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Abstract 

Background The high diversity and complexity of the microbial community make it a formidable challenge 
to identify and quantify the large number of proteins expressed in the community. Conventional metaproteom-
ics approaches largely rely on accurate identification of the MS/MS spectra to their corresponding short pep-
tides in the digested samples, followed by protein inference and subsequent taxonomic and functional analysis 
of the detected proteins. These approaches are dependent on the availability of protein sequence databases derived 
either from sample-specific metagenomic data or from public repositories. Due to the incompleteness and imperfec-
tions of these protein sequence databases, and the preponderance of homologous proteins expressed by different 
bacterial species in the community, this computational process of peptide identification and protein inference is chal-
lenging and error-prone, which hinders the comparison of metaproteomes across multiple samples.

Results We developed metaSpectraST, an unsupervised and database-independent metaproteomics workflow, 
which quantitatively profiles and compares metaproteomics samples by clustering experimentally observed MS/
MS spectra based on their spectral similarity. We applied metaSpectraST to fecal samples collected from littermates 
of two different mother mice right after weaning. Quantitative proteome profiles of the microbial communities of dif-
ferent mice were obtained without any peptide-spectrum identification and used to evaluate the overall similarity 
between samples and highlight any differentiating markers. Compared to the conventional database-dependent 
metaproteomics analysis, metaSpectraST is more successful in classifying the samples and detecting the subtle 
microbiome changes of mouse gut microbiomes post-weaning. metaSpectraST could also be used as a tool to select 
the suitable biological replicates from samples with wide inter-individual variation.

Conclusions metaSpectraST enables rapid profiling of metaproteomic samples quantitatively, without the need 
for constructing the protein sequence database or identification of the MS/MS spectra. It maximally preserves 
information contained in the experimental MS/MS spectra by clustering all of them first and thus is able to better 
profile the complex microbial communities and highlight their functional changes, as compared with conventional 
approaches. tag the videobyte in this section as ESM4
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Background
Over the past few years, metaproteomics has become 
an invaluable technology for directly characterizing the 
functional roles of microbial communities and associ-
ating them with the corresponding host phenotypes, 
complementing the information offered by metagenom-
ics and metatranscriptomics [1]. However, due to the 
high diversity and complexity of microbial communities 
(gut microbiome, for example), it remains a formidable 
challenge to identify and quantify the large number of 
proteins expressed in a community, let alone compar-
ing across multiple samples. Identifying and quantifying 
proteins by mass spectrometry-based proteomics largely 
rely on the pre-curated protein sequence databases, 
against which the observed MS/MS spectra are searched. 
Ideally, such a search database should include all of the 
protein sequences that cover the whole genetic poten-
tial of the microbial community. However, many organ-
isms in microbial communities lack complete, annotated 
genomes [2, 3]. As an alternative, publicly available gene 
or protein databases, such as NCBI RefSeq, Ensembl, 
and Uniprot, can be compiled and used for searching. 
Unfortunately, although these public databases are grow-
ing rapidly, they are far from complete with many species 
and their protein sequences still missing [4]. Moreover, 
without any a priori knowledge of the taxonomic compo-
sition of the samples of interest, one would like to include 
protein sequences of as many species as possible, but 
doing so results in an excessively large search database 
with high redundancy. Searching the large and redundant 
database is computationally intensive and complicates 
the peptide-spectrum matching and subsequent statis-
tical validation in proteomic data analysis and generally 
leads to fewer peptide/protein identifications [2, 5, 6].

To address this problem, researchers have developed 
a variety of dedicated analytical methods for metapro-
teomics analysis. Many of these methods, such as Met-
aLab [7], MetaPro-IQ [8], and ProteoStorm [9], adopt 
an iterative search strategy, in which the search data-
base undergoes sequential refinement through multiple 
rounds of searches, with each round of search provid-
ing information to create a smaller database for the next 
round of search. Such iterative search strategies are capa-
ble of handling large and redundant search databases 
and are shown to substantially increase the number of 
peptide/protein identifications [10]. However, iterative 
search could potentially underestimate the false discov-
ery rate (FDR) and result in false-positive identification 
of proteins from species that is not even present in a sam-
ple [2]. On the other hand, with continuous advances in 

metagenomic sequencing and genome assembly tech-
niques, sample-specific protein sequence databases can 
be derived from the metagenome-assembled genomes 
(MAGs) recovered from microbial communities. Com-
pared with public databases, the sample-specific search 
database has a lower level of redundancy and ambiguity 
and is much smaller in size. Therefore, it outperforms 
public databases in terms of the number of identifications 
and simplifies downstream processing [6]. But building 
such a sample-specific database requires extra experi-
ments, which implies longer studies and higher cost. 
At the same time, the errors in genome assembly from 
sequencing reads and gene prediction will be propagated 
to peptide-spectrum matching in metaproteomics [11]. 
No matter how the sequence database is constructed, 
metaproteomic experiments tend to have a lower rate 
of identification than in single-organism proteomics, 
with a large fraction of spectra not confidently identified, 
likely due to the imperfections of the search database. 
This results in a substantial information loss that makes 
it even harder to conduct meaningful biological experi-
ments on microbial communities.

Protein inference is another challenge in metaproteom-
ics, which affects both sample-specific and public search 
databases. Observation of peptides that are unique to a 
single protein can be taken as evidence for the existence 
of that protein, which is often possible in single-organism 
proteomics. However, one cannot make such inference 
for peptides whose sequence are commonly shared by 
multiple homologous proteins beyond the fact that one 
or more of those proteins should be in the sample. In the 
context of microbial communities, the presence of closely 
related species or conserved sequences across species 
will cause most peptides to be shared among many pro-
teins [12]. In single-organism proteomics, homologous 
proteins that cannot be confidently resolved are pooled 
as a “protein group”. In metaproteomics, however, a pro-
tein group can contain hundreds of different proteins due 
to shared peptides, and such grouping of similar proteins 
may differ between different samples, making it impos-
sible to perform differential protein abundance analy-
sis across samples [13]. The conservative approach of 
neglecting all shared peptides, which is sometimes prac-
ticed in single-organism proteomics, would imply throw-
ing away most of the data in metaproteomics. Therefore, 
instead of assembling the protein groups based only on 
the detected shared peptides after searching, a better 
approach is to apply multiple sequence alignment on 
whole protein sequences and group homologous proteins 
as one functional “pan-protein” unit before searching, 
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with the assumption that proteins which share signifi-
cant sequence similarity may have very similar functional 
roles [14–16]. By doing so, one does not attempt to 
connect the expressed function to the species that is/
are responsible for the function, but this kind of taxon-
agnostic functional analysis nonetheless enables one to 
make the most out of metaproteomics data, given current 
technological limitations.

In this study, we propose an unsupervised and data-
base-independent analysis workflow for metaproteomic 
MS/MS data, referred to as metaSpectraST, which 
bypasses the peptide/protein identification step and per-
forms proteome comparison between samples solely on 
the MS/MS spectra acquired. The cornerstone of this 
workflow is to cluster all experimentally observed MS/
MS spectra based on their spectral similarity and create 
a representative consensus spectrum for each spectrum 
cluster by using the spectrum clustering algorithm imple-
mented in SpectraST, a spectral library search engine 
widely used in proteomics [17]. Spectrally similar MS/
MS spectra that are grouped in a cluster are presumed 
to stem from the same peptide sequence [17–20]; that 
is, they are replicates of the same peptide either from the 
same or different samples. Thus, for a metaproteomic 
sample, we can easily obtain its community profile by 
counting the number or signal intensity of the constitu-
ent replicate spectra of each spectrum cluster in the sam-
ple. Since the consensus spectra are created by taking all 
samples of interest into consideration, the entire set of 
consensus spectra becomes a unified basis for compar-
ing across samples. A second advantage of this commu-
nity profile is that it maximally preserves information of a 
microbial community, as spectra that cannot be assigned 
to any peptide sequence via database search are also 
retained. This advantage makes metaSpectraST capable 
of detecting subtle differences between samples, which 
is useful when there is wide inter-individual heterogene-
ity of samples. In addition, consensus spectra are often 
of higher quality in terms of signal-to-noise ratio and 
mass accuracy than their constituent replicate spectra 
and thereby have a higher chance to be confidently iden-
tified in principle [21, 22]. By analyzing the consensus 
spectrum and its constituent replicate spectra as a whole, 
and making the reasonable assumption that they should 
be identified to the same peptide, one can readily correct 
search engine errors by comparing and reconciling the 
identifications of spectra within a spectrum cluster.

We applied the metaSpectraST workflow on the gut 
microbiomes of 16 mice and compared the results with 
conventional metaproteomic analysis using MAGs-
derived sample-specific databases. We demonstrated 
that metaSpectraST can better characterize the subtle 
features of microbial communities, resulting in better 

classification of samples. We also employed various iden-
tification methods, including database search, open mod-
ification search, and de novo sequencing, to identify the 
consensus spectra and their constituent replicate spec-
tra, and developed a reconciliation scheme to determine 
a consensus peptide sequence for each of the spectrum 
cluster.

Methods
Mouse breeding and experimental setup
Eight male C57BL/6 mice were used in this study. Four 
(denoted by  My*,  V*,  E*,  S*) of the mice were from the 
same litter of one biological mother (207H), and the other 
four mice (denoted by J, Ms, N, U) were from the same 
litter of another biological mother (189C). To explore the 
potential maternal and co-housing effects, the eight mice 
were housed in three different individual ventilated cages 
as follows:  My* and  V* (littermates of mother mouse 
207H) were housed in cage 1; N and U (littermates of 
mother mouse 189C) were housed in cage 3;  E* and  S* 
(littermates of mother mouse 207H); and J and Ms (lit-
termates of mother mouse 189C) were co-housed in cage 
2 (Fig. 1). All mice were housed in a 12-h light/dark cycle 
and fed irradiated water and standard food after wean-
ing at the age of 21 days. Mice were obtained from the 
Animal and Plant Care Facility of The Hong Kong Uni-
versity of Science and Technology and were bred at the 
core facility. All experimental procedures involving ani-
mals were conducted in compliance with the Animal 
User Manual and approval was obtained from the Animal 
Ethics Committee of The Hong Kong University of Sci-
ence and Technology.

Fecal sample collection
Fecal samples of each mouse were independently col-
lected on the 21st, 22nd, 23rd, 29th, 30th, and 31st day 
after birth. Fresh fecal samples were weighted and imme-
diately frozen and kept at −80 ◦ C. For individual mouse, 
fecal samples from the 21st and 22nd day ( ∼ 3 weeks of 
age, 1st and 2nd day after weaning), and samples from 
the 29th and 30th day ( ∼ 4 weeks of age, 9th and 10th day 
after weaning), were pooled and subjected to metagen-
omic sequencing, respectively; samples from the 23rd 
day ( ∼ 3 weeks of age, 3rd day after weaning) and the 31 
days ( ∼ 4 weeks of age, 11th day after weaning) were sub-
jected to metaproteomic analysis separately (Fig. 1).

DNA extraction and shotgun metagenomic sequencing
DNA was extracted and purified following the standard 
method described by Qin J. and colleagues [23]. Paired-
end sequencing library was constructed for each of the 
pooled fecal samples and sequenced by the BGISEQ-500 
platform according to the manufacturer’s instruction. 
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In total, 16 samples were sequenced. Each mouse had 
two sets of metagenomic data, which represented its 
gut microbiome on the 1st and 10th day after weaning, 
respectively.

Short‑read de novo assembly and contigs binning
Adaptor sequences and low-quality reads were filtered 
out by SOAPnuke (v1.5.6) [24] with the following set-
tings: “-l 20 -q 0.2 -n 0.05 -Q 2 -d -c 0 -5 0 -7 1.” Host 

My*

V*

E*

S*

J

Ms

N

U

J Ms N U

207H 189C

E* S*My* V*

Mother: C57BL/6

F1: Male

Cage 1 Cage 2 Cage 3

0307, 21 days
Weaning

Pooled fecal samples 
subjected to metagenomic 

sequencing

0308
22 days

0309
23 days

Fecal samples subjected to 
metaproteomic sequencing

0315
29 days

0316
30 days

Pooled fecal samples 
subjected to metagenomic 

sequencing

0317
31 days

Fecal samples subjected to 
metaproteomic sequencing

8 days

Fig. 1 Overview of experimental design. Eight male C57BL/6 mice from two mother mice were housed in three different cages. Littermates,  My* 
and  V*, and N and U were co-housed in cage 1 and cage 3, respectively, while littermates  E* and  S* were co-housed together with littermates J 
and Ms in cage 2. Sample name with and without asterisk indicates littermates of mother mouse 207H and 189C, respectively. Fecal samples of each 
mouse were collected on the 1st, 2nd, 3rd, 9th, 10th, and 11th day after weaning. Samples from the 1st and 2nd day as well as the 9th and 10th 
day after weaning were respectively pooled for metagenomic sequencing. Samples from the 3rd and 11th day were subjected to metaproteomic 
analysis separately
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reads were removed by aligning against the Mus mus-
culus complete genome using Bowtie2 (v2.2.5) [17]. The 
resulting clean reads of each sample were assembled 
independently by MEGAHIT (v1.1.3) [25] with the fol-
lowing settings: “--min-count 2 --k-min 33 --k-max 
83 --k-step 10.” For each sample, the assembled con-
tigs were binned into metagenome-assembled genomes 
(MAGs) independently with three different methods, 
CONCOCT [26], MaxBin 2 [27], and MetaBAT 2 [28], 
using the default settings. The three sets of MAGs pro-
duced by different binning algorithms were then derep-
licated and refined by considering their quality (i.e., 
contamination, completeness, and assembly N50) with 
DAS tool [29], at a Sb threshold of 0.5 (weighting factors 
b = 0.6 , c = 0.5 ). The refined MAGs from all samples 
were pooled and dereplicated again to create a unique set 
of MAGs using dRep [30]; the minimum average nucle-
otide identity (ANI) for primary and secondary clus-
ters were respectively 90% and 99%, and the minimum 
aligned fraction was 10%. The quality of the unique set of 
MAGs were assessed by CheckM (v1.1.3) [31, 32] (Sup-
plementary Fig. S2).

Phylogenetic analysis of MAGs
The taxonomy of each MAGs was assigned using the 
classify_bins module of metaWRAP (v1.2) [33]. And the 
circular representation of the phylogenetic tree of MAGs 
was produced by GraPhlAn (1.1.3) [34].

Estimation of the relative abundance of MAGs
The clean reads from each data set were mapped to the 
MAGs using Salmon (1.5.2) [35] with the option “--vali-
dateMappings.” The relative abundance of each MAG was 
determined by the total number of reads mapped to the 
MAG divided by the MAG size and then was normalized 
by the TMM (trimmed mean of M values) method across 
samples [36].

Rarefaction analysis
Taxonomic classification of short reads was performed 
using Kraken 2 and its standard database [37]. The rare-
fied species richness was then estimated by the R package 
Vegan (2.5-7) [38].

Gene prediction and construction of unique gene set
Open reading frames (ORFs) were predicted from the 
assembled contigs of all samples by MetaGeneMark 
(v2.10) [39] with the default settings. Predicted ORFs 
were clustered at 95% nucleotide identity over 90% of the 
length of the shortest sequence to create a set of unique 
genes of all samples, using CD-HIT (v4.6.6) [40].

Gene functional analysis
Functional analysis of genes in the unique gene set was 
performed by translating and mapping the nucleo-
tide sequences against the NCBI nonredundant Protein 
Sequence Database (v20180814, microorganisms only) 
using the “blastx” function of DIAMOND (v0.8.23.85) 
[41] with the following settings: “--id 90 --evalue 1e-5 
-k 1 --max-hsps 1.” eggNOG-mapper (v2) [42] was used 
to retrieve the KEGG orthology (KO) terms and path-
ways of the predicted genes from the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (http:// geneo 
ntolo gy. org/).

Protein sequence database and protein clustering
The sample-specific protein sequence database for data-
base search of MS/MS spectra was created by translating 
the nucleotide sequences in the unique gene set to amino 
acid sequences.

The all-vs-all BLASTP [43] was then performed on 
the sample-specific protein sequence database with the 
setting “-evalue 1.0e-05.” Homologous proteins, which 
often have the same or closely related function, were then 
clustered into MCL-clustered protein groups using the 
Markov Cluster Algorithm (MCL) [44] with an inflation 
value of 1.5 [16], regardless of their corresponding tax-
ons. Since homologous proteins across different species 
are presumed to have the same or closely related func-
tion, each MCL-clustered protein group is given a func-
tional annotation that matches the majority of proteins in 
the cluster.

Metaproteomic sample preparation
Fecal samples (30–50 mg) were lysed in SDS lysis buffer 
(100 µ L, 4% SDS, 50 mM Tris-HCl pH 8.2, 1× cOm-
plete EDTA-free protease inhibitor) and disrupted with 
2 g of 2.3 mm and 0.3 g of 0.1 mm Biospec zirconia/sil-
ica beads, followed by ultrasonication in cold water for 
10–15 min using the OMNI SONIC RUPTOR 400 with 
90% amplitude. The lysate was further incubated at 95 ◦ C 
and 600 rpm for 10 min. Beads and any insoluble mate-
rial was removed by centrifugation at 16,000 RCF and 25 
◦ C for 20 min. Proteins were then precipitated by 4 times 
the sample volume of cold acetone at −20 ◦ C overnight. 
Proteins were spun down by centrifugation at 16,000 
RCF and 0 ◦ C for 40 min and washed with cold (−20 
◦ C) washing buffer (mixture of 80% acetone and 20% of 
a methanol/H2O/acetic acid [50:49:1, v/v/v] solution) to 
remove any impurities. The protein pellets were resus-
pended in reconstitution buffer (6 m urea, 50 mM (NH4

)HCO43 , and 600 mM guanidine HCl). Protein concen-
tration was determined by the Bicinchoninic acid assay 
(BCA) following the manufacturer’s instructions (Pierce 
BCA Protein Assay Kit). An aliquot of 50 µ g of dissolved 

http://geneontology.org/
http://geneontology.org/
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proteins of each sample was used for the subsequent 
reduction, alkylation, and tryptic digestion. Briefly, pro-
teins were reduced and alkylated by 10 mM dithiothreitol 
(DTT) and 20 mM 2-iodoacetamide (IAA), respectively, 
and then digested at 37 °C overnight by sequencing grade 
modified trypsin ( Wt : Wp = 1 : 50 ). The tryptic digest 
was desalted using C18 Spin Tips (Thermo Fisher Sci-
entific). The desalted peptide mixture was vacuum cen-
trifuged to dryness and suspended in 10 µ L of 0.1% (v/v) 
formic acid for LC-MS/MS analysis.

LC‑MS/MS
Metaproteomic samples were randomly analyzed on 
the Q Exactive HF-X hybrid quadrupole-Orbitrap mass 
spectrometer coupled with the Easy-nLC 1000 system 
(Thermo Fisher Scientific). An in-house laser-pulled 75 
µ m i.d. ×200 mm column with integrated spray tip and 
packed with 1.9 µ m, 120 Å ReproSil-Pur C18 resins (Dr. 
Maisch GmbH) was used.

Two µ g of peptides of each sample was separated and 
eluted by the mobile phase composed of A = 0.1% for-
mic acid in water and B = 0.1% formic acid in acetoni-
trile at a flow rate of 250 nL/min over a 80-min gradient 
(3–7% B 2 min, 7–22% 50 min, 22–35% 10 min, 35–90% 2 
min, 90% 16 min). Eluant was ionized by the electrospray 
ionization (ESI) method, followed by a full MS scan from 
300 to 1500 m/z in the Orbitrap mass analyzer at a mass 
resolution of 60,000. The automatic gain control (AGC) 
target and the maximum injection time (IT) for full MS 
scan was set to 2.0e5 and 100 ms, respectively. The MS/
MS scan was performed in the TOP 20 data-dependent 
mode, at a mass resolution of 15,000. The precursor ions 
were selected by the quadrupole mass analyzer with an 
isolation window of 1.6 m/z and a dynamic exclusion 
duration of 30 sec, followed by the high-energy collision 
dissociation (HCD) fragmentation with a normalized col-
lision energy (NCE) of 27%. The automatic gain control 
(AGC) target and the maximum injection time (IT) for 
MS/MS scan was set to 5.0e4 and 45 ms, respectively.

MS/MS spectrum clustering and creation of consensus 
spectra
The mass spectrometry data was acquired in the format 
of RAW and converted to the mzML format by MSCon-
vert of ProteoWizard (v2.1x) [45] with the default set-
tings. A total of 16 MS/MS data sets in mzML format 
were imported into SpectraST (v5.0) [17, 19] with frag-
mentation tag “HCD.” Low-quality spectra that were 
not likely to be peptide spectra were removed. All MS/
MS spectra were then clustered based solely on spectral 
similarity without any knowledge of their corresponding 
peptide sequences, and replicate spectra (experimental 
MS/MS spectra clustered together) were combined to 

create a consensus spectrum. Details of the spectrum 
clustering algorithm and creation of consensus spectrum 
were described previously by Lam et al. [17] and Önder 
et  al. [19]. To further demonstrate the effectiveness of 
metaSpectraST in another metaproteomics data set, an 
Arctic ocean microbiome dataset was downloaded from 
ProteomeXchange (PXD008780) and run through the 
exact same data processing pipeline. In brief, the data set 
consists of 26 RAW mass spectral files of microbiome 
samples collected from Bering Strait and Chukchi Sea. 
Samples then went through a 10-day shipboard incuba-
tion with or without organic material input to simulate 
the effects on ocean microbiome of algal bloom and oli-
gotrophic control, respectively.

Quantitative profile of microbial community
The microbial community of each metaproteomic sam-
ple was quantitatively profiled by counting the number 
or signal intensity of the constituent replicate spectra of 
each consensus spectrum created in spectrum cluster-
ing step. The number of constituent replicate spectra of 
a particular consensus spectrum in each sample, referred 
to as spectral count (SC) of that consensus spectrum, was 
normalized by the sum of SC of that sample. The spectral 
index (SI) method proposed by Griffin et al. [46] was also 
adapted to quantify the relative abundance of the contrib-
uting peptide ion in each sample based on the intensity 
profiles of the constituent replicate spectra of a certain 
consensus spectrum. As originally described, the SI of a 
protein was the sum of fragment ion intensity of all pri-
mary fragments (b and y ions) of all MS/MS spectra that 
are identified to peptides mapped to that protein, and it 
was then normalized by the protein length and the total 
SI of the data set, known as normalized spectral index 
( SIN ). Here, primary fragments cannot be identified 
from the MS/MS spectra without peptide identifications. 
Instead, the SI of a consensus spectrum was calculated as 
the cumulative fragment ion intensity of peaks in its con-
stituent replicate spectra that can be aligned with peaks 
in itself, and was defined as

 where pn was the number of aligned peaks for constitu-
ent replicate spectrum k, I was the ion intensity of peak 
j, and rn was the number of constituent replicate spec-
tra. The tolerance window of alignment was set to ±0.4 
Th. SI of the consensus spectrum was normalized by a 
pseudo length, which was calculated as the molecular 
weight (MW) of the consensus spectrum divided by the 
weighted average amino acid residue mass (110 Da):

SI =

rn

k=1

pn

j=1

Ij

k
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Finally, SIN of all consensus spectra was normalized 
across all samples using the TMM method (trimmed 
mean of M values) [36]. Note that the SIN here is a meas-
ure of the abundance of a putative peptide, not of a pro-
tein as in the original spectral index method.

Unsupervised hierarchical clustering
Metaproteomic and metagenomic samples were hierar-
chically clustered based on consensus spectra SIN (or SC) 
and MAGs abundance, respectively, using the Euclidean 
distance metric and average linkage criterion. The data 
matrix of consensus spectra SIN ,  SC, or  MAGs abun-
dance was augmented by adding the minimum value 
of the matrix to impute the missing values, and then 
was  log2 transformed as the input of unsupervised hier-
archical clustering.

Database search
Database search of both consensus spectra and experi-
mental MS/MS spectra (mzML format) was performed 
by Comet (2019.01 rev. 5) [47]. Search parameters were 
set as follows: peptide mass tolerance = 20.00 ppm; 
mass type parent = monoisotopic masses; fragment bin 
tolerance = 0.02; fragment bin offset = 0.0; mass type 
fragment = monoisotopic masses; search enzyme = 
trypsin; the number of enzyme termini = fully digested; 
allowed missed cleavage = 2. The oxidation of methio-
nine ( �m = 15.9949 Da) was set as variable modifica-
tion, and the carbamidomethylation of cysteine ( �m = 
57.021464 Da) was set as additional modification. The 
maximum variable modifications per peptide was 5. 
Comet search results were statistically validated using 
PeptideProphet [48], iProphet [49], and ProteinProphet 
[50]. The iProphet and ProteinProphet estimated false 
discovery rate (FDR) were both set to 0.01. The metage-
nome-derived protein sequence database, constructed 
as described above, was searched to identified pep-
tides/proteins expressed in the microbial communities. 
The Mus musculus reference proteome (UP000000589, 
containing 53106 proteins, downloaded from UniProt 
on 6 Apr 2018) was searched to identify peptides/pro-
teins expressed by the host. The search database was 
appended with an equal-size decoy sequence database 
by the decoyFastaGenerator function of the Trans-Prot-
eomics Pipeline (TPP) (v5.1.0). Protein groups identified 
through the database search were subsequently quan-
tified by StPeter (v1.2.4) [51] (measured as SIN  ) with 
degenerate peptides option on. The StPeter mass toler-
ance for matching MS2 peaks was set to 0.4 Da.

SIN =

rn
�

k=1





pn
�

j=1

Ij





k

/

�

MW

110

�
Open modification search
Open modification search of the experimental MS/MS 
spectra was performed against the UniProt bacterial pro-
tein sequences database (SwissProt and TrEMBL, down-
loaded on 26 July 2018) by TagGraph (v1.7.0.1) [52]. The 
expected standard deviation of the fragment mass error 
distribution was 10 ppm. The mass tolerance of a can-
didate modification was 0.1 Da. The maximum number 
of occurrences of a de novo-produced substring in the 
protein sequence database was 5000 and 1000 when that 
substring was considered as an unmodified and modified 
peptide match, respectively. The number of iterations in 
the initial expectation maximization (EM) was 20. The 
maximum number of EM iterations for FDR assignment 
was set to 100.

De novo sequencing
The commercial software PEAKS studio X+ was used 
for the de novo sequencing of the experimental MS/
MS spectra, with the following options: precursor mass 
range = 300.0–400.0 Da; precursor mass error tolerance 
= 10 ppm; fragment ion mass error tolerance = 0.05 Da; 
enzyme = trypsin; PTM = carbamidomethylation, Oxi-
dation (M); maximum allowed variable PTM per peptide 
= 3; Report candidates per spectrum = 5. The average of 
local confidence (ALC) threshold was set as 60%.

Identification reconciliation among the consensus 
spectrum and its constituent replicate spectra
To maximize the chance of peptide identification, consen-
sus spectra and their constituent replicate spectra were 
analyzed by multiple identification approaches, including 
database search, open modification search, and de novo 
sequencing. A heuristic reconciliation scheme was devel-
oped to resolve the conflicting sequences identified by 
different approaches and determine the consensus pep-
tide sequence (and protein if applicable) of each consen-
sus spectrum. For each spectrum analyzed, the sequence 
assigned by database search would be preferred whenever 
a spectrum can be identified by database search; if a spec-
trum cannot be identified through database search, the 
sequence given by open modification search would be cho-
sen; the sequence assigned by de novo sequencing would 
be used if and only if a spectrum failed to be identified 
by neither database search nor open modification search. 
Subsequently, a sequence “voting” procedure was adopted 
to determine the final consensus peptide sequence of each 
consensus spectrum, whereby the most frequently identi-
fied sequence among the consensus spectrum and its con-
stituent replicate spectra would be chosen.

The rationale behind this reconciliation scheme is 
threefold: (1) database search with its relevant statistical 
validation is the most robust and reliable method in terms 
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of peptide/protein identification, especially when sample-
specific protein sequence database is available; (2) open 
modification search also relies on the reference protein 
sequence database, albeit a more general one encompass-
ing all bacterial proteins in Uniprot, and should be able 
to identify closely related sequences that are not in the 
database due to its allowance of amino acid substitutions; 
and (3) de novo sequencing is relatively error-prone and 
often assigns shorter sequences to the spectra, which are 
less likely to help identify its parent protein in the protein 
inference process. The voting scheme was designed to 
correct identification mistakes of spectrum clusters, with 
the presumption that the correct identification are likely 
to be repeated among replicate spectra, while incorrect 
identification tends to hit different sequences stochasti-
cally. The consensus spectrum itself contributes an addi-
tional “tie-breaking” vote, which typically matters only in 
cases with very few replicate spectra. The whole reconcili-
ation scheme is illustrated in Fig. 2.

Statistical analysis
Welch’s ANOVA with bootstrapping ( n = 10, 000 ) was 
conducted to detect differences in abundance (as inferred 
by consensus spectrum SIN ) across multiple sample 

clusters generated by unsupervised hierarchical cluster-
ing. Multiple-testing correction was done by Benjamini-
Hochberg procedure, controlling the FDR at 0.05. The 
following post-hoc analysis was performed using the 
Games-Howell test with a p-value of 0.05.

The differential functional analysis across samples/
clusters was conducted on the MCL-clustered protein 
group basis, where the abundance of MCL-clustered pro-
tein group was measured as the sum total of intensity of 
peptides identified in conventional metaproteomic work-
flow, or as the sum total of intensity of consensus pep-
tides mapped to the same MCL-clustered protein group. 
Welch’s t-test was then performed to detect differences in 
MCL-clustered protein groups between sample groups 
(groups organized by the time of sampling) or sample 
clusters (as classified by metaSpectraST and principal 
component analysis), followed by Benjamini-Hochberg 
multiple-testing correction at an FDR cutoff of 0.05. The 
post-hoc analysis was performed using the Games-How-
ell test with a p-value of 0.05.

Enrichment analysis of KEGG pathways
The enrichment analysis of KEGG pathways (level 2) was 
performed using Fisher’s exact test (two-tailed p-value 
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of 0.05), considering all proteins (corresponding to con-
sensus spectra) that were identified by database search 
as the reference background. Benjamini-Hochberg mul-
tiple-testing correction was applied with an FDR cutoff of 
0.05. Here, we only considered consensus spectra whose 
sequences were determined by database search, because 
open modification search or de novo sequencing cannot 
indicate the biological function of a consensus spectrum 
explicitly.

Code availability
metaSpectraST and the user guides are available at 
https:// github. com/ bravo kid47/ metaS pectr aST.

Results and discussion
General considerations for the experiments
We tested metaSpectraST on metaproteomics data 
acquired from 16 fecal samples collected from eight mice 
at two different time points and compared with the con-
ventional metaproteomics workflow, in which database 
search against the sample-specific protein sequence 
database derived from metagenomes were applied. The 
metagenomes were recovered from 16 metagenomic 
samples prepared from fecal samples collected from the 
same set of mice at another two time points prior to the 
two time points of metaproteomic sampling, respectively 
(Fig. 1). Metagenomic analysis were also used to charac-
terize the taxonomic composition and genetic potential 
of the mouse gut microbiomes, which provided an addi-
tional insignt into the communities for comparison to the 
metaproteomics data.

Maternal and co-housing effects are known to be fun-
damental factors that affect the gut microbiomes in both 
human and mouse, though such effects may be subtle 
and unpredictable [53–57]. At the same time, much less 
is known about the inherent inter-individual hetero-
geneity even with all known factors well-controlled by 
the experimentalist. Those unknown factors and related 
variabilities complicate the design of biological experi-
ments, in particular, in the definition of biological repli-
cates which are necessary for any differential expression 
analysis. Therefore, a critical prerequisite for gut micro-
biome research is the ability to rapidly measure the over-
all similarity and difference between samples, to enable 
the researcher to identify suitable biological replicates for 
their experiments. This need is partially met by metagen-
omic sequencing, which can reveal the taxonomic 
compositions and genetic potentials of the microbial 
communities. However, metagenomic sequencing and 
the subsequent data processing can be costly and time-
consuming. Metaproteomics offers a complementary 
view of the microbial communities, but current work-
flows are geared towards peptide/protein identification 

as the first step, which often depends on metagenomic 
sequencing, and suffers from problems of low sensitiv-
ity and ambiguity in protein inference. Therefore, we 
propose an “inverted” workflow, which quickly assesses 
inter-sample similarities and differences without pep-
tide/protein identification by spectrum clustering in the 
first step, and then analyzes the differentiating features 
between samples in the second step. Such unsupervised 
learning strategy is useful for detecting outliers and vali-
dating biological replicates.

To examine our proposed workflow and explore its 
utility in microbiome research, we chose 4 littermates 
from one biological mother and 4 from another biologi-
cal mother and housed them in different cages with cage 
mate(s) either from the same or different mothers (Fig. 1) 
to investigate if maternal or co-housing effects can be 
detected by our workflow. To illustrate how our method 
enables one to ask biological questions as a proof of con-
cept, we profiled the communities at two time points 
shortly after weaning and tested whether we can observe 
proteome changes that may be associated with the die-
tary shift from milk to solid food [58]. In addition, we also 
assessed the effectiveness of metaSpectraST with another 
metaproteomic dataset of ocean microbiome [59].

A nonredundant gene set of mouse gut microbiome 
containing 524,740 genes
We first prepared and sequenced the 16 metagenomic 
samples and generated an average of about 11 Gb clean 
reads per sample, each of which was then assembled 
independently. The number of contigs in one data set 
ranges from 14,365 to 154,758, and the N50 length ranges 
from 9653 to 41,799 bp. The rarefaction curves showed 
all samples approached saturation at the lowest num-
ber of reads among data sets, indicating a satisfactory 
sequencing depth (Supplementary Fig. S1). To create a 
nonredundant gene set of the 16 metagenomic samples, 
the predicted ORFs from all of the assembled contigs 
were clustered and the redundant ones were removed. As 
a result, a gene set of 524,740 unique genes was created. 
In comparison, the gene catalog of mouse gut microbi-
ome compiled by Xiao et  al. consists of ∼ 2.6 million 
unique genes, but such coverage was obtained from a 
far larger and more diverse cohort of 184 mice [60]. An 
average of over 80% of the clean reads can be aligned to 
the nonredundant gene set, suggesting good sequence 
coverage.

After translating the nucleotide sequences to amino 
acid sequences, we annotated the nonredundant gene 
set with the NCBI nonredundant (nr) protein sequence 
database and the KEGG database. Over 90% of the genes 
can be functionally annotated by the nr database and 
nearly 60% can be annotated by the KEGG database. 

https://github.com/bravokid47/metaSpectraST
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This nonredundant gene set and its annotation was used 
in the subsequent metaproteomic analysis, in which the 
derived protein sequence database was used for the iden-
tification of peptides and proteins. We also clustered the 
metagenome-derived protein sequences based on their 
sequence similarity to reduce the redundancy and com-
plexity of the protein sequence database. The Markov 
cluster algorithm (MCL) clustered the 534,740 predicted 
proteins into 156,714 MCL-clustered protein groups, a 
reduction of about 70% of the size. The members of one 
MCL-clustered protein group are loosely interpreted as 
proteins performing the same function across different 
bacterial species and strains [14, 15, 61].

66 MAGs recovered from metagenomic sequences
By binning the assembled contigs, we successfully recov-
ered 66 bacterial MAGs with high- to medium-quality 
from the 16 metagenomic samples. Of these 66 MAGs, 
2 MAGs (Odoribacteraceae and unclassified Burkholde-
riales) were 100% complete, and 58 MAGs (88% of 

total) were over 90% complete. Most of these MAGs (47 
MAGs, 71% of total) were with contamination less than 
5% (Supplementary Fig. S2). The 66 MAGs were classi-
fied into 5 different phyla: Bacteroidetes, Firmicutes, 
Proteobacteria, Verrucomicrobia, and Candidatus Mel-
ainabacteria (Fig.  3). Bacteroidetes (34 MAGs) and Fir-
micutes (20 MAGs) comprising 82% of the total MAGs. 
This taxonomic affiliation of the MAGs was consistent 
with results from previous studies [60, 62], which also 
found that Bacteroidetes and Firmicutes were the domi-
nant phyla in the mouse gut microbiome.

To explore the microbial composition differences across 
samples, we estimated the abundance of the 66 MAGs in 
each metagenomic sample by calculating their standard-
ized read coverage. Unsupervised hierarchical clustering 
based upon the MAG abundance revealed three major 
clusters, as shown in Fig. 4A. Metagenomic samples from 
mice that were not littermates tended to form separate 
clusters, and they differed from each other predomi-
nantly in MAGs from the class of Alphaproteobacteria; 
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the family of Rikenellaceae, Odoribacteraceae, and Lach-
nospiraceae; and the species of Muribaculum intestinale, 
Akkermansia muciniphila, and Candidatus Arthromitus 
sp. SFB-mouse-NL (Fig. 4A, black boxes). The clustering 
of mice from the same litter is indicative of the potential 
maternal effect, in which the microbiome of the mother 
mouse is assumed to seed the gut microbiome of its off-
spring, leading to more similarities among mice from the 
same litter [53, 55, 63].

Notably, the gut microbiomes of mouse N and U, lit-
termates housed together in one cage, showed high sim-
ilarity from the beginning (right after weaning) to the 
end (10 days after weaning), while the gut microbiome 
of mouse  S* was distinct from the gut microbiomes of 
any other mouse throughout the sampling period. The 
gut microbiome of mouse  S* showed extremely high 
abundance in MAGs from the class of Clostridiales; 
the family of Rikenellacea, Odoribacteracea, Muribacu-
laceae, and Lachnospiraceae; and the species of Candi-
datus Arthromitus sp. SFB-mouse-NL (Fig. 4A, red box). 
This is a prime example of wide inter-individual varia-
tions in natural microbial communities that cannot be 
fully controlled by experimental setup. Although litter-
mates  S* and  E* were housed in the same cage, microbial 
compositions of their gut microbiomes were found to be 
quite different even at the beginning, for some unknown 
reason. Hence, any findings from differential expression 
analysis would be confounded if we had treated  S* and 
 E* as biological replicates. We did not observe clear co-
housing effect that can be attributed to inter-individual 
microbial exchanges over time from the unsupervised 
hierarchical clustering of the metagenomic samples. 
We also applied principal component analysis (PCA) 
to the metagenomic samples, but no clear grouping 
or separation was found (Fig. 4B). In this study, with a 
rather small sample size, the data must be interpreted 
with caution, as the specific findings may not be gen-
eralized to other cases. However, the metagenomic 
results here provided a picture of the gut microbiomes 
of the mice with respect to taxonomic compositions and 
genetic potentials and could be used for comparison 
with the metaproteomic microbial profiles generated by 
metaSpectraST.

metaSpectraST detected gut microbiome changes 
over time
We applied metaSpectraST to all the acquired 377,449 
experimental MS/MS spectra from the 16 metaproteomic 
samples and clustered them as 50,894 spectrum clusters, 
reducing the data size by 86.5%. 32,413 of the spectrum 
cluster (63.7% of total) were composed of at least 2 con-
stituent replicate spectra. For each cluster, a consensus 
spectrum was created by combining all of the constituent 

replicate spectra of the cluster, generating a set of 50,894 
consensus spectra. Spectrum clusters whose consen-
sus spectra were identified as mouse proteins were dis-
carded. We next quantified all consensus spectra in each 
sample as measured by SIN (SC showed a similar result; 
see Supplementary Figs. S3 and S4) to gain a quantitative 
metaproteomic profile of the respective microbial com-
munity, such that the similarities and differences between 
samples can be assessed without the need for a protein 
sequence database. Unsupervised hierarchical cluster-
ing based upon the quantitative metaproteomic profiles 
then revealed that samples collected at different time 
points formed separate clusters and displayed distinc-
tive patterns of abundance: all samples collected at the 
first time point (3 days after weaning) were in the same 
cluster (cluster  P1  in  Fig.  4C), while samples collected 
at the second time point (11 days after weaning) formed 
two different clusters (cluster P2 and P3 in Fig. 4C). The 
three clusters clearly indicated a divergence of the 16 gut 
microbiomes over the sampling period, which was fur-
ther corroborated by the PCA (Fig. 4D).

We believe that these changes in the metaproteomes 
were likely due to the dietary shift from milk to solid 
food, which will be further discussed in the context of 
functional analysis later. Nonetheless, with this expecta-
tion, we surmise that these changes in the microbiomes 
can only be observed by metaproteomics but not by 
metagenomics, perhaps because the adaptation for the 
dietary shift was more dependent on changes of protein 
expression, rather than changes of the taxonomic com-
position of the microbial community. In other words, 
the functional profile of the microbial community was 
adjusted to adapt to the solid food, while its genetic 
potential remained similar. metaSpectraST offered a new 
way to detect these possibly dietary-driven microbiome 
changes over time, giving a complementary picture of 
the gut microbiome at functional level, which cannot be 
obtained by metagenomics.

Closer inspection of the three metaproteome clusters 
showed that samples of cluster P3 were all from the lit-
termates of mother mouse 207H, while samples from 
littermates of mother mouse 189C were all gathered in 
cluster P2 except for mouse  My*. This result suggested 
the possibility that maternal effect may have an impact 
on microbiome adjustment to environmental factors, 
which, again, could not be observed by metagenom-
ics. The exception  My* had been expected to show a 
closely similar metaproteome to mouse  V*, since they 
were littermates and housed in the same cage. However, 
 My* was clustered together with mice from a differ-
ent mother mouse and different cage, which exempli-
fied once more the wide inter-individual heterogeneity 
of the gut microbiome and demonstrated the ability of 
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metaSpectraST to detect this kind of variabilities and 
validate biological replicates. But, neither metagenomic 
analysis nor metaSpectraST uncovered the co-housing 
effect unambiguously. A larger sample size is probably 
needed to gain more evidence.

We further compared metaSpectraST with the tra-
ditional metaproteomic workflow, in which data-
base search against the metagenome-derived protein 
sequence database was applied to identify the spec-
tra to protein(s) (groups). Similarly, we quantified the 
protein(s) (groups) by SIN  as described by Griffin and 
colleagues [46]. However, more often than not, protein 
groups inferred from traditional metaproteomics analy-
sis include numerous homologous proteins that have 
peptide sequences in common, and the list of homolo-
gous proteins of a particular protein groups can vary in 
different samples due to the current protein inference 
principles of proteomics. The large and varied pro-
tein groups make comparative studies across multiple 
metaproteomic samples complicated and challenging. 
We modified the published methods from Erickson 
et  al. [16] and Chirania et  al. [64] to tackle this prob-
lem. In brief, we combined protein groups belonging 
to the same MCL-clustered protein group (proteins 
clustered by sequence similarity) and treat each MCL-
clustered protein group as a functional entity. The total 
SIN  (sum over all protein groups in one MCL-clustered 
protein group) is taken to be the level of that biologi-
cal function commonly performed by proteins in that 
MCL-clustered protein group. In other words, we 
compared the SIN  of functional groups in each sample. 
Unsupervised hierarchical clustering and PCA were 
then applied based upon the SIN  values of the MCL-
clustered protein groups across samples. This conven-
tional metaproteomics analysis resulted in a less clear 
classification of the metaproteomic samples and harder 
to be interpreted (Fig. 5). Therefore we postulated that 
identifiable spectra only (43.4% of all experimentally 
observed MS/MS spectra) were inadequate to gain a 
granular profile of the gut microbiome, as substantial 
amount of information was contained in those uniden-
tified spectra. Clustering of all experimentally observed 
MS/MS spectra could preserve the proteomic informa-
tion of the samples to the maximum, while at the same 
time making comparison across multiple samples fea-
sible, bypassing the identification of the spectra and 
protein inference, both of which are time-consuming 
and error-prone steps particularly in metaproteomics. 
Similar approaches have been proposed in single-spe-
cies proteomics, for example, in applications of bio-
logical sample fingerprinting [19, 65, 66], but the added 
complexity of metaproteomic data analysis makes this 
approach even more valuable.

In addition, to evaluate the effectiveness of metaSpec-
traST as a metaproteomic workflow, we tested the same 
workflow with a metaproteomic data set of ocean micro-
biomes published by Mikan and colleagues in 2020 [59]. 
The microbiome samples were collected at two differ-
ent sites from western Arctic Ocean (Bering Strait and 
Chukchi Sea). Samples were subjected to 10-day ship-
board incubation with or without organic material input, 
referred to as OM group and control group, respectively, 
to characterize microbial responses of the ocean micro-
biome to the simulated algal bloom. Without a protein 
sequence database and peptide identification, metaSpec-
traST successfully profiled metaproteomes of the ocean 
microbial communities (Supplementary Fig. S5). Samples 
collected from Bering Strait and Chukchi Sea formed two 
different clades at the top hierarchical level, while all bio-
logical replicates were clustered together at the lowest 
hierarchical level displaying the highest similarity to each 
other. The two initial Bering Strait samples were in the 
same cluster of Chukchi Sea samples, but after incuba-
tion started Bering Strait samples (both OM and control 
group) diverged to form a new cluster with distinctive 
proteome changes. This indicated that the incubation 
process remodeled microbiomes of Bering Strait sam-
ples more than that of Chukchi Sea samples. Within each 
of the two clusters of sampling sites, the OM group was 
clearly separated from the control group, exhibiting dif-
ferent metaproteome profiles. The organic material input 
extensively changed the metaproteomes of the samples 
over time as samples from the OM group showed high 
dissimilarities at day 6 and day 10 while samples from 
the control group showed less divergence. These results 
obtained by metaSpectraST are in accordance with the 
original findings by metagenomics and conventional 
metaproteomics analysis, suggesting that metaSpectraST 
is also effective in other microbiome systems.

Integrating multiple identification methods 
with consensus spectra
One important advantage of metaSpectraST is that 
replicate spectra are grouped and can be identified as 
a whole, rather than in isolation. First, the consensus 
spectra can be generated from their constituent rep-
licate spectra, such that the resulting consensus spec-
tra are usually of higher quality than their replicate 
spectra and hence has a higher chance to be identified. 
Second, with the assumption that all replicate spectra 
should stem from the same peptide ion [17–20], one 
can correct errors by suitably reconciling conflicting 
identifications among replicates. In this study, multiple 
identification methods were applied to both the con-
sensus spectra and their constituent replicate spectra 
to maximize the identification rate. We employed three 
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different identification methods: database search against 
the metagenome-derived protein database, open modi-
fication search against all bacterial protein sequences 
in UniProt (database independent from metagenomic 
sequencing and taking more possibilities into consid-
eration), and de novo sequencing. Then, we reconciled 
any conflicting identification of every cluster among the 
replicate spectra and the consensus spectrum by major-
ity voting. Thus, to each spectrum cluster, we assigned a 
consensus peptide sequence, from which the functional 
or taxonomic information was derived.

At an FDR cutoff of 0.01, 45.1%, 38.6%, and 86.4% of 
all the experimental MS/MS spectra could be identi-
fied by database search, open modification search, and 
de novo sequencing, respectively (Supplementary Fig. 
S6). A higher fraction (51.5%) of the consensus spectra 
could be identified by database search, compared to the 
experimental spectra, likely because of the high spectral 
quality of consensus spectra. For each spectrum cluster 
found by metaSpectraST, a single “consensus peptide” 
identification was obtained by reconciliation scheme 
(described in detail in the “Methods” section). Eventu-
ally, consensus peptide sequences of 25,667 (50.4% of 
total), 7236 (14.2% of total), and 10,132 (19.9% of total) 
of the spectrum clusters were determined by database 
search, open modification search, and de novo sequenc-
ing, respectively. Through the reconciliation scheme, 
5062 experimental spectra which could not be identi-
fied by database search were rescued by database search 
of their corresponding consensus spectra, and 20,436 
experimental spectra whose peptide sequences assigned 
by database search disagreed with the majority of 
sequences of other replicate spectra in the same cluster 
were finally corrected. We also noticed that after recon-
ciliation there was still 15.4% of the consensus spectra 
could not be identified to any peptide and therefore 
would have been neglected in conventional workflow. 
metaSpectraST preserved those unidentifiable spectra 
and took advantage of the extra information to classify 
microbial communities.

In our workflow, we attempted to identify all the experi-
mental spectra, in order to validate our spectrum cluster-
ing method. However, in a large study, this may become 
too time-consuming. In our case, after reconciliation, 
98.8% of the consensus peptide sequences determined by 
database search were identical to the identification of the 
corresponding consensus spectra. That is to say, if we had 
only searched the consensus spectrum of each cluster 
found by metaSpectraST, we could have missed only ∼ 
1% of the confident identifications, but gained a ∼ 7-fold 
reduction in search time. Therefore, we envision a more 
efficient workflow for future applications where only the 
consensus spectra need to be searched.

Differential functional and taxonomic analysis 
at the consensus peptide level
To discover whether there were any underlying functional 
differences between the metaproteomic sample clusters 
(cluster P1, P2 and P3), we applied Welch’s ANOVA with 
bootstrapping ( n = 10, 000 ), multiple-testing correction, 
and post-hoc analysis on the relative abundance of the 
consensus peptides (as measured by SIN ) in each cluster. 
Compared with cluster P1, 188 consensus peptides were 
significantly upregulated (p-value < 0.05 ), and 30 were 
significantly downregulated in cluster P2 (p-value < 0.05 ) 
(Supplementary Table S10). The significantly upregulated 
consensus peptides were enriched in the KEGG path-
ways of carbohydrate metabolism, energy metabolism, 
folding and degradation, signal transduction, amino acid 
metabolism, and translation (with p-values ranging from 
0.0025 to 0.0175, Fig. 6A and Supplementary Table S11). 
The downregulated consensus peptides showed no sig-
nificant pathway enrichment. When comparing cluster 
P1 with P3, 274 and 9 consensus peptides were signifi-
cantly up- and downregulated in cluster P3, respectively 
(p-value < 0.05 , Supplementary Table S10). Enrichment 
analysis showed that the upregulated consensus pep-
tides were enriched in similar KEGG pathways as that 
of cluster P2 vs. P1 (with p-values ranging from 0.0023 
to 0.0273, Fig.  6B and Supplementary Table S11), while 
the downregulated consensus peptides were enriched in 
glycan biosynthesis and metabolism (p-value = 0.025 , 
Supplementary Table S11). Lastly, we compared cluster 
P2 and P3 and found 213 significantly overrepresented 
and 38 significantly underrepresented consensus pep-
tides in cluster P3 (p-value < 0.05 , Supplementary Table 
S10). These differentially represented consensus pep-
tides are enriched in similar pathways to the comparison 
between cluster P2 vs. P1, and P3 vs. P1 (with p-values 
ranging from 0.0023 to 0.0295, Fig.  6C, D, and Supple-
mentary Table S11). In summary, biological functions 
related to energy metabolism, carbohydrate metabolism, 
amino acid metabolism, protein folding and degradation, 
translation, and signal transduction were remodeled dif-
ferently in the three metaproteome clusters and might be 
driven by the dietary shift.

Differential functional analysis at the MCL‑clustered 
protein group level
We further confirmed the functional differences 
between the three metaproteomic sample clusters by 
comparing the relative abundance of the correspond-
ing MCL-clustered protein groups (as functional enti-
ties) in each cluster. We plotted the log2 transformed 
SIN  ratios of each MCL-clustered protein groups (only 
overlapped MCL-clustered protein groups among three 
clusters) between any two of the three clusters as a 
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swarm plot in Fig.  6E. This swarm plot can be treated 
as an overall functional comparison between sample 
clusters, and it displays apparent differences in the log2 
fold-change distributions, which confirms the validity 
of the clustering of the metaproteomic samples. Welch’s 
ANOVA showed that, compared with cluster P1, 22 
and 62 MCL-clustered protein groups were down- and 
upregulated in cluster P2, respectively (p-value < 0.05 ). 
Most of these significantly changed MCL-clustered 
protein groups were involved in carbohydrate metabo-
lism, lipid metabolism, energy metabolism, amino acid 
metabolism, nucleotide metabolism, translation, signal 
transduction, and other biological pathways. Compari-
son between cluster P1 and P3, and between cluster P2 
and P3, resulted in significantly changed MCL-clustered 
protein groups that were related to the same biological 
pathways. Therefore, functional analysis at the level of 
MCL-clustered protein groups suggested functional dif-
ferences that were in line with the analysis at the con-
sensus peptide level among the three metaproteomic 
sample clusters.

Conclusions
In this study, we developed an unsupervised, database-
independent workflow, metaSpectraST, as an alterna-
tive way to analyze metaproteomic data. metaSpectraST 
enables rapid microbial community profiling without 
the need for constructing the protein sequence database 
or identification of the experimentally observed MS/MS 
spectra. Instead, metaSpectraST clusters experimental 
MS/MS spectra solely by their spectral similarity and 
combines all constituent replicate spectra in one clus-
ter to create the consensus spectrum. Subsequently, 

the microbial community is quantitatively profiled by 
counting the number or signal intensity of the constitu-
ent replicate spectra of each consensus spectrum in the 
sample.

We tested the new workflow on 16 mouse gut microbi-
ome samples and compared with the conventional work-
flow. metaSpectraST successfully detected the possibly 
dietary-driven mouse gut microbiome changes through-
out a period of about 1 week after weaning and man-
aged to separate samples of mice from different mother 
mice, which might be evidence for the impact of mater-
nal effect. These results demonstrated that metaSpec-
traST was able to profile the complex gut microbiome 
and highlight its functional changes. Comparison of 
metaSpectraST with the traditional workflow indicated 
that identifiable spectra/peptides alone was not suf-
ficient to profile the microbial community, since spec-
tra that cannot be identified also maintained proteomic 
information of the community, which can help classify 
metaproteomic samples. Moreover, correct profiling 
and classification of ocean microbiome samples demon-
strated metaSpectraST’s effectiveness in handling various 
microbial communities.

Finally, we also showed in our limited study that the 
proper definition of biological replicates in gut microbi-
ome studies is still an open question for the field. Even 
though the known variables that affect gut microbiome 
(e.g., biological mother, cage-mates, food, water, air) had 
been controlled as best as we could, both metaSpec-
traST and metagenomic analysis detected the outli-
ers with significant inter-individual variations from the 
intended biological replicates. We propose that experi-
mentalists should be more cognizant about the unknown 
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factors and random nature of how microbial communi-
ties evolve. Despite our best efforts to control the known 
experimental variables, intended “biological replicates” 
may not be that similar to begin the experiment with, 
leading to misleading interpretations of the results. To 
that end, metaSpectraST can be an invaluable tool for 
defining and selecting the suitable starting microbial 
communities for experimentation, thanks to its ability to 
perform a quick metaproteomic profiling of the microbial 
communities without any prior knowledge or compli-
cated data processing.
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