
Introduction
Antibiotic production and resistance are ancient traits 
important to competition between bacteria [1]. However, 
medical antibiotic use has driven an increase in antibi-
otic resistance (ABR) in human- and livestock-associated 
bacteria [2], and ABR in pathogenic bacteria has become 
a major concern for human and veterinary medicine 
[3]. With a One Health perspective in mind, identifying 
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Abstract 

Background The resistome, the collection of antibiotic resistance genes (ARGs) in a microbiome, is increasingly 
recognised as relevant to the development of clinically relevant antibiotic resistance. Many metagenomic studies 
have reported resistome differences between groups, often in connection with disease and/or antibiotic treatment. 
However, the consistency of resistome associations with antibiotic- and non-antibiotic–treated diseases has not been 
established. In this study, we re-analysed human gut microbiome data from 26 case-control studies to assess the link 
between disease and the resistome.

Results The human gut resistome is highly variable between individuals both within and between studies, but may 
also vary significantly between case and control groups even in the absence of large taxonomic differences. We found 
that for diseases commonly treated with antibiotics, namely cystic fibrosis and diarrhoea, patient microbiomes had 
significantly elevated ARG abundances compared to controls. Disease-associated resistome expansion was found 
even when ARG abundance was high in controls, suggesting ongoing and additive ARG acquisition in disease-asso-
ciated strains. We also found a trend for increased ARG abundance in cases from some studies on diseases that are 
not treated with antibiotics, such as colorectal cancer.

Conclusions Diseases commonly treated with antibiotics are associated with expanded gut resistomes, suggesting 
that historical exposure to antibiotics has exerted considerable selective pressure for ARG acquisition in disease-asso-
ciated strains.

factors driving the spread of ABR in humans, livestock, 
and the environment is of great importance [4, 5].

Antibiotic resistance is often based on acquisition of 
antibiotic resistance genes (ARGs). ARGs can spread 
rapidly in bacterial populations by horizontal transfer 
both within and across species boundaries via bacterio-
phages, plasmids, and transposable genetic elements [6, 
7]. The epidemiology and spread of ARGs has mainly 
been studied in clinically relevant bacteria, but the role 
of the commensal microbiome in the spread of ARGs is 
of increasing interest [2]. The microbiome contains a sta-
ble reservoir of ARGs, collectively termed the resistome. 
The genes in this reservoir can be spread via inter- and 
intra-species horizontal gene transfer, enabling patho-
genic strains to rapidly adapt upon infection and antibi-
otic treatment [8–10].
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Studies of human, animal, and environmental micro-
biomes have revealed differences in the abundance and 
diversity of ARGs (i.e. the resistome) between sites, 
groups, and populations, suggesting recent or ongoing 
selective pressure for antibiotic resistance. While anti-
biotic use induces positive selection for ARG acquisi-
tion, other forces act to reduce ARG carriage. ARGs can 
impart a fitness cost in the absence of antibiotic expo-
sure, and this is thought to select for loss of resistance 
after cessation of antibiotic treatment [11, 12]. Strain-
level microbiome composition, and thus the resistome, 
may also be equalised within populations by horizontal 
microbiota transfer [13–16].

Disease-associated resistomes are of particular interest 
because of their clinical relevance and impact on choice 
of antibiotic treatment. If a disease is treated with anti-
biotics, disease-associated microbiome members that 
acquire corresponding ARGs have a selective advantage. 
ARGs can co-occur with virulence genes on genomic 
islands [17], and the two classes of genes may confer 
synergistic selective advantages to disease-associated 
strains when co-occurring. These processes may lead to 
increased ARG abundance (resistome expansion) in dis-
ease-associated microbiomes. While some studies have 
theorised this mechanism to explain differences in ARG 
abundance between groups [18–22], a comprehensive 
overview of disease-associated resistomes is lacking. It is 
not known what resistome differences might be expected 
due to factors other than natural selection from antibiotic 
exposure. Microbiome studies are known to be at high 
risk of confounding factors [23, 24], and unbalanced case/
control cohort selection may impact on resistome results. 
Moreover, diseased hosts may be associated with a dis-
tinct but non-disease-specific resistome. Host inflamma-
tion and oxidative stress may promote phage lysogeny, 
increase horizontal gene transfer, and indirectly select 
for disease-associated bacteria rich in ARGs [19, 25–27]. 
Currently, it is not known whether there is a consistent 
link between host disease and an expanded resistome. 
The difference between the number of studies reporting 
positive and negative associations could reflect publica-
tion bias, as positive associations may be more likely to 
be published.

In this study, we aimed to provide a comprehensive 
overview of disease-associated resistomes in human 
gut microbiome studies. We reasoned that, while com-
parison of all available data in a common analysis can-
not rigorously assess the results of individual studies, 
as only limited metadata are made publicly available, it 
would provide a unique perspective on overall trends. We 
re-analysed 26 studies with publicly available metagen-
omic data from healthy controls and cases with various 
morbidities. Some on the included studies investigated 

diarrhoea and cystic fibrosis, which are commonly 
treated with antibiotics. Other studies investigated dis-
eases that are  not commonly treated with antibiotics, 
and thus not expected to be associated with an expanded 
resistome.

Methods
Study inclusion and data selection
We aimed to include human gut case-control metagen-
omic shotgun sequencing studies investigating any dis-
ease or morbidity with publicly available raw data and 
metadata. First, we included studies from the curated-
MetagenomicData database [28]. We then conducted 
a systematic literature review to identify additional 
metagenomic studies on cystic fibrosis and diarrhoea, 
diseases commonly treated with antibiotics, by searching 
PubMed for (((microbiota OR microbiome OR metagen-
omics) (cystic fibrosis) AND (shotgun))) NOT (Review 
[Publication Type]). Studies indexed by PubMed before 
2022–07-22 were included. Studies without publicly 
available data and metadata or with less than 10 case 
samples were excluded. A total of 26 case-control studies 
were included (Table S1).

We reviewed the metadata of all studies to select either 
the full sample set or a subset of samples appropriate for 
case-control comparison. For longitudinal studies, we 
selected a single sample from each participant. As the 
included longitudinal studies did not provide detailed 
metadata on disease symptoms at each timepoint, we 
opted to use the first sample collected from each par-
ticipant. For studies that collected samples from multiple 
cohorts and/or different countries, we split the dataset 
for separate analysis or excluded samples causing unbal-
anced study designs. For instance, if the majority of sam-
ples were collected in one country and additional cases 
but no controls were collected in a second country, we 
excluded these cases. Where possible, we excluded sam-
ples from participants who had recently been treated 
with antibiotics, as we aimed to study evolutionary adap-
tation of the microbiome to historical antibiotic expo-
sure, rather than the direct effects of ongoing treatment. 
We included one study on cystic fibrosis despite many 
cases taking antibiotics, as this is unavoidable and com-
mon practice to prevent lung infections [29]. We divided 
studies into separate datasets when several different diag-
noses were investigated and when samples were collected 
from separate cohorts and/or differed in geography or 
methodology.

Many datasets did not include all the metadata needed 
for reproducing the original study results or for novel 
analysis as was done in this study. An important limita-
tion was that some studies did not provide information 
on exclusion criteria and recent antibiotic treatment of 
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each participant. We opted not to exclude these data-
sets because publicly available datasets with complete 
metadata are so rare that this study would not have been 
feasible otherwise. The lack of metadata on antibiotic 
exposure was mainly a problem for studies where anti-
biotic use was not related to the studied disease, and we 
note that the datasets in question had neutral resistome 
case-control differences.

Data processing
We used NCBI fastq-dump to download all reads from 
the included samples. We used Kraken 2 [30] for taxo-
nomic assignment of reads. The Kraken database was 
compiled on 2022-08-15 and included all default taxon-
omy options (i.e. prokaryote, plasmid, viral, fungal, pro-
tozoan, human, and plant genomes) and additionally four 
roundworm and flatworm genomes (GCA_003958945.1, 
GCA_900618425.1, GCA_000941615.1, and 
GCA_000936265.1). To accurately assess the relative 
abundance of the resistome, we normalised for the pro-
portion of reads classified as any other domain than bac-
teria (otherwise, a sample with 50% host reads would 
appear to have half the ARG abundance of an equivalent 
sample with no host DNA contamination). This adjust-
ment had a little impact on most studies, as the propor-
tion of non-bacterial reads was low (Fig. S1).

We used MMseqs2 [31] alignment to the ResFinder 
database [32] to identify ARGs and quantify their abun-
dance. To reduce noise from ambiguous mapping to 
highly similar gene variants, we clustered all sequences 
to 90% identity using MMseqs2 easy-cluster with settings 
‘-min-seq-id 0.9 -cov-mode 0’. We mapped metagenomic 
reads to the representative sequences of the clusters 
using MMseqs2 easy-search with setting -s 4.500 and 
accepted the best hit with minimum 50 bp alignment and 
80% identity. ARG abundance was normalised to reads 
per kilobase per million reads (RPKM).

Statistical analysis
To determine whether the case and control groups of 
each study differed in total ARG abundance, we summed 
the RPKM abundance of all ARGs in each sample and cal-
culated the mean per group. We used unpaired Wilcoxon 
rank-sum test to assess statistical significance. We used R 
v4.2.3 package vegan v2.6.4 [33] function RDA for princi-
pal component analysis (PCA) and redundancy analysis 
(RDA), function vegdist to calculate Bray–Curtis dissimi-
larity, and function adonis to perform PERMANOVA to 
determine the overall compositional difference. When 
estimating mean genome sizes with MicrobeCensus 
v1.1.0 [34], we used the default settings and included only 
samples with < 5% eukaryotic DNA abundance.

Results and discussion
Cases with antibiotic‑treated diseases feature expanded 
resistomes
Case-control studies on cystic fibrosis and diarrhoea, 
diseases for which antibiotics are the main treatment, 
showed greater disease-associated resistome expan-
sion (higher ARG abundance in cases than in healthy 
controls within the dataset) than studies on diseases 
not treated with antibiotics (p = 0.0001, Wilcoxon rank-
sum test). The four datasets of antibiotic-treated dis-
eases were all among the five studies with the greatest 
resistome expansion in cases. Of the 35 datasets, eight 
had significantly (p < 0.05, Wilcoxon rank-sum test with 
FDR correction) higher total ARG abundance in cases 
while only one study had significantly lower ARG abun-
dance in cases (Fig.  1). While total ARG abundance 
was highly variable between individuals, case and con-
trol samples had limited overlap in the studies with the 
greatest case-associated resistome expansion (Fig.  2). 
We list case-control comparison for individual ARGs 
within each study in Table S2 and species-level taxo-
nomic differences in Table S3. Confounding variables 
were not accounted for in the main analysis because 
such metadata were only sporadically available. This is 
a fundamental limitation of re-using publicly available 
data. Ideally, we would have consistently accounted for 
resistome associations with factors such as age [35, 36], 
sex [37], diet [38, 39], and exposure to livestock [40]. 
We note that age, the most commonly available vari-
able, often correlates with total ARG abundance (Fig. 
S1), but that this effect is variable and cannot explain 
large case-control differences.

The largest difference in ARG abundance between 
case and control participants was found in cystic fibro-
sis (CF) patients, who had on average 3.59 times the 
ARG abundance of healthy controls (p = 0.000003, Wil-
coxon rank-sum test with FDR correction). Although a 
number of studies have investigated the CF-associated 
microbiome [41], only a single, Australian dataset [42, 
43] met our inclusion criteria. While the Australian 
CF cases had high total ARG abundance compared to 
the study controls, they were still comparable to both 
case and control samples collected in other studies 
from countries with higher antibiotic usage, such as 
Bangladesh and China (Fig. 1). It is possible that hori-
zontal microbiota transfer between individuals within 
the Australian population, where antibiotic use and 
ABR levels are low, limits ARG abundance in patients 
by continuously introducing susceptible strains. CF 
patients in countries with high baseline ARG abun-
dance in the general population likely reach higher 
ARG abundances.



Page 4 of 11Fredriksen et al. Microbiome          (2023) 11:166 

The diarrhoea‑associated resistome
The diarrhoea-associated microbiome has been 
reported to have a distinct compositional profile influ-
enced by exposure to antibiotics [20, 21, 44–47]. Our 
re-analysis of three publicly available diarrhoea data-
sets found that although the causative agent may vary, 
diarrhoea cases share an increased abundance of Enter-
obacteriaceae species including Escherichia coli, Sal-
monella enterica, Shigella dysenteriae, and Klebsiella 

pneumoniae (Fig.  3A). The occurrence and abundance 
of Vibrio cholerae was limited, except for in the dataset 
from David et al. [44], which specifically studied Vibrio 
cholerae-associated diarrhoea.

Despite excluding samples collected after antibi-
otic treatment (to avoid confounding evolutionary 
adaptation of the microbiome to historical antibiotic 
exposure and direct effects of ongoing treatment), we 
found strong expansion of the diarrhoea-associated 

Fig. 1 Resistome case-control associations. Summary statistics per study/disease, sorted from strongest to weakest total ARG abundance case 
association. The columns under total ARG abundance show mean reads per kilobase per million reads (RPKM) total ARG abundance in case 
and control samples, the ratio of these, and Wilcoxon rank-sum test p value for case vs control samples per study. The PERMANOVA columns show 
Bray–Curtis dissimilarity PERMANOVA R2 and p values for species-level taxonomy and ARG composition. The PERMANOVA model only compared 
cases to controls and did not account for any potential confounding variables due to the limited availability or completeness of such metadata. 
CRC, colorectal cancer; adenoma, non-cancerous tumour; ME/CFS, chronic fatigue syndrome; T2D, type 2 diabetes; IGT, impaired glucose tolerance; 
IBD, inflammatory bowel disease



Page 5 of 11Fredriksen et al. Microbiome          (2023) 11:166  

resistome. This suggests that bacterial strains that are 
more prevalent and/or abundant in the gut micro-
biome of diarrhoea cases have adapted to frequent 
exposure to antibiotic treatment. The dataset from 
Soto-Girón et  al. [47], which assessed both urban 
and rural diarrhoea cases in Ecuador, showed a 53% 
increase in total ARG abundance in cases. The data-
sets from Kieser et al. [21] and David et al. [44], both 
using samples collected in Bangladesh, showed double 
and triple increase in total ARG abundance in cases. 
In both studies, case and control participant groups 
were not entirely equivalent. In Kieser et al. [21], there 
was a mismatch in age and social class, and David et al. 
[44] included two cohorts sampled at different times, 
with only cohort 1 including healthy controls and only 
cohort 2 including cases sampled prior to antibiotic 
treatment. In all three studies, the cases had a high 
abundance of ARGs conferring resistance to cepha-
lothin, piperacillin, aztreonam, spiramycin, ceftriax-
one, and gentamicin (Fig. 3B–C). The most significant 
case-associated ARG phenotypes per study were ampi-
cillin resistance in Kieser et al. [21] (655 vs 68 RPKM, 
p = 0.00002), cefoxitin in Soto-Girón et al. [47] (127 vs 
62 RPKM, p = 0.002), and chloramphenicol in David 
et al. [44] (104 vs 6 RPKM, p = 0.02). Single genes such 
as blaTEM (conferring resistance to beta-lactams) con-
tributed up to 20% of the total increase in ARG abun-
dance in cases within all studies, but case-associated 
resistome expansion was also to a large extent driven 
by less abundant genes (Fig. S4).

Differences in ARG abundance in diseases not treated 
with antibiotics
In addition to taxonomy and antibiotic exposure, the 
resistome may differ between case and control groups 
due to confounding factors. These may for instance 
include bias in participant selection, or inflammation 
facilitating colonisation by generalist disease-associated 
strains enriched in ARGs (i.e. strains associated with sev-
eral different diseases or the hospital environment). To 
test whether such factors might drive a general resistome 
expansion in microbiome study case participants, we 
included studies on a range of different morbidities [48–
70]. Although case-control differences were smaller than 
in the studies on antibiotic-treated diseases, we observed 
some differences between studies (Fig. 1).

Inflammatory bowel disease (IBD, including both 
ulcerative colitis and Crohn’s disease) involves bouts of 
intestinal inflammation. Early-life antibiotic usage has 
been suggested to predispose to IBD [71], and antibiot-
ics may in some cases be used to treat IBD complications 
[72], but antibiotics are not a generally used treatment. 
All the three re-analysed IBD datasets [50, 52, 58, 73, 74] 
showed weak overall species-level compositional differ-
ences (Fig. 1), with some individual low-abundance spe-
cies such as Akkermansia muciniphila, Fusobacterium 
nucleatum, and various Alistipes species differing in 
abundance between cases and controls. We found high 
inter-individual variation and different results between 
studies, and a caveat to this analysis was that we lacked 
metadata on the symptom severity, a key variable in 
determining the IBD-associated microbiome. Although 

Fig. 2 Boxplot of the total ARG abundance for the four datasets with the strongest case association in ARG abundance. Boxplots for all datasets are 
shown in Fig. S2
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we cannot examine the datasets as rigorously as the origi-
nal authors, we note that none of the three re-analysed 
IBD datasets showed resistome case-control associations. 
Neither the overall resistome nor individual ARGs with 
abundances greater than 0.1 RPKM differed significantly 
between cases and controls.

Several studies have investigated the microbiome 
associated with colorectal cancer (CRC) [48, 49, 51, 63–
66, 68, 69]. CRC is not treated with antibiotics, so the 
CRC-associated microbiome should not face increased 
selection pressure for ARG expansion. However, the 
CRC case-associated resistome might be influenced by 

confounding factors such as lifestyle and diet that pre-
dispose to CRC development in individuals with a CRC 
risk genotype [75]. Most CRC datasets showed no sig-
nificant difference in total or individual ARG abundance 
between cases and controls. However, Gupta et  al. 
(India) [49], Feng et al. (Austria) [48], and Thomas et al. 
cohort 1 (Italy) [63] trended towards higher total ARG 
abundance in cases (Fig. 1). This was driven by different 
ARGs in each study (Fig. 4, Table S2), but ARGs confer-
ring resistance to disinfectants played a role in the three 
studies with the strongest case-associated resistome 
expansion.

Fig. 3 The diarrhoea-associated microbiome and resistome. A Redundancy analysis (RDA) showing the species most strongly separating case 
and control samples in diarrhoea studies (on axis RDA1). Each label represents a single sample, ellipses represent 95% confidence level, and arrows 
indicate taxa driving the sample separation; samples in the direction the arrow is pointing have a higher abundance of the taxon. Species 
relative abundance input data were transformed by log(1000 × abundance + 1), and the study was used as RDA covariate. B RDA on the summed 
abundance of all ARGs per ResFinder (conferred) resistance phenotype. C Boxplots of the main ResFinder ARG phenotypes separating case samples 
on the RDA axis, excluding disinfectant resistance genes. Corresponding analysis at the ARG level is shown in Fig. S5
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Confounding variables and unbalanced study designs
Ideally, a case-control study design should involve case and 
control populations identical in all aspects except for the 
investigated disease. Such designs are feasible in laboratory 
experiments, but research on humans present large individ-
ual variation and lifestyle-related environmental differences 
[23, 24]. This poses challenges because the microbiome 
and risk of disease development may be independently 

correlated not only with commonly recorded factors but 
also with factors difficult to record or quantify, such as 
dietary habits [76] and socioeconomic status [77, 78]. Case 
participants may also acquire hospital-associated strains 
rich in ARGs through horizontal transfer.

We found that different studies on the same dis-
ease may find different resistome case-control associa-
tions, despite species-level taxonomic change being in 

Fig. 4 Boxplot of the ResFinder ARG phenotypes that showed the strongest case associations in the three CRC studies (excluding adenoma 
samples) with strong overall resistome expansion in cases (ratio > 1.2). Datasets (columns) are sorted from left to right by the strongest to weakest 
total ARG abundance case association. ResFinder ARG phenotypes (rows) are sorted from strongest (top) to weaker (bottom) case association 
in RDA analysis constrained by case-control status with study as covariate. p values are calculated by Wilcoxon rank-sum test and FDR corrected 
within each study for the number of ResFinder phenotype categories compared
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agreement. Studies investigating different CRC cohorts 
showed (trends towards) both higher and lower ARG 
abundance in cases, despite seemingly equivalent partici-
pant selection criteria. In addition to variation between 
studies, the two separate Italian CRC cohorts reported in 
Thomas et al. [63] differed. Cohort 1/A (collected in Ver-
celli) was characterised by high overall ARG abundance, 
which was expanded in cases compared to controls. ARG 
abundance in cohort 2/B (collected in Milan) was lower 
and similar in cases and controls. Several individual 
ARGs were significantly differentially abundant in cohort 
1, but no ARGs were significantly different within cohort 
2. A previous meta-analysis found both cohorts to have 
a CRC-associated taxonomic compositional profile in 
agreement with other CRC studies [63, 65]. Gupta et al. 
collected cases and controls from the same locations, but 
controls were collected as part of a separate study, and 
this may have contributed to greater differences in taxon-
omy and resistome compared to the other CRC studies. 
All microbiome studies use inclusion criteria to limit the 
impact of confounding variables on results, but it is pos-
sible that the interpretation and application of sampling 
criteria vary within and between studies. Strict partici-
pant selection criteria and collection of additional meta-
data are warranted in human resistome studies.

Linking taxonomic composition and the resistome
In order to assess the immediate clinical relevance of an 
ARG, it is key to determine its host and genomic con-
text. Unfortunately, short-read metagenomic sequencing 
data is not well suited for assessing the genomic context 
of ARGs [10, 79–81]. Identical ARG copies occur in dif-
ferent taxa due to horizontal gene transfer, and adjacent 
genomic regions may also be shared if included in a 
mobile genetic element or genomic island. Among the re-
analysed datasets, some studies showed large differences 
in both taxonomic composition and ARG abundance. In 
other studies, such as the Jie et  al. (atherosclerosis) and 
Qin et al. (type 2 diabetes), ARG abundance was 20–40% 
higher in cases despite case/control status only explain-
ing 1–3% of the species level dataset variation (Fig.  1). 
Differences in the resistome and taxonomic composition 
may occur due to interdependencies (e.g. colonisation by 
different species inherently carrying different ARGs) or 
independently (abundance shifts among closely related 
strains with variable ARG content), but these scenarios 
cannot be differentiated by short-read metagenomic 
sequencing. This makes it difficult to determine whether 
increased ARG abundance occurs due to conferring an 
ecologically relevant trait in disease-associated strains 
or by correlation with taxonomic change. Taxa may dif-
fer in ARG content due to intrinsic resistance and vari-
able selective pressures exerted by each antibiotic, and 

different ARGs may confer the same trait. Furthermore, 
ARGs are often located on plasmids as a part of the 
accessory genome and variably present in closely related 
lineages [82, 83]. This allows resistomes to differ despite 
limited observed changes in taxonomic composition.

Furthermore, while some ARGs may have strong corre-
lations linking them to specific species [84], this is rarely 
the case for the ARGs driving case-associated resistome 
expansion. In the datasets with resistome expansion in 
cases, we found strong (auto) correlation in the case-
control association of ARGs and the species with which 
they had the strongest correlation with, despite weak 
sample-to-sample correlations (Fig. S6). Ultimately, it is 
very challenging to connect the presence and abundance 
of individual genes with each other and overall taxonomic 
abundance using short-read sequencing data. Recent 
work has successfully utilised long-read [85, 86] and Hi-C 
[87–91] sequencing, and future studies aiming to study the 
resistome may benefit from implementing these strategies.

Resistome studies may also reveal differences in ARG 
abundance as a technical artefact of metagenomic 
sequencing methodology. Bacteria may carry (multiple) 
ARGs on (high-copy-number) plasmids, thus contribut-
ing greatly to the observed resistome compared to strains 
with a single chromosomal copy of the same ARG. Vari-
able genome size may also influence a strain’s contribu-
tion to the observed resistome. A microbiome with a 
high abundance of taxa with small genome sizes but an 
average number of ARGs will appear to have an abundant 
resistome. We do not expect this to have contributed 
meaningfully to the strongest case-control differences 
reported in the present study, as commonly case-associ-
ated Gammaproteobacteria species have larger genomes 
than commonly control-associated Lactobacillus and 
Prevotella species. Estimation of the mean genome size 
per sample within the diarrhoea datasets using Micro-
beCensus [34] showed no significant difference in mean 
genome sizes between case and control samples. Plasmid 
carriage may play a modest role in expanded case-asso-
ciated resistomes as Enterobacteriaceae commonly carry 
ARGs on plasmids, although these are large and occur in 
low copy numbers [92]. Data on plasmid copy numbers 
in different (commensal) taxa could be of great relevance 
for resistome research, but we are not aware of any com-
prehensive work on this topic.

Conclusions
The human gut resistome is highly variable between 
individuals, but strong differences can still be observed 
between groups in case-control studies. Antibiotic 
treatment of disease appears to exert strong posi-
tive selection pressure for acquisition and mainte-
nance of ARGs on the disease-associated microbiome, 
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driving observable expansion of the disease-associated 
resistome. This implies that the disease-associated micro-
biomes contain strains with high disease specificity that, 
while transmitted between individuals and a part of the 
resident microbiota, are more prevalent and/or abundant 
during disease and antibiotic treatment. High baseline 
resistome abundance in controls does not appear to limit 
further (additive) resistome expansion, underpinning the 
importance of limiting antibiotic use in populations with 
high resistance levels. The resistome of case and control 
groups may also show differences without any clear bio-
logical explanation, and future resistome research should 
take great care in selecting equivalent study cohorts.
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one facet.

Additional file 8: Fig. S4. Plots showing the relative contribution of 
individual ARGs towards overall resistome expansion. While a few ARGs 
contribute a large proportion of the total ARG abundance expansion, 
many ARGs also trend towards case-association. Thus, they contribute to 
overall resistome differences without themselves being significantly differ-
ent. The ARGs with the strongest impact are labelled.

Additional file 9: Fig. S5. ARG-level analysis of the three diarrhoea data-
sets. A) RDA constrained by case-control status. B) Boxplots showing the 
abundance of the ARGs with the strongest impact on the RDA1 axis.

Additional file 10: Fig. S6. Strong (auto) correlation between the 
case-association of ARGs and species despite limited sample-by-sample 
co-occurrence. This figure shows the relationship between the disease-
association of ARGs and the species they are most strongly correlated 
with (regardless of strength and significance of this correlation). Points 
represent pairs of each ARG (minimum abundance of > 1 RPKM) and the 
species (minimum abundance of > 0.01%) it has the strongest positive 
Spearman’s rank correlation coefficient with. High positive values on the 
x- and y-axis indicate case-association of the ARG and species, respec-
tively. The purple line indicates 1:1 equal case-control association of ARG 
and species, which could be expected if the ARG is found only on the 
chromosome of a single species of average genome size. David et. al. 2015 
has several, likely genuine, strong correlations due to consistently high 
abundance of Vibrio choleraein cases.
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