN), support vector 
machine regression (SVR), and Ridge regression that gave 
quite poor results similar to the low SCCs in the univari-
ate analysis (SCC < 0.4) , with extremely low R2 scores 
(Fig.  2A, B). More complex models tested include ran-
dom forest (RF), XGBOOST, and a fully connected neu-
ral network (NN). These models’ predictions were more 
accurate than the simple models’ predictions. The highest 
SCC was obtained by applying the iMic model [62] to the 
donors’ MIPMLP preprocessed taxa frequencies, with 
an SCC of 0.6 +/− 0.004 and an R2 score of 0.358 +/− 
0.003 on the Shannon diversity (Fig. 2A, B pink bars). The 
results are similar on the order relative abundance with 
an average SCC over all orders of 0.568 (Supplementary 
Material Fig. S6). These SCCs and R2s are much higher 
(p-value < 0.0001) than the ones obtained from the uni-
variate relations (Figs. 1H vs 2C) on the Shannon diver-
sity as well as on all the other properties (Fig. 2D).

Similar results were obtained when predicting spe-
cies’ relative abundances instead of orders. We predicted 
for the 50 most frequent species both the presence or 
absence of the species from the recipient samples 1-week 
post-FMT (in such cases the average AUC is reported 
over 10 CVs on the appropriate external test set) and 
their relative abundances (in such a case the SCC was 
similarly reported). The average AUC of all the species 
was 0.8 +/− 0.11. For the species relative abundance pre-
dictions; the average SCC over 10 CVs of all the species 
was 0.52 +/− 0.16 (Supplementary Material Fig. S4A). 
An RF (which was the best model after iMic) was also 
applied to these tasks to compare to existing methods 
[35]. Histograms of the RF results vs iMic can be found in 

Supplementary Material Fig. S4B, C. iMic is significantly 
better than the RF model (p-value < 0.001).

The results above were from models trained on a mix-
ture of datasets (human-to-GF) to ensure that the results 
are not an artifact of a single experimental setup. To test 
the prediction accuracy between datasets, we ran iMic 
on a leave-one-dataset-out (LODO), where the whole 
Chemotherapy dataset (which contains the least num-
ber of samples) was not used during the training of the 
model. The model was trained on the merged 3 cohorts 
and was tested on the Chemotherapy dataset. The predic-
tion accuracy was slightly lower than the mixed learning 
prediction, but much better than the univariate natural 
correlations (Supplementary Material Fig. S8).

The post-FMT microbiome properties predictions are 
further improved by including the donor’s age, sex, and 
weight, when available (see Supplementary Methods for 
data completion). When the donor metadata is used, the 
AUC obtained using donor-only data reaches similar val-
ues to the ones reported using both donor and recipient 
properties (Supplementary Material Fig. S4D [35] and for 
the contribution of the metadata to the predictions Sup-
plementary Material Fig. S5)―a Pearson correlation of 
0.7 for the Shannon and an AUC of 0.85 for the presence-
absences predictions.

We used the same model and same hyperparam-
eters as for the mouse and trained a model to predict 
human post-FMT microbiome properties (for hyper-
parameters used see Supplementary Material Table 
S1-S3). Again, all the samples of the same recipient 
were assigned to the same group to prevent data leak-
age. iMic significantly (p-value < 0.001 ) best predicted 
the recipient’s post-FMT Shannon diversity(R2 = 0.369 

Fig. 2 Prediction of recipient post-FMT microbiome properties from donor samples. A, B Different models evaluations scores of recipients’ 
Shannon, R2 scores (A), and SCC (B) over the human-to-GF cohorts (for parallel results on the different orders see Supplementary Material Fig. 
S7). The x-axis represents the model. The simplest models Ridge, KNN, and SVR are in blue; the networks and trees, RF, XGBOOST, and NN are 
in blue; the structure-based CNNs,  iMic1 and iMic2, are in pink. The standard errors over the 10 CVs are in black. iMic2 outperforms all the other 
models and predicts the recipient Shannon diversity with R2 of 0.358 and SCC of 0.6. C Scatter plot of the recipients’ predicted Shannon after FMT 
vs the real recipients’ Shannon over the human-to-GF cohorts. The black line represents the y = x line of a perfect match between the recipients’ 
predicted and real properties. D All predicted-real recipients’ properties SCCs over the human-to-GF cohorts, where the raw correlation 
between the recipient’s property and the donor’s property is in light blue and iMic’s improvement is in pink. E, F Different models evaluations 
scores of recipient’s Shannon diversity, R2 scores (E), and SCC (F) over the human-to-human cohorts (for parallel results on the different orders see 
Supplementary Material Fig. S9). The x-axis represents the model. The simplest models Ridge, KNN, and SVR are in orange; the networks and trees, 
XGBOOST, RF, and NN, are in orange; and the structure-based iMic2 is in pink. The standard errors over the 10CVs are in black. iMic2 outperforms 
all the other models and predicts the recipient Shannon diversity with R2 of 0.369 and SCC of 0.656. G Scatter plot of the recipients’ predicted 
Shannon post-FMT vs the real recipients’ Shannon diversity over the human-to-human cohorts. The black line represents the y = x line of a perfect 
match between the recipients’ predicted and real properties. H All predicted-real recipients’ properties SCCs over the human-to-human cohorts, 
where the raw correlation between the recipient’s property and the donor’s property is in orange and iMic’s improvement is in pink. I, J Histograms 
of AUCs of presence absence predictions of the species over the human-to-human cohorts (I) and of SCCs of the compositions predictions 
over the human-to-human cohorts (J). The x-axes represent the bins of scores, AUC (I)and SCCs (J), and the y-axes represent the number of different 
taxa that got that score. For parallel results on the human-to-GF cohorts see Supplementary Material Fig. S6 K AUCs and SCCs of the 100 most 
frequent species. The left x-axis represents the presence or absence AUC over the human-to-human cohorts (pink), while the right x-axis represents 
the SCC (black). For parallel results on the human-to-GF cohorts, see Supplementary Material Fig. S6. L The prediction remains accurate long 
after the transplant in the human-to-human cohorts. The x-axis represents the SCC, and the y-axis represents the number of days post-FMT. There 
is not a significant difference in the SCCs over the time followed

(See figure on next page.)



Page 10 of 20Shtossel et al. Microbiome          (2023) 11:181 

+/− 0.001 and SCC = 0.656 +/− 0.005, Fig.  2E–G). 
The SCC values of iMic were much higher than the 
direct correlation between donor and recipient both 
on the Shannon and the order relative abundances 
(Fig. 2H). Similar results were obtained when predict-
ing orders relative abundances (Fig. 2H), the presence 
or absence of the recipient species (Fig. 2I and left K), 
and the SCC of the recipient species compositions 
(Fig.  2J and right K). In contrast to the short-term 

effect of the human-to-mouse FMT (Fig.  5E, F), the 
effect of the transplant and the prediction accuracy did 
not decrease even 6 months post-FMT (Fig. 2L).

To validate the accuracy of the predictor developed 
on retrospective data, we performed a prospective 
in vivo validation experiment (Fig. 3A). The validation 
experiment was based on a set of existing microbiome 
samples, with the following stages (see Supplementary 
Methods for details):

Fig. 2 (See legend on previous page.)
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• Produce a set of candidate donors and predict for 
each sample in the set the expected outcome (e.g., 
the expected Shannon―Fig. 3A, step A).

• Separate samples into the ones predicted to induce 
a high diversity and the ones predicted to induce a 
low diversity. Since almost all the donors who were 

predicted to induce a low Shannon were children, we 
added a group of samples predicted to induce a low 
diversity aged matched to the samples predicted to 
have a high diversity (Fig. 3A, step B).

• Perform FMT on 3 groups of antibiotic-treated 
8-week-old mice (see the “Methods” section) from 

Fig. 3 Validation experiment. A Validation experiment’s schematic figure. Step A―Predicting the recipient’s property post-FMT. Inserting all 
the MIPMLP preprocessed donors from all the cohorts (including donors that had not been actually transplanted) into the pre-trained iMic model, 
using existing datasets. iMic returns the predicted recipients’ properties post-FMT. Step B―Grouping samples for FMT validation experiments. Two 
groups were defined from the predicted properties. A group of predicted to be high (with predicted high values of the property) and predicted 
to be low (with predicted low values of the property). Step C―FMT experiment timeline. Two groups of mice were raised till the age of 6 weeks. 
They got antibiotic treatment (weeks 6–8). At the age of 8 weeks, stools were collected and sequenced. At the age of 8 weeks + 1 day, they 
received the first FMT. One group of mice got the FMT from the predicted to be high donors group, and the second group of mice got the FMT 
from the predicted to be low group. They got the second FMT from the same donors at the age of 9 weeks. Stool samples were collected a week 
after the second transplant at the age of 10 weeks and 6 weeks after the second FMT treatment at the age of 15 weeks. Step D―Recipient 
samples analysis. The real recipients’ properties were calculated from the mice’s stool samples at the age of 10 weeks. A comparison between the 2 
groups’ properties showed significant differences in the targeted properties. B, C  Difference between Shannon diversities (B) and Euclidean 
distance between two recipients preprocessed ASVs (order-level) vectors (C). The right bar represents the distances between samples of different 
recipients (ABX mice) that got FMT from the same donor, SDDR, and the left bar represents the distances between samples of different recipients 
(ABX mice) that received FMT from different donors, DDDR. There is a significant difference between same and different donors post-FMT (10W), 
but not before (8W) ( ∗ p < 0.05 , ∗∗ p < 0.01 , ∗ ∗ ∗ p < 0.001 ). D–G Differences between the donors and real recipients at different time points (8W, 
10W) properties on the groups we defined, Shannon (D), Bacteroidales order relative abundances (E), Desulfovibrionales order relative abundances 
(F), and Verrucomicrobiales order relative abundances (G). The (A) represents a transplant from an adult human, while (Y) represents a transplant 
from a young human. Again, there is no difference before the FMT (8W) or in the donors (Donor)
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the 3 groups of donors above, and collect stool sam-
ples at the age of 10 weeks (see the “Methods” sec-
tion, Fig. 3A, step C).

We first checked for the effect of the donor on the trans-
plant in antibiotic-treated mice. Indeed, there is a sig-
nificant difference (p-value < 0.05) , between the SDDR 
group and the DDDR group in the post-FMT recipients 
(referred to as 10W, Fig. 3B, C), and no significant differ-
ence between these groups after antibiotic treatment and 
before the FMT (referred as 8W, Fig. 3B, C).

We then tested the quality of the prediction by compar-
ing the difference between the Shannon diversity from 
the groups predicted to have low and high post-FMT 
diversities (p-value < 0.01 ). There were no significant 
differences between the predicted to be low groups as a 
function of the donor’s origin (adult vs child, Fig. 3D).

We then applied a set of similar experiments, where 
we used the same samples above (only adults to avoid 
the effect of the donor age), but defined the “high” and 
“low” groups according to the expected relative abun-
dances of different orders as computed by iMic for all 
the orders properly predicted in the initial analysis (the 
orders where the initial AUC of iMic was higher than 
0.5). Again, the recipients’ order frequencies were meas-
ured in the mice stool samples at the age of 10 weeks. 
For all orders except for the Enterobacterials, the groups 
predicted to have a higher frequency for the appropriate 
order indeed had a higher frequency ( p < 0.05 for Bac-
teroidales, Desulfovibrionales, and Verrucomicrobiales) 
(Fig.  3A, step D, D–G). In general, Gram-negative bac-
teria were well predicted in contrast to Gram-positive 
bacteria. Similar results were recently demonstrated by 
Ianiro et al. [35].

To ensure that the difference is not the result of the 
recipient microbiome (after the antibiotics treatment), 
we repeated the analysis on the samples after antibiotic 
treatment and before FMT (Fig. 3D–G 8W), with no dif-
ference between the groups (Fig. 3D–G 8W). To test that 
the difference in the recipient is not only a mirror of the 
differences in the donors, we compared the donor sam-
ples’ microbiome properties, with again no difference 
between the groups (Fig. 3D–G Donor).

Prediction generalization to clinical contexts
Following the prediction of the post-FMT microbiome 
properties, we checked whether the FMT clinical out-
come can be predicted using only the donor microbiome. 
In this context, one must separate transplants in recipi-
ents with CDI and transplants in non-CDI recipients. In 
CDI FMT, there is a very high success fraction, so there is 
almost no need for an outcome prediction model [63, 64]. 
We thus developed models for the post-FMT non-CDI 

clinical outcomes. We tested various clinical conditions, 
such as IBD, IBS (irritable bowel syndrome), melanoma, 
UC, and antibiotic resistance [37, 47, 55–57, 61].

We first tested if the outcome was mainly determined 
by the donor properties. If that would be the case, all 
recipients receiving transplants from a particular donor 
would either consistently succeed or fail. We calculated 
the fraction of recipients for each donor group where the 
treatment succeeded. The results varied among condi-
tions. For instance, colonization success (in the Schmi-
dette et al. cohorts), melanoma response to PD-1 therapy, 
and antibiotic resistance exhibited strong donor consist-
ency, whereas other conditions showed very limited con-
sistency (Fig. 4A).

We further employed the iMic model to predict the 
clinical conditions of recipients across various datasets, 
including WGS cohorts (AUC   0.71, Fig. 4B) and the 16S 
cohort (AUC = 0.689, Fig. 4C). In the IBD cohort, where 
previous predictions were published [37], we compared 
our results with the state-of-the-art donor-based model 
(AUC = 0.605), recipient-based learning (AUC = 0.706, 
similar to iMic’s donor model), and a combined donor 
and recipient model (AUC = 0.716). Thus, not only can 
post-FMT microbial properties be predicted from the 
donor but also the clinical outcome.

Engraftment success vs improvement in recipients 
post‑FMT clinical symptoms
To assess whether an “ideal donor” defined by its richness 
(Shannon diversity) accurately predicts improvement in 
clinical symptoms, we compared the predicted recipient 
post-FMT richness and the improvement in clinical out-
come (“Success”) in different cohorts. The model consist-
ently predicted higher Shannon diversity in all conditions 
for the group where the clinical outcome improved (sig-
nificant p− value < 0.05 in 3 out of 5 cases, Fig. 4D–H).

Recipient effect on the post‑FMT predictions
To better understand the effect of the recipient on the 
prediction of the transplant outcome, we compared 4 lev-
els of recipient diversity: 

1. GF mice― no recipient initial microbiome, and all 
mice grow in similar conditions.

2. Antibiotic treated mice (ABX)―most of the recipi-
ent’s initial microbiome is destroyed and all mice 
grow in similar conditions.

3. Antibiotic treated human (ABX)―most of the recipi-
ent’s initial microbiome is destroyed, but the recipi-
ents live in different conditions.

4. Humans, with no antibiotic treatment―the recipi-
ent’s initial microbiome is intact, and the recipients 
live in different conditions.
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iMic managed to predict the recipient post-FMT out-
come in the 4 groups with decreasing accuracy as 
the recipient microbiome becomes more important 
(Fig.  5A and B). However, even in untreated humans, 
the prediction is much better than just using the 
donor as a prediction (Fig.  5B). Similarly, the differ-
ence between SDDR and DDDR groups decreases as 
the recipient microbiome becomes more and more 
important (Fig.  5C and D). We did not perform this 
comparison with the group of human recipients with 
no antibiotics, since in this group each recipient had a 
different donor.

Optimal artificial mixture of grown microbes
The results above on both human and mouse recipients 
highlight the possibility of choosing among multiple 
candidate donors. However, for an optimal outcome, 
one may want to develop de-novo transplants. One can 
propose, for example, an artificial planned transplant to 
promote a specific taxon. As mentioned, transplanting a 
given taxon will not always increase its abundance post-
transplant. As such, a mixture of microbes is required. A 
complex transplant containing a large number of taxa can 
be generated to produce the required outcome. However, 
the number of taxa that can be used in such a mixture is 

Fig. 4 Clinical predictions post-FMT and engraftment success vs improvement in recipients clinical symptoms post-FMT. A Distribution of success 
vs failure given a certain donor over 6 clinical cohorts. The x-axis represents the percent of success given a certain donor, the y-axis represents 
the frequency. B, C iMic predictions of improvement in recipients’ clinical symptoms in WGS cohorts (B) and IBD 16S cohort (C). In the IBD 
cohort, we also compare our predictions to state-of-the-art (SOA) reported predictions in [37] D–H Swarm plots of predicted recipients’ Shannon 
of the subjects their FMT succeeded and the subjects their FMT failed over different clinical conditions IBD (D), IBS (E), melanoma (F), UC (G), 
and antibiotics resistance (AR) (H). A two-sided T-test was applied between the success and failure groups of each cohort ( ∗ p < 0.05,∗∗ p < 0.01 , 
∗ ∗ ∗ p < 0.001)
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limited. Therefore, a balance between the number of taxa 
that are needed to be generated for the FMT and the tar-
get outcome is required.

To find the optimal required FMT given a targeted 
outcome, such as: maximizing the recipients’ Shannon, 
minimizing the recipients’ Shannon, or maximizing the 
relative abundances of a certain order in the recipients’ 
samples, we developed a GA. In short, 100 parent donors 
were randomly chosen from all the donors’ populations 
in all the cohorts studied - ai (Fig. 6A, step A). A binary 
representation, bi , of the MIPMLP preprocessed donor 
vectors, ai , was created for each donor (Fig. 6A step B). 
Each MIPMLP preprocessed donor vector, ai , was the 
input of the pre-trained iMic model and the expected 
diversity after 7 days was predicted (or any other out-
come as discussed above) (Fig.  6 A, step C). All the 
predicted outcomes, si , were the input of the following 
fitness function for the selection of the next generation:

such that sum(bi) represents the number of non-zero 
taxa in the donor sample, and γ is a hyperparameter that 
controls the importance of the number of non-zero taxa. 
When attempting to minimize a taxon, minus the taxon 
frequency was used in the loss.

The 30 donors with the highest loss in the maximi-
zation task were chosen for the next generation crea-
tion (Fig.  6A, step D). To complete the donors’ parents 
of the next generation a mutation (see the “Methods” 
section) occurred with a probability of 0.3, and recom-
bination (see “Methods” sections) occurred with a prob-
ability of 0.3 (Fig.  6A, step E) until a stopping criterion 
was achieved.

Even in the mouse model, where the difference between 
donor and recipient is very large, the GA converges 
within 25 generations in the optimization tasks (with 
γ = 0 ) of the Shannon diversity (Fig. 6B, C). We thus ran 
the GA for 25 generations for all the tasks. The results of 
the Shannon for different numbers of non-zero taxa are 
shown in Fig. 6D. The GA achieves a high Shannon with 

(1)fitnessmax(si, bi) = si − sum(bi) · γ ,

∼ 100 different non-zero taxa (maximum = 5.5, average 
= 5 ). The maximum was similar to the maximum of the 
existing data (= 5.48) and the average was in the highest 
percentile of the distribution.

Succeeding to optimize the outcome while limiting 
the number of non-zero taxa opens the way for artificial 
transplant using a limited number of taxa. To check that 
the GA did not converge into trivial solutions, such as 
just generating donors with the targeted outcome, we cal-
culated the SCC between the predicted targeted property 
and the property of the optimized donors generated. The 
SCCs were quite low, |SCC| < 0.2 (Fig. 6E).

We tested whether specific orders were consistently 
dominant in the optimized donors both in the Shannon 
diversity maximization tasks and in the orders’ relative 
abundance maximization tasks. In the Shannon maximi-
zation tasks, most of the orders varied; however, several 
orders were consistently frequent in the predicted trans-
plant, especially for high γ values, such as Bacteroidales, 
Clostridiales, and Fibrobacteriales (Fig. 6F). In the orders’ 
maximization tasks, the orders used by the GA are con-
sistent among the different order tasks, such as Bifido-
bacterials, Verrucomicrobiales, and Methanobacteriales. 
The input orders were not directly related to the order 
that is maximized (Fig.  6G). For example, Lactobacilla-
les affected Clostridiales, Enterobacterialles and its own 
frequency in the post-FMT recipient, and Clostridiales 
affected Bacillales, Bacteroidales, Desulfovibrionales, 
Verrucomicrobiales, Burkholderiales, Turicibacterales 
and Enterobacterialles.

Discussion
FMTs are currently being tested in clinical trials as 
an emerging treatment for a wide range of disorders, 
including Parkinson’s disease, fibromyalgia, chronic 
fatigue syndrome, myoclonus dystopia, multiple scle-
rosis, obesity, insulin resistance, metabolic syndrome, 
and autism [65–72]. There are many open questions in 
FMT, including donor selection and screening, stand-
ardized protocols, long-term safety, and regulatory 

(See figure on next page.)
Fig. 5 Recipient effect on post-FMT predictions. A SCCs of different orders and Shannon reported over the ABX-treated mice (purple bars) vs the GF 
mice (light blue bars) compared to the overall raw donor-recipient correlations (gray).B SCCs of different orders and Shannon reported over the ABX 
treated cohorts (light bars) vs the no-ABX, untreated cohorts (dark bars) compared to the overall raw donor-recipient correlations (gray). C, D 
Similarity Euclidean distance between two recipients preprocessed ASVs (order-level) vectors in the human-to-mouse cohorts (GF and ABX) (D) 
and the human-to-human cohorts (ABX vs no ABX). In each pair, the rightmost bar represents the distances between samples of different recipients 
that got FMT from the same donor , SDDR (measures the effect of the recipient background), and the leftmost bar represents the distances 
between samples of different recipients that received FMT from different donors, DDDR (measures the effect of the donor), with a significant 
hierarchy of distances. The lowest distances are within the same donor/recipient, followed by the same donor, followed by different donors ( ∗ 
p < 0.05,∗∗ p < 0.01 , ∗ ∗ ∗ p < 0.001 ). E, F Comparison of FMT effect in the mouse cohorts in GF mice (E) and in ABX mice (F) at different times. In 
the GF mice, there is a donor effect at 7D and not at 28D. Similarly, in the ABX-treated cohort, there is a difference at 10W (1W post-FMT) and not at 
15W (6 weeks post-FMT). G Comparison of SCCs between the recipient’s properties post-FMT with the donor (orange), the recipient before the FMT 
(gray), and the predicted recipient property post-FMT by iMic (pink) in the human-to-human cohorts. The prediction is typically much higher 
than the two others
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Fig. 5 (See legend on previous page.)
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issues. The best method of treatment is also still being 
studied as some studies include antibiotic pre-treat-
ment or bowel flushing prior to FMT while others forgo 
any pre-treatments, and the ramifications are still not 
fully understood [73–75]. Donor selection criteria also 
involve a number of practical and ethical considerations 
[76–78]. Non-autologous FMTs carry the possibility of 
transmitting infectious agents, and, therefore, rigorous 
screening tests are recommended to reduce infection 

risks. Such screenings limit the dangers of FMT but do 
not optimize their outcomes.

When optimizing for an outcome, the donor’s micro-
biome, physical activity, diet, drug use, medications, 
genetic background, age, sex, and a plethora of other 
factors all affect microbiota composition. Thus, it may 
be beneficial to consider the health profile of the donor. 
However, even with the ideal donor, the FMT success is 
not guaranteed [55, 79]. Another donor-related criterion 

Fig. 6 Optimal artifical mixture of grown microbes A GA schematic figure. The GA contains the following steps: Step A―Initial population. One 
hundred donor samples are randomly sampled from the donors of all the cohorts. Step B―Adding a binary vector to each parent donor. The 
binary vector consists of 1 when the ASV’s abundance is higher than 0, and is 0 otherwise. Step C―Evaluation of recipients’ FMT future result 
after a week. By applying the pre-trained iMic model to the parent donors, we get the future recipients’ outcomes. Step D―Selection. The selection 
is done according to our fitness function choosing the best 30 donors with the most appropriate recipients outcome. Step E―Reproduction. 
To complete the parents of the next generation a mutation occurs with a probability of 0.3, and recombination occurs with a probability of 0.3. 
Step F―Checking stopping rule. If the stopping criterion is met, the donors of step E are returned; otherwise, the new generation of donors 
from step E is again used for the outcome prediction using iMic’s in C, until the stopping criterion is met. B, C GA convergences within 25 epochs 
on the Shannon diversity optimization task for both maximizing (B) and minimizing the recipient’s Shannon diversity a week post-FMT (C). D 
Monitoring the number of non-zero taxa of donors during the maximizing optimization. The x-axis represents the number of non-zero taxa 
(log scale) and the y-axis represents the predicted Shannon diversity of the best donors. E SCCs between the property in the optimized donors 
and the predicted recipient. The significantly predicted orders from the validation experiment are in red. F, G Percentage of the most common taxa 
in the optimized donors for the Shannon diversity task for different γ values (F) and for different prediction tasks (G)
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that is considered is the similarity of microbial species 
expected between the recipient and the donor so that the 
mucosal adaptive immune system of the recipient pre-
sents more tolerance towards the microbiota from the 
donor [68, 80].

An alternative approach would be the generation of 
off-the-shelf donors expected to optimize the FMT 
engraftment probability and the expected improvement 
in clinical symptoms. However, there is currently no 
model for donor-microbiome-based selection of optimal 
donors.

To address this, we developed a tool to predict recipi-
ents’ post-FMT properties in human and mouse recipi-
ents using only the donor properties (microbiome 
composition, and demographics) and validated the pre-
diction accuracy in a de-novo FMT experiment. The 
outcome predicted was either properties of the recipi-
ent’s post-FMT microbiome or improvement in clinical 
symptoms (for example response to IBD treatment as 
measured by the Mayo score). We further built a planned 
transplant of specific taxa while balancing between the 
number of non-zero taxa (cost and feasibility) and the 
quality of the optimization by using a GA.

To our knowledge, these are the first tools to propose 
a generic fully donor-based prediction for FMT success. 
Such algorithms can change the way FMT donor selec-
tion is performed―from randomly matching the donor 
or using a rational donor selection [81] to optimize the 
most appropriate donor given a certain outcome. The 
tools are available at:https:// github. com/ oshri tshto ssel/ 
iMic_ FMT and the trained algorithm (iMic) is avail-
able in the Drive at https:// drive. google. com/ file/d/ 1FIDy 
8uUBd v9Alj- xTe9B rkl5_ QGBwa mc/ view? usp= shari ng as 
well as in the Supplementary Material―“shannon weight.
ckpt” for convenient reference and utilization.

The proposed models focused on the short-term post-
FMT outcome. Longitudinal analyses in patients who 
have received FMT for recurrent CDI have shown an 
effect of FMT-induced microbiota alterations lasting any-
where from a few days to a few years after transfer [40, 
82, 83]. A recent FMT/CDI study by Moss et al. discov-
ered that despite the short-term similarity between donor 
and recipient gut microbiota profiles, concordance was 
significantly reduced after a year [84]. In the FMT study 
by Moayeddi et  al., 8 of the 9 ulcerative colitis patients 
who were in remission at week 7 post-FMT were still in 
remission a year later with no instances of relapse [85]. 
In our results, the waning effect of the transplantation is 
accompanied by a decrease in the accuracy of the predic-
tion, mainly in mice, and partially in humans.

While off-the-shelf treatments require a fully donor-
based transplant selection, the recipient microbiome 
and health have been shown to also affect the outcome. 

Here, we observed a clear hierarchy in the outcome 
prediction accuracy, where GF mice are more precisely 
predicted than ABX-treated mice and ABX-treated 
humans are more precisely predicted than non-treated 
humans.

The danger of microbial toxicity may be solved via 
bacterial cocktails and personalized probiotics, in 
which we generate the transplant from scratch [17, 
86, 87]. However, to our knowledge, generating a high 
variety of taxa from scratch has not yet been done 
commercially. We propose here an optimal solution 
for generating, such a mixture. Note that in all the 
models tested here, the donor properties were more 
important than other features, and there was a limited 
contribution of the recipient microbiome to the out-
come (Fig. 5H). However, this may be a limitation of the 
datasets studied here.

To summarize, we have here proposed 2 alternative 
clinical scenarios. The first case is the choice among a 
set of existing donors for the specific donors optimizing 
the transplant outcome. The second is the possibility of 
generating a microbial “Soup” with a limited number of 
microbes. While the second solution may be safer and 
more efficient, the first one is probably more amenable to 
clinical use with current practices. The trained algorithm 
(iMic) is available in the Drive at https:// drive. google. 
com/ file/d/ 1FIDy 8uUBd v9Alj- xTe9B rkl5_ QGBwa mc/ 
view? usp= shari ng and as a Supplementary Material―
“shannon weights.ckpt”.

Conclusions
The donor’s phenotype differs from the recipient’s phe-
notype. However, the recipient’s future properties a week 
post-FMT in GF mice and for a period of up to 24 weeks 
post-FMT in humans can be predicted from the donor’s 
microbiome solely by using our prediction tool. We 
further proposed another tool to optimize the optimal 
transplant (bacterial cocktails). By using our predictor 
and a GA, one can control the balance between the num-
ber of taxa to transplant and the targeted outcome. We 
validated our predictor using a de-novo FMT experiment 
highlighting the possibility to choose transplants that 
optimize the required goals. Our tools may change the 
current FMT protocols both on transplants from existing 
donors as well as planned transplants (from scratch).
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