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Abstract

Background Some microbiota compositions are associated with negative outcomes, including among others,
obesity, allergies, and the failure to respond to treatment. Microbiota manipulation or supplementation can restore

a community associated with a healthy condition. Such interventions are typically probiotics or fecal microbiota
transplantation (FMT). FMT donor selection is currently based on donor phenotype, rather than the anticipated
microbiota composition in the recipient and associated health benefits. However, the donor and post-transplant
recipient conditions differ drastically. We here propose an algorithm to identify ideal donors and predict the expected
outcome of FMT based on donor microbiome alone. We also demonstrate how to optimize FMT for different required
outcomes.

Results We show, using multiple microbiome properties, that donor and post-transplant recipient microbiota dif-

fer widely and propose a tool to predict the recipient post-transplant condition (engraftment success and clinical
outcome), using only the donors' microbiome and, when available, demographics for transplantations from humans
to either mice or other humans (with or without antibiotic pre-treatment). We validated the predictor using a de novo
FMT experiment highlighting the possibility of choosing transplants that optimize an array of required goals.

We then extend the method to characterize a best-planned transplant (bacterial cocktail) by combining the predictor
and a generative genetic algorithm (GA). We further show that a limited number of taxa is enough for an FMT to pro-
duce a desired microbiome or phenotype.

Conclusions Off-the-shelf FMT requires recipient-independent optimized FMT selection. Such a transplant can be
from an optimal donor or from a cultured set of microbes. We have here shown the feasibility of both types of manip-
ulations in mouse and human recipients.

Background

In recent decades, the relationship between the human
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have found connections between disease states, specific
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bacterial taxa, and key metabolic pathways directly asso-
ciated with these taxa; however, the transition to specific
mechanisms of action to treat or completely prevent ail-
ments remains elusive.

Often, finding specific bacterial strains or metabolites
to prescribe is challenging, as the microbiota is a complex
community. Furthermore, clinical studies include real-
life noise, unlike experimental setups with GF animals
or under extremely controlled environments. Ensuring
subsequent colonization of a single strain in the milieu of
other microbes is challenging, and predicting the specific
microbe’s functionality within the complex microbiota
is nearly impossible. Full personalization of microbe-
based treatments is still cost prohibitive and may even be
unnecessary.

Restorative FMT is a common treatment for CDI
(Clostridioides difficile infection) and is studied in a large
variety of other conditions [17]. FMT is the transfer of a
donor’s gut microbiome content to a recipient. In human
recipients, transplantation is often performed after a
course of antibiotics to clear out the recipient’s own dys-
biotic microbiome, thus increasing the probability of
colonization [18, 19]. In mice, FMT is most often per-
formed on GF or antibiotic-treated mice, though studies
in untreated animals are growing.

Early evidence of FMT dates back nearly 2000 years
[20] with more recent anecdotal use of the method, dur-
ing World War II, among soldiers, to prevent diarrhea
[21]. Formally, the use of FMT in the medical field was
first documented in 1958 [22]. With the advent of micro-
biome research, this treatment method has regained clin-
ical interest [23, 24]. Currently, FMT has been clinically
trialed and approved to treat recurring CDI [25]. Ongo-
ing clinical research includes the following: improving
the response to immunotherapy treatment [26], improv-
ing the quality-of-life of autistic children [27], main-
taining weight loss [16], and even restoring the normal
neonate microbiome after birth via cesarean section [28].

A successful FMT is often characterized by an
improvement in some quantitative disease symptom(s) or
pathology, but other technical markers, like colonization
success (overall richness or of specific microbes), can also
be used to mark success or predict efficacy [29]. In gen-
eral, a healthy microbiome is a diverse one [30—33]; thus,
an ideal donor may be one that induces a high microbial
richness in the recipient, and a successful FMT would be
one in which a maximum number of key microbial taxa
colonize the recipient’s gut [34], although recent studies
have also demonstrated that the abundance of certain
species might be just as important as overall richness
[35, 36]. Finally, one may aim to choose an FMT donor
not based on post-transplant microbiome but rather
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associated with a post-transplant condition (fewer clini-
cal symptoms) [37].

Tools to help identify key donors that will likely pro-
vide rich microbiota colonization are of high relevance in
clinical practice, and the ability to predict a priori which
taxa are most likely to engraft from complex and diverse
donor microbiota can be helpful in selecting donors for
diseases in which “beneficial” microbes have already been
identified. However, evidence suggests that colonization
of the donor microbiota in the host is not always linear
[26], and the mechanisms and dynamics dictating which
donor microbes can be engrafted in the recipient are
poorly understood.

Initial studies that are able to track the transmission
of donor strains to the recipient have been performed
on only very few donor-recipient pairs [38]. The com-
pletion of larger FMT trials and advances in strain-level
metagenomics will enable deeper analyses to unravel
general FMT engraftment efficiency patterns across
diseases and may lead to the development of statistical
models to predict the post-FMT microbiome composi-
tion [36], but in the absence of such rich datasets, a more
nuanced approach than linear assumptions based on
donor richness and abundance profiles is required.

Current approaches in modeling engraftment have
two main limitations: first, the vast majority of previous
investigations remained confined to single cohorts [36,
39-43], with limited cross-cohort and cross-condition
generalizability.

Second, even existing cross-cohort manipulation out-
comes require information on the recipient. For example,
a recent systematic meta-analysis of 24 studies that inves-
tigated FMT in different clinical settings and for which
some post-FMT recipient outcomes, such as Shannon
diversity, species composition, and species presence were
provided, predicted these outcomes using both the donor
and recipient (baseline) microbiome and demographic
data [35]. Such methods cannot be used for off-the-shelf
solutions.

Off-the-shelf solutions or one-size-fits-all treatments
(at least for a certain family of diseases), which is one
of the major ambitions in the clinic [44], require recipi-
ent-independent optimization of the FMT. We here test
whether such an optimization is possible, using only
donor data to predict species richness and taxa preva-
lence and abundance in FMT-recipient mice and humans.
We then extend the analysis to the prediction of trans-
plant clinical outcomes beyond microbiome properties
in humans. Finally, we use this approach to reconstruct
an ideal synthetic microbiota that could theoretically be
used for microbiota manipulation instead of fecal matter
from a human donor.
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Table 1 Characteristics of all human-to-GF cohorts

Name Condition Number Reference
of FMTs

GDM GDM 30 [12]

Allergy IgE-mediated food allergies 18 [46]

Chemotherapy Chemotherapy for breast cancer 159 [15]

Baby Antibiotic treatment dur- 48 [13]

ing the neonatal period

To that end, we developed iMic (image microbiome) an
algorithm to predict transplant outcomes (either engraft-
ment success or the improvement in clinical conditions),
based on microbial characterization of the human fecal
donor samples alone. iMic is developed for mouse and
human recipients. We then validated our model by per-
forming an FMT experiment in antibiotic-treated mice,
transplanting ideal and sub-optimal human donor sam-
ples, as identified by iMic. These models were then
combined and extended in a genetic algorithm (GA) to
predict optimal synthetic off-the-shelf microbiome com-
positions for transplants.

Methods

Experimental datasets

We built algorithms based on microbiome data (16S
rRNA sequences) from human-to-GF transplants from
1 unpublished and 3 published FMT experiments, where

Table 2 Characteristics of all published human-to-human datasets
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human fecal matter was transplanted to GF mice, and in
human-to-human transplants (see Tables 1 and 2). The
experiments are described in more detail in the Sup-
plementary Methods, but the human-to-GF cohorts
included FMT of stools from patients with gestational
diabetes [12], food allergy (unpublished data), antibiotic
exposure [13], and undergoing chemotherapy [15]. Six
more human-to-human cohorts with clear clinical out-
comes of improving a variety of clinical symptoms (e.g.,
inflammatory bowel disease (IBD) [37], as measured by
Mayo score [45], the response to PD-1 therapy in patients
with melanoma and others) were analyzed (2 16S cohorts
and 4 shotgun metagenomics, see Table 3). Stool sam-
ples from mice were collected weekly following FMT and
characterized by sequencing the V4 region of 16S rRNA
gene, as described in the Supplementary Methods. Some
of the published datasets were downloaded from the
NCBI (National Center for Biotechnology Information)
website via our homemade microbiome downloading
and analysis package named YAMAS https://github.com/
YarinBekor/YaMAS, also available through PyPI https://
pypi.org/project/YMS/.

ML nomenclature

In order to facilitate the understanding of the more
machine learning (ML)-oriented terms in the text, we
here provide a short description of the main ML terms
used in the manuscript.

Accession number Disease Abx Sample size Number of FMTs  16S region Reference
ERP021216 CDI T 86 20 V4 [47]
PRJDB4959 IBD F 28 10 VIV2 [48]
PRINA221789 CDI T 20 10 V1-V3 [49]
PRINA238042 CDI T 22 1 V3-V5 [50]
PRINA238486 @] T 23 3 V6 [51]
PRINA380944 IBD T 83 21 V4 [52]
PRINA412501 IBD T 52 19 V3v4 [53]
PRINA428898 IBD F 35 9 VAV5 [54]
Table 3 Characteristics of all published human-to-human cohorts with a clear clinical outcome

Accesstion number Disease Success definition Number of 16S vs WGS Reference

FMTs
PRJEB46777 ucC Simple clinical colitis activity index scores (< 2) 43 WGS [55]
PRJEB46779 Antibiotics resist-  Decline in the number of symptoms 33 WGS [55]
ance (AR)

PRINA672867 Melanoma Response to PD-1 therapy 26 WGS [56]
PRJEB36140 IBS Decline in the number of symptoms 30 WGS [57]
CRA004875 IBD Mayo score 103 16S [37]
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+ Model. The model is the mathematical relation
between any input (in our case the donor microbi-
ome amplicon sequence variants—ASVs) and the
appropriate output (in our case the class of the sam-
ple/the phenotype of the recipient post-FMT). In
ML, the model usually contains a set of parameters
called weights, and the ML trains the model by find-
ing the weights that for which the model is in best
agreement with the relation between the input and
output in the “Training set.

+ Training set. The part of the data used to train the
model. The quality of the fit between the input and
output data on the training set is not a good measure
of the quality of the model, since it may be an “over-
fit”

« Overfitting. A problem occurring when a model pro-
duces good results on data in the training set (usu-
ally due to too many parameters) but produces poor
results on unseen data.

« Validation set is a separate set from the training set
that is used to monitor but is not used for the train-
ing process. This set can be used to optimize some
parts of the learning process including setting the
“hyperparameters”

» Test set. Data used to test the model that is not used
for either hyperparameter optimization or the train-
ing. The accuracy estimated on the test set is the
most accurate estimate of the accuracy.

o Model hyperparameters are adjustable values that are
not considered part of the model itself in that they
are not updated during training but still have an
impact on the training of the model and its perfor-
mance. To ensure that those are not fitted to maxi-
mize the test set performances, the hyperparameters
are optimized using an internal validation set.

o 10-fold cross-validation (referred to as 10 CVs)—
a resampling procedure used to evaluate machine
learning models on a limited data sample. The data
is first partitioned into 10 equally (or nearly equally)
sized segments or folds. Subsequently, 10 iterations
of training and validation are performed such that
within each iteration a different fold of the data is
held-out for validation, while the remaining 9 folds
are used for training.

+ Receiver operating characteristic curve (ROC)—a
graph showing the performance of a classification
model at all classification thresholds. This curve
plots two parameters: true positive rate (TPR—the
probability that an actual positive will test positive)
and false positive rate (FPR—the probability that an
actual negative will test positive).

o Area under the ROC curve (AUC). The (AUC) is a
single scalar value that measures the overall perfor-
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mance of a binary classifier. The AUC value is within
the range [0.5-1.0], where the minimum value repre-
sents the performance of a random classifier and the
maximum value would correspond to a perfect clas-
sifier (e.g., with a classification error rate equivalent
to zero). It measures the area under the ROC curve
we define above.

+ Genetic algorithm (GA). GA is a method for solving
constrained and unconstrained optimization prob-
lems that uses iterations of selection and modifica-
tions on a family of solutions. Here, we optimize the
best-planned transplant (bacterial cocktail) by com-
bining a simple GA model with the iMic predictor.

Models

We trained our models (described in full in the Supple-
mentary Methods) on all datasets together by zero-pad-
ding the missing taxa. Data pre-processing, merging (to
the species level), and normalization were performed fol-
lowing the MIPMLP protocol [58] (see Supplementary
Methods for a detailed explanation). To identify an ideal
donor, we predicted for each recipient (1) the post-FMT
Shannon diversity, (2) the frequency of different taxa in
post-FMT recipients (at the order and species levels) and
binary species presence or absence, and (3) improvement
in clinical condition. A specific model was built to predict
the relative abundance or prevalence of each taxon sepa-
rately, considering only donor microbiota characteristics.
These models were also validated based on data collected
in a human-to-antibiotic-pretreated mouse validation
experiment. The same models were applied to 6 clinical
human-to-human FMT studies (see the “Experimental
datasets” section and Table 3). We trained our model to
predict each clinical outcome separately at different time
points post-FMT. Furthermore, we developed a mixed
model using data from donors to FMT responders and
non-responders across all shotgun cohorts [55-57].

Comparison of donor and recipient microbiome samples
In several cohorts, the same donor stool was given to
multiple recipients, resulting in multiple post-FMT
recipient properties (e.g., Shannon diversity) for the same
donor. To compare the effect of the donor microbiome
vs the recipient, we defined the similarity between sam-
ples as the Euclidean distance between the MIPMLP [58]
preprocessed order frequency of two recipients from the
same group or as the difference between the Shannon
diversity of two recipient samples from the same group. 3
groups were defined:

o Same donor - same recipient (SDSR). All distances
between samples of a single recipient, collected at
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different time points post-FMT, to measure the tem-
poral variation in a recipient.

o Same donor - different recipients (SDDR). All dis-
tances between all the different recipients that
received FMT from the same donor and were sam-
pled at the same time point post-FMT. This measures
the effect of the recipient’s background on its post-
FMT microbiome.

+ Different donors - different recipients (DDDR). All
distances between recipients that received a trans-
plant from different donors, and were sampled at the
same time point. This adds the effect of the donor to
the effect of the background.

Validation experiment
The validation experiment consisted of 4 steps:

Step A —Predicting recipient microbiota properties post-FMT
A large cohort of candidate donors D was assembled
from gut microbiome data previously characterized. Each
sample in D was passed through the MIPMLP-preproc-
essing, as above, with the “mean” merge method applied
to the species level and a log-normalization. The 7 days
post-FMT expected outcome of the transplant with each
donor sample was computed using the pre-trained iMic
model.

Step B—Group definition for the FMT validation experiment
The donor cohort was run through the ideal donor iden-
tification model described above, and the donors were
divided according to their expected post-FMT microbi-
ome richness: 8 optimal adult donors and 16 sub-opti-
mal donors, 8 of which were children (least optimal)
and 8 of which were adults (also sub-optimal and bio-
logically more relevant as donors than children) were
selected. Then, a human-to-mouse FMT experiment was
performed.

Step C—FMT experiment

Briefly, 48 Swiss Webster mice were raised under con-
ventional conditions in the animal facility at the Azrieli
Faculty of Medicine, Bar-Ilan University, with controlled
temperature (22°C) and light cycle (12 h light and 12 h
dark). The mice had free access to food and water. At 6
weeks of age, they received antibiotics for 2 weeks (cipro-
floxacin (0.04 g), metronidazole (0.2 g), and vancomycin
(0.1 g)) via their drinking water (400 ml, changed every
3 days). At week 8, after antibiotic treatment, stools were
taken, and the mice were randomized into 3 groups (16
mice each). There were 4 cages of male mice for each
group (8 mice total) and 4 cages of female mice for each
group (8 mice total) for a total of 8 cages (16 mice) per
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group. After the mice were separated into groups, they
were weighed (as a general parameter of recipient state)
and then two FMTs were carried out 1 week apart. Cage-
mates received FMTs from the same human donor. Fecal
samples from mice were collected weekly for 6 weeks
following FMT, and microbiota were characterized by
sequencing the V4 region of the 16S rRNA gene (see Sup-
plementary Methods for details).

We repeated the analysis (not the experiment) by
dividing the transplants only from adults based on the
expected order frequencies. We only analyzed orders that
were predicted with high accuracy (Fig. 3A, step B).

Step D—Recipient samples analysis

Following microbiota characterization, recipients’ feces
were collected at 8 weeks (8W), 10 weeks (10W), and
15 weeks (15W). DNA was extracted from all mice fecal
samples, using the MagMAX Microbiome Ultra-Kit
(Thermo Fisher, Waltham, MA) according to the manu-
facturer’s instructions and following a 2-min bead beat-
ing step (BioSpec, Bartlesville, USA). The V4 region of
the bacterial 16S rRNA gene was amplified by polymer-
ase chain reaction (PCR) using the 515F (AATGATACG
GCGACCACCGAGATCTACACGCT) barcoded and
806R (TATGGTAATTGTGTGYCAGCMGCCGCG
GTAA) primers [59] with a final concentration of 0.04%
of each primer and 0.5% of PrimeSTAR Max DNA Pol-
ymerase (Takara-Clontech, Shiga, Japan) in 50ul total
volume. PCR reactions were carried out by 30-35 cycles
of denaturation (95°C), annealing (55°C), and exten-
sion (72°C), with final elongation at 72°C. PCR products
were purified using XP magnetic beads (Beckman Coul-
ter, Indianapolis, IN) and quantified using the Picogreen
dsDNA quantitation kit (Invitrogen, Carlsbad, CA). Sam-
ples were then pooled in equal amounts, loaded on 2%
agarose E-Gel (Thermo Fisher, Waltham, MA), purified,
and sent for sequencing using the Illumina MiSeq plat-
form (Genomic Center, Azrieli Faculty of Medicine, Bar-
Ilan University, Israel). Microbiota properties (Shannon
diversity and orders’ frequency) were calculated at 1 week
(referred to as 10W) post-FMT and 6 weeks (referred to
as 15W), post-FMT.

Synthetic community compilation by generative GA

To identify an ideal synthetic community for microbi-
ota manipulation that would increase the richness and
have a high probability of engraftment, we used a GA
[60] to first identify donors that would result in an opti-
mal recipient outcome (microbial richness or specific
bacterial order engraftment). To this end, we simulated
2083 donor profiles from the actual donor cohort data,
as described in the Supplementary Methods. Then, 100
donors were randomly selected, and we modeled the
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predicted richness of recipients of FMTs from the simu-
lated donors, as described in the Supplementary Meth-
ods. The aim of the model was to generate the optimal
synthetic community for a given outcome, while mini-
mizing non-zero taxa, though no minimum number of
taxa was required. The 30 donors with the highest loss in
the maximization task and the 30 donors with the low-
est loss in the minimization task were then chosen for the
creation of the next generation (Fig. 6A, step D), namely
the creation of an optimal synthetic microbiota. In the
next generation, the same process was performed, and
to enrich the variability of children, we added mutations
and recombination with a probability of 0.3 (see Supple-
mentary Methods). Then, synthetic FMT performance
was again tested, and ideal “parents” were again selected.
This generative process of creating simulated microbiota
continued for 25 generations, as we found convergence to
occur after this many iterations. Details of GA modeling
considerations and methods are presented in the Supple-
mentary Methods.

Statistics and validation

R2 score

To evaluate the performance of our predictors, we calcu-
lated the R2 metric on external test sets using 10 cross-
validations (CVs). We reported the average R2 score of
the 10 runs. Then, we applied an ANOVA test to check
whether the performances of the models were signifi-
cantly different. If ANOVAs were significant, we used
one-sided T-tests for pairwise comparisons.

Spearman correlation coefficient (SCC)

To evaluate the performance of our predictors, we cal-
culated the SCC metric on the external test set using 10
CVs. We reported the average SCC of the 10 runs. Then,
we applied an ANOVA test to check whether the perfor-
mances of the models were significantly different. If the
ANOVA were significant, we kept comparing by a one-
sided T-test.

Area under the ROC curve (AUC)

To evaluate the performance of our predictors on the
absence-presence species task, we calculated the AUC
metric on the external test set. Then we applied a one-
sided T-test between the RF (random forest) model and
the iMic model.

Biological relevance test

To assess the biological relevance of our donor-picking
algorithm (according to the predicted Shannon diversity),
we compared the predicted recipient richness of the clin-
ically defined FMT “successes” and “failures” by applying
a two-sided T-test.
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Same donor condition distribution

In a second scenario, we examined the actual distribu-
tion of conditions based on donor strain colonization
in recipients undergoing FMT. To analyze this distribu-
tion, we utilized data from the 5 aforementioned condi-
tions as well as additional data from the study conducted
by Schmidt et al. [61]. For each donor, we assessed the
number of successful transplants among all the trans-
plants associated with that donor. This analysis pro-
vided insights into the efficacy and variability of FMT
outcomes.

Results

FMT studies

To investigate the relationship between the donor micro-
biome and FMT outcomes, we conducted an analysis of
transplants involving the transfer of stool samples from
human donors to either GF mice or humans across 12
different cohorts (Fig. 1A). To ensure our findings are
general enough, we combined data from multiple experi-
ments within each cohort separately (i.e., human-to-GF
and human-to-human cohorts). In each experiment, we
analyzed recipient stool samples several weeks post-FMT,
as well as from the human donors. Both the recipient and
human donor samples underwent 16S sequencing (see
the “Methods” and Supplementary Methods for sequenc-
ing, pre-processing, and combination of samples).

For the human-to-GF cohorts, we analyzed 4 cohorts
(Table 1). The first cohort, denoted as Gestational Dia-
betes Mellitus (GDM), was previously reported by Pinto
et al. [12]. The second cohort consisted of stool samples
from patients with IgE-mediated food allergies, desig-
nated as Allergy [46]. The third cohort involved a chem-
otherapy experiment referred to as Chemotherapy [15].
Lastly, we included a cohort that examined the long-term
impact of antibiotic treatment during the neonatal period
and early childhood on child growth, denoted as Baby
[13].

We also analyzed 8 human-to-human cohorts [47-54]
(Table 2). In some experiments, the recipients received
antibiotic treatment (ABX), which included the follow-
ing projects: ERP021216, PRINA221789, PRINA238042,
PRJNA238486, PRJNA380944, and PRJNA412501. In
contrast, other experiments involved recipients who did
not undergo antibiotic treatment, such as PRJDB4959
and PRJNA428898.

Given that various transplant experiments employed
different outcome measurements, we initially focused on
identifying outcomes that were shared between experi-
ments and could be generalized across multiple scenar-
ios. For instance, we examined the engraftment success
by assessing post-FMT recipient Shannon diversity, as
well as the post-FMT relative abundances of different
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Fig. 1 Relations between donor and recipient microbiomes. Note along the figure light blue represents analyses based on the human-to-GF
cohorts, and light orange represents analyses based on the human-to-human cohorts. A Schematic figure of the raw relations between the donor’s
samples properties and the recipient’s samples post-FMT treatment. The properties we followed during this analysis were the Shannon, the order’s
relative abundances, and the species relative abundances and presence or absence. Each color represents a cohort. The raw relations were
measured by calculating the SCC between the property in a donor sample and a recipient sample. B Scatter plot of the number of donors vs

the number of recipients in each cohort over the human-to-GF cohorts, where GDM was marked with an asterisk (*), Allergy was represented

by a triangle symbol, Chemotherapy was marked with an X, and Baby with a dot. C Scatter plot of the number of donors vs the number of recipients
in each cohort over the human-to-human cohorts. D, E Similarity Shannon differences (D) and Euclidean distance between two recipients
preprocessed ASVs (order-level) vectors in the human-to-GF cohorts (E). The rightmost bar, SDSR, represents the distances between samples

of the same recipient (GF mouse) and the same donor (measures the time variability); the middle bar represents the distances between samples

of different recipients (GF mice) that got FMT from the same donor, SDDR (measures the effect of the recipient background); and the leftmost

bar represents the distances between samples of different recipients (GF mice) that received FMT from different donors, DDDR (measures the effect
of the donor), with a significant hierarchy of distances. The lowest distances are within the same donor/recipient, followed by the same donor,
followed by different donors. F, G Similarity Shannon differences (F) and Euclidean distance between two recipients’ preprocessed ASVs (order-level)
vectors in the human-to-human cohorts (G) before and post-FMT. The rightmost bar represents the distances between samples of the same
mouse and the same donor (SDSR, samples along time), the middle bar represents the distances between samples of different mice that got FMT
from the same donor (SDDR), and the leftmost bar represents the distances between samples of different mice that received FMT from different
donors (DDDR), with a clear and significant hierarchy of distances. The lowest distances are the same donor/recipient, followed by the same donor,
followed by different donors (x p < 0.05, %% p < 0.0, * * * p < 0.001). When comparing the results before the transplant, there is no difference
between the groups (before in plots F and G). H, | Scatter plots of donor’s Shannon vs recipient’s Shannon in human-to-GF cohorts (H)

and human-to-human cohorts (I). The black line represents the y = x line of a perfect match between the donor and recipient properties and each
shape represents a different dataset according to the shapes in B and C. Similar results for all the orders are in Supplementary Material Figs. S4

and S5. J, K All donor-recipient orders and Shannon diversity SCCs in the human-to-GF cohorts (J) and the human-to-human cohorts (K)
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taxa at the order or species level and their binary pres-
ence or absence. We then further directly studied the
clinical impact of the FMT.

Relation between donor and recipient microbiome
properties
We first tested for a relation between the donor and
recipient microbiome. In several cohorts (e.g., the Baby
cohort and all the human-to-human cohorts), the same
transplant (stool of the same donor) was applied to mul-
tiple recipients (Fig. 1B, C). These recipients may have
different properties (e.g., Shannon diversity or orders
relative abundances). To compare the effect of the donor
microbiome on the post-FMT microbiome, we defined
the similarity between samples as the Euclidean distance
between the MIPMLP preprocessed order frequency of
two recipients from the same group or as the difference
between the Shannon of two recipients samples from the
same group.

3 groups were defined:

« Different time points within the same recipient
(SDSR). Distances between the samples of a certain
recipient at different time points post-FMT to meas-
ure the temporal variation in a recipient.

o Same donor - different recipients (SDDR). Distances
between all the different recipients that received the
FMT from the same donor at the same time point.
This measures the effect of the recipient’s back-
ground on its microbiome.

« Different donors - different recipients (DDDR). Dis-
tances between recipients that received a transplant
from different donors at the same time point. This
adds the effect of the donor to the effect of the back-
ground.

In the human-to-GF cohorts, there was no initial recipi-
ent microbiome. However, the recipient may have micro-
biome-independent factors affecting the outcome. In the
human-to-human cohorts, to ensure that we really study
the effect of recipient background vs donor microbiome
and not basal differences in human recipients, we again
compared the distances between the SDDR group and
the DDDR group of the recipient after antibiotic treat-
ment and before the FMT and there were no significant
differences (Fig. 1F and G “Before”). In both the human-
to-GF and human-to-human cohorts and in the Shannon
diversity and relative abundance differences, there were
no significant differences between the SDSR and SDDR
groups (Fig. 1D, E and F, G “After”).

However, the differences were significantly lower
in the groups with FMT from the same donor (SDSR
and SDDR) than in all other groups (Fig. 1D, E and F,
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G “After” one-sided T-test with p-value < 0.05 for the
composition and p-value < 0.01 for the Shannon in the
human-to-GF cohorts and (p-value < 0.01) for the Shan-
non or (p-value < 0.0001) for the compositions in the
human-to-human cohorts). To summarize, the donor’s
microbiome influence is stronger than the recipient’s
background, even in human recipients that exhibit a
diverse initial microbiome.

Given the effect of the FMT properties on the recipient,
one may suggest that the donor and recipient taxa com-
positions are highly similar, and as such donors that have
the maximal frequency of a given order or a high diversity
should be chosen to reach the same goal in the recipient.
To examine the relations between donor and recipient
properties, we computed the SCC between the Shannon
diversity (distribution information can be found at Sup-
plementary Material Fig. S1A and C) or the order relative
frequencies of the donors and the recipients post-FMT
(distribution information can be found at Supplementary
Material Fig. S1B and D and S2-S3). In the human-to-GF
cohorts, SCCs were low for all properties (|[SCC| < 0.4)
except for the relative abundance of the Verrucomicro-
biales order (Fig. 1H and J and Supplementary Material
Fig. S2). The SCCs were higher in the human-to-human
cohorts than in the human-to-GF cohorts with an aver-
age SCC of 0.439 (Fig. 1], K), as expected given the similar
host. One can thus infer (except for the Verrucomicrobi-
ales and some orders in the human-to-human cohorts)
that the post-FMT recipient microbiome is significantly
different than the donor microbiome.

Given the low correlations observed between donor
and post-FMT recipient microbiomes but the significant
connection between them, more advanced algorithms
are required to predict transplant microbiome properties
based on FMT composition.

Prediction of recipient post-FMT microbiome properties
from donor microbiome

To test whether post-FMT engraftment success, meas-
ured by microbiome properties (Shannon diversity,
orders and species frequency, and species presence) can
be predicted using the donor sample composition, we
tested 7 different multivariate predictors using the donor
preprocessed ASVs (see experimental setup in Supple-
mentary Methods) as concatenated with the number of
days post-FMT as an input to these models to predict
different microbiome properties of the recipient post-
EMT such as Shannon diversity, 10 (human-to-GF) or 30
(human-to-human) different orders’ relative abundances,
50 (human-to-GF) or 100 (human-to-human) most fre-
quent species relative abundances, and their binary pres-
ence or absence.
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The models tested included simple models such as a
K-nearest neighbors regression (KNN), support vector
machine regression (SVR), and Ridge regression that gave
quite poor results similar to the low SCCs in the univari-
ate analysis (SCC < 0.4), with extremely low R2 scores
(Fig. 2A, B). More complex models tested include ran-
dom forest (RF), XGBOOST, and a fully connected neu-
ral network (NN). These models’ predictions were more
accurate than the simple models’ predictions. The highest
SCC was obtained by applying the iMic model [62] to the
donors’ MIPMLP preprocessed taxa frequencies, with
an SCC of 0.6 +/— 0.004 and an R2 score of 0.358 +/—
0.003 on the Shannon diversity (Fig. 2A, B pink bars). The
results are similar on the order relative abundance with
an average SCC over all orders of 0.568 (Supplementary
Material Fig. S6). These SCCs and R2s are much higher
(p-value < 0.0001) than the ones obtained from the uni-
variate relations (Figs. 1H vs 2C) on the Shannon diver-
sity as well as on all the other properties (Fig. 2D).

Similar results were obtained when predicting spe-
cies’ relative abundances instead of orders. We predicted
for the 50 most frequent species both the presence or
absence of the species from the recipient samples 1-week
post-FMT (in such cases the average AUC is reported
over 10 CVs on the appropriate external test set) and
their relative abundances (in such a case the SCC was
similarly reported). The average AUC of all the species
was 0.8 +/— 0.11. For the species relative abundance pre-
dictions; the average SCC over 10 CVs of all the species
was 0.52 +/— 0.16 (Supplementary Material Fig. S4A).
An RF (which was the best model after iMic) was also
applied to these tasks to compare to existing methods
[35]. Histograms of the RF results vs iMic can be found in

(See figure on next page.)
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Supplementary Material Fig. S4B, C. iMic is significantly
better than the RF model (p-value < 0.001).

The results above were from models trained on a mix-
ture of datasets (human-to-GF) to ensure that the results
are not an artifact of a single experimental setup. To test
the prediction accuracy between datasets, we ran iMic
on a leave-one-dataset-out (LODO), where the whole
Chemotherapy dataset (which contains the least num-
ber of samples) was not used during the training of the
model. The model was trained on the merged 3 cohorts
and was tested on the Chemotherapy dataset. The predic-
tion accuracy was slightly lower than the mixed learning
prediction, but much better than the univariate natural
correlations (Supplementary Material Fig. S8).

The post-FMT microbiome properties predictions are
further improved by including the donor’s age, sex, and
weight, when available (see Supplementary Methods for
data completion). When the donor metadata is used, the
AUC obtained using donor-only data reaches similar val-
ues to the ones reported using both donor and recipient
properties (Supplementary Material Fig. S4D [35] and for
the contribution of the metadata to the predictions Sup-
plementary Material Fig. S5)—a Pearson correlation of
0.7 for the Shannon and an AUC of 0.85 for the presence-
absences predictions.

We used the same model and same hyperparam-
eters as for the mouse and trained a model to predict
human post-FMT microbiome properties (for hyper-
parameters used see Supplementary Material Table
S$1-S3). Again, all the samples of the same recipient
were assigned to the same group to prevent data leak-
age. iMic significantly (p-value < 0.001) best predicted
the recipient’s post-FMT Shannon diversity(R2 = 0.369

Fig. 2 Prediction of recipient post-FMT microbiome properties from donor samples. A, B Different models evaluations scores of recipients’
Shannon, R2 scores (A), and SCC (B) over the human-to-GF cohorts (for parallel results on the different orders see Supplementary Material Fig.

S7). The x-axis represents the model. The simplest models Ridge, KNN, and SVR are in blue; the networks and trees, RF, XGBOOST, and NN are

in blue; the structure-based CNNs, iMic1 and iMic2, are in pink. The standard errors over the 10 CVs are in black. iMic2 outperforms all the other
models and predicts the recipient Shannon diversity with R2 of 0.358 and SCC of 0.6. C Scatter plot of the recipients’ predicted Shannon after FMT
vs the real recipients’ Shannon over the human-to-GF cohorts. The black line represents the y = x line of a perfect match between the recipients’
predicted and real properties. D All predicted-real recipients’ properties SCCs over the human-to-GF cohorts, where the raw correlation

between the recipient’s property and the donor’s property is in light blue and iMic’s improvement is in pink. E, F Different models evaluations
scores of recipient’s Shannon diversity, R2 scores (E), and SCC (F) over the human-to-human cohorts (for parallel results on the different orders see
Supplementary Material Fig. S9). The x-axis represents the model. The simplest models Ridge, KNN, and SVR are in orange; the networks and trees,
XGBOOST, RF, and NN, are in orange; and the structure-based iMic2 is in pink. The standard errors over the 10CVs are in black. iMic2 outperforms

all the other models and predicts the recipient Shannon diversity with R2 of 0.369 and SCC of 0.656. G Scatter plot of the recipients’ predicted
Shannon post-FMT vs the real recipients’ Shannon diversity over the human-to-human cohorts. The black line represents the y = x line of a perfect
match between the recipients' predicted and real properties. H All predicted-real recipients’ properties SCCs over the human-to-human cohorts,
where the raw correlation between the recipient’s property and the donor’s property is in orange and iMic’s improvement is in pink. I, J Histograms
of AUCs of presence absence predictions of the species over the human-to-human cohorts (I) and of SCCs of the compositions predictions

over the human-to-human cohorts (J). The x-axes represent the bins of scores, AUC (I)and SCCs (J), and the y-axes represent the number of different
taxa that got that score. For parallel results on the human-to-GF cohorts see Supplementary Material Fig. 56 K AUCs and SCCs of the 100 most
frequent species. The left x-axis represents the presence or absence AUC over the human-to-human cohorts (pink), while the right x-axis represents
the SCC (black). For parallel results on the human-to-GF cohorts, see Supplementary Material Fig. S6. L The prediction remains accurate long

after the transplant in the human-to-human cohorts. The x-axis represents the SCC, and the y-axis represents the number of days post-FMT. There

is not a significant difference in the SCCs over the time followed



Shtossel et al. Microbiome (2023) 11:181

Page 10 of 20

10 =
- 10 501 o SCC:0.656 ¢
08 — w a
5 = g 208 El
g 0.6 g §0A8 PP
" ] =
s 2 2 240
5
2 == R == S Y. 8
3 0.0 - rg g g
02 Y g3
-04 &
3.0
S OF S Sgs s
FFEE Q,o@&”ée 5 A F&e s 30 35 40 45 50
© £ Predicted recipient Shannon
Shannon 40 —
Verrucomicrobiales | — [ Raw 35 1 Mic2
ML615J-28 . Mic2 0 RF
= Synergistales ] 30
g Pseudomonadales - — 'y 2
£ Pasteurellales 4 | — §°
< Enterobacteriales { | = 2.20
§ Campylobacterales 4 e — S s
Desulfovibrionales =
Neisseriales  — 10
Burkholderiales = 5
Sphingomonadales | —_— I—
Rhodobacterales { m— ] 0L PR
Rhizobiales 4 05 06 07 08 09 10
RF32 Average AUC
Victivallales 4 ————]
Fusobacteriales I - J
C Erysipelotrichales {
SHA-98 { = 14 =
P Clostridiales F iMie2
i Turicibacterales - | — 121 &1 RF
E Lactobacillales
Z3 Gemellales e — % 10
2 Bacillales g 3
3, YS24 =3
£ Flavobacteriales -_— 0 g 6
z Bacteroidales 4 =
g1 Coriot iales 1 &
= Bifidobacteriales 1 I 5
0 Actinomycetales 1 f—n
Metl t iales 0 - + - - -
0 1 2 304 2 00 0 04 06 03 0 00 02 04 06 08
Predicted recipient Shannon : SC c ) ) : Average SCC
Verrucomicrobiales 0 Human cohort
Turicibacterales 12 és
Lactobacillales =5
Erysipelotrichales { -
Enterobacteriales o6 g ®
Desulfovibrionales '§48 5
Clostridiales A <
. 60 > 14
Burkholderiales &
Bacteroidales i
Bacillales 84 7
Shannon 96
~04-0200 02 04 06 08 10 1.0 09 08 07 06 05 0.00102030405060708 00 01 02 03 04 05 06
ScC AUC scc

Fig. 2 (Seelegend on previous page.)

+/— 0.001 and SCC = 0.656 +/— 0.005, Fig. 2E-G).
The SCC values of iMic were much higher than the
direct correlation between donor and recipient both
on the Shannon and the order relative abundances
(Fig. 2H). Similar results were obtained when predict-
ing orders relative abundances (Fig. 2H), the presence
or absence of the recipient species (Fig. 21 and left K),
and the SCC of the recipient species compositions
(Fig. 2J and right K). In contrast to the short-term

effect of the human-to-mouse FMT (Fig. 5E, F), the
effect of the transplant and the prediction accuracy did
not decrease even 6 months post-FMT (Fig. 2L).

To validate the accuracy of the predictor developed
on retrospective data, we performed a prospective
in vivo validation experiment (Fig. 3A). The validation
experiment was based on a set of existing microbiome
samples, with the following stages (see Supplementary
Methods for details):
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Fig. 3 Validation experiment. A Validation experiment’s schematic figure. Step A—Predicting the recipient’s property post-FMT. Inserting all

the MIPMLP preprocessed donors from all the cohorts (including donors that had not been actually transplanted) into the pre-trained iMic model,
using existing datasets. iMic returns the predicted recipients’ properties post-FMT. Step B—Grouping samples for FMT validation experiments. Two
groups were defined from the predicted properties. A group of predicted to be high (with predicted high values of the property) and predicted

to be low (with predicted low values of the property). Step C—FMT experiment timeline. Two groups of mice were raised till the age of 6 weeks.
They got antibiotic treatment (weeks 6-8). At the age of 8 weeks, stools were collected and sequenced. At the age of 8 weeks + 1 day, they
received the first FMT. One group of mice got the FMT from the predicted to be high donors group, and the second group of mice got the FMT
from the predicted to be low group. They got the second FMT from the same donors at the age of 9 weeks. Stool samples were collected a week
after the second transplant at the age of 10 weeks and 6 weeks after the second FMT treatment at the age of 15 weeks. Step D—Recipient
samples analysis. The real recipients’ properties were calculated from the mice’s stool samples at the age of 10 weeks. A comparison between the 2
groups' properties showed significant differences in the targeted properties. B, C Difference between Shannon diversities (B) and Euclidean
distance between two recipients preprocessed ASVs (order-level) vectors (C). The right bar represents the distances between samples of different
recipients (ABX mice) that got FMT from the same donor, SDDR, and the left bar represents the distances between samples of different recipients
(ABX mice) that received FMT from different donors, DDDR. There is a significant difference between same and different donors post-FMT (10W),
but not before (8W) (x p < 0.05, %% p < 0.01,% * x p < 0.001). D-G Differences between the donors and real recipients at different time points (8W,
10W) properties on the groups we defined, Shannon (D), Bacteroidales order relative abundances (E), Desulfovibrionales order relative abundances
(F), and Verrucomicrobiales order relative abundances (G). The (A) represents a transplant from an adult human, while (Y) represents a transplant
from a young human. Again, there is no difference before the FMT (8W) or in the donors (Donor)

« Produce a set of candidate donors and predict for
each sample in the set the expected outcome (e.g.,
the expected Shannon—TFig. 3A, step A).

Separate samples into the ones predicted to induce
a high diversity and the ones predicted to induce a
low diversity. Since almost all the donors who were

predicted to induce a low Shannon were children, we
added a group of samples predicted to induce a low
diversity aged matched to the samples predicted to
have a high diversity (Fig. 3A, step B).

Perform FMT on 3 groups of antibiotic-treated
8-week-old mice (see the “Methods” section) from
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the 3 groups of donors above, and collect stool sam-
ples at the age of 10 weeks (see the “Methods” sec-
tion, Fig. 3A, step C).

We first checked for the effect of the donor on the trans-
plant in antibiotic-treated mice. Indeed, there is a sig-
nificant difference (p-value < 0.05), between the SDDR
group and the DDDR group in the post-FMT recipients
(referred to as 10W, Fig. 3B, C), and no significant differ-
ence between these groups after antibiotic treatment and
before the FMT (referred as 8W, Fig. 3B, C).

We then tested the quality of the prediction by compar-
ing the difference between the Shannon diversity from
the groups predicted to have low and high post-FMT
diversities (p-value < 0.01). There were no significant
differences between the predicted to be low groups as a
function of the donor’s origin (adult vs child, Fig. 3D).

We then applied a set of similar experiments, where
we used the same samples above (only adults to avoid
the effect of the donor age), but defined the “high” and
“low” groups according to the expected relative abun-
dances of different orders as computed by iMic for all
the orders properly predicted in the initial analysis (the
orders where the initial AUC of iMic was higher than
0.5). Again, the recipients’ order frequencies were meas-
ured in the mice stool samples at the age of 10 weeks.
For all orders except for the Enterobacterials, the groups
predicted to have a higher frequency for the appropriate
order indeed had a higher frequency (p < 0.05 for Bac-
teroidales, Desulfovibrionales, and Verrucomicrobiales)
(Fig. 3A, step D, D—@G). In general, Gram-negative bac-
teria were well predicted in contrast to Gram-positive
bacteria. Similar results were recently demonstrated by
Ianiro et al. [35].

To ensure that the difference is not the result of the
recipient microbiome (after the antibiotics treatment),
we repeated the analysis on the samples after antibiotic
treatment and before FMT (Fig. 3D-G 8W), with no dif-
ference between the groups (Fig. 3D-G 8W). To test that
the difference in the recipient is not only a mirror of the
differences in the donors, we compared the donor sam-
ples’ microbiome properties, with again no difference
between the groups (Fig. 3D—G Donor).

Prediction generalization to clinical contexts

Following the prediction of the post-FMT microbiome
properties, we checked whether the FMT clinical out-
come can be predicted using only the donor microbiome.
In this context, one must separate transplants in recipi-
ents with CDI and transplants in non-CDI recipients. In
CDI EMT, there is a very high success fraction, so there is
almost no need for an outcome prediction model [63, 64].
We thus developed models for the post-FMT non-CDI
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clinical outcomes. We tested various clinical conditions,
such as IBD, IBS (irritable bowel syndrome), melanoma,
UC, and antibiotic resistance [37, 47, 55-57, 61].

We first tested if the outcome was mainly determined
by the donor properties. If that would be the case, all
recipients receiving transplants from a particular donor
would either consistently succeed or fail. We calculated
the fraction of recipients for each donor group where the
treatment succeeded. The results varied among condi-
tions. For instance, colonization success (in the Schmi-
dette et al. cohorts), melanoma response to PD-1 therapy,
and antibiotic resistance exhibited strong donor consist-
ency, whereas other conditions showed very limited con-
sistency (Fig. 4A).

We further employed the iMic model to predict the
clinical conditions of recipients across various datasets,
including WGS cohorts (AUC 0.71, Fig. 4B) and the 16S
cohort (AUC = 0.689, Fig. 4C). In the IBD cohort, where
previous predictions were published [37], we compared
our results with the state-of-the-art donor-based model
(AUC = 0.605), recipient-based learning (AUC = 0.706,
similar to iMic’s donor model), and a combined donor
and recipient model (AUC = 0.716). Thus, not only can
post-FMT microbial properties be predicted from the
donor but also the clinical outcome.

Engraftment success vs improvement in recipients
post-FMT clinical symptoms

To assess whether an “ideal donor” defined by its richness
(Shannon diversity) accurately predicts improvement in
clinical symptoms, we compared the predicted recipient
post-FMT richness and the improvement in clinical out-
come (“Success”) in different cohorts. The model consist-
ently predicted higher Shannon diversity in all conditions
for the group where the clinical outcome improved (sig-
nificant p — value < 0.05in 3 out of 5 cases, Fig. 4D—H).

Recipient effect on the post-FMT predictions

To better understand the effect of the recipient on the
prediction of the transplant outcome, we compared 4 lev-
els of recipient diversity:

1. GF mice— no recipient initial microbiome, and all
mice grow in similar conditions.

2. Antibiotic treated mice (ABX)—most of the recipi-
ent’s initial microbiome is destroyed and all mice
grow in similar conditions.

3. Antibiotic treated human (ABX)—most of the recipi-
ent’s initial microbiome is destroyed, but the recipi-
ents live in different conditions.

4. Humans, with no antibiotic treatment—the recipi-
ent’s initial microbiome is intact, and the recipients
live in different conditions.
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Fig. 4 Clinical predictions post-FMT and engraftment success vs improvement in recipients clinical symptoms post-FMT. A Distribution of success
vs failure given a certain donor over 6 clinical cohorts. The x-axis represents the percent of success given a certain donor, the y-axis represents

the frequency. B, C iMic predictions of improvement in recipients’clinical symptoms in WGS cohorts (B) and IBD 16S cohort (C). In the IBD

cohort, we also compare our predictions to state-of-the-art (SOA) reported predictions in [37] D-H Swarm plots of predicted recipients’' Shannon
of the subjects their FMT succeeded and the subjects their FMT failed over different clinical conditions IBD (D), IBS (E), melanoma (F), UC (G),

and antibiotics resistance (AR) (H). A two-sided T-test was applied between the success and failure groups of each cohort (xp < 0.05xxp < 0.01,

*xxp < 0007

iMic managed to predict the recipient post-FMT out-
come in the 4 groups with decreasing accuracy as
the recipient microbiome becomes more important
(Fig. 5A and B). However, even in untreated humans,
the prediction is much better than just using the
donor as a prediction (Fig. 5B). Similarly, the differ-
ence between SDDR and DDDR groups decreases as
the recipient microbiome becomes more and more
important (Fig. 5C and D). We did not perform this
comparison with the group of human recipients with
no antibiotics, since in this group each recipient had a
different donor.

Optimal artificial mixture of grown microbes

The results above on both human and mouse recipients
highlight the possibility of choosing among multiple
candidate donors. However, for an optimal outcome,
one may want to develop de-novo transplants. One can
propose, for example, an artificial planned transplant to
promote a specific taxon. As mentioned, transplanting a
given taxon will not always increase its abundance post-
transplant. As such, a mixture of microbes is required. A
complex transplant containing a large number of taxa can
be generated to produce the required outcome. However,
the number of taxa that can be used in such a mixture is
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limited. Therefore, a balance between the number of taxa
that are needed to be generated for the FMT and the tar-
get outcome is required.

To find the optimal required FMT given a targeted
outcome, such as: maximizing the recipients’ Shannon,
minimizing the recipients’ Shannon, or maximizing the
relative abundances of a certain order in the recipients’
samples, we developed a GA. In short, 100 parent donors
were randomly chosen from all the donors’ populations
in all the cohorts studied - a; (Fig. 6A, step A). A binary
representation, b;, of the MIPMLP preprocessed donor
vectors, a;, was created for each donor (Fig. 6A step B).
Each MIPMLP preprocessed donor vector, a;, was the
input of the pre-trained iMic model and the expected
diversity after 7 days was predicted (or any other out-
come as discussed above) (Fig. 6 A, step C). All the
predicted outcomes, s;, were the input of the following
fitness function for the selection of the next generation:

fitnessax (si, bi) = s; — sum(b;) - y, 1)

such that sum(b;) represents the number of non-zero
taxa in the donor sample, and y is a hyperparameter that
controls the importance of the number of non-zero taxa.
When attempting to minimize a taxon, minus the taxon
frequency was used in the loss.

The 30 donors with the highest loss in the maximi-
zation task were chosen for the next generation crea-
tion (Fig. 6A, step D). To complete the donors’ parents
of the next generation a mutation (see the “Methods”
section) occurred with a probability of 0.3, and recom-
bination (see “Methods” sections) occurred with a prob-
ability of 0.3 (Fig. 6A, step E) until a stopping criterion
was achieved.

Even in the mouse model, where the difference between
donor and recipient is very large, the GA converges
within 25 generations in the optimization tasks (with
y = 0) of the Shannon diversity (Fig. 6B, C). We thus ran
the GA for 25 generations for all the tasks. The results of
the Shannon for different numbers of non-zero taxa are
shown in Fig. 6D. The GA achieves a high Shannon with

(See figure on next page.)
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~ 100 different non-zero taxa (maximum = 5.5, average
= 5). The maximum was similar to the maximum of the
existing data (= 5.48) and the average was in the highest
percentile of the distribution.

Succeeding to optimize the outcome while limiting
the number of non-zero taxa opens the way for artificial
transplant using a limited number of taxa. To check that
the GA did not converge into trivial solutions, such as
just generating donors with the targeted outcome, we cal-
culated the SCC between the predicted targeted property
and the property of the optimized donors generated. The
SCCs were quite low, |SCC| < 0.2 (Fig. 6E).

We tested whether specific orders were consistently
dominant in the optimized donors both in the Shannon
diversity maximization tasks and in the orders’ relative
abundance maximization tasks. In the Shannon maximi-
zation tasks, most of the orders varied; however, several
orders were consistently frequent in the predicted trans-
plant, especially for high y values, such as Bacteroidales,
Clostridiales, and Fibrobacteriales (Fig. 6F). In the orders’
maximization tasks, the orders used by the GA are con-
sistent among the different order tasks, such as Bifido-
bacterials, Verrucomicrobiales, and Methanobacteriales.
The input orders were not directly related to the order
that is maximized (Fig. 6G). For example, Lactobacilla-
les affected Clostridiales, Enterobacterialles and its own
frequency in the post-FMT recipient, and Clostridiales
affected Bacillales, Bacteroidales, Desulfovibrionales,
Verrucomicrobiales, Burkholderiales, Turicibacterales
and Enterobacterialles.

Discussion

FMTs are currently being tested in clinical trials as
an emerging treatment for a wide range of disorders,
including Parkinson’s disease, fibromyalgia, chronic
fatigue syndrome, myoclonus dystopia, multiple scle-
rosis, obesity, insulin resistance, metabolic syndrome,
and autism [65-72]. There are many open questions in
FMT, including donor selection and screening, stand-
ardized protocols, long-term safety, and regulatory

Fig. 5 Recipient effect on post-FMT predictions. A SCCs of different orders and Shannon reported over the ABX-treated mice (purple bars) vs the GF
mice (light blue bars) compared to the overall raw donor-recipient correlations (gray).B SCCs of different orders and Shannon reported over the ABX
treated cohorts (light bars) vs the no-ABX, untreated cohorts (dark bars) compared to the overall raw donor-recipient correlations (gray). C, D
Similarity Euclidean distance between two recipients preprocessed ASVs (order-level) vectors in the human-to-mouse cohorts (GF and ABX) (D)

and the human-to-human cohorts (ABX vs no ABX). In each pair, the rightmost bar represents the distances between samples of different recipients
that got FMT from the same donor, SDDR (measures the effect of the recipient background), and the leftmost bar represents the distances
between samples of different recipients that received FMT from different donors, DDDR (measures the effect of the donor), with a significant
hierarchy of distances. The lowest distances are within the same donor/recipient, followed by the same donor, followed by different donors (x

p < 0.05x%p < 0.01, % * *xp < 0.001). E, F Comparison of FMT effect in the mouse cohorts in GF mice (E) and in ABX mice (F) at different times. In
the GF mice, there is a donor effect at 7D and not at 28D. Similarly, in the ABX-treated cohort, there is a difference at 10W (1W post-FMT) and not at
15W (6 weeks post-FMT). G Comparison of SCCs between the recipient’s properties post-FMT with the donor (orange), the recipient before the FMT
(gray), and the predicted recipient property post-FMT by iMic (pink) in the human-to-human cohorts. The prediction is typically much higher

than the two others
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Fig. 6 Optimal artifical mixture of grown microbes A GA schematic figure. The GA contains the following steps: Step A—lInitial population. One
hundred donor samples are randomly sampled from the donors of all the cohorts. Step B—Adding a binary vector to each parent donor. The
binary vector consists of 1 when the ASV's abundance is higher than 0, and is 0 otherwise. Step C—Evaluation of recipients' FMT future result

after a week. By applying the pre-trained iMic model to the parent donors, we get the future recipients’ outcomes. Step D—Selection. The selection
is done according to our fitness function choosing the best 30 donors with the most appropriate recipients outcome. Step E—Reproduction.

To complete the parents of the next generation a mutation occurs with a probability of 0.3, and recombination occurs with a probability of 0.3.
Step F—Checking stopping rule. If the stopping criterion is met, the donors of step E are returned; otherwise, the new generation of donors

from step E is again used for the outcome prediction using iMic’s in C, until the stopping criterion is met. B, C GA convergences within 25 epochs
on the Shannon diversity optimization task for both maximizing (B) and minimizing the recipient’s Shannon diversity a week post-FMT (C). D
Monitoring the number of non-zero taxa of donors during the maximizing optimization. The x-axis represents the number of non-zero taxa

(log scale) and the y-axis represents the predicted Shannon diversity of the best donors. E SCCs between the property in the optimized donors
and the predicted recipient. The significantly predicted orders from the validation experiment are in red. F, G Percentage of the most common taxa
in the optimized donors for the Shannon diversity task for different y values (F) and for different prediction tasks (G)

issues. The best method of treatment is also still being
studied as some studies include antibiotic pre-treat-
ment or bowel flushing prior to FMT while others forgo
any pre-treatments, and the ramifications are still not
fully understood [73-75]. Donor selection criteria also
involve a number of practical and ethical considerations
[76-78]. Non-autologous FMTs carry the possibility of
transmitting infectious agents, and, therefore, rigorous
screening tests are recommended to reduce infection

risks. Such screenings limit the dangers of FMT but do
not optimize their outcomes.

When optimizing for an outcome, the donor’s micro-
biome, physical activity, diet, drug use, medications,
genetic background, age, sex, and a plethora of other
factors all affect microbiota composition. Thus, it may
be beneficial to consider the health profile of the donor.
However, even with the ideal donor, the FMT success is
not guaranteed [55, 79]. Another donor-related criterion
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that is considered is the similarity of microbial species
expected between the recipient and the donor so that the
mucosal adaptive immune system of the recipient pre-
sents more tolerance towards the microbiota from the
donor [68, 80].

An alternative approach would be the generation of
off-the-shelf donors expected to optimize the FMT
engraftment probability and the expected improvement
in clinical symptoms. However, there is currently no
model for donor-microbiome-based selection of optimal
donors.

To address this, we developed a tool to predict recipi-
ents’ post-FMT properties in human and mouse recipi-
ents using only the donor properties (microbiome
composition, and demographics) and validated the pre-
diction accuracy in a de-novo FMT experiment. The
outcome predicted was either properties of the recipi-
ent’s post-FMT microbiome or improvement in clinical
symptoms (for example response to IBD treatment as
measured by the Mayo score). We further built a planned
transplant of specific taxa while balancing between the
number of non-zero taxa (cost and feasibility) and the
quality of the optimization by using a GA.

To our knowledge, these are the first tools to propose
a generic fully donor-based prediction for FMT success.
Such algorithms can change the way FMT donor selec-
tion is performed—f{rom randomly matching the donor
or using a rational donor selection [81] to optimize the
most appropriate donor given a certain outcome. The
tools are available at:https://github.com/oshritshtossel/
iMic_FMT and the trained algorithm (iMic) is avail-
able in the Drive at https://drive.google.com/file/d/1FIDy
8uUBdv9Alj-xTe9Brkl5_QGBwamc/view?usp=sharing as
well as in the Supplementary Material—“shannon weight.
ckpt” for convenient reference and utilization.

The proposed models focused on the short-term post-
EMT outcome. Longitudinal analyses in patients who
have received FMT for recurrent CDI have shown an
effect of FMT-induced microbiota alterations lasting any-
where from a few days to a few years after transfer [40,
82, 83]. A recent FMT/CDI study by Moss et al. discov-
ered that despite the short-term similarity between donor
and recipient gut microbiota profiles, concordance was
significantly reduced after a year [84]. In the FMT study
by Moayeddi et al., 8 of the 9 ulcerative colitis patients
who were in remission at week 7 post-FMT were still in
remission a year later with no instances of relapse [85].
In our results, the waning effect of the transplantation is
accompanied by a decrease in the accuracy of the predic-
tion, mainly in mice, and partially in humans.

While off-the-shelf treatments require a fully donor-
based transplant selection, the recipient microbiome
and health have been shown to also affect the outcome.
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Here, we observed a clear hierarchy in the outcome
prediction accuracy, where GF mice are more precisely
predicted than ABX-treated mice and ABX-treated
humans are more precisely predicted than non-treated
humans.

The danger of microbial toxicity may be solved via
bacterial cocktails and personalized probiotics, in
which we generate the transplant from scratch [17,
86, 87]. However, to our knowledge, generating a high
variety of taxa from scratch has not yet been done
commercially. We propose here an optimal solution
for generating, such a mixture. Note that in all the
models tested here, the donor properties were more
important than other features, and there was a limited
contribution of the recipient microbiome to the out-
come (Fig. 5H). However, this may be a limitation of the
datasets studied here.

To summarize, we have here proposed 2 alternative
clinical scenarios. The first case is the choice among a
set of existing donors for the specific donors optimizing
the transplant outcome. The second is the possibility of
generating a microbial “Soup” with a limited number of
microbes. While the second solution may be safer and
more efficient, the first one is probably more amenable to
clinical use with current practices. The trained algorithm
(iMic) is available in the Drive at https://drive.google.
com/file/d/1FIDy8uUBdv9Alj-xTe9Brkl5_QGBwamc/
view?usp=sharing and as a Supplementary Material—
“shannon weights.ckpt”.

Conclusions

The donor’s phenotype differs from the recipient’s phe-
notype. However, the recipient’s future properties a week
post-FMT in GF mice and for a period of up to 24 weeks
post-FMT in humans can be predicted from the donor’s
microbiome solely by using our prediction tool. We
further proposed another tool to optimize the optimal
transplant (bacterial cocktails). By using our predictor
and a GA, one can control the balance between the num-
ber of taxa to transplant and the targeted outcome. We
validated our predictor using a de-novo FMT experiment
highlighting the possibility to choose transplants that
optimize the required goals. Our tools may change the
current FMT protocols both on transplants from existing
donors as well as planned transplants (from scratch).
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