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Abstract 

Background Bacterial strains under the same species can exhibit different biological properties, making strain-level 
composition analysis an important step in understanding the dynamics of microbial communities. Metagenomic 
sequencing has become the major means for probing the microbial composition in host-associated or environ-
mental samples. Although there are a plethora of composition analysis tools, they are not optimized to address 
the challenges in strain-level analysis: highly similar strain genomes and the presence of multiple strains under one 
species in a sample. Thus, this work aims to provide a high-resolution and more accurate strain-level analysis tool 
for short reads.

Results In this work, we present a new strain-level composition analysis tool named StrainScan that employs a novel 
tree-based k-mers indexing structure to strike a balance between the strain identification accuracy and the com-
putational complexity. We tested StrainScan extensively on a large number of simulated and real sequencing data 
and benchmarked StrainScan with popular strain-level analysis tools including Krakenuniq, StrainSeeker, Pathoscope2, 
Sigma, StrainGE, and StrainEst. The results show that StrainScan has higher accuracy and resolution than the state-
of-the-art tools on strain-level composition analysis. It improves the F1 score by 20% in identifying multiple strains 
at the strain level.

Conclusions By using a novel k-mer indexing structure, StrainScan is able to provide strain-level analysis with higher 
resolution than existing tools, enabling it to return more informative strain composition analysis in one sample 
or across multiple samples. StrainScan takes short reads and a set of reference strains as input and its source codes are 
freely available at https:// github. com/ liaoh erui/ Strai nScan.
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Background
There is accumulating evidence showing that strains 
within a species can have different metabolic and func-
tional versatility due to the genomic variations [1–3]. 
Strains under the same species can exhibit high sequence 

diversity and different gene organizations [4]. Unique 
genes or SNPs to a strain may lead to new enzymatic 
functions, antibiotic resistance, virulence, different 
infecting viruses, etc. For example, there are at least 
thousands of strains identified for E. coli, with some of 
them containing virulence factors while others being 
commensal. A notable example is 2011 E. coli outbreak 
in Germany caused by a strain O104:H4, which acquired 
a Shiga toxin-encoding prophage and other virulence fac-
tors [5].

As different strains can have different biological prop-
erties, pinpointing the strains is important for both 
composition and functional analysis of microbiome. 
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Metagenomic sequencing data, which contains 
sequenced genetic materials from a host-associated or 
environmental sample, has become a major source to 
study strain-level compositions of bacteria. There is an 
increasing number of studies generating new knowl-
edge about strains’ genotypes and phenotypes in dif-
ferent samples. For example, Pollard et  al. showed that 
many prevalent bacterial species have strain-level com-
position associated with a geographic location in 198 
marine metagenomes [6]. A closely related study showed 
that dominant E. coli strains change over time in the gut 
microbiome of a Crohn’s disease patient [7]. P. copri, 
another very common bacterium in the human gut, has 
been proven to have a tight link between its strains and 
the host’s geographical location and dietary habits [8, 9]. 
Some strains of the potential probiotic A. muciniphila 
are found to have anti-inflammatory properties, which 
could have beneficial effects on obesity and diabetes [10]. 
In addition, there are differences in the distribution of 
strains in different parts of the human body. For example, 
a past study [11] has found that strains of C. acnes and S. 
epidermidis collected from different sites of the body are 
heterogeneous and multiphyletic.

Despite the importance of strain-level analysis, it 
remains difficult to conduct the taxonomic analysis below 
the species level. One challenge comes from the fact that 
multiple highly similar strains can exist simultaneously 
in one sample [12]. For example, one recent study [13] 
found that 2 or 3 Staphylococcus epidermidis strains can 
coexist in human fecal samples with a Mash [14] dis-
tance of approximately 0.005. Similarly, there are reports 
showing that multiple strains of C. acnes, an important 
component in the human skin microbiome, often form 
a complex mixture [15]. Some of these coexisting strains 
exhibit high sequence similarities, with a Mash distance 
of approximately 0.0004. Moreover, a study [16] ana-
lyzing 2144 human fecal metagenomes revealed that 
numerous samples contained highly similar strains of 
Bacteroides dorei, coexisting with one another. Com-
monly used metagenomic binning and assembly tools are 
not designed to distinguish different strains. Although 
there are strain analysis tools, they may either require 
multiple samples from the same population [17], only 
output the dominant strain [18–21], or pose a restriction 
on the similarity between the strains [22]. The second 
challenge that immediately follows is the resolution of 
strain-level identification. The resolution here is reflected 
by the size of the reference database, with a larger num-
ber of reference strains indicating a higher resolution 
[23]. Although some of the strains share very high simi-
larities, there are no known similarity cutoffs below 
which the genetic differences can be ignored. For exam-
ple, E. coli CFT073 and E. coli Nissle 1917, which are 

pathogenic and probiotic respectively, have a sequence 
similarity of 99.98% [24]. Similarly, one phage-host coev-
olution study [25] found that even if the bacterial strains 
contain high genome ANI (>99.9%), the strains can be 
infected by different phages, showing different defense 
or adsorption mechanisms. For some species with high 
strain-level diversity, even a few SNVs can lead to phe-
notypic variations [26, 27]. Thus, a higher resolution can 
enable a more accurate characterization of the relation-
ship between genotypes and phenotypes. Tools including 
StrainGE [28] and StrainEst [29] are designed to untangle 
strain mixtures, but are limited to reporting a representa-
tive strain in a sampled strain genome database. Their 
clustering cutoffs (0.9 k-mer Jaccard similarity (StrainGE) 
or 99.4% ANI (StrainEst)) can still lead to large clusters 
for some bacteria. Although StrainGE can further iden-
tify SNPs/deletions against the identified representative 
strain in a sample, it doesn’t pinpoint the specific strain 
in the identified clusters. Two k-mer-based tools, Krak-
enuniq [30] and StrainSeeker [31], also have a very low 
resolution in strain-level identification when strains in 
the database share high similarities. The third challenge 
is the identification of low-abundance strains. For exam-
ple, the de novo strain construction tools [32, 33], which 
aim to reconstruct strains by using assembly-based 
strategies, usually require a high coverage of strains to 
achieve an accurate strain reconstruction. Besides, many 
strain-analysis tools [34–36] also require strain coverage 
greater than 10X to return accurate identification. Thus, 
it remains a challenge to identify strains with low cover-
age for these tools. The last challenge is strain identifica-
tion time. According to the recently published studies 
[23, 37], most alignment-based strain-level identification 
tools including Sigma [38], and Pathoscope2 [39] can be 
computationally expensive when the database is large. 
While the large reference database can increase coverage 
of intra-species diversity, it also requires more computa-
tional resources.

Thus, there is a pressing need to provide more sen-
sitive, accurate, and efficient strain-level analysis for 
metagenomic data. In this work, we introduce Strain-
Scan, an open-source tool that can accurately detect 
known strains from sequencing data, including metagen-
omic data or whole-genome sequencing data. In order 
to strike a balance between the resolution and compu-
tational complexity, we developed a novel hierarchical 
k-mers indexing structure for a large number of strains, 
which usually demonstrate heterogeneous similarity 
distributions. In the first step, we cluster highly simi-
lar strains into clusters. Then we design a novel Clus-
ter Search Tree (CST), a tree-based indexing structure 
for cluster search. By carefully balancing the number of 
k-mers in each node, we optimize the CST to prevent 
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false positive strain identification for low abundance 
strains. In the second step, we use strain-specific k-mers 
and k-mers that represent SNVs and structural variations 
to determine which strains are likely to present. The final 
output of StrainScan includes the identified strains and 
their abundances. By searching strains inside the identi-
fied clusters, StrainScan achieves a higher resolution than 
cluster-level tools such as StrainGE and StrainEst, which 
only keep one representative strain for each cluster. As 
shown in Fig.  1A, different resolutions can lead to dif-
ferent observations and conclusions. While StrainScan 
can identify two different strains in sample S1, StrainGE 
or StrainEst does not distinguish them because they are 
from the same cluster. Similarly, pinpointing a specific 
strain rather than a cluster when comparing two samples 
(S1 and S2) can lead to more accurate gene composition-
based analyses because the strains in one cluster can still 
possess very different gene contents (Fig. 1B and C).

By benchmarking StrainScan with other available tools 
on multiple simulated and real sequencing datasets, we 
demonstrate that StrainScan can output strain-level com-
position with higher accuracy than the state-of-the-art 
tool. In particular, when compared to the state-of-the-
art tools such as StrainGE, StrainScan improved the F1 
score by more than 20% in identifying multiple strains 
at the strain level. StrainScan is a targeted strain com-
position analysis tool, requiring users to provide refer-
ence genomes for bacteria of interest. By supporting 

customized construction of the indexing structure for 
any set of reference genomes, it can be applied to any 
bacterium.

Methods
Overview of StrainScan
StrainScan is designed to identify known strains from 
short reads directly. Because there are many species-level 
composition analysis tools for metagenomic data, the 
inputs to StrainScan are the short reads in “fastq” for-
mat and strain genomes for targeted bacteria in “fasta” 
format. To strike a balance between the strain identi-
fication resolution and computational cost, we design a 
hierarchical indexing method that combines a fast but 
coarse-grained Cluster Search Tree (CST) and a slower 
but fine-grained strain identification strategy inside a 
cluster. As shown in the flowchart in Fig. 2, we first cre-
ate a cluster tree-based indexing structure. With our effi-
cient and accurate cluster search method on this tree, we 
can first pinpoint a cluster that is present in the sample. 
Then we will use carefully chosen k-mers to distinguish 
different strains in the identified clusters. The hierarchi-
cal method has several advantages. First, it allows us to 
accommodate the heterogeneous similarity distribution 
between strains with some strains sharing much higher 
similarities than others. The strains with low similarity 
can be quickly identified by our fast CST search strat-
egy. And only those highly similar strains need a finer 

Fig. 1 A StrainScan achieves higher strain-level resolution by searching strains inside identified clusters. In contrast, cluster-level tools like StrainGE 
and StrainEst only return the representative strain of the identified cluster and will not search for other strains in the cluster. “S1” and “S2” are two 
input metagenomic samples. B–C Gene content differences between strains from a real cluster (named cluster 1) containing 216 E. coli strains. The 
10 strains in B have a total of 1722 strain-specific genes. “GCF_001695515” and “GCF_013167975” in C are the longest and shortest strain in cluster 1, 
respectively
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distinction in the second step. Second, the hierarchical 
method can increase the search accuracy by allowing us 
to use more unique k-mers (Supplementary Table S1). 
Any k-mers that is shared between clusters now can be 
utilized for within-cluster search. Third, the hierarchical 

method can reduce the memory footprint. Without the 
hierarchical method, we need to search strains from all 
references that contain a large number of k-mers. Given 
the clusters identified by CST search, StrainScan only 
needs to search strains in identified clusters that contain 

Fig. 2 The overview of StrainScan. (a) The sketch of the strain genome clustering process. Given the strain genomes (G1, G2, ...) of the bacteria 
of interest, all-against-all k-mers Jaccard similarities are computed using Dashing [40]. Genomes are then clustered using single-linkage hierarchical 
clustering. By default, the clustering threshold is set to a Jaccard similarity of 0.95. In this example, given the cutoff represented by the dashed 
red line, five clusters from C1 to C5 are output by the clustering process. (b) Given the clusters, construct the hierarchical cluster tree for later 
cluster-level identification. (c) Generate collinear blocks to extract k-mers that can help distinguish different strains inside the same cluster. (d) Step 
d concludes the indexing structure process for the reference genomes. (e) and (f ) The indexing structure and the sequencing data (reads) are input 
for strain search. (e) Search for clusters. (f ) Strains are identified by the iterative matrix multiplication, and the relative abundance profile is finally 
inferred by elastic net regression



Page 5 of 24Liao et al. Microbiome          (2023) 11:183  

fewer strains and k-mers. For example, the total num-
ber of k-mers in E. coli reference set before clustering is 
192,325,016, while the number of k-mers in the largest 
cluster after clustering is reduced to 16,071,080 (Supple-
mentary Table S1).

Cluster Search Tree (CST) construction
Given many strains’ genomes of the same species, we first 
calculated a Jaccard similarity matrix with an alignment-
free, k-mers based method Dashing [40] ( k = 31 ). Then, 
we performed the agglomerative hierarchical clustering 
(single-linkage) based on this matrix, grouping the strains 
into a dendrogram. Finally, we chose a fixed height cutoff 
H (0.95 by default) to cut the dendrogram into many clus-
ters, with which consisting of one or more strains. The 
strains inside each cluster have the k-mer-based Jaccard 
similarity ≥ 0.95 , which roughly corresponds to average 
nucleotide identity (ANI) of 99.89% [28].

To pinpoint the cluster where a strain is contained, we 
will convert the clusters and the dendrogram into a CST 
to support both accurate and efficient cluster search. The 
CST keeps the same tree topology as the dendrogram 
except that each cluster is represented by a leaf node in 
the tree. In addition, we discard the distance informa-
tion in the dendrogram so that the distance between 
each node and its parent (or child) is uniform, regard-
less of their Jaccard similarities. Thus, the CST is a full 
binary tree. In order to support the cluster search, each 
node contains a set of k-mers that are unique to the sub-
tree rooted by this node. By conducting k-mers match, 
the CST will guide us to take either the left child or the 
right child until reaching one or multiple leaf nodes (i.e., 

clusters). We first describe how we assign k-mers for each 
node.

k‑mers assignment for the nodes
A CST is defined by two elements: the tree topology and 
the k-mers set assigned for each node. In this section, 
we will describe how we assign k-mers for the nodes to 
support the cluster search. For a node v in the CST, we 
denote the subtree rooted by v as Tv . The k-mers assign-
ment of v follows two criteria. First, the k-mers should be 
shared by most of the strains in the leaf nodes of Tv . Sec-
ond, the k-mers are unique to the strains in Tv . The two 
criteria are visualized using an example in Fig. 3A.

Following the two criteria, we first assign leaf nodes 
with k-mers extracted from strains in their corresponding 
clusters. To use k-mers that represent relatively well-con-
served features in the underlying strains, only the k-mers 
that appear in at least α% of the strains will be kept for 
clusters with multiple strains. Big α indicates that only 
k-mers shared by many strains are used for building the 
CST while small α allows the CST to use strain(s)-specific 
k-mers. We compared the cluster identification perfor-
mance using a range of α in our experiments. According 
to the empirical results in Supplementary Fig. S1, we set 
the default α as 90.

Hereafter, we denote the initial k-mers set for a leaf 
node v as Lv . Next, starting from the leaf nodes, we recur-
sively move the shared k-mers between every two sibling 
nodes towards their parent. In the last step, all k-mers 
that occur in more than one node will be removed. At the 
end of this process, each node v (an internal node or a 
leaf node) contains a set of unique k-mers denoted as Kv . 
Specifically, Kv for a node v can be constructed using a set 

Fig. 3 A An example of the k-mers assignment in the CST-based indexing structure. Each node possesses k-mers unique to its rooted subtree 
and is shared by most of the strains in the subtree. Each bar with a specific color represents a k-mers and each node is assigned with one unique 
k-mers in this example. B When constructing node v’s k-mers set, all leaf nodes will be divided into three groups named PREv , SUBv , and EXTv
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operation as shown in Equation (1). For the node v with 
depth dv , all the leaf nodes are divided into three groups 
based on their relationship with v, as shown in Fig.  3B 
and defined below.

 

The CST constructed so far is similar to the tree built in 
StrainSeeker [31]. Although using the unique k-mers Kv 
can guide the search for identifying strain clusters, a sig-
nificant limitation is that some nodes only contain a small 
number of unique k-mers, which can lead to false positive 
(FP) matches more likely than nodes with many k-mers. 
This was observed when applying StrainSeeker. Take the 
StrainSeeker database built from 112 P. copri strains as an 
example. Out of 222 nodes, 21 nodes are empty, and 104 
nodes have k-mers fewer than 1000. The nodes with small 
k-mers sets tend to be matched by chance and thus lead 

(1)Kv =

i∈SUBv

Li −

i∈EXTv

Li −

i∈PREv

Li

to FP identification. In order to address this limitation, 
we will augment those nodes by adding k-mers that do 
not add ambiguity to the cluster search. The details of the 
CST optimization method can be found in Supplemen-
tary Section 1.1.

Cluster search in the CST
Given the input sequencing data, we first extract all 
k-mers from the CST and conduct fast k-mers match 
for all short reads using Jellyfish [41]. Then, the k-mers 
match counts by all reads will be mapped back to the 
CST. Each node v will be assigned with a one-dimen-
sional numerical vector Cv = (c1, c2, ..., c|Kv|) , with each 
cell recording a k-mers match count. The cluster search 
algorithm is based on Breadth-first Search (BFS), starting 
from the root and examining k-mers matches for nodes 
level by level (Fig. 4). The k-mers match vector Cv of each 
node v is used to decide whether or not to traverse v’s 
descendants based on a binomial test. The final search 
results contain one or multiple leaf nodes representing 
the strain clusters present in the sequencing data.

Scoring metrics
When the search visits a node v, two scoring metrics will 
be calculated to decide which child nodes will be vis-
ited. As shown in Fig. 4, the first metric is the fraction of 
matching k-mers ( fracv ), which represents the fraction of 

Fig. 4 An example of the cluster search process. The values of the two scoring metrics (abundi , fraci) are shown beside each node v. The search 
results contain clusters 4 and 5 with estimated abundance 23.8 and 9, respectively. Nodes 6 and 3 did not pass the binomial test, thereby 
failing to traverse their descendants. The nodes in Path4 and Path5 are colored by blue and orange, respectively. K4 shares the same orange k-mers 
with L5 . Thus, we need to adjust C4 based on cluster 5’s estimated abundance A5 to calculate the accurate scoring metrics
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k-mers in Kv that is present in the sequencing data. It is 
defined as:

where C+
v  represents the vector which contains all posi-

tive k-mers counts from Cv.
The second metric is the average k-mers match count 

( abundv ), which is computed only using k-mers with 
positive matching counts. And when fracv < 0.1 , abundv 
will be set to 0.

The search strategy
After we calculate the two scoring metrics of v, we con-
duct a binomial test to decide the traversal order in 
CST [18]. Because sequencing errors can incur k-mers 
matches, the main goal of the binomial test is to distin-
guish random matches by sequencing errors from true 
matches for a true strain, which is particularly important 
for strains of low abundance. Given a node v, we examine 
whether we can reject the null hypothesis that abundv is 
generated by sequencing errors.

Specifically, we first round abundv and abundp (p is the 
parent node of v) to their nearest integers abund′v and 
abund′p . Then, given the sequencing error rate e (1% by 
default), we reject the error-caused null hypothesis when 
the probability of abundv being generated from sequenc-
ing errors is smaller than β (0.05 by default). The prob-
ability is estimated with

where B(abundp, 1− e) is the probability mass function 
of the binomial distribution with abund′p ’s trials and the 
successful rate 1− e . Failing to reject the null hypothesis 
indicates that we cannot distinguish low-coverage k-mers 
matches and sequencing noise. Thus, we consider abundv 
is just from sequencing errors, and the search will stop 
for v’s descendants. Otherwise, if we succeed in reject-
ing the null hypothesis, we believe that one or multiple 
strain clusters in Tv are present in the sequencing data. 
And the CST search will add v’s two child nodes to the 
end of the BFS queue, preparing to traverse them later. 
Unlike the traditional binary search tree (BST), the two 
sibling nodes of the same parent can both reject the 
error-caused null hypothesis. Therefore, we can traverse 

(2)fracv =
|C+

v |

|Cv|

(3)abundv =

{

∑

c∈C+v
c

|C+
v |

, fracv ≥ 0.1

0, fracv < 0.1

(4)PXB̃(abund′p ,1−e)(X ≤ abund′p − abund′v)

all of their descendants, and the search results of CST are 
probably more than one.

Cluster identification
Once we reach a leaf node, we will further examine the 
k-mers matching and abundance estimation statistics 
using both the leaf node and its ancestor nodes that 
contain k-mers moved from the leaf nodes. If there is 
only a single leaf node identified, all the nodes along 
the path from the root to v can be used to compute the 
k-mers statistics. However, if there are multiple leaf 
nodes identified, not all the ancestor nodes should be 
used. Instead, only the ones that contribute uniquely 
to the leaf node v should be used to compute the final 
abundance. These nodes can collectively constitute a 
path Pathv , where all of the k-mers matches on Pathv 
only originate from strains in the leaf node v. To iden-
tify Pathv , we first identify the maximum subtree that 
only contains v as the identified node. And Pathv is 
equivalent to the path between the root of this sub-
tree to v. Using the k-mers counts of nodes on Pathv all 
together to estimate the cluster’s abundance will pro-
vide higher confidence than using a single leaf node. 
Take Path4 in Fig.  4 as an example, two leaf nodes 4 
and 5 are identified. In this case, Path4 is the root-to-
leaf path containing v in node 8’s rooted subtree Tv8 . 
Subsequently, we can collect all k-mers match counts 
Ci on Pathv to calculate the weighted average fraction 
of matching k-mers Fv and the weighted average k-mers 
match count Av:

If Fv is larger than a given cutoff (the default value is 0.4, 
but users can modify the value to adapt to different con-
ditions), we consider the cluster in v is present in the 
sequencing data. After finishing the CST search, all iden-
tified clusters will be output with their estimated abun-
dances (calculated by Av ). Besides, when the sequencing 
data contains multiple strains in different clusters, some 
FPs will be introduced because of the added k-mers dur-
ing the weak node augmentation. The detailed method 
to address this problem can be found in Supplementary 
Section 1.2.

(5)Fv =

∑

i∈Pathv

|C+
i |

∑

i∈Pathv

|Ci|

(6)Av =

∑

i∈Pathv

|C+
i | · abundi

∑

i∈Pathv

|C+
i |
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Strain identification within the clusters
The CST is optimized for distinguishing clusters with 
similarity below a given cutoff. Using CST to distinguish 
highly similar strains can lead to a large number of weak 
nodes that cannot be augmented because of the large per-
centage of shared k-mers. Thus, once we pinpoint a clus-
ter, we need a fine-grained method to distinguish highly 
similar strains. Once we pinpoint a cluster, the number of 
strains to distinguish is significantly reduced compared to 
the original problem space. Thus, we can afford to use all 
k-mers with distinguishing power. The first feature used 
is the unique k-mers from strain-specific regions, here we 
call it the strain-specific k-mer. The second feature used 
is the group-specific k-mer, which may come from struc-
tural variants (SVs) common to some strains. In a recent 
study [42], SVs have been used to distinguish different 
strains. Inspired by that study, we extract group-spe-
cific k-mers from the SVs shared by some strains. How-
ever, relying only on strain-specific and group-specific 
k-mers still suffers from low resolution in some cases. 
For example, in Fig. 5, both Strain4 and Strain5 have the 
same group-specific k-mers, and when the strain-spe-
cific k-mers of Strain5 is not present in the sample, we 
cannot make a fine distinction between the two strains. 
Therefore, to further improve the resolution, we add joint 
k-mers sets, which contain SNVs and indels from core 
genomic regions present in all genomes [29, 38, 43]. As 
shown in Fig. 5, for all joint k-mers, although each k-mers 
is not strain-specific, the joint k-mers set for each strain 
is unique. However, the number of joint k-mers is often 
not as many as the first two types of k-mers (Supple-
mentary Table S2). They need to be combined together 

to improve the resolution of identification. By utilizing 
these three types of k-mers, we improve the resolution 
of identification and reduce the search space at the same 
time.

To efficiently extract these k-mers, we utilize Sibeliaz 
[44], an efficient tool designed for identifying locally col-
linear blocks in closely related genomes. Based on the 
blocks generated by Sibeliaz, we develop a hash-based 
algorithm to extract these k-mers from strain genomes 
and save them in a matrix for later usage. The algorithm’s 
main pseudocode is shown in Supplementary Section 1.3. 
The input to the algorithm is strain genomes within the 
same cluster and blocks generated by Sibeliaz. By using 
the efficient hash table, the algorithm can extract target 
k-mers quickly. Finally, all extracted k-mers from a clus-
ter are saved in a matrix X of size M × N  , where M is the 
number of k-mers and N is the number of strains in this 
matrix. Then, X [i, j] = 1 if strain j has ith k-mer, other-
wise, X [i, j] = 0 . When there are multiple clusters, multi-
ple corresponding matrices are created, respectively.

Strain identification using chosen k‑mers
After extracting the k-mers in the previous step, we need 
to use these features for strain identification. To disen-
tangle complex communities of closely related strains in 
the same cluster, we apply the iterative matrix multiplica-
tion to determine all coexisting strains and predict their 
relative abundance using elastic net regression.

The main goal of the iterative matrix multiplication 
is to determine strains in the same cluster by using three 
types of k-mers (Fig.  5) in the k-mers matrix. To achieve 
this goal, we compare the k-mers in the sample to those 

Fig. 5 Use strain-specific k-mers, group-specific k-mers and joint k-mers to distinguish five strains in the same cluster. Each strain has a unique 
k-mers combination
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in the k-mers matrix X using an iterative strategy similar 
to that of QuantTB [37]. The method is described as fol-
lows. Given the cluster selected by the tree search and 
k-mers from its k-mers matrix X, we will apply Jellyfish [41] 
to count all these selected k-mers in the sequencing data. 
Denote the occurrences for all selected k-mers from the 
Jellyfish as a vector y: y = (y1, y2, y3, ..., yM)T , where yi ≥ 0 
and represents the occurrences of the ith k-mers in the 
matrix. However, the overlapping k-mers from other iden-
tified clusters could lead to false k-mers matches or wrong 
abundance estimation. To remove the influence of other 
clusters, if one k-mers is found in other clusters detected 
by the tree search, its occurrence will be replaced with 0. 
For the M × N  k-mers matrix X, its jth column X[ : , j] is 
defined as:

Based on X and y, we use the iterative matrix multipli-
cation, which can detect all possible strains in a sample 
accurately and quickly. Given X and y, the function will 
calculate a score fj = X [:, j] · y for each strain. Note that 
we regard values beyond the 5th and 95th percentile to be 
outliers, and we will set the value of all outliers as 0. The 
function will rank all strains according to their scores. 
After ranking, the function will output the top 1 strain in 
the ranked list and then update y by replacing the occur-
rences of all k-mers in identified strain with 0. This pro-
cess is repeated. It continues to calculate the score and 
identify the most likely strain in each iteration until the 
occurrences of k-mers with nonzero value is below the 
given threshold, whose default value is 31 ∗ 40 = 1240 
k-mers. All the experiments in this work are conducted 
using the default cutoffs.

Knowing the possible strains in the sample, we use the 
elastic net regression model to predict sequencing depths 
and relative abundances of identified strains. We choose 
the elastic net model instead of the Lasso model because 
the Lasso model tends to underestimate the number 
of strains, leading to a decrease in recall. After iterative 
matrix multiplication, we obtain the filtered k-mers matrix 
X ′ = M × N ′ , where N ′ is the number of identified strains. 
Sequencing depths, which are the regression coefficients 
β ′ , are predicted by minimizing the elastic net penalized 
residual sum of squares:

α and � are two important parameters that will affect 
the model performance and therefore need to be tuned. 
We have designed a function to tune the α and � based 

(7)
X[:, j] = (X[1, j],X[2, j],X[3, j], ...,X[M, j])T,

j = 1, ...,N

(8)

β ′ = argmin

β∈X ′N ′
|βk>=0

∥

∥y− X ′β
∥

∥

2

2
+ �(α|β|1 +

(1− α)

2
|β|2)

on cross-validation to obtain the model with the lowest 
predictive error. Given this best model, we calculate the 
strain relative abundance a = (a1, a2, a3, ..., aN ′) by nor-
malizing the regression coefficients β ′ of the model. How-
ever, if multiple clusters are detected by the tree search, 
the relative abundance of one strain i will be recalculated 
according to the abundance of clusters. So, the final rela-
tive abundance (RA) of each strain i is calculated as:

where C is the abundance of the cluster predicted by the 
tree search, and n is the total number of all identified 
strains.

Prediction accuracy evaluation
In order to test the performance of each method, we cal-
culated the recall, precision, and F1 score for every test 
category. True positive (TP) refers to the number of cor-
rectly identified strains. False negative (FN) refers to the 
number of strains present in the sample but missed by 
a tool. False positive (FP) is the number of misidentified 
strains.

In all experiments, we used the Jensen-Shannon diver-
gence (JSD) [55] to measure the distance between the 
true and predicted relative abundance. If the predicted 
and true abundance have different dimensions, we will 
calculate JSD by adding zeros to the one with the lower 
dimension. Suppose there are two probability distribu-
tions T and P, their Jensen-Shannon divergence is a value 
between [0, 1] and is defined as:

where

and D(T || K ) is called the Kullback-Leibler divergence 
from T to K and it is defined as:

(9)RAi =
ai ∗ Ci

∑n
j=1 aj ∗ Cj

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall

JSD(T || P) =
1

2
D(T || K )+

1

2
D(P || K )

K =
1

2
(T + P)

D(T || K ) =
∑

i

T (i) log
T (i)

K (i)
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Results
Because StrainScan focuses on identifying known 
strains, we test the performance of StrainScan on six 
bacteria that can pose computational challenges for 
strain-level analysis. All chosen bacteria have at least 
100 sequenced strains. Some of them have a large num-
ber of known strains such as E. coli and S. epidermidis. 
Some have strains with extremely high sequence simi-
larity, such as M. tuberculosis. In addition, we choose 
bacteria that usually inhabit different ecosystems such 
as the human gut and human skin, including A. mucin-
iphila, P. copri, and C. acnes. We carried out multiple 
experiments to evaluate StrainScan. The overview of 
all experiments is summarized in Table  1. First, we 
tested the ability of StrainScan in identifying one strain 
and multiple co-existing strains in simulated data and 
spiked metagenomic data. We generated different 
datasets by configuring the parameters such as strain 
similarity and strain sequencing depth, which help us 
compare the performance of different tools in difficult 
scenarios. Second, we tested StrainScan in three mock 
community datasets, which allow us to evaluate dif-
ferent tools in real sequencing data with known strain 
composition. Third, we tested StrainScan in 94 real 
sequencing datasets with various depths (Supplemen-
tary Table S3) [21, 29, 37, 39, 52]. Because there is usu-
ally no ground truth for the strain composition in the 
real sequencing data, we choose the datasets that had 
been analyzed by the authors of the data. By compar-
ing the analysis results, we are able to draw some con-
clusions about different tools’ performance. In these 
experiments, we used the F1 score, precision, recall, 
and Jensen-Shannon divergence as the evaluation met-
rics, which are defined in the “Methods” section. We 
benchmarked StrainScan against popular reference-
based strain-level analysis tools including Krakenuniq 
(V0.5.8) [30], StrainSeeker (V1.5) [31], Pathoscope2 
(V2.0.6) [39], Sigma (V1.0.1) [38], StrainGE (V1.1.5) 
[28], and StrainEst (V1.2.4) [29].

Evaluation of StrainGE and StrainEst at two resolu-
tion levels Among these tested tools, StrainGE and 
StrainEst group strains into clusters and only keep a 
representative strain for each cluster [28, 29]. Thus, 
we evaluated their performance at two resolution lev-
els: strain-level and cluster-level. Strain-level evalua-
tion only counts the output as true positive (TP) if the 
identified representative strain is identical to the pre-
sent strain. Cluster-level evaluation counts the output 
as TP if the returned representative strain is in the 
same cluster as the target strain. Correspondingly, the 
definition of FP is also more lenient at the cluster level. 
For all other tools, we used the strain-level resolution 
to calculate the related statistics. Below we present the 
experimental results.

Reference database construction
For all the species tested in this work, we created the 
reference strain genome database as comprehensively as 
possible. Thus, we downloaded all complete and draft 
genomes from the NCBI RefSeq database for the tested 
bacteria. But there are 25,349 E. coli genomes, requiring 
>1TB memory. Due to the constraints of our hardware 
resources, we only used the complete E. coli genomes 
from RefSeq. Similar to E. coli, our hardware resources 
prevent us from using all draft and complete genomes 
for M. tuberculosis. In addition, some available genomes 
for M. tuberculosis only differ by fewer than 10 positions 
[37]. These near-identical strains will be clustered in our 
pre-processing step. Thus we computed pairwise Jaccard 
similarities of all M. tuberculosis strains using Dashing 
[40] and performed complete-linkage clustering using 
a k-mers Jaccard similarity threshold of 99%. Then, we 
only kept the strain with the highest average similarity to 
all other genomes in that cluster. As a result, 792 out of 
6,752 genomes are kept for M. tuberculosis.

The final numbers of the strains and their other proper-
ties were recorded in Table 2. The numbers of genomes 
that are used as input to all tested tools are shown 

Table 1 The overview of all experiments. Gray block: simulated data; Blue block: mock or spiked datasets; Orange block: real 
sequencing datasets. The strain composition of all datasets is provided by the simulation process or by the original publications [9, 15, 
28, 45–54]
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in the column “# of input genomes.” As mentioned 
before, StrainEst and StrainGE will cluster the input 
strain genomes and only keep one representative strain 
selected from each cluster in their final databases. As a 
result, there are significantly fewer strains left (Table 2). 
When we take a closer look at the clusters of StrainEst 
and StrainGE, we can observe significant differences in 
the gene contents and SNVs between the representative 
strain and other strains in the same cluster (Supplemen-
tary Fig. S3, S4, S5). For some species, there are over 5000 
SNVs between the actual strain and the representative 
strain. Within the same cluster, the longest strain can 
have more than 1000 genes than the shortest strain. As 
one recent study [56] shows, “singletons” (the unique 
genes) found in specific strains are very important to the 
understanding of strain properties. Thus, these large gene 
content variations between strains in the same cluster 
may lead to different properties and functions. A notable 
example is that two highly similar strains, E. coli CFT073 
and E. coli Nissle 1917, which are pathogenic and probi-
otic strains respectively, are grouped in the same cluster 
by StrainEst and StrainGE.

StrainScan also groups strains into clusters before con-
ducting intra-cluster strain identification. Our experi-
mental results show that the cluster search using CST 
can achieve 100% accuracy for all tested bacteria. For 
most bacteria, StrainScan has more fine-grained clusters 
than StrainEst and StrainGE (Supplementary Fig. S6), 
indicating a higher resolution at the cluster level.

Detecting a reference strain from simulated reads
The purpose of this experiment is to test StrainScan and 
other tools for identifying the present strain in a sample. 
There are two challenges. The first challenge is to dis-
tinguish the true strain from other highly similar peers. 
The second challenge is to identify a strain with low 
depth. Thus we generated multiple datasets with different 
sequencing depths.

For each bacterium, we randomly picked a reference 
strain and used its simulated short reads as input to all 
tools. In order to avoid any data-related bias, we repeated 
the experiment 60 times, with a strain randomly picked 
each time. For P. copri, we only repeated the experiment 
50 times because it has a small number of genomes. For 
each selected strain, we simulated reads with different 
sequencing depths (10X, 5X, 3X, 1X). Thus, there were 
1400 datasets in total. For each dataset, we simulated 
Illumina reads using ART [57] with the following param-
eters: -p -l 250 -f depth -m 600 -s 150, where depth is the 
specified sequencing depth. StrainScan and the other 
six programs were used to identify strains from these 
simulated reads. As Sigma and Pathoscope2 are compu-
tationally expensive, we were not able to construct their 
databases for E. coli, S. epidermidis, and M. tuberculosis.

The F1 score of each program is shown in Fig. 6A. The 
TP, FN, FP, recall, and precision are recorded in Sup-
plementary Table S4. Of these selected strains, some of 
them have more than 99.5% k-mer-based Jaccard simi-
larity with at least one other reference strain genome. 
As a result, several tools have low F1 scores. StrainScan 
achieves near-perfect F1 scores on all datasets when 
the depth is higher than 1X. However, for the species 
containing highly similar strains (A. muciniphila and 
M. tuberculosis), the F1 score of StrainScan drops a lit-
tle when the depth is 1X. When the depth is low and the 
strain similarity is very high, the CST algorithm fails to 
identify some strains due to low unique coverage, and 
thus the recall drops. Nevertheless, StrainScan still has 
the best F1 score for these species. Currently, the mini-
mum depth accepted by StrainScan is 1X and the perfor-
mance will drop rapidly if the depth is lower than 1X.

While Pathoscope2 and Sigma achieve relatively 
high recall, there are a lot of FPs in their output, which 
makes their precision much lower than other tools. 
Krakenuniq achieves a higher F1 score for the data-
sets where many strains have unique k-mers. However, 

Table 2 The summary statistics of the reference genomes for 6 tested bacteria. “Average Jaccard similarity” is obtained by calculating 
the average of k-mers Jaccard similarity of all strains using Dashing [40]

Species Average genome 
size

Average Jaccard 
similarity

# of input 
genomes

# of representative strains 
(StrainEst)

# of 
representative 
strains (StrainGE)

A. muciniphila 2.7 Mb 41.61% 157 42 48

C. acnes 2.5 Mb 63.69% 275 25 18

P. copri 3.5 Mb 30.94% 112 42 43

E. coli 4.9 Mb 40.62% 1433 333 662

M. tuberculosis 4.3 Mb 94.14% 792 63 10

S. epidermidis 2.5 Mb 58.20% 995 52 221
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highly similar strains of some bacteria lead to low recall 
and precision for Krakenuniq. StrainSeeker and Strain-
Est also have a large number of FPs, which leads to low 
precision. In addition, StrainEst is not able to identify 
strains with depths lower than 5X. StrainGE performs 
on par with StrainScan at the cluster-level resolution in 
many datasets. However, it returns more FPs when the 
sequencing depth decreases. For example, the cluster-
level precision of StrainGE on C. acnes drops from 0.95 
to 0.76 when the strain depth decreases from 10X to 1X. 
In contrast, StrainScan does not generate any FPs as the 
depth decreases (Supplementary Table S4). Even at the 
cluster level, the performance of StrainGE is not ideal for 
M. tuberculosis because those strains have high k-mers 

Jaccard similarities. Out of the tested tools, StrainSeeker 
tends to return multiple strains of the same score. This 
is similar to returning a representative strain by StrainEst 
and StrainGE, where a finer distinction between a group 
of strains is not provided. As a result, these tools suffer 
from low resolution. For example, StrainGE returns a 
representative strain for a cluster of size around 200 for 
E. coli (Supplementary Fig. S7). Based on our previous 
analysis of the genetic differences of the strains in those 
clusters (Supplementary Fig. S3), the resolution is not 
ideal.

Figure  6B shows the running time of different tools. 
StrainScan is efficient in all tested bacteria except M. 
tuberculosis. Due to high k-mer-based Jaccard similarities 

Fig. 6 A The F1 score of 7 tools on “single-strain” simulated datasets under different sequencing depths. B Running time comparison of 7 
tested tools. Sigma and Pathoscope2 have no values on some datasets because they are too computationally expensive to construct databases 
for the corresponding bacteria or to identify strains from simulated reads
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across strains of M. tuberculosis, StrainScan assigned 
most of the strains to one big cluster with a significant 
number of k-mers (Supplementary Fig. S6), and thus 
StrainScan took more time to distinguish them. Never-
theless, StrainScan still has the best recall and precision 
in terms of the identification of M. tuberculosis strains. 
All the strain identification experiments were tested on 
an HPCC CentOS 6.8 node with 2.4Ghz 14-core Intel 
Xeon E5-2680v4 CPUs and 128 GB memory. We used 8 
threads for all tools. In summary, StrainScan is able to 
achieve higher precision without sacrificing resolution, 
even when the true strain has peers of high sequence 
similarity.

Detecting co‑existing strains from simulated data
It has been shown that human-associated microbiota is 
often a complex mixture of closely related strains of the 
same species [15]. To quantitatively compare the perfor-
mance of Krakenuniq, StrainSeeker, StrainGE, Strain-
Est, and StrainScan on identifying multiple strains of the 
same species, we generated simulated datasets containing 
2, 3, and 5 randomly selected strains from six bacteria. 
Because Sigma and Pathoscope2 took too long to process 
these datasets, they were not included in this experiment.

To investigate how the similarities between the strains 
affect the tool’s performance, we used two strategies 
in the selection of multiple strains. During the cluster-
ing step of StrainScan, strains with k-mer-based Jaccard 
similarity greater than or equal to 95% (corresponding 
to an approximate ANI of 99.89%) are grouped into the 
same cluster. Therefore, it is more difficult to identify and 
distinguish the co-existing strains that are in the same 
cluster than those from different clusters. To consider 
different levels of difficulty, our first strategy randomly 
picked strains from different clusters while the second 
strategy selected different strains from the same cluster. 
For each strategy, we randomly selected 2, 3, and 5 strains 
(3 groups) and simulated the short reads using differ-
ent coverage profiles: 100X and 10X for 2 strains, 100X, 
50X, and 10X for 3 strains, and 100X, 70X, 50X, 20X, 
and 10X for 5 strains. Other read simulation parameters 
are the same as the “single-strain” experiment. Then we 
repeated the experiment 10 times by choosing another 
group of strains. Ultimately, for each bacterial species, we 
generated 30 sets of data containing different numbers of 
strains using the first and the second strategies, for a total 
of 60 sets of data. So there were a total of 360 (60 × 6) 
simulated datasets for the six bacterial species.

Cluster-level performance evaluation for multi-strain 
cases If a sample contains n strains from the same cluster 
defined by StrainGE or StrainEst, only one representative 
strain will be returned based on these tools’ design. Using 
this one representative strain will lead to a very small 

recall for multi-strain experiments. To avoid that, the 
returned representative strain will be counted n times, 
which usually makes the recall 1.0 in these tools’ favor. 
Because our clusters have greater granularity than the 
ones defined by StrainGE and StrainEst, the samples that 
are simulated from strains of the same cluster all belong 
to this case.

Benchmark results The F1 score comparison of differ-
ent tools is shown in Fig. 7A. The TP, FN, FP, recall, and 
precision are recorded in Supplementary Table S5 and 
S6. As shown in Fig. 7A, StrainScan achieves a near-per-
fect F1 score on all tested datasets. StrainGE has the same 
cluster-level F1 scores as StrainScan for experiments on 
P. copri and E. coli. Its cluster-level F1 score generally 
decreases with the increase of the similarity of the input 
strains, which can be observed by comparing the left 
and right panels of Fig. 7A. For example, its cluster-level 
recall on 5-strain datasets of A. muciniphila dropped 
from 0.94 to 0.42 (Supplementary Table S6). Similar to 
single-strain experiments, StrainGE’s cluster-level per-
formance on M. tuberculosis is still poor. StrainEst has 
many FPs in its output, which leads to low precision and 
F1 score. However, because of the way we evaluate the 
cluster-level performance, StrainEst’s cluster-level recall 
for strains of the same cluster appears higher than strains 
of different clusters, leading to better F1 scores (the right 
panel of Fig.  7A). The remaining tools have lower F1 
scores in general. Among them, Krakenuniq performed 
better in identifying strains from different clusters than 
in identifying strains from the same cluster, which was in 
line with its method. StrainSeeker has a lot of FPs in all 
tested datasets and its recall is also low for most tested 
bacteria, indicating that it was unsuitable for identify-
ing multiple strains. Besides, by analyzing the number 
of returned strains of the same score (StrainSeeker) and 
the number of strains in a returned cluster (StrainEst and 
StrainGE), we also found that high similarities between 
strains further reduce the resolution of StrainSeeker, 
StrainGE, and StrainEst (Supplementary Fig. S8). Overall, 
compared to other tested tools, StrainScan achieves more 
than 20% improvement in F1 score at the strain level for 
all datasets while keeping the high resolution.

StrainScan is also faster than StrainGE and StrainEst 
except M. tuberculosis (Fig. 7B). As mentioned in the pre-
vious section, due to the high similarity between strains 
of M. tuberculosis, StrainScan sacrifices the computa-
tional efficiency to distinguish the strains in the same big 
cluster and thus took longer to process M. tuberculosis.

Relative abundance computation In order to measure 
the accuracy of the predicted strain profiles in synthetic 
data sets, we computed the Jensen-Shannon divergence 
(JSD) between the actual and the inferred frequencies. 
In case the dimension of predicted and true relative 
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abundance may be different, we add zeros to the one 
with a lower dimension to calculate JSD. In the case of 
StrainGE and StrainEst, the abundance is calculated at 
the cluster level. For example, if there are two strains 
in a sample and these two strains have the same repre-
sentative strain, then we use the representative strain and 

its abundance twice for calculating JSD. This leads to a 
smaller JSD than setting one of the strain’s abundance as 
zero. The result is shown in Fig. 8. In all cases the strain 
distribution reconstructed by StrainScan had high preci-
sion, with a median of Jensen-Shannon divergence (JSD) 
< 0.01 . StrainGE and StrainEst had worse performance 

Fig. 7 A The F1 score of 5 tools on “multiple-strain” simulated datasets. The “cluster” in the title refers to the clusters generated by the CST algorithm. 
There are 60 sets of simulated reads containing 2, 3, and 5 strains with different similarities for each bacterial species. Note that StrainSeeker 
is not able to identify strains of M. tuberculosis and therefore, the related scores are 0. B Running time comparison of 5 tested tools
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in quantifying the composition with the increased num-
ber of strains. For species containing highly similar or a 
large number of strains like E. coli, M. tuberculosis, and 
S. epidermidis, StrainScan shows a clear advance over 
StrainGE and StrainEst. For StrainSeeker and Krake-
nuniq, the JSD was bigger than 0.1 in most cases, indi-
cating that these tools cannot accurately quantify the 
composition of strains. With increasing strain numbers 
and similarity, the median of JSD values of most tested 
tools increases while StrainScan’s JSD doesn’t fluctuate 
much in all cases. These results show that StrainScan can 
better quantify the composition of complex samples than 
other tools, even for samples containing highly similar 
strains.

Low-depth experiments for multiple strains To evalu-
ate the ability of different tools in identifying multiple 
strains at a lower depth, we simulated additional short 
reads from previously selected 2 strains using differ-
ent coverage profiles. Then, we benchmarked all tools 
using these datasets. The results revealed that Strain-
Scan demonstrated a clear advantage in identifying 
low-depth strains from many highly similar strains. 

For example, when identifying C. acnes strains with 
10X and 1X coverage, StrainScan achieved an F1 score 
of 0.98, while Krakenuniq and StrainGE, in second and 
third place respectively, achieved F1 scores of only 0.88 
and 0.81 (see Supplementary Table S7). Overall, Strain-
Scan shows competitive performance in identifying 
low-depth multiple strains (Supplementary Table S7 
and S8). Additional details regarding this experiment 
can be found in Supplementary Section 2.1.

What if the actual strain is not in the reference database?
When a target strain is not included in the data-
base, we expect that the strain identification tools 
can return its best match in the database. To evalu-
ate the performance of different tools in identify-
ing the best match, we downloaded 90 complete E. 
coli genomes that were released in 2022 from NCBI 
(Supplementary Table S9). Because the E. coli refer-
ence databases of all tools were constructed using 
complete genomes available up to 2021, all these 
genomes are not in our constructed databases. Then, 
we simulated reads of 10X coverage from the 90 E. 

Fig. 8 The Jensen-Shannon Divergence (JSD) of 5 tools between the ground truth and predicted relative abundance. Because StrainGE 
and StrainEst always return one representative strain for strains from the same cluster, the result shown here only includes strains from different 
clusters. The complete results containing strains from the same cluster and different clusters can be found in Supplementary Fig. S9
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coli genomes and used them as input to all tools. For 
each dataset, the “truth” in Fig. 9 is the Mash distance 
between the actual strain and its best match in all 
1433 E. coli strains (Table  2). We then recorded the 
Mash distance between the returned strain and the 
actual one for each dataset in the first four panels of 
Fig.  9. It should be noted that this is a single-strain 
experiment, and thus the Mash distance is computed 
using the returned strain (including the representa-
tive strain) and the actual strain. Out of these 90 
strains, 54 strains’ clusters are missing from the ref-
erence database of StrainScan. Nevertheless, StrainS-
can can correctly identify the closest matched cluster 
in the database for all these 54 strains (Supplementary 
Table S9). Furthermore, strains identified by StrainS-
can have a smaller Mash distance to the actual strain 
than other tools. Although the closest matches identi-
fied by StrainGE and StrainEst also have similar Mash 
distance to “truth” when “1-MashD” ranges from 0.98 
to 0.99, their performance drops when “1-MashD” 
increases. For example, when “1-MashD” between the 
actual strain and the best match is within (0.999, 1), 
StrainGE and StrainEst tend to return a representative 
strain from a relatively large cluster (Supplementary 
Table S9). As a result, these tools returned repre-
sentative strains with a larger Mash distance than the 
actual strain. In contrast, StrainScan achieves intra-
cluster strain identification and returns more accurate 
best matches.

For a more robust test, we downloaded 30 real E. coli 
whole-genome sequencing data with draft genomes in 

NCBI. To avoid data-related bias, the 30 real sequenc-
ing datasets are randomly selected from 3 different pro-
jects (PRJNA509690, PRJNA479542, PRJEB21464), and 
their coverage ranges from 20X to 94X [46, 47]. Accord-
ing to NCBI, the assembly levels of these draft genomes 
are all “Scaffold” rather than “Complete”. Thus, all these 
genomes are also not in the E. coli reference databases 
that were constructed using complete genomes. We fur-
ther compared the RefSeq accession of these 30 draft 
genomes with the genomes in our constructed data-
bases and did not find any matches. Then, we applied all 
tools to these real datasets and compared the identified 
strains with the draft genomes (the last panel of Fig. 9). 
As a result, StrainScan still returns more accurate best 
matches than other tools, demonstrating its utility in real 
applications.

Given that multiple strains lacking reference sequences 
in the database may coexist within a sample, we con-
ducted an additional 2-strain experiment using 90 E. coli 
genomes from the single-strain experiment. The results 
show that StrainScan achieves a 95% F1 score in identi-
fying multiple strains without reference genomes in the 
database, while the second-best tool, StrainGE (cluster-
level), only achieves a 78% F1 score (see Supplementary 
Fig. S10). Furthermore, StrainScan did not produce any 
false positive identifications in all of the tested datasets, 
and the strains identified by StrainScan had a smaller 
Mash distance to the ground truth than other tools (see 
Supplementary Table S10). Additional details regard-
ing this experiment can be found in Supplementary 
Section 2.2.

Fig. 9 The Mash distance between the identified strains and the ground truth in 90 simulated and 30 real E. coli datasets. The simulated datasets 
are divided into four groups according to the “1-Mash distance” between the actual strain and its best match among all strains in the database 
of StrainScan
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Assessment of StrainScan on spiked metagenomic 
sequences
While previous experiments mainly used simulated 
or real whole genome sequencing data, we now evalu-
ate whether Strainscan keeps the same performance on 
metagenomic data, which contains reads from different 
species. To this end, we conducted an experiment using 
spiked metagenomic data. Specifically, by mixing simu-
lated datasets of P. copri and E. coli with real data, we 
generated 130 spiked metagenomic data, which we sub-
sequently analyzed using StrainScan. The results show 
that StrainScan has the same results on these spiked 
metagenomic datasets as on the simulated whole genome 
sequencing data, demonstrating the robustness of Strain-
Scan on complex samples (Supplementary Table S11). 
Further details regarding this experiment can be found in 
Supplementary Section 2.3.

Evaluation of StrainScan on mock data
The HMP mock data In this experiment, we tested 
StrainScan on two samples from the Human Microbiome 
Project [49]. They contain 21 known organisms with even 
(SRR172902) or staggered composition (SRR172903). 
Out of the 21 organisms, 3 bacteria (E. coli, C. acnes, and 
S. epidermidis) represent hard cases for strain-level anal-
ysis, and we have established reference indexing struc-
tures for them. Thus, we conducted a strain-level analysis 
using StrainScan for the three bacteria. According to the 
given data description, each bacterium has only 1 strain 
in these two datasets. Although this is a single-strain 
detection, this test is challenging because some targets 
have low abundance in the samples. For comparison, 
we also used Krakenuniq, StrainSeeker, StrainGE, and 
StrainEst to identify the strains of these bacteria in these 
two datasets. The results of these 5 tools are shown in 
Table 3.

For all tested species, StrainScan correctly identified 
the presence of one dominant strain that is highly simi-
lar (Mash distance to the truth < 0.05% ) to the bona fide 
strain. Besides StrainScan, StrainSeeker and StrainGE 
also returned strains that are highly similar to the ground 
truth. However, the output of StrainSeeker often con-
tains multiple hits with identical scores, making accu-
rate evaluations difficult. For example, it returns 119 E. 
coli strains in two tested datasets, which makes it hard 
for users to know the actual strain present in these sam-
ples. In Table 3, we take the strain with the smallest Mash 
distance to the truth as the predicted dominant strain by 
StrainSeeker. StrainGE also returns strains with a small 
Mash distance to the ground truth. Of the two remain-
ing tools, StrainEst was unable to identify low-abundance 
strains and it took a long time to run, while Krakenuniq 

returned results that differed significantly from the 
ground truth.

The E. coli mock community with multiple strains To 
evaluate each tool’s performance on a real-world sample 
with known multi-strain composition, we downloaded 
a mock community sequencing dataset (SRR13355226), 
which contains a large number of reads from the host 
(i.e., human) as well as four different E. coli strains. All 
the reads are used as input to all tools. StrainScan was 
the only tool that identified four strains at the strain level 
correctly, with no false positive identifications (Sup-
plementary Fig. S11). StrainGE correctly identified four 
representative strains and had no false positive identifica-
tions. However, there are 136 different genes between the 
representative strain identified by StrainGE and the true 
strain. The genes are predicted using Prokka [58] and the 
comparison analysis is finished by Roary [59]. Though 
StrainEst also correctly identified four representative 
strains, it returned many FPs. The remaining two tools 
did not correctly identify all four strains, among which 
StrainSeeker’s output contained multiple hits with identi-
cal scores, while Krakenuniq reported many false positive 
strains.

StrainScan detects the pathogenic strain from real 
sequencing data
To illustrate the potential application of StrainScan in 
pathogen detection, we applied StrainScan to exam-
ine the presence of the pathogenic strain of E. coli and 
M. tuberculosis in two studies (BioProject Accession: 
PRJEB1775 and PRJEB2777). The first study is related to 
the 2011 E. coli outbreak in Germany [50], which was 
caused by an enteroaggregative (EAEC) strain. These 
datasets are sequenced using metagenomic sequencing 
from stool samples. According to the original article, the 
pathogenic strain is E. coli O104:H4. The second study 
investigates the frequency of M. tuberculosis relapses 
within patients from the REMoxTB clinical trial, which 
evaluated the treatment for M. tuberculosis in previously 
untreated patients [51]. The sequencing data is obtained 
from bacterial isolates, and each dataset has a publicly 
available assembled genome representing the strain con-
tained in the sample. From each of these two studies, 
we selected six samples for the experiment. For com-
parison, we also applied other tools to detect the patho-
genic strains in these real sequencing data. As shown 
in Table  4, StrainScan was able to identify the correct 
strains in all tested datasets while other tools failed to 
detect correct strains in some datasets. Although Strain-
Est could identify correct strains in most datasets, it only 
returned the representative strain of the correct strain for 
some datasets.
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StrainScan accurately detects the dynamics 
of antibiotic‑resistant S. epidermidis strains
In this experiment, we tested the ability of StrainScan to 
detect the dynamics of two S. epidermidis strains in pub-
lic metagenomic datasets (PRJNA490375). According to 
the original study [52], these datasets are generated from 
a mixed strain culture in vitro. The authors grew two skin 
isolates of S. epidermidis with 1:1 ratio in two groups. 
One group was grown with antibiotic erythromycin 
treatment (Ery) and the other was grown without anti-
biotic treatment (no_ATB). Among these two isolates, 
NIHLM023 is not resistant to the antibiotic erythromy-
cin while NIHLM001 is highly resistant to erythromycin. 
Finally, six datasets were obtained from two groups by 

metagenomic sequencing at three different time points. 
Although the relative abundance of these two strains is 
not given, the coverage ratio at each time point is given, 
which can be used to evaluate the proportion change of 
the two strains. According to the coverage ratio reported 
by the original study, NIHLM023 was always the domi-
nant strain in the group of no_ATB while NIHLM001 
was the dominant one in the group of Ery at each time 
point. Then, we applied StrainScan and other tools to 
these six datasets, and the result is shown in Fig.  10A. 
StrainScan is the only tool that returns the correct strain 
proportion of 2 strains at each time point and has no 
false-positive identifications in all samples. Among the 
tested tools, StrainGE and StrainEst returned the correct 

Table 3 Analysis of two mock communities from the HMP project. “#”: there are multiple hits with identical scores in the output. “NA”: 
missing values. Bold font: Mash distance of predicted dominant strain to the truth is < 0.05% . For StrainSeeker, we took the strain with 
the smallest Mash distance to the truth as the predicted dominant strain. The two numbers in parentheses represent the number of 
multiple hits and the average Mash distance between all hits and the ground truth, respectively

Samples Tools Species Predicted strains Mash distance to the truth Running time (s)

SRR172902 (Even) Krakenuniq C. acnes GCF_003384685 0.0165552 28.89

S. epidermidis GCF_001068615 0.0165552 34.17

E. coli GCF_006364695 0.0165552 46.09

StrainSeeker C. acnes GCF_000008345 0 11.42

S. epidermidis GCF_900458515 (#) 0.0002398 (3, 0.00027) 14.21

E. coli GCF_000005845 (#) 0.0000238 (119, 0.00045) 13.71

StrainGE C. acnes GCF_000008345 0 146.33

S. epidermidis GCF_900458515 0.0002398 192.81

E. coli GCF_001308125 0.0000476 429.02

StrainEst C. acnes GCF_005937545 0.0002883 743.95

S. epidermidis GCF_000751035 0.0068392 57.75

E. coli NA NA 5307.61

StrainScan C. acnes GCF_000008345 0 22.61

S. epidermidis GCF_900458515 0.0002398 36.94

E. coli GCF_002953895 0.0000476 114.61

SRR172903 (Staggered) Krakenuniq C. acnes GCF_003384685 0.0165552 22.79

S. epidermidis GCF_001068615 0.0165552 17.64

E. coli GCF_006364695 0.0165552 38.76

StrainSeeker C. acnes GCF_000008345 0 12.45

S. epidermidis GCF_900458515 (#) 0.0002398 (3, 0.00027) 18.31

E. coli GCF_000005845 (#) 0.0000238 (119, 0.00045) 12.43

StrainGE C. acnes GCF_000008345 0 175.23

S. epidermidis GCF_900458515 0.0002398 232.56

E. coli GCF_001308125 0.0000476 459.44

StrainEst C. acnes NA NA 239.08

S. epidermidis GCF_000751035 0.0068392 152.02

E. coli GCF_000750555 0.0000238 9414.24

StrainScan C. acnes GCF_000008345 0 20.49

S. epidermidis GCF_900458515 0.0002398 59.26

E. coli GCF_002953895 0.0000476 117.49
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representative strains in some samples. Thus, we inves-
tigated the different genes between these representative 
strains and the actual strains. The genes are predicted 
by Prokka [58] and the comparison analysis is done by 
Roary [59]. As shown in Fig.  10B and C, there are still 
many different genes between these strains. Among these 
differential genes, some are very important for strain 
functions. For example, NIHLM001 has the gene ssaA_1, 
which has been shown to be associated with many prop-
erties of the strain, such as drug resistance [60–62]. But 
this gene is not possessed by the representative strain 
UMB8493. Ideally, the strain-level resolution is preferred 
for more accurate strain-level analysis.

StrainScan identifies the low‑depth virulent C. difficile 
strain from metagenomic data
To further test the ability of StrainScan in identify-
ing low-depth pathogenic strains, we applied Strain-
Scan and other tools to one metagenomic dataset 
containing the low-depth virulent Clostridioides diffi-
cile strains [53]. According to the original study, two 
virulent C. difficile strains with low depth ( ∼1X) were 
detected in this dataset. There are only 3 mutations 
reported between these two strains. Another study 
[63] also detected the same mutations between C. dif-
ficile strains, suggesting that they were a result of the 
presence of multiple highly similar strains rather than 
sequencing errors. Because C. difficile is not one of the 
six targeted bacteria, we first constructed the reference 
databases for each tool using 102 complete Clostridi-
oides difficile genomes downloaded from NCBI Ref-
Seq. StrainScan, StrainGE, Krakenuniq, Pathoscope2, 
and Sigma were able to detect the strain with about 1X 
depth (Table  5). However, Krakenuniq, Pathoscope2, 
and Sigma identified more than 10 strains, indicat-
ing the presence of a large number of false positives. 
Although StrainGE output only one strain, the iden-
tified strain did not contain the two genes TcdA and 
TcdB that the virulent Clostridioides difficile should 
have. StrainScan was the only tool that detected the 
low-depth virulent strain without any false positives. 
However, both StrainScan and StrainGE missed the 
other strain due to their low depth and ultra-high sim-
ilarities with the dominant strain.

Table 4 Performance of StrainScan, StrainGE, KrakenUniq, 
StrainEst, and StrainSeeker for the identification of pathogenic 
strain of E. coli and M. tuberculosis. Green: consistent results with 
the ground truth. Red: inconsistent results with the ground truth. 
“#”: there are multiple hits with identical scores in the output. “R”: 
the identified strain is the representative strain of the ground 
truth. Note that StrainSeeker is not able to identify strains of M. 
tuberculosis and therefore related results are “-”. For StrainSeeker, 
the number in parentheses represents the number of multiple 
hits

Fig. 10 A The estimated abundance of S. epidermidis strains by 5 tools in 6 real metagenomic samples. No_ATB: the group without antibiotic 
treatment, and the non-resistant strain NIHLM023 is the dominant strain. Ery: the group with antibiotic erythromycin treatment, and the resistant 
strain NIHLM001 is the dominant strain. Each color represents a strain. B-C The number of different genes between the actual strain 
and the representative strain identified by StrainGE and StrainEst
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StrainScan reveals the greater diversity of C. acnes 
on human skin
Previous studies [11, 15] show that C. acnes is one of the 
most common bacteria on human skin and usually has a 
complex multi-strain community. StrainEst was applied 
to re-analyze the human skin data set (SRP002480) from 
the study [29]. However, we found that in some samples, 
the number of strains identified by StrainEst was often 
less than the number of strains reported by the original 
study. In the original study, the authors used an in-house 
pipeline to determine the strains and predict their rela-
tive abundance in the samples, and the accuracy of this 
in-house pipeline was previously validated with exten-
sive simulations for human skin microbiome data [11, 15] 
Therefore, we selected nine samples from two individu-
als who fit this case and then re-analyzed these samples 
using StrainEst and StrainScan. Then, we compared their 
outputs with those reported in the original study. Consid-
ering the competitive performance of StrainGE, we also 
added it into the comparison. For consistency, we selected 
all strains used in the original study to build the new cus-
tom databases for StrainEst, StrainGE, and StrainScan, 
and used these newly established databases for subse-
quent analyses. The result is shown in Fig.  11. Strain-
Est and StrainGE only returned one or two strains in all 
tested datasets while more strains are reported according 
to the original study. StrainScan displayed a more similar 
relative abundance pattern with the reported result than 
StrainEst and StrainGE. Besides, StrainScan also detected 
some strains in the samples of “HV05_AI” that were not 
found in original studies, which implied the greater diver-
sity of C. acnes. For example, two highly similar strains 
“GCF_000145115” and “GCF_004136215” were identi-
fied by StrainScan and StrainGE/StrainEst, respectively. 

As shown in the gray box in Fig.  11B, they are highly 
close in the tree, and “GCF_004136215” is the repre-
sentative strain of “GCF_000145115” for StrainGE and 
StrainEst. However, they have 76 different genes. Accord-
ing to the SNP analysis of original study [11], 22 unique 
SNPs of “GCF_000145115” were identified in the sample 
“HV05_AI” on “2011-12-14” while no unique SNPs of 
“GCF_004136215” were detected. Thus, it is more likely 
that “GCF_000145115” rather than “GCF_004136215” is 
present in the sample, which shows the advantage of the 
high resolution of StrainScan.

In addition, StrainGE and StrainEst identified differ-
ent representative strains for the same sample “HV06” 
(Fig.  11A). This result shows that the identification 
results of cluster-based methods can be influenced by 
different clustering and representative strain selection 
strategies. In contrast, StrainScan identifies two highly 
similar strains, “GCF_000194905” and “GCF_000252385” 
in these samples, which are consistent with the reported 
result. The different strain composition results can 
affect the downstream analysis. We took the analysis 
result of “HV06_Vf” as one example here. By aligning 
reads to unique gene clusters of “GCF_000194905” and 
“GCF_000252385,” the original study analyzed the gene 
content change of these 2 strains in “HV06_Vf” over 
time. As shown in Fig.  11C, the presence of the unique 
gene clusters from two strains varied at different time 
points, which reflected the strain-level functional varia-
tion in this individual. This result shows that StrainScan 
distinguishes highly similar strains, which can be used 
together for more comprehensive strain-level functional 
analysis.

Two examples showing more applications of StrainScan 
on real metagenomic sequencing data
To show the wide application of StrainScan on real 
metagenomic sequencing data, we applied StrainScan to 
analyze E. coli strains in cross-sectional studies [48, 54] 
and P. copri strains in different populations [9]. The anal-
ysis results show that StrainScan can accurately identify 
strains at a higher resolution from metagenomic sam-
ples, which can lead to more comprehensive biological 
insights. For example, StrainScan is the only tool capa-
ble of distinguishing E. coli strains in samples from three 
countries into three distinct groups (Supplementary Fig. 
S12). Similarly, by analyzing P. copri strains identified by 
StrainScan, we observed that strains from Omnivores 
samples are clearly separated from Vegans samples in 
terms of the phylogenetic relationship, while strains from 
Vegetarians samples lie somewhere in between (Supple-
mentary Fig. S12). Additional details regarding these two 
experiments can be found in Supplementary Sections 2.4 
and 2.5.

Table 5 The identification results of 7 tools on one 
metagenomic dataset containing the low-depth virulent 
Clostridioides difficile strains. “NA”: missing values. “TcdA” and 
“TcdB”: two important genes of the virulent C. difficile strains. The 
presence of “TcdA” and “TcdB” is verified using the Carbohydrate-
Active enzymes database [64]

Tools Identified dominant strain # of 
identified 
strains

TcdA TcdB

StrainScan GCF_015238635 1 � �

StrainGE GCF_002234355 1 X X

Krakenuniq GCF_016767015 11 � �

Pathoscope2 GCF_018885065 26 � �

Sigma GCF_002812605 15 � X

StrainEst NA NA NA NA

StrainSeeker NA NA NA NA
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Discussion
In this work, we presented StrainScan, a new strain-level 
composition analysis tool for short reads. We designed 
a novel tree-based k-mers indexing structure to strike a 
balance between strain identification accuracy and com-
putational complexity. Then, by applying informative 
k-mers and the elastic net model to identify strains and 
predict their abundance, StrainScan improved the resolu-
tion of the strain-level analysis and the accuracy of abun-
dance estimation.

StrainScan shows higher accuracy and resolution than 
other tested tools across all benchmark datasets with dif-
ferent complexity. In particular, StrainScan outperforms 
all other tools on datasets containing strains with higher 
similarity and various sequencing depths. This level of 
high resolution can be achieved by alignment-based tools 
such as Pathoscope2 and Sigma. But StrainScan is at least 
10 times faster than them. The experimental results of 
mock data and real data further demonstrate that Strain-
Scan can provide more comprehensive strain-level com-
position analysis.

Novel strains that are not in the reference database 
tend to appear often. While tools like StrainGE and 
StrainEst return representative strains that are most 

similar to the present strains in a sample, StrainScan 
returns a strain that is the closest match. As a result, 
the returned strains by StrainScan can represent the 
actual strains with higher accuracy. Additionally, 
StrainScan offers information on the identified clusters 
in the output, enabling users to consider the identified 
cluster(s) as the subject for downstream analysis in 
cases where the genome sequence of the actual strain is 
unavailable. As shown in our benchmark experiments 
(Fig. 9 and Supplementary Fig. S10), StrainScan is able 
to identify the strain that has a smaller Mash distance 
to the actual strain in the sample, which can provide 
more accurate reference strain for the downstream 
analysis. Besides, as shown in Fig. 11C, highly similar 
reference strains can still contain strain-specific genes 
and thus using all of them (rather than a representa-
tive) can reveal more comprehensive strain-level func-
tional changes in the comparison of multiple samples. 
These results indicate that using strains identified by 
StrainScan for downstream analysis has a great poten-
tial to generate new biological insights compared to 
tools that only return representative strains.

When the strains are highly similar, the sequenc-
ing depth is the main factor affecting the resolution 

Fig. 11 A StrainScan reveals the greater diversity of C. acnes in 9 real metagenomic samples. These samples were taken from three different 
sites of the skin (AI, Lc, and Vf ) of two healthy individuals (HV05 and HV06), at different time points. The site codes are described in the original 
work [15]. B Phylogenetic tree of the identified strains. Leaves are colored using the same schema as in (A) and the distance is the Mash distance 
[14]. The tree is visualized by iTOL [65]. C The presence of unique gene clusters of “GCF_000194905” and “GCF_000252385”. “GCF_000194905” 
and “GCF_000252385” are highly similar and are in the same cluster of StrainGE and StrainEst. The presence is given by the original study [15] 
and each column refers to one unique gene cluster
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of StrainScan. Thus, when the strains have high simi-
larities and low depths, our cluster search using CST 
will fail to identify some clusters due to the low cov-
erage. As a result, the performance of StrainScan will 
drop rapidly if the depth of the strain is lower than 
1X. Moreover, we investigated the minimum sequenc-
ing depth required by StrainScan and the likelihood of 
detecting a strain in low-depth samples (Supplemen-
tary Section  2.6). We tested the limits of StrainScan 
on building the CST for 25,349 complete and draft E. 
coli genomes. The program requires > 1TB of mem-
ory. Our empirical tests show that StrainScan is effi-
cient for building the CST for less than 5000 genomes 
(see Supplementary Table S12). However, for bacte-
ria with many genomes and high intra-species diver-
sity (e.g.,  E. coli), the construction of CST can take a 
longer time. Thus, we recommend users to use only 
complete genomes for constructing the indexing struc-
ture if there are more than 5000 genomes. Our first 
step based on cluster search can efficiently reduce the 
search space. However, if all the reference genomes are 
highly similar and only differ by a handful of bases, 
they tend to be grouped in one cluster. In this case, 
the cluster search still returns a large search space for 
the second step, which does not take full advantage of 
the cluster indexing structure. M. tuberculosis has a 
large cluster, which slows down the strain identifica-
tion. It should be noted that the quality of the refer-
ence genomes can affect reference-based methods [43] 
including StrainScan. StrainScan allows users to build 
the database with their own genomes. Thus, pre-pro-
cessing can be conducted to mitigate data contamina-
tion or bias problems in the input genomes.

As discussed above, the scalability of input refer-
ence genomes can be a limitation of StrainScan. How-
ever, many efficient data structures [66] or methods 
[12] have been developed to increase the scalability 
of microbiome strain-level analysis. For example, one 
tool called mSWEEP [67] can identify strain lineages 
accurately from large-scale reference genomes by uti-
lizing pseudoalignment technology. Thus, for future 
work, we plan to extend pseudoalignment-based meth-
ods or efficient data structures such as HyperLogLog 
[30] to increase the scalability of StrainScan, and speed 
up both the database construction and identification 
process of StrainScan.

Conclusions
In conclusion, we developed an accurate, efficient, and 
high-resolution strain-level composition analysis tool 
for short reads. The experiment results on simulated 
and mock datasets show that StrainScan can achieve 
more accurate strain-level microbiome composition 

analysis than existing tools while keeping the high reso-
lution. The results of these benchmark experiments also 
prove StrainScan’s robustness with complex samples, 
low-abundance strains, and strains that are not in the 
reference database. Furthermore, the analysis results 
of real metagenomic datasets show that StrainScan can 
benefit pathogenic strain identification, strain-level 
composition and functional analysis, and meta-analy-
sis across different studies or datasets. Based on these 
results, we believe that StrainScan is an important con-
tribution to the field and offers improved performance 
over state-of-the-art tools.
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