
Zhu et al. Microbiome          (2023) 11:184  
https://doi.org/10.1186/s40168-023-01614-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Microbiome

Statistical modeling of gut microbiota 
for personalized health status monitoring
Jinlin Zhu1,2, Heqiang Xie1,2, Zixin Yang1,2, Jing Chen1,2, Jialin Yin1,2, Peijun Tian1,2, Hongchao Wang1,2, 
Jianxin Zhao1,2,3, Hao Zhang1,2,3,4,5, Wenwei Lu1,2,3,6* and Wei Chen1,2,4* 

Abstract 

Background  The gut microbiome is closely associated with health status, and any microbiota dysbiosis could consid-
erably impact the host’s health. In addition, many active consortium projects have generated many reference datasets 
available for large-scale retrospective research. However, a comprehensive monitoring framework that analyzes health 
status and quantitatively present bacteria-to-health contribution has not been thoroughly investigated.

Methods  We systematically developed a statistical monitoring diagram for personalized health status prediction 
and analysis. Our framework comprises three elements: (1) a statistical monitoring model was established, the health 
index was constructed, and the health boundary was defined; (2) healthy patterns were identified among healthy 
people and analyzed using contrast learning; (3) the contribution of each bacterium to the health index of the dis-
eased population was analyzed. Furthermore, we investigated disease proximity using the contribution spectrum 
and discovered multiple multi-disease-related targets.

Results  We demonstrated and evaluated the effectiveness of the proposed monitoring framework for tracking per-
sonalized health status through comprehensive real-data analysis using the multi-study cohort and another validation 
cohort. A statistical monitoring model was developed based on 92 microbial taxa. In both the discovery and valida-
tion sets, our approach achieved balanced accuracies of 0.7132 and 0.7026, and AUC of 0.80 and 0.76, respectively. 
Four health patterns were identified in healthy populations, highlighting variations in species composition and meta-
bolic function across these patterns. Furthermore, a reasonable correlation was found between the proposed health 
index and host physiological indicators, diversity, and functional redundancy. The health index significantly cor-
related with Shannon diversity ( ρ = 0.07 ) and species richness ( ρ = 0.44 ) in the healthy samples. However, in sam-
ples from individuals with diseases, the health index significantly correlated with age ( ρ = 0.12 ), species richness 
( ρ = 0.46 ), and functional redundancy ( ρ = −0.16 ). Personalized diagnosis is achieved by analyzing the contribu-
tion of each bacterium to the health index. We identified high-contribution species shared across multiple diseases 
by analyzing the contribution spectrum of these diseases.

Conclusions  Our research revealed that the proposed monitoring framework could promote a deep understanding 
of healthy microbiomes and unhealthy variations and served as a bridge toward individualized therapy target discov-
ery and precise modulation.
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Introduction
Gut microbiota is a large community of microorganisms 
in the human gastrointestinal tract. Deciphering the role 
of such vital organs to one’s health has drawn great inter-
est within the health research community. After decade-
long research, there is now a global consensus that these 
microbes are significant to human health [1], as they 
replace many functional aspects of the host, and any 
dysbiosis of microbiota could largely influence the host’s 
immune, metabolic, and even neurobehaviors [2]. More-
over, many active consortium projects have significantly 
contributed to the extensive profiling of massive data 
and understanding of individual health, making avail-
able many reference datasets for large-scale retrospective 
research [3–5]. Therefore, highly automated and power-
ful bioinformatics tools for personalized health status 
inference are expected to translate the composition of the 
human microbiome into useful clinical indications for 
non-invasive wellness monitoring, diagnosis, and treat-
ment [6, 7].

Typically, these high-throughput raw sequencing 
data reads are clustered and organized into operational 
taxonomic units for downstream analyses [8], which 
is usually a high-dimensional matrix with large vari-
ability and great sparsity [9]. A statistical monitoring 
panel is imperative in population-level health analysis 
and disease-associated signature exploration to distill 
advisable knowledge and intelligence from the compo-
sitional table and to promote timely health warnings. 
In microbiome literature, principal component analy-
sis (PCA) is the most widely adopted statistical method 
[10–13]. PCA allows feature extraction and knowledge 
representation by deconstructing variation or correla-
tions among samples as a simple and effective model 
for data inspection, interpretation, and utilization. In 
this view, the high-dimensional composition is signifi-
cantly reduced, and an elegant ordination visualization 
can be presented for differentiation judgment among 
sample groups. However, studies in this area are limited 
to qualitative assessment and lack quantitative contex-
tualization disentanglement, which in turn impacts the 
utility ranges for phenotype parsing and health under-
standing. A pioneering work recently proposed the gut 
microbiota health index (GMHI) for differentiating 
healthy from nonhealthy populations [6]. GMHI was 
formulated on 50 species containing both health-prev-
alent and health-scarce species, and the method could 
distinguish between healthy and unhealthy individuals 

with relatively high balanced accuracy. Although GMHI 
has achieved some success, it has a few limitations. 
First, the method was designed to distinguish healthy 
from unhealthy individuals and could potentially over-
estimate a patient’s health literacy. This could prove 
deceptive in clinical applications, as missing alarms 
could be disastrous for accurate disease diagnosis. 
Second, the model deployed on the collective abun-
dance index cannot trace back to those most respon-
sible species associated with the reported phenotype. 
These drawbacks restricted the model interpretation 
for further personalized medication. More recently, a 
microbiome risk score (MRS) method was induced by 
the alpha diversity of the identified candidate taxa [14]. 
Likewise, it generally reported comparable accuracies 
with GMHI on the selected community taxa but still 
lacked model interpretation and could hardly support 
personalized health analysis.

In this study, we defined a novel and systematic moni-
toring flowchart for gut microbiota health prediction 
and disease analysis, the workflow of which is shown in 
Fig. 1. Our primary aim was to define a rational health 
index with a health boundary to make further infer-
ences on various nonhealthy cases. As healthy samples 
are usually far more numerous than those of specific 
human diseases, a statistical monitoring framework 
should become viable to acquire such a boundary. To 
this end, several questions should be answered: (1) How 
to convert correlations among a set of core species into 
a robust health index panel and select core species that 
offer a better and more balanced prediction? (2) How 
to determine potential healthy microbial patterns given 
the health boundary? (3) How to judge the rationality 
of the health index in respect of species community 
properties and host physiological measures? (4) How 
to identify the microorganisms that mainly contribute 
to different human diseases in unhealthy samples? (5) 
Are there any broad-spectrum contributing species 
across the various disease phenotypes? Based on these 
explorations, we can employ the globalized population 
to conduct quantitative and qualitative research, from 
the macro-ecology investigation of health pattern dis-
covery to the micro-ecology evaluation of personalized 
health status analysis. In a broader context, the entire 
working pipeline will greatly extend the merits of statis-
tical inference in conventional microbiome study, not 
only for primitive data visualization but also for deeper 
data understanding with nonhealthy detection and 
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reasoning, which paves the way for a valuable prototype 
of the global microbiome research community.

Methods
Multi‑study integration and metagenomic upstream 
analysis of human stool metagenomes
The 4347 samples (discovery cohort) and the other 782 
samples (validation cohort) were all extracted from 
publicly available research [6]. The discovery cohort 
was collected from 34 studies, including healthy and 12 
unhealthy phenotypes. The validation cohort comprised 
15 sub-cohorts across 11 healthy and nonhealthy pheno-
types from nine studies. In both cohorts, subjects with 

various diseases were pooled into an unhealthy group, 
and the rest were reported as healthy in the healthy 
group. The detailed description of health in each previous 
article is shown in Table S1. The additional test cohort 
was derived from five independent studies contain-
ing 605 samples. After integration, reclassification, and 
quality control, 2636 samples were considered healthy 
and 1711 unhealthy in the discovery cohort. There were 
118 healthy and 664 unhealthy samples in the validation 
cohort, and test cohort included 292 healthy and 313 
unhealthy samples.

The species identification and abundance calculation of 
metagenomic cohorts were consistent with the previous 

Fig. 1  The workflow of personalized health status monitoring framework. a Statistical modeling: Healthy samples from the discovery set are 
subjected to data preprocessing and subsequently used as a training set to train the model. The model establishes quantitatively a computational 
pipeline to infer the health index ( φ ) and the BHC. b Health prediction: The health index and related threshold output from the PCA model are used 
to predict the health of the samples. c Further exploration: Health patterns discovery in the healthy population through contrastive PCA learning. 
In disease populations, the target diagnostic species and the contribution of species, determined by contribution analysis, identify broad-spectrum 
diagnostic species
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study [6]. Sequence read of stool samples using Kne-
adData v0.5.1 quality control pipe for processing. The 
metagenomic reads were then classified into species-
level categories using MetaPhlAn2 and a database of 
clade-specific marker genes obtained from approximately 
17,000 microbial genomes (mpa_v20_m200). Species 
were removed based on taxonomic profiles, and the spe-
cies table was subsequently obtained.

Data preprocessing
Data preprocessing included feature selection, data 
transformation, and normalization. Feature selection 
attempts were made to identify principal microbial spe-
cies by reducing the number of unimportant features, 
with the expectation of reducing the computational cost 
and improving the predictive model’s performance. In 
the GMHI study, the prevalence-based (PR) strategy was 
used, and health-prevalent/health-scarce species were 
determined by investigating the optimal classification 
performance. In this study, besides the PR strategy, we 
further considered other widely used methods, includ-
ing machine learning classifiers, such as random forest 
(RF), eXtreme Gradient Boosting (XGB), and correlation 
analysis methods like Spearman’s correlation (SPC) and 
maximum information coefficient (MIC). The hypothesis 
test method in healthy and unhealthy groups has been 
deployed as the third category. For classifiers, species 
were ranked according to the important values, and those 
with high importance were considered for PCA mod-
eling. For correlation-based methods, species are ranked 
and selected based on the absolute values of correlations. 
The Kolmogorov-Smirnov test was used for the hypoth-
esis test method to identify those health-prevalent and 
health-scarce features. Only species features with P-val-
ues under 0.001 were considered. Transformation is first 
required to perform a reasonable analysis using PCA. In 
this study, we considered the relative abundances. The 
values may range from 0 to large real values, and most 
of the magnitudes range from 10−1 to 10−3. The follow-
ing logarithmic transformation was designed and applied 
since low-abundance species may play important roles in 
health status. When x <= 1 , we use lt(x) = log2(2x + σ) ; 
when x > 1 , we use lt(x) =

√

x to process the data.
A small σ is added to avoid numerical issues at the 

origin. Once the data has been transformed, the z-score 
normalization is engaged to adjust the mean to 0 and the 
standard deviation to 1.

Health index with PCA (hiPCA)
Microbiome data is usually large and difficult to inter-
pret. Thus, PCA is widely used to drastically reduce the 
high dimensionality so that the maximal variability (i.e., 
statistical information) in the data can be preserved. To 

achieve this, PCA is translated into the eigenvalue/eigen-
vector problem in the standard context, based on which 
the eigenvalues of the covariance or correlation matrix 
are rearranged after singular value decomposition (SVD). 
Since the eigenvalues imply the variances defined by the 
corresponding eigenvector, the principal component 
variables can be selected based on k largest eigenvalues, 
and the rest of the variations are set apart as residuals or 
noises. In general, assuming that the matrix X ∈ RN×D 
consists of N  records by D microbial features, the PCA 
model structure is given as follows

where T ∈ RN×d is the score matrix, P ∈ RD×d is the 
loading matrix, d is the retained latent dimensional-
ity, and E is the residual matrix. Technically, if we con-
sider the covariance as the example, by performing 
the Eigen-decomposition of the covariance matrix 
S = (XTX) (N − 1) , we get

where ˜P is the residual loading, � and ˜� are eigenvalues 
for latent and residual subspaces, respectively. Accord-
ingly, the principal component subspace (PCS) and resid-
ual subspace (RS) for data can be defined as

where C and ˜C are projection matrices to latent and resid-
ual subspaces, respectively. We can calculate the cumula-
tive percentage sum of explained variances to determine 
the right number of principal components (PCs). Assum-
ing that the eigenvalues are arranged in descending order 
as �1, �2, . . . , �D , the percentage of explained variances 
(PEVs) for each eigenvalue is defined as �i

/
∑

i �i . The 
right number of PCs can be determined by accumulat-
ing the PEVs until the total variance is satisfactory for the 
research.

The main idea of the health index was to quantitatively 
determine a health boundary based on the explanatory 
model. This was similar to statistical process control, 
where the control charts were used to display measure-
ments of process samples over time. In contrast, our 
microbiome study considered the health index chart 
that evaluated the gut microbiota composition samples 
over population. Specifically, three charts were designed, 
namely Hoteling’s T 2 chart, the Q chart, and the com-
bined chart φ [15, 16] to reflect the degree of deviation 
from health.

(1)X = TPT
+ E

(2)S =

[

P ˜P
]

[

� 0

0 ˜�

]

[

P ˜P
]T

(3)ˆX = XPPT
= XC,

(4)
˜X = X

∼

P
∼

P
T

= X
∼

C,
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Hoteling’s T2 index
Given a composition sample x , the T 2 index moni-
tors the PC subspace defined as T 2

(x) = xTDx , where 
D = P�−1PT  . The control limit or threshold at the 
confidence level (1− α)100% is determined by the chi-
squared distribution τ 2 = χ

2
α
(d) , where latent dimen-

sion d is the degree of freedom.

Q index
The Q index monitors the residual subspace defined as 
Q(x) = xT ˜Cx . The control limit is δ

2
=

θ2
θ1
χ
2
α

(

θ
2
1
θ2

)

 , 
where θ1 =

∑D
i=d+1 �i , θ2 =

∑D
i=d+1 �

2
i  are computed 

with eigenvalues.

Combined index φ
The combined index is defined as φ = xT�x , where 
� =

C̃

δ2
+

D

τ 2
 . The control limit is ς2

= gϕχ2
α
(hϕ) , where 

gϕ =

(

d
τ 4

+
θ
2

δ4

)/(

d
τ 2

+
θ
1

δ2

)

 , and 
hϕ =

(

d
τ 2

+
θ
1

δ2

)2
/

(

d
τ 4

+
θ
2

δ4

).

All indexes can be generalized as a quadratic form 
Ind(x) = xTMx , and M is defined for each assigned 
index as per above. Please note that T2 and Q play 
asymmetric roles in health prediction, while the com-
bined index merges both indexes into a single index. 
Theoretically, one can report an unhealthy situation 
given that any of the indexes exceeds the corresponding 
threshold.

Bacteria‑to‑health‑index contribution (BHC) inference
Once unhealthy conditions have been reported, health 
diagnosis aimed at identifying the responsible species 
that showed significant disease signals compared to 
the controlled healthy cohort. In accordance with the 
monitoring indexes, the BHC plots were induced for 
diagnosis. The diagnosis scheme was to reconstruct 
the normal status by adding a corrective term to the 
unhealthy composition. Assuming that species i has 
potential abnormal behaviors, the reconstructed com-
position unit can be expressed as:

where ξi is the direction and fi is the magnitude. Then the 
objective can be formulated to optimize the health index 
as

This can be done by taking the first derivative with 
respect to fi and then equaling it to zero, which finally 
yields

(5)zi = x − ξifi

(6)min Ind(zi) =
(

x − ξifi
)T

M
(

x − ξifi
)

.

In real-world applications, the direction does not have 
to be a vector, as multiple species may be disordered in a 
specific disease. From this perspective, the BHC is pre-
ferred for health condition diagnosis.

Contrastive PCA learning for health pattern discovery
To determine the underlying health patterns, we consid-
ered contrastive PCA learning on healthy and unhealthy 
populations reported by hiPCA. Sh and Suh denote the 
covariance matrices of healthy and unhealthy cohorts, 
respectively, while contrastive PCA seeks to find the 
contrastive direction p∗ that can quantify the trade-off 
between having a high target healthy variance and low 
unhealthy variance by solving p∗ = arg max (Sh − αSuh) . 
The contrast parameter α regulates the balance between 
healthy/unhealthy variances, which can be determined 
from a list of predefined sets [17]. Thus, healthy patterns 
can be highlighted through the elimination of unhealthy 
obfuscations. Once the contrastive direction was calcu-
lated and the latent projection completed, we used the 
Gaussian mixture model for unsupervised clustering, 
which can be determined by adjusting the number of 
components and tracking the Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC) for 
each fit.

Metabolic subsystem analysis
In this study, we first mapped the species table to the 
genome-scale metabolic models (GSMM) [18] at the 
family rank or lower to at least one GSMM. The reactions 
were normalized to species abundance in the sample 
considered. We then performed a two-sample t-test for 
the reaction abundance from each pair of health patterns 
to identify reactions with significantly different abun-
dance between each group. The metabolic subsystem of 
reactions was extracted from GSMM, and Fisher’s exact 
test was performed for the enrichment analysis of sub-
systems. Finally, the mean abundance differences in the 
subsystems were calculated in each health pattern pair 
for comparative analysis.

Functional redundancy analysis
This study used the previous Genome Content Network 
(GCN) to calculate functional redundancy [19]. First, 
we searched all species in the species table in the Inte-
grated Microbial Genome & Microbiome (IMG/M) data-
base to construct a reference GCN. Here, we focused on 
the Human Microbiome Project (HMP). Representative 
strains of each species in the HMP project were ran-
domly selected, if the species was not present in the HMP 

(7)φi = xTMξi

(

ξ
T
i Mξi

)

−1

ξ
T
i Mx.
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project, we randomly selected representative strains of 
each species. A reference GCN was constructed based 
on the retrieved representative strains, and the functional 
distance between two random species was calculated 
using the GCN. Finally, each sample’s taxonomic diver-
sity, functional diversity, and functional redundancy were 
calculated by combining the functional distance and spe-
cies table.

Results and discussion
To evaluate the health prediction performance of 
hiPCA, we compared and validated large-scale metagen-
omic data. Metagenomic data were extracted from the 
GMHI study (referred to as the GMHI dataset), where 
4347 preprocessed samples (2636 healthy and 1711 
unhealthy individuals) were collected for model discov-
ery and an additional 782 cohort (118 healthy and 664 
unhealthy individuals) for validation purposes. In addi-
tion, a separate test cohort (consisting of 292 healthy 
and 313 unhealthy individuals) was included for further 
validation.

hiPCA with health‑scarce species can stratify healthy 
and unhealthy subgroups
We first considered hunting the core species for health 
monitoring. The two-sample Kolmogorov-Smirnov 
test was performed on both the healthy and unhealthy 
groups of the discovery dataset. Then, abundance fea-
tures were sorted according to the P-values in both 
groups. Health-prevalent features were defined by 
the rejection of the alternative hypothesis that the 
empirical cumulative density of healthy individuals 
was smaller than that of unhealthy individuals at the 
significance level of 0.1 and vice versa. After this step, 
77 species were identified as health-prevalent (H+) 
species, and 136 species as health-scarce (H−) spe-
cies. Based on the 209 species in total (four shared in 
both sets, as shown in Table S3), we were able to deter-
mine the ideal core set by evaluating the health predic-
tion performance of our method. To investigate how 
health-prevalent and health-scarce taxonomic features 
may impact the monitoring performance, we made 

the sectional inspection at different significance levels 
ranging from 10−60 to 10−1, a smaller set point incur-
ring a stricter selection standard. The balanced accu-
racy of hiPCA under various H+/H− thresholds on the 
discovery and validation datasets is shown in Fig. 2a–b. 
No H+ species were found below the threshold 10−60 
(Fig. 2c). These results indicated that H− species were 
more appealing for health prediction, and hiPCA made 
desirable predictions at 92 H− species without H+ spe-
cies. Interestingly, all 43 H− species engaged in GMHI 
were included in our subset (Fig.  2d). If we fixed the 
H− threshold at any set point, including more H+ 
species by adjusting the H+ threshold, we could only 
make a trivial contribution to the improvement in the 
discovery data, and in most cases, they were found to 
degrade the overall balanced prediction performance in 
the validation data. This result confirmed that the gen-
eralization of H+ features could become substandard 
in validation samples owing to the heterogeneity and 
unevenness in healthy populations.

Next, we discussed and investigated the trade-off 
between missing unhealthy alarms and false alarms. If 
the predictor reported that an unhealthy alarm is trig-
gered when any of the indexes exceeded the threshold, 
there would be more false alarms. Conversely, if an 
unhealthy alarm is triggered only when all three indexes 
are triggered simultaneously, the alarm missing rate 
increased significantly. In practice, we found that either 
the majority rule or combined index alone can work 
well. For the former rule, hiPCA will report a disease 
alarm once any of the two indexes report a threshold 
violation. The latter rule only considers that the com-
bined index as both T2 and Q have been combined 
into this index. Here, we used a combined index as the 
global health index. Therefore, one only needs to use the 
alarm missing and false alarm rates in the training set 
as indicators and then change the confidence and per-
centage of variance explained (PVE) until a satisfactory 
balance has been achieved (Fig. 2e). In fact, by doing so, 
our hiPCA can realize a customized health definition 
through the weighting factor scheme between true posi-
tive rate (TP, denoted by η ) and false positive rate (FP, 

(See figure on next page.)
Fig. 2  The hiPCA can stratify healthy and unhealthy groups. a The balanced accuracy of hiPCA under various H+/H− thresholds on discovery data 
(PVE 0.9 and confidence rate 0.9). b The balanced accuracy of hiPCA under various H+/H− thresholds on validation data (PVE 0.9 and confidence 
rate 0.9). c The respective features are selected under various H+/H− thresholds. d The intersection between GMHI 50 features and KS 92 
features. e The surf plot of balanced accuracy by 92 features under different parameter configurations. The yellow zone represents the balanced 
accuracy results from the discovery set, while the red zone represents the balanced accuracy results from the validation set. f Stacked accuracy 
bar over different weighting factors from discovery data and test data with GMHI 50 features. g Stacked accuracy bar over different weighting 
factors from discovery data and test data with KS 92 features. TP and TN denote the true positive rate and true negative rate, respectively, 
and the balanced accuracy is the average between TN and TP in each single bar. h,i Box plot of hiPCA (PR-50 and KS-92) in healthy and nonhealthy 
groups. j,k Box plot of hiPCA (PR-50 and KS-92) in healthy and 12 nonhealthy phenotypes. l The hiPCA (PR-50 and KS-92) accuracy rates 
over different phenotypes. All P-values shown above the box plots were found using the two-sided Mann-Whitney U test: *, P ≤0.05; **, P ≤0.01; ***, 
P ≤0.001; ns, not significant. The sample size of each group is shown within parentheses
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denoted by υ ). The global prediction performance index 
PI becomes PI = wυ + (1− w)η . We conducted a grid 
search investigation of the weighting factor, as shown in 
the stacking bar of Fig. 2f–g. We found that a desirable 
PI that considers the trade-off can be determined by set-
ting w in the range of [0.45,0.55]. It should be noted that 
the healthy can be flexibly user-defined by setting the 
weighting factor to a small value for those health criti-
cal conditions, whereas a balanced w can be configured 
for those normal situations. In either case, the balanced 
accuracy varied from 0.67 to 0.70 in both charts, which 
remained at a very stable high level for disease detection 
and health prediction.

We further evaluated the species-level health predic-
tion performance among classifiers (see Table  1). The 
prefix is ​the feature selection method for all methods, 
and the suffix refers to the health prediction model. 
Using GMHI-hiPCA as an example, we used the preva-
lence-based strategy in GMHI for feature selection and 
hiPCA with the combined index for health monitoring. 
Generally, most classifiers achieved good results on the 
training data, but their generalization ability decreased 
dramatically on the validation dataset. In contrast, 
unsupervised hiPCA can achieve balanced results on 
both discovery and validation datasets. Interestingly, by 
transferring the microbial species features provided by 
GMHI, hiPCA can achieve overall comparable results 
to the original GMHI. However, by transferring the fea-
tures from MRS, both GMHI and hiPCA deteriorate 
considerably, implying MRS features are largely method-
ology dependent.

Finally, we investigated the health prediction perfor-
mance of hiPCA for 13 different phenotypes. As can be 

seen from Fig. 2h–k, the health index from PCA showed 
significant differences in the healthy group compared 
with that in the unhealthy groups. The overall balanced 
accuracy was similar to that of the GMHI (Table  1). 
However, considering the detection accuracy rates 
for each phenotype (Fig.  2l), we found that the detec-
tion rates in our hiPCA were 71.4% for healthy groups, 
whereas for unhealthy groups, the hiPCA vs. GMHI was 
97.37% vs. 94.08% for arteriosclerotic cardiovascular dis-
ease (ACVD), 86.38% vs. 66.93% for colorectal cancer 
(CRC), 82.61% vs. 72.83% for rheumatoid arthritis (RA), 
69.88% vs. 46.99% for colorectal adenoma (CA), 76.89% 
vs. 73.53% for type 2 diabetes (T2D), 68.09% vs. 68.09% 
for underweight (UW), 75% vs. 81.48% for Crohn’s dis-
ease (CD), 65.91% vs. 36.36% for impaired glucose tol-
erance (IGT), 63.03% vs. 60.92% for overweight (OW), 
61.46% vs. 47.92% for ulcerative colitis (UC), 50.88% vs. 
48.25% for obesity (OB), and 50% vs. 21.43% for sympto-
matic atherosclerosis (SA). One can see that our hiPCA 
outperformed GMHI in most unhealthy phenotypes. For 
hiPCA, the KS-92 feature set boosted the health detec-
tion rate but showed slightly lower disease alarming rates 
than PR-50 features in some unhealthy phenotypes. Nev-
ertheless, the KS-92 panel achieved a better overall bal-
anced accuracy in healthy and unhealthy populations. 
Our study revealed that (1) the proposed hiPCA per-
forms outstandingly against existing methods with more 
stability under the core microbiome set by H− features; 
(2) our hiPCA can realize customized health standards 
for different wellness care levels and clinical conditions; 
and (3) the hiPCA can detect truly unhealthy groups 
much better than GMHI, which makes it more useful for 
health management in nonhealthy populations.

Table 1  Health prediction results using different methods

Method Feature 
number

Discovery dataset Validation dataset

Healthy Unhealthy Average Healthy Unhealthy Average

RF 313 1.0000 1.0000 1.0000 0.8220 0.5350 0.6780

XGB 313 1.0000 1.0000 1.0000 0.7120 0.5800 0.6460

GMHI 50 0.7560 0.6376 0.6970 0.7712 0.6220 0.6966

hiPCA 313 0.6988 0.7680 0.7334 0.5678 0.7259 0.6469

RF-hiPCA 50 0.7117 0.6645 0.6881 0.3305 0.7605 0.5455

XGB-hiPCA 50 0.7595 0.6078 0.6837 0.7119 0.5422 0.6270

GMHI-hiPCA 50 0.7242 0.6885 0.7063 0.7034 0.6461 0.6747

MIC-hiPCA 50 0.7303 0.6511 0.6907 0.3305 0.7244 0.5275

SPM-hiPCA 50 0.7470 0.6727 0.7098 0.6780 0.6235 0.6507

KS-hiPCA 50 0.7128 0.7031 0.7080 0.6864 0.6732 0.6798

KS-hiPCA 92 0.7140 0.7124 0.7132 0.7034 0.7018 0.7026

MRS-GMHI 6 0.6495 0.6172 0.6334 0.5508 0.6054 0.5781

MRS-hiPCA 6 0.8524 0.3641 0.6083 0.8475 0.3283 0.5879
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Contrastive PCA learning discloses four healthy patterns
The correlations between gut microbiota and health have 
been the subject of extensive discussions. However, evi-
dence of a core taxa set that constitute a healthy gut is 
still lacking. To explore healthy patterns, we made the 
basic assumption known as the “Anna Karenina princi-
ple”: unhealthy ways vary more than healthy ways [20]. 
On this basis, and to exhibit the most differences across 
healthy and unhealthy populations, we performed con-
trastive PCA learning on the species level of all hiPCA 
reported healthy populations, whereas the unhealthy 
samples were used as the background dataset and healthy 
samples as the target foreground. The objective of con-
trastive PCA learning is to obtain low-dimensional pro-
jections with high target variance and low background 
variance. Once such principal components have been 
obtained, the Gaussian mixture model can be used to 
perform unsupervised clustering under the AIC fit cri-
teria. After the contrastive learning, we identified four 
health patterns (Fig. 3a).

Following healthy pattern identification, we could 
examine each pattern’s microbial composition. By accu-
mulating the species abundance into genus level and 
excluding low-abundance genera, the comparative details 
among four healthy patterns were presented. As shown 
in Fig.  3b, there were distinctions and connections. A 
cursory glance indicated that all patterns shared those 
most dominant genera, including Bacteroides, Bifidobac-
terium, Eubacterium, Faecalibacterium, Prevotella, and 
Ruminococcus. Interestingly, the Bifidobacterium genus 
showed an increased prevalence in both HP1 and HP2, 
which might be connected with milk-associated diets 
[21]. In addition, there were also various discrepancies 
among detailed compositions. Particularly, both Bifido-
bacterium and Faecalibacterium were elevated in HP1/2 
compared with HP3/4. The HP3 cluster was mainly char-
acterized by Bacteroides, whereas the HP4 cluster was 
driven by Prevotella. Interestingly, the abundance of the 
Prevotella genus showed varying ratios compared to 
Bacteroides in all four baseline patterns, the Prevotella-
to-Bacteroides (P/B) ratio was roughly estimated as 1:2 
in HP1 baseline, 1:1 in HP2 baseline, 1:3 in HP3 baseline, 
and 2:1 in HP4 baseline. Apart from such discrepancies, 
the two-sided Mann-Whitney U test showed significant 
differences in hiPCA levels among different healthy pat-
terns (Fig. 3c), indicating that HP2 could be superior to 

HP1 and HP3 when contributing to host health. Moreo-
ver, the health index and diversity plots in Fig. 3d–f indi-
cated that HP3 had a lower level of richness and a higher 
hiPCA level, which implied a substandard health status. 
Interestingly, by considering the hiPCA and species rich-
ness correlations among four health patterns, we found 
significant positive correlations for all patterns except 
HP4 (Fig. 3g–j). A stronger correlation indicated that (1) 
a slight increase in species richness could result in high 
unhealthy risks due to greater engagement of H− species 
and (2) more modulation efforts could be required for 
H− species depletion to shift the microbial composition 
toward a healthier pattern. To determine this, we com-
puted richness for all health patterns using 92 H− spe-
cies, and HP3 was significantly higher in H− richness 
than the other patterns (Fig. 3k). Lastly, we investigated 
the functional context of the microbial composition in 
each health pattern using metabolic reaction set analysis. 
As shown in Fig.  4, the different healthy compositional 
patterns were consistent with the differences in metabolic 
functions. For HP3, there was significant enrichment in 
bacterial biotin metabolism, which is a vital component 
in host physiological activities, such as carbohydrate 
and lipid metabolism [22–24]. In addition, HP3 exhib-
ited a higher level of lipopolysaccharides (LPS), which 
acted as the prototypical endotoxin and was associated 
with health effects, such as obesity [25], diabetes [26], 
cardiovascular diseases [27], and insulin sensitivity [28]. 
From this perspective, we speculated that HP3 could be 
regarded as a substandard health style.

hiPCA has reasonable correlations with species diversity, 
functional redundancy, and host physiological measure
First, we considered its association with community 
diversity. Alpha diversity is a popular metric used for 
ecological community analysis because of its correlations 
with productivity, functionality, and stability [29]. It is 
interesting to find that the correlation conclusions differ 
across the whole population, healthy/nonhealthy divided 
subgroups, and health pattern divided subgroups. By 
analyzing the inter-relationships shown in Fig.  5a–d, all 
health predictors consistently correlated with species 
richness in most cases. This implied that species richness 
could be strongly linked to health status [30], which also 
provided evidence of unhealthy risks in healthy people, 
as all health predictors showed that an increased richness 

Fig. 3  Comparative details among four healthy microbial composition patterns. a Clustering plot of healthy microbial composition patterns. b 
Thermal clustering plot of the population on averaged microbial compositions. Bacteroides, Eubacterium, Faecalibacterium, Prevotella, Ruminococcus, 
and Bifidobacterium genus for Group 1, others for Group 2. c Box plots for hiPCA(KS-92) distributions over four healthy patterns. d–f Alpha diversity 
of four healthy microbial composition patterns. g–j Correlation between hiPCA(KS-92) and species richness under four healthy patterns. k Richness 
of 92 H− species in four healthy patterns. All P-values shown above the box plots are found using the two-sided Mann-Whitney U test: *, P ≤0.05; **, 
P ≤0.01; ***, P ≤0.001; ns, not significant

(See figure on next page.)
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Fig. 4  Metabolic subsystems in different healthy compositional patterns. a–f Comparison of metabolic subsystems with different healthy 
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Fig. 5  Correlation analysis for the health index and other indexes. The heat map of the intra-group correlation analysis of variable pairs is displayed 
along the lower left corner of the matrix. The correlation of variable pairs appears in the upper right corner of the matrix. The correlation coefficients 
highlighted in red indicate that the pairs of variables have significant correlations (P <0.001). a Heat map of correlation analysis in all groups. b Heat 
map of correlation analysis in the healthy group. c Heat map of correlation analysis in the nonhealthy group. d Heat map of correlation analysis 
in four health patterns
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could be associated with unhealthy gut microbiota. Con-
sequently, we inferred that richness is a biased indicator 
of healthy microbiota. As found in previous research, 
richness primarily reflects the ecosystem development 
stage in the gut or is an indicator of gut ecosystem age 
[31]. For Shannon diversity, which presented commu-
nity heterogeneity, only weak correlations appeared with 
hiPCA(KS-92) in the healthy subgroup, but no significant 
correlations were reported with health predictors in the 
combined groups or the nonhealthy subgroup. Moreo-
ver, both GMHI and hiPCA revealed no significant cor-
relations in most subgroups assigned to health patterns; 
GMHI only showed a positive association with HP3. 
Interestingly, our hiPCA results indicated that healthy 
people were inclined to present some orderly ecological 
community organizations but retained the margin of var-
iation, contrary to the nonhealthy subgroup. Accordingly, 
we verified the previous assumption that a higher Shan-
non diversity may not always imply better health [32], as 
the enrichment of pathogenic bacteria may also lead to 
increased Shannon diversity.

Despite species compositional diversity, metabolic 
function is usually regarded as much less diverse and 
highly conserved in healthy populations. However, it 
remains an open challenge to reasonably describe the 
correlation between functional redundancy (FR) and 
health status. To this end, we first performed the FR 
analysis with different health indexes for (1) all samples, 
(2) health samples only, and (3) unhealthy samples only. 
Analyzing the results from Fig.  5a–c, we found that FR 
showed significantly adverse correlations with hiPCA 
on the entire meta-data, especially in the unhealthy 
cohort, implying potential functional redundancy loss 
in unhealthy populations. However, functional redun-
dancy was not significantly related to the health index 
among healthy individuals. Our findings strengthen the 
evidence regarding the conversed properties of micro-
ecological functions in healthy populations. In contrast, 
the GMHI reported insignificant correlations with FR 
in unhealthy people and negative correlations in healthy 
people. In other words, GMHI preferred a lower FR in 
the healthy cohort. This could contradict the mainstream 
perspective that an increased level of FR generally plays 
a role in stabilizing microbiota functions during pertur-
bations, which is a positive signal for health promotion. 
Likewise, MRS leveraged positive correlations with FR 
in both healthy and unhealthy cohorts, which may also 
become confusing for health representation. We found 
no significant correlations between FR and health index 
by further inspecting the function-hiPCA relations in the 
healthy subgroup divided into health patterns (Fig.  5d). 
Our results revealed that the health patterns were quite 

different but also had certain common functions that 
contribute to host health.

Finally, physiological measures are routinely adopted 
as health indicators, and it is important to connect PCA-
based health index with physiological measures. In this 
study, all subjects’ phenotypes, such as age, body mass 
index (BMI), cholesterol (CHOL), fasting blood glucose 
(FBG), triglycerides (TRIG), high-density lipoprotein 
cholesterol (HDLC), and low-density lipoprotein cho-
lesterol (LDLC), were considered for health index asso-
ciation analysis. To conduct a rational analysis, we first 
used the filtering strategy on each physiological index 
to eliminate outlying records, and then Spearman’s cor-
relation coefficients were calculated between all pairs of 
index variables. As shown in Fig.  5a–c, in healthy con-
trols, both GMHI and MRS showed meaningful correla-
tions with HDLC, implying that a higher level of HDLC 
was better, even in healthy populations. However, our 
hiPCA reported that none of the physiological meas-
ures significantly correlated with the health index among 
healthy populations, including HDLC. Just as the classic 
HDL hypothesis, “intervention to raise HDLC concentra-
tions will reduce cardiovascular risk” is questionable as 
raising HDLC levels may have no effect on reducing car-
diovascular risk [33]; therefore, we still could not come 
to the sound conclusion that a higher level of HDLC 
was conclusively associated with the better health sta-
tus in healthy populations. We observed that BMI and 
HDLC were associated with all health indexes for the 
case subgroup, implying potential abnormal weight loss 
and HDLC loss in diseased populations. Interestingly, 
although used with different species, hiPCA using PR-50 
and KS-92 feature sets showed consistent associations. 
More importantly, hiPCA presented meaningful corre-
lations with chronological age in the entire population. 
The human microbiota is significantly associated with 
the aging process and is usually considered as an impor-
tant healthy aging modulator [34]. The microbiota altera-
tions during aging may imply accelerated age-related 
health deterioration in some subjects [35]. A recent 
study reported that age-related physiological changes in 
older adults, rather than those in diet and lifestyle, could 
have profound effects on the human gut microbiota [36]. 
However, this does not mean healthy seniors always had a 
bad health index in our hiPCA. In fact, we took a further 
step by abandoning unhealthy samples and recomput-
ing the correlations with only healthy populations, and 
the results indicated that the hiPCA had no significant 
correlations with age in healthy populations, and sig-
nificant correlations were only reported for nonhealthy 
populations. From this perspective, our health index was 
reasonably associated with physiological health status 
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and had good application prospects in a wide range of 
populations.

Personalized inference reveals disease‑specific microbial 
responses
To thoroughly examine the diagnostic capability of 
hiPCA, we investigated the contribution of each bio-
marker to each person’s health index. However, to com-
prehensively evaluate populations and find meaningful 
biomarkers, analyses were performed on the popula-
tion-averaged BHC with both PR-50 and KS-92 fea-
tures. Through BHC inference with hiPCA, we derived 

the contribution panel of all species to the health index. 
To observe this, the overlay bar graph over microbial 
features regarding health and four diseases (CRC, CA, 
UC, and CD) are shown in Figs. 6, 7, 8, and 9, and addi-
tional diseases are analyzed in the Additional file  4: 
Supplementary note 5. One can judge that most of 
the high-contribution H− species in PR-50 were also 
shared in the KS-92 scenario. As the KS-92 contribu-
tion plot can be viewed as a broad panel for contribu-
tion analysis, the following discussion will be based on 
the integrated analysis under both PR-50 and KS-92 
contribution plots.
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subgroup. a CRC, b CA



Page 15 of 24Zhu et al. Microbiome          (2023) 11:184 	

CRC and CA
CRC begins as a benign adenomatous polyp and then 
progresses into a CA, which winds up as an invasive can-
cer [37]. CRC development was previously considered 
to correlate strongly with intestinal microbiota [38]. By 
exploring the hiPCA performance for CRC diagnosis, 
these marker species contributed the most to the health 
index in PR-50, which could be listed as Peptostreptococ-
cus stomatis, Gemella morbillorum, Fusobacterium nucle-
atum, Granulicatella adiacens, Solobacterium moorei, 
Atopobium parvulum, and Streptococcus spp. KS-92 
shared the most contributors but was supplemented with 
Parvimonas micra, Streptococcus tigurinus, Streptococcus 
cristatus, and Eubacterium infirmum. Among them, the 

oral pathogens Peptostreptococcus stomatis and Fusobac-
terium nucleatum were among the most discriminative 
enriched species and were the most reported, suggest-
ing an oral-gut translocation route [39–44]. F. nucleatum 
has been reported to promote oncogenic effects through 
the E-cadherin/β-catenin signaling pathway, which acti-
vates downstream pro-inflammatory responses [45]. 
In addition, other species, such as Streptococcus and 
Lachnospiraceae, were found to be significantly differ-
ent in patients with CRC than that in healthy popula-
tions [46–48]. For instance, S. anginosus was shown to 
have a high discriminatory capacity in a biomarker panel 
for CRC diagnostic classification [49]. Recently, P. micra 
was reported as a putative non-invasive fecal biomarker 
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Fig. 7  BHC bar plot for the healthy and two disease subgroups under PR-50 features. a UC, b CD
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Fig. 8  BHC bar plot for the healthy and two disease groups under KS-92 features. a CRC, b CA
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Fig. 9  BHC bar plot for the healthy and two disease groups under KS-92 features. a UC, b CD
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for CRC [50]. Several bacterial species, including Pepto-
streptococcus stomatis, Fusobacterium nucleatum, and 
Parvimonas micra, were enriched in CRC, which were 
highly similar to our results [51]. Advanced adenomas 
are regarded as clinical precursors of CRC. According 
to the results, high contributors for CA shared the most 
part as CRC, including Atopobium parvulum, Granuli-
catella adiacens, Oribacterium sinus, Peptostreptococ-
cus stomatis, Gemella sanguinism, Subdoligranulum 
variabile, Solobacterium moorei, and Gemella morbillo-
rum. In addition, several Lachnospiraceae species, along 
with Streptococcus species showed statistical discrep-
ancies from healthy controls. In a recent study, Atopo-
bium parvulum was defined as a “progressive microbiota 
biomarker” from the control to advanced adenoma and 
then to the CRC group [52]. However, F. nucleatum did 
not seem to be an intensively significant identifier, as was 
found in the CRC population. This was in line with a pre-
vious study [53], where they found that the F. nucleatum 
in CA cases was 3.8-fold higher than that in the controls 
(P = 0.022); however, for CRC, it became 132-fold higher 
(P < 0.001). Nevertheless, further efforts are required to 
answer mechanistic questions regarding the role of these 
bacteria in tumor initiation and progression [42].

UC and CD
UC and CD are the two major subtypes of inflamma-
tory bowel disease (IBD). They share some clinical and 
pathological features, and variability in disease distri-
butions [54]. The detailed discussion of the mechanism 
of such variability is beyond our scope, but here we are 
interested in comparing the averaged population-level 
contributions. In general, UC and CD share several con-
tributors, although their variations in UC were not as 
significant as those in CD. For UC, high-contribution 
candidates include Peptostreptococcus stomatis, Gemella 
morbillorum, Parvimonas micra, Solobacterium moorei, 
Ruminococcaceae bacterium, Streptococcus cristatus, 
Streptococcus tigurinus, and Erysipelotrichaceae bacte-
rium. Interestingly, KS-92 indicated that P. stomatis, G. 
morbillorum, and P. micra were the top three contribut-
ing species to UC, which were exactly the same top three 
H− species as in CRC, indicating that patients with UC 
may have high risk associations with CRC. In a multidis-
ease study, G. morbillorum and P. stomatis showed strong 
coaggregation in UC regardless of the data sources [55]. 
Moreover, commensal Peptostreptococcus species have 
been reported to produce indoleacrylic acid and suppress 
inflammation [56]. For CD, these candidates became more 
evident, including Fusobacterium nucleatum, Fusobac-
terium varium, Clostridium clostridioforme, Blautia pro-
ducta, Gemella morbillorum, Lachnospiraceae bacterium 
4_1_37FAA, and Megasphaera micronuciformis. Among 

them, F. nucleatum has long been associated with the 
etiology of IBD, particularly CD [57]; C. clostridioforme 
was previously observed to be enriched in patients with 
CD [58]. B. producta is a butyrate-producing bacterium 
involved in the design of bacterial consortia for treating 
patients with IBD [59]. F. varium has been previously 
studied as an infectious bacterium that can cause IBD [60, 
61]. Here, we observed that it was a high contributor spe-
cies in both CD and UC and was even higher in CD than 
that in UC. Despite the great variability between UC and 
CD, we could observe that both UC and CD should be 
linked with oral lesions. The role of the oral microbiome 
in pathogenesis can be partly attributed to ectopic colo-
nization [62]. Specifically, we also observed that K. pneu-
moniae and A. parvulum show more variations in CD. A 
recent study revealed the ectopic colonization mechanism 
of oral Klebsiella strains when the intestinal microbiota 
is dysbiotic [63]. In contrast, A. parvulum was found to 
induce pancolitis in colitis-susceptible interleukin-10-de-
ficient mice, which provided novel mechanistic insights 
into CD pathogenesis [64].

Contribution spectrum analysis identifies broad‑spectrum 
disease‑related species
We found several interesting associations among dif-
ferent diseases through clustering analysis of the health 
contribution spectrum of species across all diseases in 
both the discovery and validation cohorts. As shown in 
Fig. 10, most of the diseases existing in both cohorts will 
be clustered together by contribution spectra, including 
CRC, RA, and OW. For CD, CA, UW, and OB, the con-
tribution spectra in the validation set were not neigh-
bors with the discovery counterpart, which we speculate 
should be due to the insufficient samples in the validation 
set. Nevertheless, each pair from the same disease was 
still assigned to adjacent positions. Metabolic disorder-
related diseases, such as OB, T2D, and IGT, were closely 
clustered, which directly implied a common pathogen-
esis in related diseases. UC had close clustering with 
RA, and many studies revealed that a large number of 
patients with UC developed RA within a few years. In 
addition, UC also had closed clustering with CA, which 
confirmed previous findings that the prevalence of CA 
among patients with UC is high [65, 66]. Furthermore, 
we found that SA and RA were closely related to UC and 
CD. UC, CD, RA, and SA are immune-mediated inflam-
matory diseases (IMIDs), which may share some under-
lying pathogenic features [67]. Of note, the microbiome 
health contribution spectrum of non-alcoholic fatty 
liver disease (NAFLD) remained close to that of IMIDs, 
which was also reasonable as the main molecular and 
immunological mechanisms in NAFLD were regarded 
to be shared with IMIDs. The bacterial contributions of 
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12 diseases in the discovery cohort and three diseases in 
the validation cohort were further analyzed. As shown in 
Fig.  11a, the red bands indicated that bacteria made an 
important contribution to the health index among mul-
tiple diseases. Subsequently, we further made the clas-
sifier prediction performance under different ratios of 
accumulated contribution over total contribution and 
found that the prediction performance was best with the 
ratio 0.8 (Table  2). We chose the species for which the 

ratio of accumulated contribution to total contribution 
reached 80% as the high-contribution species. Consider-
ing all 12 diseases in the discovery cohort, we found 12 
shared high contributors including Streptococcus tiguri-
nus, Gemella haemolysans, Lactobacillus salivarius, Blau-
tia producta, Atopobium parvulum, Erysipelotrichaceae 
bacterium 3_1_53, Clostridium clostridioforme, Solobac-
terium moorei, Eubacterium dolichum, Lachnospiraceae 
bacterium 1_4_56FAA, Streptococcus gordonii, and 
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Lachnospiraceae bacterium_3_1_57FAA_CT1 (Table  3). 
A recent gene-level analysis study reported G. haemoly-
sans, S. moorei, Erysipelotrichaceae, and Streptococcus as 
potentially broad-spectrum multidisease-associated spe-
cies [68]. Adding three new diseases (Ankylosing spon-
dylitis [AS], Liver cirrhosis [LC], and NAFLD) in the 
validation set resulted in a reduced broad spectrum cov-
ering 11 high contributors (Fig. 11b), and only S. moorei 
was not included due to the absence of AS, which fur-
ther demonstrated the powerful diagnostic ability of our 
hiPCA framework and offered new insights into potential 
microbiome targeted therapy [67].

Conclusion
This study presented an effective and interpretable gut 
microbiome health monitoring diagram to quantify and 
diagnose personal health status. Our monitoring frame-
work was constructed with a healthy population under-
standing based on statistical inference theory to infer any 
deviation from the nominal health level with the universal 
boundary. Under this framework, we found that the micro-
biome can reflect healthy status or potential unhealthy risks 
by employing only H− species. Four health patterns can be 
determined in healthy population analysis after contras-
tive learning. The average health patterns with various P/B 
ratios and different levels of health superiority were dis-
cussed among health patterns. Our health index was rea-
sonably associated with the diversity index, physiological 
measures, and functional redundancy. More importantly, 

the BHC spectrum can leverage personalized health diag-
nosis, which further discloses those diseases shared and 
specific diagnostic indicators by aggregating the population 
samples for potential clinical investigation and modulation 
analysis.

Despite the strong reproducibility and interpret-
ability of the hiPCA, some limitations were noted. For 
instance, hiPCA is constructed with a linear embedding 

Table 2  Classification performance using RF under different levels of features covering total contributions

a The BHC of each species among diseases in the discovery cohort is ranked in descending order, and the total contribution is 
∑D

i=1
BHCxi . Features x1, x2, ..., xp are 

selected until the ratio of accumulated contribution 
∑p

i=1
BHCxi to total contribution exceeds the given percentage η , that is 

∑p
i=1

BHCxi

/

∑D
i=1

BHCxi > η . Once 
the features have been selected, the RF is used for classification evaluation.
b Excluding the SA with the least sample size, the CD with the best AUC result, and the IGT with the worst AUC result, the remaining AUC results were averaged, and 
when the ratio exceeded 0.8, the average AUC reached the best

Diseases Accumulated contribution percentage for feature selection KS-92 features All 313 features

0.3 0.4 0.5 0.6 0.7 0.8 0.9

ACVD 0.731 0.738 0.747 0.762 0.752 0.791 0.788 0.770 0.784

SA 0.617 0.708 0.592 0.492 0.633 0.600 0.683 0.600 0.883

CRC​ 0.652 0.765 0.746 0.762 0.815 0.794 0.789 0.827 0.828

CA 0.539 0.463 0.550 0.529 0.554 0.632 0.621 0.523 0.554

UC 0.706 0.809 0.807 0.797 0.773 0.742 0.696 0.668 0.725

CD 0.862 0.868 0.878 0.934 0.934 0.959 0.950 0.953 0.986

T2D 0.575 0.665 0.623 0.693 0.712 0.696 0.694 0.618 0.591

IGT 0.674 0.487 0.530 0.560 0.622 0.562 0.462 0.540 0.592

RA 0.525 0.579 0.613 0.616 0.576 0.629 0.646 0.631 0.571

OB 0.723 0.706 0.756 0.786 0.773 0.777 0.800 0.800 0.883

OW 0.467 0.511 0.571 0.551 0.539 0.621 0.509 0.454 0.525

UW 0.497 0.683 0.733 0.811 0.751 0.805 0.737 0.638 0.516

Averaged 0.602 0.658 0.683 0.701 0.694 0.721 0.698 0.659 0.664

Table 3  The shared high contributors among diseases

12 shared high contributors 
among 12 diseases in the 
discovery set

11 shared high contributors 
among 15 diseases in the 
discovery and validation set

Erysipelotrichaceae bacterium 
3_1_53

Clostridium clostridioforme

Clostridium clostridioforme Streptococcus gordonii

Streptococcus gordonii Streptococcus tigurinus

Streptococcus tigurinus Blautia producta

Blautia producta Lachnospiraceae bacterium 
3_1_57FAA_CT1

Lachnospiraceae bacterium 
3_1_57FAA_CT1

Gemella haemolysans

Gemella haemolysans Lachnospiraceae bacterium 
1_4_56FAA

Lachnospiraceae bacterium 
1_4_56FAA

Atopobium parvulum

Atopobium parvulum Lactobacillus salivarius

Lactobacillus salivarius Eubacterium dolichum

Eubacterium dolichum Erysipelotrichaceae bacterium 3_1_53

Solobacterium moorei
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framework, which cannot unveil nonlinear bacterial 
interaction patterns. From the information integrity, 
further information such as the contextualization of 
the microbiota community to metatranscriptomics and 
metabolism may allow high data quality and accurate 
predictions. Nevertheless, as a general framework, we 
believe that hiPCA greatly facilitates the individualized 
assessment of health status and identification of poten-
tial biomarkers, contributing to a comprehensive under-
standing of the roles of gut microbiota in personalized 
human health.
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