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Abstract 

Background Cervicovaginal inflammation has been linked to negative reproductive health outcomes includ‑
ing the acquisition of HIV, other sexually transmitted infections, and cervical carcinogenesis. While changes to the vag‑
inal microbiome have been linked to genital inflammation, the molecular relationships between the functional 
components of the microbiome with cervical immunology in the reproductive tract are understudied, limiting our 
understanding of mucosal biology that may be important for reproductive health.

Results In this study, we used a multi’‑omics approach to profile cervicovaginal samples collected from 43 Cana‑
dian women to characterize host, immune, functional microbiome, and metabolome features of cervicovaginal 
inflammation. We demonstrate that inflammation is associated with lower amounts of L. crispatus and higher levels 
of cervical antigen‑presenting cells (APCs). Proteomic analysis showed an upregulation of pathways related to neu‑
trophil degranulation, complement, and leukocyte migration, with lower levels of cornified envelope and cell‑cell 
adherens junctions. Functional microbiome analysis showed reductions in carbohydrate metabolism and lactic 
acid, with increases in xanthine and other metabolites. Bayesian network analysis linked L. crispatus with glycolytic 
and nucleotide metabolism, succinate and xanthine, and epithelial proteins SCEL and IVL as major molecular features 
associated with pro‑inflammatory cytokines and increased APCs.

Conclusions This study identified key molecular and immunological relationships with cervicovaginal inflamma‑
tion, including higher APCs, bacterial metabolism, and proteome alterations that underlie inflammation. As APCs 
are involved in HIV transmission, parturition, and cervical cancer progression, further studies are needed to explore 
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the interactions between these cells, bacterial metabolism, mucosal immunity, and their relationship to reproductive 
health.

Keywords Inflammation, Antigen‑presenting cells, Microbiome, Metaproteome, Metabolome

Introduction
Cervicovaginal inflammation, typically defined as ele-
vated levels of pro-inflammatory cytokines, has been 
linked to increased rates of acquisition for sexually 
transmitted infections (STIs) including human immuno-
deficiency virus (HIV), diminished efficacy of topical pre-
exposure prophylaxis (PrEP) for HIV prevention, cervical 
carcinogenesis, preterm birth, and long-term reproduc-
tive health complications such as pelvic inflammatory 
disease and tubal infertility [1–15]. Sustained inflamma-
tion can lead to increases in proteolytic enzymes, cause 
damage to the cervicovaginal epithelial barrier, and lead 
to increased immune cell infiltration or activation, which 
are thought to be potential mechanisms that increase the 
risk of HIV acquisition and lead to poor prognosis in cer-
vical cancer [4, 16–20]. While many factors can modulate 
cervicovaginal inflammation including STIs and hormo-
nal birth control, the vaginal microbiome is a major con-
tributor [1, 21–23]. However, the relationships between 
the microbiome, mucosal immunity, and cervicovaginal 
inflammation are not well understood.

Epithelial and immune cells present in the cervicov-
aginal mucosa monitor the local microenvironment and 
initiate the production of cytokines and chemokines such 
as interleukin (IL)-1β, IL-6, and IL-8, and the recruit-
ment or activation of leukocytes [24, 25]. The cervicov-
aginal mucosa is populated with a dynamic population of 
innate and adaptive immune cells including neutrophils, 
macrophages and monocytes, natural killer (NK) cells, 
T cells, and B cells [24–26]. The cervicovaginal immune 
system typically exists in homeostasis with the local 
microbiota [6, 27]. Typically the optimal vaginal micro-
biome is dominated by species of Lactobacillus, which 
are associated with low levels of inflammation, including 
low levels of pro-inflammatory cytokines such as IL-1, 
IL-8, tumor necrosis factor alpha (TNFα), and interferon 
gamma (IFNγ) [1, 23, 27–29]. Vaginal microbial dysbio-
sis, defined by a loss of Lactobacillus and an overgrowth 
of obligate and facultative anaerobes such as Gardnerella, 
Atopobium, or Mobiluncus [30–34], can also affect the 
mucosal microenvironment and have been associated 
with increases in pro-inflammatory cytokines, includ-
ing IL-1β, IL-6, IL-8, and TNFα, resulting in recruit-
ment, maturation, and activation of antigen-presenting 
cells (APCs), neutrophils, and CD4+ T cells [3, 4, 27–29, 
35–49]. Indeed, the composition of the microbiome 
has been shown to be strongly associated with genital 

inflammation [3]. The modulation of inflammation is 
thought to be, in part, driven by metabolites derived from 
dysbiotic bacterial communities, such as short-chain fatty 
acids, amino acids, lipids, carbohydrates, and xenobiot-
ics [6, 8, 50–54]. Conversely, lactate, produced by vaginal 
Lactobacillus, elicits anti-inflammatory effects from cer-
vicovaginal epithelial cells, including suppression of IL-6, 
IL-8, and TNFα production [55, 56]. While these studies 
have provided insight into how the vaginal microbiome 
may modulate specific aspects of inflammation, the rela-
tionships between pro-inflammatory cytokines, resident 
immune cells, metabolites, and epithelial barrier func-
tion have been understudied limiting our understanding 
of potential mechanisms contributing to infectious dis-
ease susceptibility and other negative reproductive health 
outcomes.

In this study, we used a multi’-omics approach to pro-
file cervicovaginal samples collected from Canadian 
women to characterize host, microbiome, and metabo-
lome features of cervicovaginal inflammation. Using an 
integrated Bayesian network approach, we identify novel 
interactions linking vaginal mucosal inflammation with 
differences in the metabolome, microbiome, and APCs 
which may be important for mucosal health in the female 
genital tract.

Materials and methods
Study population
Forty-three women were recruited from gynecology clin-
ics in Winnipeg, Canada, as part of the Vaginal Mucosal 
Systems (VMS) study. Enrollment criteria included age 
over 18 years, HIV negative, and no current or suspected 
pregnancy. All women provided written informed con-
sent and the study was approved by the Institutional 
Review Board at the University of Manitoba.

Data and sample collection
Socio-demographic, obstetric, and gynecological data 
was collected by structured questionnaire. Physi-
cians performed pelvic examinations and collected an 
APTIMA multi-test swab, 2 mid-vaginal swabs (Star-
plex Scientific Inc., Etobicoke, ON, rayon swabs, stored 
dry until processing), cervicovaginal lavage (CVL), 2 
endocervical cytobrush samples, and touched a pH strip 
to vaginal wall. The APTIMA swab was sent to CAD-
HAM provincial laboratory in Winnipeg, Canada, for 
chlamydia and gonorrhea testing. All other samples were 
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immediately stored on ice and transported to the lab 
within 3 h of collection.

Cervicovaginal lavage
CVL was collected by bathing the cervical os with 10mL 
of sterile phosphate-buffered saline (PBS). CVL was ali-
quoted and stored at −80°C until use.

Cytokine array
25μL CVL was analyzed using EMD Millipore’s MIL-
LIPLEX MAP 30-plex Human Cytokine/Chemokine 
Magnetic Bead Panel following the manufacturer’s proce-
dures. Samples were randomized across the assay plate, 
and 25 samples were randomly selected to be analyzed 
in duplicate. Cytokines and chemokines that were below 
the limit of detection in ≥40% of samples were removed 
from analysis. Cytokines below the limit of detection 
were imputed using half of the minimum detectable con-
centrations. A curated list of 10 inflammatory cytokines 
(interferon α2 (IFN-α2), interleukin (IL)-1α, IL-1β, IL-6, 
IL-8, IFN-γ inducible protein 10 (IP-10), monocyte che-
moattractant protein 1 (MCP-1), macrophage inflam-
matory protein (MIP)-1α, MIP-1β, and Regulated upon 
Activation, Normally T cell Expressed and Secreted 
(RANTES)) [2, 4, 5] were used to define inflammation 
within this study.

Endocervical cytobrush
Cytobrushes were vortexed for 45 s in PBS to dislodge 
cells, washed twice in fresh PBS, and filtered twice prior 
to staining with an optimized antibody cocktail: CD19-
APC (clone HIB19), CD56-PE-Cy7 (clone B159), CD4-
APC-H7 (clone RPA-T4), CD3-v500 (clone UCHT1), 
CD8-BV605 (clone SK1), CD49d-PE-Cy5 (clone 9F10), 
CD14-PerCP-Cy5.5 (clone MφP9), CD16-Alexa700 
(clone 3G8), CD15-BUV395 (clone HI98), Fixable via-
bility stain 570 (all antibodies obtained from BD Bio-
sciences). Samples were fixed in 1% paraformaldehyde 
prior to acquisition on an LSR II (BD Biosciences). 
Human peripheral blood mononuclear cells were used 
for staining controls and fluorescence minus one (FMO) 
controls. Data was analyzed using FlowJo v10 (Treestar).

Diagnosis of bacterial vaginosis
A wet mount microscopy slide was created using 30μL 
vaginal swab eluate and observed at 400× magnifica-
tion for the presence of Clue cells [57]. A Whiff test 
was performed by mixing 30μL eluate with 30μL of 10% 
KOH, with detection of a strong amine odor indicating 
a positive result [57]. A pH strip that had been touched 
to the vaginal wall was used to measure vaginal pH. 
Discharge color and consistency were assessed by the 
study physician during pelvic exam. A participant was 

diagnosed with bacterial vaginosis (BV) if they had 3 
out of 4 Amsel criteria present.

Sample preparation for proteomics analysis
CVL supernatants were prepared for mass spectrometry 
as previously described [58]. Briefly, BCA assay (Nova-
gen) was used to quantify protein and then equal vol-
umes were used. Samples were denatured with 8M urea, 
reduced using diothiothreitol, alkylated using iodoaceta-
mide, and digested into peptides using trypsin. CVL pel-
lets were collected by centrifuging 2mL CVL at 21,000×g 
for 5 min at 4°C. Pellets were resuspended in 350μL lysis 
buffer (2% SDS, 0.1 M dithiothreitol, 0.5 M HEPES), 
then 50μL 0.1 mm glass beads were added. Samples were 
vortexed, heated at 95°C for 5 min, then vortexed for 3 
min. Samples were centrifuged at 3000 rpm for 3 min 
to pellet beads and cells, and the supernatant was trans-
ferred to a fresh tube on ice. This was repeated 3 times. 
Protein quantification was determined using 2-D Quant 
assay (GE Healthcare, NJ, USA), and protein was dena-
tured using 8M urea, alkylated using iodoacetamide, then 
treated with benzonase solution (250 U/μL benzonase, 
50 mM  MgCl2, 50 mM HEPES), before being digested 
by trypsin. Peptides were cleaned of salts and detergents 
by reverse-phase liquid chromatography (LC) using the 
step-function gradient. Peptides were then quantified 
using a LavaPep Fluorescent Peptide and Protein Quan-
tification Kit (Gel Company, CA, USA) following the 
manufacturer’s protocol. One microgram of peptide per 
sample was re-suspended in 2% acetonitrile with 0.1% 
formic acid submitted for nanoflow-liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) analysis.

LC‑MS/MS setup for proteomics analysis
Each sample was separately analyzed using a nano-flow 
Easy nLC 1000 connected in-line to a Q-Exactive Plus 
mass spectrometer with a nanoelectrospray ion source 
at 2 kV (Thermo Fisher Scientific, San Jose, CA, USA). 
The peptide samples were loaded (1 μg) onto a C18-
reversed phase Easy Spray column (50 cm long, 75-μm 
inner diameter, 2-μm particles (Thermo Fisher Scien-
tific, San Jose, CA, USA)) with 100% buffer A (2% ace-
tonitrile, 0.1% formic acid) for a total volume of 10 μl, 
and then separated on the same column. Peptides were 
eluted using a linear gradient of 5–22% buffer B (98% 
acetonitrile, 0.1% formic acid) over 100 min, 22–32% 
buffer B for 15 min, 32–90% buffer B for 5 min, and a 
wash at 90% B for 10 min at a constant flow rate of 200 
nl/min. Total LC/MS/MS run-time was about 180 min, 
including the loading, linear gradient, column wash, 
and the equilibration.
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MS data acquisition
Dynamically choosing the top 15 abundant precursor 
ions from each survey scan for isolation in the quadru-
pole (1.4 m/z isolation width) and fragmentation by HCD 
(28% normalized collision energy). The survey scans were 
acquired in the orbitrap over m/z 375–1500 with a target 
resolution of 70,000 at m/z 200, and the subsequent frag-
ment ion scans were also acquired in the orbitrap with a 
resolution of 17,500 at m/z 200. The lower threshold for 
selecting a precursor ion for fragmentation was 1.9e4. 
Dynamic exclusion was enabled using a list size of 500 
features, a m/z tolerance of 15 ppm, a repeat count of 1, 
and an exclusion duration of 20 s.

Human proteome data analysis
Raw MS spectra were imported into Progenesis QI soft-
ware (v2.0, Nonlinear Dynamics), aligned, and filtered 
as described previously [21, 59]. Filtered peptides were 
annotated using Mascot Daemon (v.2.4.0, Matrix Sci-
ence) and searched against the SwissProt/UniProtKB 
(2015) human database, with a decoy database included 
to determine the rate of false discovery. Protein identifi-
cations were confirmed using Scaffold software (v4.8.3, 
Proteome Software) with confidence thresholds set at 
≤1% FDR protein at the protein level, ≤0.1% FDR at the 
peptide level, and had ≥2 unique peptides identified per 
protein. Normalized relative abundances of each protein 
within each sample were obtained from Progenesis QI. 
Only proteins that had an average covariance of <25% 
(925 proteins) as determined through measurements 
of a standard reference sample run at 10 sample inter-
vals (n=7) were used in downstream analysis to exclude 
proteins with higher technical measurement variability. 
Pathway analysis of host proteins was performed using 
ConsensusPathDB-human [60–63].

Microbial proteome data analysis
Protein database searches were conducted against an in-
house vaginal metaproteome (VMP) database [64] using 
Mascot (v.2.4.0, Matrix Science) and included human 
proteins from the SwissProt/UniprotKB database to limit 
potential homologous identifications. Search results 
were then imported into Scaffold software to validate 
these protein identifications, filtered using the following 
criteria: <0.1%FDR for peptide identification, ≤ 1% FDR 
for protein identification, and at least two unique pep-
tides identified per protein, and protein spectral counts 
were normalized to total protein detected. Microbial taxa 
abundance was estimated by taking the sum of normal-
ized total spectral counts from Scaffold for all proteins 
associated with each genus. Scaffold accession reports 

containing homologous protein information were used to 
identify proteins that matched to more than one genus, 
which were binned into an “undistinguishable” category.

Functional microbiome analysis
Non-homologous bacterial proteins identified in each 
participant were annotated for known biological func-
tions using the KEGG ontology database with GhostKO-
ALA (v2.2, Kyoto University Bioinformatics Center) [65]. 
Proteins were binned to the pathway level; a total of 33 
pathways were analyzed for interactions with inflamma-
tion to preserve experimental power.

Sample preparation for metabolomics analysis
Metabolomics procedures were adapted from Srinivasan 
et  al. [52]. Metabolites were extracted from CVL using 
a 1:4 ratio of CVL to methanol, followed by vortexing 
and centrifugation at 16,000×g for 30 min at 4°C. The 
supernatants were transferred to new tubes and dried 
using vacuum centrifugation. Metabolite samples were 
resuspended in 200μL of sample buffer (30% Buffer A: 
70% Buffer B containing 53.1 μM 13C5-15N1-glutamic 
acid and 58.2 μM 13C2-succinic acid. Buffer A = 5 mM 
ammonium acetate in 0.1% acetic acid, Buffer B = 0.1% 
acetic acid in acetonitrile), then vortexed for 15 min and 
centrifuged at 16,000×g for 30 min to remove particulate 
matter. A standard sample containing a mixture of 10 
known metabolites, along with a mix sample consisting 
of extracted metabolites from a mixture of all samples, 
was injected periodically throughout each batch run for 
QC and monitoring LC-MS/MS conditions.

Targeted LC‑MS/MS metabolomics analysis
Metabolites were separated using an Agilent 1200 binary 
pump HPLC system equipped with a ZIC-cHILIC col-
umn (150 × 2.1 mm, 3.0 μm particle size) (Millipore). 
The flow rate was set to 200 μL/min and the column tem-
perature was kept at 4°C. The separation gradient was 
set as follows: 0–3 min: 70% B, 3–7.5 min: 70–30% B, 
7.5–13.5 min: 30% B, 13.5–16.5 min: 30–70% B, 16.5–27 
min: 70% B. Eight microliters of each sample was injected 
for simultaneous positive and negative mode analysis 
on a Fusion Lumos Tribrid mass spectrometer. Targeted 
quantification of metabolites was accomplished in paral-
lel reaction monitoring (PRM) mode, targeting 121 dif-
ferent metabolites (66 in positive mode, 55 in negative 
mode). Source conditions for positive mode were set as 
follows: Spray Voltage: 3500 V, Sheath Gas: 3 (Arbitrary 
Units), Aux Gas: 1.2 (Arbitrary Units), Ion Transfer Tube 
Temp: 275°C. Source conditions for negative mode are 
the same as for positive except the Spray Voltage is set 
to 2100 V. Mass spectrometry data is acquired by alter-
nating MS1 and MS2 scans in both positive and negative 



Page 5 of 16Farr Zuend et al. Microbiome          (2023) 11:159  

mode. MS1 scans are collected with the following param-
eters (the same for positive and negative unless listed 
otherwise): Scan range: 55–280 m/z (positive), 65–500 
(negative), Orbitrap resolution: 30,000, RF Lens (%): 30, 
AGC Target: 4.0e5, Max Injection Time: 50 ms. MS2 
scans are collected with the following parameters (the 
same for positive and negative mode unless listed other-
wise): Isolation Window: 1.6 m/z, HCD Collision Energy: 
30%, Stepped Collision Energy: +/− 10%, Orbitrap Reso-
lution: 15,000, Maximum Injection Time 22 ms. For MS2 
scans, the mass range was set from 50 m/z to the mass of 
the targeted metabolite + 10 m/z. Raw files obtained are 
subsequently uploaded into Skyline for metabolite peak 
integration and quantification using a custom method. A 
zero replacement strategy was used to impute values for 
metabolites below the limit of detection, and metabolites 
that were below the limit of detection in ≥40% of samples 
were removed from the analysis.

Statistical analysis
Statistical analysis and data visualization was performed 
with GraphPad Prism 8 (v.8.3.1 (332)) or R (version 4.1.3) 
with plugins “NMF” (version 0.24.0), “RColorBrewer” 
(version 1.1-2), “dendextend” (version 1.16.0), and 
“ggplot2” (version 3.3.5). Demographic and gynecologi-
cal data was analyzed using chi-square or Kruskal-Wal-
lis with Dunn’s multiple comparison test. Multi-‘omics 
data was analyzed using Kruskal-Wallis with Benjamini-
Hochberg correction for multiple comparisons.

Bayesian Network analysis
Random forest models were created for each multi-‘omic 
dataset (vaginal metaproteome taxa, vaginal metapro-
teome functions, vaginal metaproteome proteins, 
metabolome, host proteome, cytokine, and flow cytom-
etry) using the 3-level inflammation variable as the clas-
sifier. All continuous data was discretized using above/
below median prior to network creation. Datasets were 
first screened using Random Forest models [66] in R 
(randomForest, version 4.7-1.1) to assess the top 5 most 
important variables based on Gini importance, which 
were selected as features for the network. The inflamma-
tion variable was also included in the network, resulting 
in 36 features chosen as nodes. Four participants were 
removed from this analysis as they did not have complete 
information across datasets. Discretized data from the 
36 selected features across 39 participants were used as 
input for the Bayesian Network, which was constructed 
using the BNlearn package in R (version 4.8.1). To avoid 
getting stuck at a possible local maximum, 1000 net-
works were bootstrapped and averaged for 1000 random 
restarts, resulting in 1,000,000 total networks. The final 
consensus network was calculated using the average.

network function in BNlearn [67]. For each network cre-
ated, the structure of the network was learned using the 
Hill-Climbing algorithm with the likelihood-equivalence 
Bayesian Dirichlet (BDe) scoring method. The optimal 
imagery sample size was calculated with the alpha.star 
function. As the network is intended to be a hypothesis-
generating tool, the presence of an edge describes a rela-
tionship between two nodes without directionality. The 
final graph was visualized in Gephi using the Fruchter-
man Reingold layout. The nodes are colored by data type 
and size indicates degree of the node.

Results
Study participants
Forty-three women were recruited from gynecology clin-
ics in Winnipeg, Canada, as part of the Vaginal Mucosal 
Systems (VMS) study. Most participants self-reported 
as Caucasian (37, 86%). Sixteen participants (37%) self-
reported having at least 1 vaginal symptom in the past 
month, including discomfort, itchiness, discharge, or 
bleeding. Ten participants (23%) had cervical ectopy. 
Twenty-three (53%) reported intercourse in the past 30 
days, with 2 (5%) reporting anal intercourse, and 9 (21%) 
reporting using condoms. Use of hormonal contracep-
tives was low, with 12 participants (30%) reporting use, 
primarily of intrauterine devices (IUDs). Twelve (28%) 
had a history of any sexually transmitted infection, with 
1 participant testing positive for chlamydia at the study 
visit.

We classified participants into low, medium, or high 
genital inflammation groups (Table 1) based on the con-
centrations of 10 inflammatory cytokines in CVL that 
have been previously linked with increased acquisition 
of HIV (IFN-α2, IL-1α, IL-1β, IL-6, IL-8, IP-10, MCP-
1, MIP-1α, MIP-1β, and RANTES) [2, 4, 5] using unsu-
pervised hierarchical clustering (Fig.  1). Women in the 
low inflammation group (n=6) had a median of 0 (range 
0–3) inflammatory cytokines in the upper quartile, while 
women in the medium inflammation group (n=25) had 
a median of 1 (range 0–3) inflammatory cytokines in 
the upper quartile, and women in the high inflammation 
group (n=12) had a median of 5 (range 2–10) inflam-
matory cytokines in the upper quartile. Vaginal pH was 
significantly lower (Kruskal-Wallis p=0.034, H statis-
tic=6.75, Degrees of freedom=2) in the low inflammation 
group compared to the medium (p.adj=0.064) and high 
(p.adj=0.037) inflammation groups. There were no signif-
icant differences in age, Nugent score, bacterial vagino-
sis (BV) diagnosed using Amsel criteria, or Lactobacillus 
dominance of the microbiota (defined as >50% microbial 
proteins from Lactobacillus species) between groups 
(Table  1). IL-1β was the only cytokine that difference 
based on Lactobacillus dominance of the microbiome 
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(p=0.021) and was increased in non-Lactobacillus domi-
nant (nLD) participants.

Antigen‑presenting cells differ based on vaginal 
inflammation status
As vaginal inflammation has been associated with 
increased immune cell infiltration, we used multiparam-
eter flow cytometry to phenotype endocervical immune 
cells collected from study participants to detect immune 
cell lineages (CD4+ T cells, CD8+ T cells, CD19+ B 

cells, CD56+ Natural Killer (NK) cells, CD14+ antigen-
presenting cells (APCs), and CD15+CD16+CD49d- neu-
trophils) (Fig.  2A, Supplemental Figure  1). Neutrophils 
(mean 30.3% range 0.13–83.17%) were the most abun-
dant immune cell present, followed by CD3+ T cells 
(mean 28% range 0.0–91.2%) and NK cells (mean 7.6% 
range 0.14–30.68%). When we examined immune cell 
differences based on inflammation status, APCs were 
the only cell type that differed by inflammation (Kruskal-
Wallis p=0.025, H statistic=7.39, Degrees of freedom=2) 

Table 1 Overview of participant characteristics

^ p value calculated using Monte Carlo to stimulate p value with Fisher’s exact test, based on 2000 iterations
χ p value calculated using the Kruskal-Wallis test
a Self-reported vaginal symptoms including pain, discomfort, itchiness, discharge, bleeding

Variable category Low inflammation (n=6) Medium inflammation 
(n=25)

High Inflammation (n=12) p value

Ethnicity (Caucasian) no., % 5 (83%) 22 (88%) 9 (75%) 0.598^

Age (median ± SD; range) 25 ± 11.2 (19–46) 37 ± 12.1 (21–64) 42.5 ± 24.04 (23–88) 0.171χ

Vaginal pH (median ± SD; range) 4.25 ± 0.24 (4.0–4.7) 4.7 ± 0.44 (4.0–5.5) 4.8 ± 0.46 (4.0–5.8) 0.034χ

BV+ (Amsel criteria), no., % 0 (0%) 4 (16%) 4 (33%) 0.248^

Vaginal symptoms in the past month, any 
(no., %)a

4 (67%) 9 (36%) 3 (25%) 0.222^

Ectopy (no., %) 0 (0%) 7 (28%) 3 (25%) 0.473^

Any intercourse past 30 days 4 (67%) 15 (60%) 4 (42%) 0.631^

Condom use (no., %) 0 (0%) 6 (24%) 3 (25%) 0.598^

Any birth control use 1 (17%)
Oral—1

10 (40%)
Oral—2
Ring—2
IUD—6

2 (17%)
Oral—1
IUD—1

0.328^

Any STI, ever (no., %) 0 (0%) 10 (40%) 2 (17%) 0.117^

Lactobacillus dominant microbiome 6 (100%) 16 (64%) 7 (58%) 0.184^

Fig. 1 Heatmap showing clustering of inflammation groups based on cytokine levels in cervicovaginal fluid of study participants. Inflammatory 
cytokines were quantified in CVL using Luminex technology. Unsupervised hierarchical clustering was used to group participants by low, medium, 
or high levels of inflammation. N=43
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(Fig. 2B), with significantly higher levels of APCs in par-
ticipants in the medium compared to low inflammation 
groups (p.adj=0.03). No immune cell subsets differed by 
Lactobacillus dominance of the microbiome.

Vaginal inflammation is associated with proteome 
alterations related to increased innate immunity 
and decreased epithelial barrier integrity
Using mass spectrometry-based proteomics there were 
925 human proteins identified within CVL. There were 
275 (29.8%) proteins that were significantly different 
by inflammation group (p<0.05), with 81 (8.8%) pass-
ing correction for multiple comparisons (p.adj<0.05). 
These 81 proteins clustered by inflammation group 
using unsupervised hierarchical clustering (chi-square 
p<0.0001) into “high inflammation” and “medium/low 
inflammation” branches, and two main protein clusters 
were identified (Fig. 3). Cluster A contained 21 proteins, 
which are increased in all (11/11) participants with high 
inflammation and 36% (9/25) of the medium inflam-
mation participants. Proteins in cluster A were associ-
ated with biological pathways related to innate immune 
system (p=2.26E−07), including neutrophil degranula-
tion (p=1.75E−06), integrin signaling (p=5.83E−04), 
and leukocyte migration (p=1.37E−05), indicating there 
are higher proteome signals of inflammation in par-
ticipants with higher levels of cytokine-defined inflam-
mation. Cluster B contained 60 proteins, which tend to 

be lower in participants with high inflammation. Pro-
teins within Cluster B are associated with tissue integ-
rity pathways, including cell-cell adherens junction 
(p=1.94E−07), cornified envelope (p=4.52E−12), and 
keratinization (p=4.70E−05), indicating decreased epi-
thelial barrier integrity or increased barrier disruption 
with high inflammation. The “high inflammation” branch, 
which had increases in proteome signatures related to 
innate immunity, contained participants that had sig-
nificantly higher levels of neutrophils (p=0.0247), which 
supports the findings of the pathway analysis. While 
there were 134 host proteins that differed between Lac-
tobacillus dominant (LD) and non-Lactobacillus domi-
nant (nLD) groups, none passed correction for multiple 
comparisons.

L. crispatus is higher in participants with low genital 
inflammation
As it has been observed that the vaginal microbiome can 
have a significant impact on inflammation, we used mass 
spectrometry-based metaproteomics to detect bacterial 
proteins present in CVL. 1758 unique bacterial proteins 
from 19 genera were identified by mass spectrometry 
(Fig.  4). L. crispatus, L. iners, Gardnerella, and other 
Lactobacillus species were the most abundant bacteria 
detected. When participants were classified based on the 
abundance of Lactobacillus detected, with women hav-
ing >50% of their bacterial proteins from Lactobacillus 

Fig. 2 Flow cytometry analysis associates higher cervical antigen‑presenting cells with increased genital inflammation. A Cervical leukocytes were 
immunophenotyped by flow cytometry to identify immune cell lineages. B APCs identified from cervical cytobrushes, stratified by inflammation 
level defined by the presence of inflammatory cytokines in CVL. Adjusted p values are reported and were calculated using the Kruskal‑Wallis test 
with Dunn’s correction for multiple comparisons. Data is presented as a percentage of total live cells identified by flow cytometry with median 
identified. N=43
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considered Lactobacillus dominant (LD), we found 
that all participants with low inflammation (6/6, 100%), 
16 from the medium inflammation group (64%), and 
7 from the high inflammation group (58%) were LD, 
although this was not statistically different (p=0.184). 
Relative abundance of L. crispatus was significantly dif-
ferent based on the inflammation group (Kruskal-Wallis 
p=0.004, H statistic=10.83, Degrees of freedom=2), and 
was higher in the low inflammation group compared to 
both the medium (p.adj=0.0064) and high (p.adj=0.0067) 
groups (Fig.  4C). Ruminococcus was also statistically 
different between inflammation groups (Kruskal-Wal-
lis p=0.019 H statistic=7.93, Degrees of freedom=2), 
with a significant increase in medium compared to low 

inflammation (p.adj=0.020). However, this bacterium 
was in low abundance and the differences appeared to 
be driven by 3 participants that had higher levels of this 
bacteria. No other bacteria were significantly different 
between inflammation groups.

KEGG gene ontology was used to map the bacterial 
proteins to functional pathways, with 971 (55%) bacte-
rial proteins mapped to 33 ko-level pathways. The most 
abundant functions were glycolysis/gluconeogenesis, 
carbon fixation, and RNA degradation. There were 5 ko-
level pathways that were significantly different by inflam-
mation group, inositol phosphate metabolism (p=0.002, 
p.adj=0.074), two-component system (p=0.007, 
p.adj=0.119), carbon fixation (p=0.014, p.adj=0.145), 

Fig. 3 Cervicovaginal inflammation associates with neutrophil and epithelial barrier proteome changes. Mass spectrometry analysis 
of cervicovaginal fluid identified alterations to the mucosal proteome with inflammation groups. Proteins that were differentially abundant (adj. 
p<0.05) underwent unsupervised hierarchical clustering, and inflammation status based on levels of inflammatory cytokines was overlaid. Two 
clusters of proteins were identified. Proteins from each cluster underwent pathway analysis using ConsensusPathDB‑human and significant 
pathways are shown on the right. One participant (high inflammation group) did not have a sample available for mass spectrometry analysis. 
Differential protein expression analysis was performed using the Kruskal‑Wallis test with Benjamini‑Hochberg correction for multiple comparisons. 
N=42
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amino sugar and nucleotide sugar metabolism (p=0.018, 
p.adj=0.145), and fructose and mannose metabolism 
(p=0.041, p.adj=0.233), although none passed correc-
tion for multiple comparisons (Fig.  4D). There were 25 
bacterial proteins identified that were significantly differ-
ent by inflammation status, but none passed correction 

for multiple comparisons. Of these proteins, eight (glu-
tamine synthetase, glyceraldehyde-3-phosphate dehy-
drogenase, glyceraldehyde-3-phosphate dehydrogenase 
type 1, phosphate binding protein, phosphoenolpyru-
vate carboxykinase (ATP), phosphoglucosamine mutase, 
triosephosphate isomerase, and uncharacterized 

Fig. 4 Cervicovaginal microbiome composition and functional differences between women with high and low genital inflammation. 
Proportion plots of A taxa and B ko‑level bacterial functions identified in cervicovaginal lavage by mass spectrometry. Participants are grouped 
by inflammation status. Two participants in the medium inflammation group did not have bacterial functions mapped to the identified bacterial 
proteins. C Microbial proportion of L. crispatus grouped by inflammation status with median identified. D Proportion of ko‑level bacterial functions 
by inflammation status. Pie charts show the distribution of bacterial taxa for each function. E Bacterial proteins that differed by inflammation status. 
Pie charts show the distribution of bacterial taxa for each protein. Adjusted p values are reported and were calculated using the Kruskal‑Wallis test 
with Dunn’s correction for multiple comparisons. N=43
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protein) were present in the ko-level pathways that dif-
fered by inflammation group. Triosephosphate isomer-
ase (p=0.0018), which was identified in the fructose and 
mannose metabolism, inositol phosphate metabolism, 
and carbon fixation pathways, was significantly lower 
in the high inflammation group compared to both the 
medium (p.adj=0.0336) and low (p.adj=0.0021) inflam-
mation groups. Glyceraldehyde-3-phosphate dehydroge-
nase type 1 (p=0.0212), identified in the carbon fixation 
pathway, was the only protein that was higher in the high 
inflammation group compared to the low inflammation 
group (p.adj=0.0225) (Fig.  4E), suggesting a change in 
bacterial metabolism may be associated with increasing 
inflammation.

Vaginal xanthine is significantly higher in women 
with high levels of vaginal inflammation
To investigate potential communications between the 
host and the microbiome, we used targeted metabo-
lomics to identify metabolites in CVL. A total of 82 

metabolites were identified including amino acids, 
short chain fatty acids, organic acids, fatty acids, car-
bohydrates, nucleic acids, and amines. Eleven (13.4%) 
metabolites were significantly different based on the 
inflammation group (p<0.05, Kruskal-Wallis test; 
Fig.  5A), including fatty acids (4 metabolites), organic 
acids (2 metabolites), nucleic acids (2 metabolites), 
sugars (2 metabolites), and amino acids (1 metabolite). 
The purine nucleic acid xanthine was the top metabo-
lite associated with inflammation (Kruskal-Wallis 
p=6.00E−4, BH p.adj=0.046, H statistic=14.99, Degrees 
of freedom=2), and is higher in both the medium 
(Dunn’s p.adj=0.033) and high (Dunn’s p.adj=0.0003) 
inflammation groups compared to women with low 
inflammation, and increased in the high group com-
pared to the medium group (p.adj=0.076), although 
this did not pass statistical significance (Fig.  5B). 
Other metabolites increased in participants with high 
inflammation included hexose-phosphate (p=0.0115, 
p.adj=0.21), hexose (p=0.0274, p.adj=0.28), N-acetyl 

Fig. 5 Cervicovaginal metabolome differences between women with high and low inflammation. A Hierarchical clustering of differentially 
abundant (p<0.05) metabolites based on inflammation group. B Log2 normalized abundance of xanthine identified in CVL samples 
by inflammation group with median indicated. C Log2 normalized abundance of lactate identified in CVL samples by inflammation group 
with median indicated. Adjusted p values are reported and were calculated using the Kruskal‑Wallis test with Dunn’s correction for multiple 
comparisons. Two participants from the high inflammation group did not have samples available for metabolomics analysis. N=41
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alanine (p=0.0471, p.adj=0.33), 12-hydroxyeicosatetrae-
noic acid (p=0.0125, padj=0.21), and 13-hydroxyocta-
decadienoic acid (p=0.0331, p.adj=0.28), although none 
passed correction for multiple comparison. Metabo-
lites that were higher in participants with low inflam-
mation included homovanilate (p=0.0125, p.adj=0.21), 
lactate (p=0.034, p.adj=0.28), adenosine (p=0.0075, 
p.adj=0.21), and succinate (p=0.0207, p.adj=0.28), 
although none passed correction for multiple compari-
sons (Fig.  5C). Interestingly, phenyllactate (p=0.0233, 
p.adj=0.28) was lowest in the participants with medium 
inflammation. Unsupervised hierarchical cluster-
ing indicated these metabolites tended to cluster by 
inflammation group (chi-square p=0.101) and did not 
cluster by Lactobacillus dominance of the microbi-
ome (Fisher’s exact p=0.469). There were 26 (31.7%) 
metabolites that differed based on microbiome status, 
with 14 (cytosine p.adj=0.033; inosine p.adj=0.033; 
glycine p.adj=0.033; lactate p.adj=0.033; methionine 
sulfoxide p.adj=0.033; tyrosine p=0.034; adenosine 
p.adj=0.034; serine p.adj=0.036; uridine p.adj=0.039; 
tryptophan p.adj=0.039; hexose p.adj=0.047; glutamate 
p.adj=0.047; leucine-isoleucine p.adj=0.047; xanthine 
p.adj=0.047) passing correction for multiple compari-
sons. Of these 14 metabolites, 3 overlapped with the 
inflammation metabolomic signature (xanthine, adeno-
sine, and lactate) suggesting these metabolites may be 
important for microbiome-inflammation interactions 
(Supplemental Table 1).

Bayesian network analysis identifies molecular 
relationships with inflammation
To better understand the potential relationships between 
cervicovaginal inflammation and the microenviron-
ment, we employed an integrated Bayesian network 
method. The cytokine, immune cell, proteome, metapro-
teome (species, functional pathway (b level), protein), 
and metabolome datasets were pre-filtered using ran-
dom forest models, and the top 5 features were selected 
from each dataset, with the inflammation variable also 
included, leading to a total of 36 features. The final model 
identified 119 edges between 36 nodes (Fig. 6A). Inflam-
mation, L. crispatus, and succinate were major nodes 
identified. Inflammation status was related to the neutro-
phil chemotactic factor IL-8, pro-inflammatory cytokine 
IL-1β, and to APCs. Primary interactions with inflamma-
tion status included links to epidermal integrity proteins 
(SCEL and IVL), as well as metabolites, including xan-
thine and carbohydrates hexose and hexose-phosphate. 
Primary microbiome interactions included anaerobic 
taxa Prevotella and Ruminococcus. A second major node 
identified was L. crispatus, which was linked to L. iners 
and Gardnerella. L. crispatus was also directly linked 
to the inflammatory cytokine MIP-1α, and the immune 
cells APCs, neutrophils, and CD4+ T cells. Succinate is 
a metabolite that has been associated with BV, and was 
linked to both L. crispatus and Gardnerella in this net-
work. While succinate was not linked directly to inflam-
mation, it was linked to MIP-1α and APCs. Succinate was 

Fig. 6 Bayesian network analysis of cervicovaginal inflammation. Major features are colored by dataset. Node size is representative of the number 
of edges per node, with larger nodes having more edges (A). Heatmap of the top five features selected by Random Forest based on Gini 
importance from host proteome, microbiome, bacterial protein, and metabolome datasets (B). Each feature was assigned to above or 
below median level and used for unsupervised hierarchical clustering. Inflammation status and levels of APCs are overlaid. Samples significantly 
cluster by inflammation status (chi‑square p=5.34 ×  10−5). Pie charts show the distribution of bacterial taxa for each protein included in the heatmap
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also linked to bacterial carbohydrate metabolism, carbo-
hydrate metabolites, and the human protein SCEL, which 
is part of the cornified envelope. When metabolites, 
microbiome features, and host proteins were classified as 
above or below median levels and underwent unsuper-
vised hierarchical clustering, we found that samples clus-
ter by inflammation (chi-square p=5.34 ×  10−5) and level 
of APCs (FET p=0.031) (Fig.  6B), indicating a potential 
shift in metabolic pathways with increases in inflamma-
tion, which was also reflected in shifts in bacterial metab-
olism based on the bacterial proteome. Overall, this 
network highlights several novel interactions between 
APCs, metabolites, and bacterial functions that may be 
important for mediating cervicovaginal inflammation.

Discussion
Sustained cervicovaginal inflammation can have a det-
rimental impact on the cervicovaginal mucosa, leading 
to epithelial barrier damage and increased immune cell 
infiltration or activation, resulting in adverse health out-
comes. In this study of women living in Canada, we show 
that APCs are significantly higher with vaginal inflam-
mation and linked to the microbiome, the metabolite 
succinate, loss of functional bacterial pathways, epithe-
lial barrier disruption, and neutrophil-related activation 
pathways. In addition, we identified the metabolite xan-
thine as another key feature of increased inflammation. 
Overall, this study shows a complex interplay between 
shifts in bacterial metabolism to increased pro-inflam-
matory cytokines and changes to innate immunity in the 
female genital tract.

APCs are important sensors of the local microenviron-
ment, linking innate and adaptive immunity. Work by 
others has found that APC frequency is not significantly 
different based on microbiome group, but that there are 
pronounced transcriptional differences in cervical APCs 
from women with Lactobacillus compared to non-Lacto-
bacillus microbiomes [27, 68]. APCs from women with 
non-Lactobacillus microbiomes exhibited upregulation 
of pro-inflammatory mediators including TNFα signaling 
pathways and increased expression of pro-inflammatory 
cytokine genes compared to Lactobacillus dominant 
women [27, 68]. These APCs were also more activated 
and mature, which could contribute to subsequent T cell 
priming and control of effector functions [27]. In this 
study, we did not observe any difference in APC levels 
based on Lactobacillus dominance but there was a rela-
tionship between APCs and lower L. crispatus. There 
were no significant correlations between non-Lactobacil-
lus microbiota and APCs, which may be due to the lower 
levels of these bacteria in this cohort. APCs were also 
linked to the metabolite succinate, which was identified 
as a major molecular feature of inflammation. Succinate 

has previously been linked to BV [52] which agrees with 
our findings that succinate associates with L. crispa-
tus, Gardnerella, and Ruminococcus. Succinate is a pro-
inflammatory metabolite and can augment TLR-induced 
production of TNF and IL-1β and trigger chemotaxis and 
activation of APCs [69, 70]. In addition, succinic acid can 
significantly increase HIV expression in infected mac-
rophages and increase IL-8 production by virus-infected 
cells [71]. Thus, succinate could be a metabolite link-
ing the vaginal microbiome to APCs and subsequent 
inflammation in the cervicovaginal mucosa. As subsets 
of APCs can be infected by HIV and have been associ-
ated with both parturition [72–76] and progression of 
solid tumors, including cervical cancer [16, 77–80], this 
interaction between inflammation, the microbiome, and 
metabolites could be an important component of repro-
ductive health.

Proteomics analysis confirmed the inflammation 
grouping of participants, with those having high inflam-
mation having increases in pathways related to immune 
cell infiltration, phagocytosis, and neutrophil degranu-
lation. Interestingly, APCs were the only immune cell 
increased in participants with high inflammation, sug-
gesting that higher levels of inflammation may represent 
functional or phenotypic changes in immune cell subsets 
that may not be reflected by immune cell lineage analy-
sis. Follow-up studies are further characterizing cervical 
immune cell populations to investigate functional dif-
ferences that may exist. Participants with high levels of 
inflammation also had decreases in pathways related to 
epithelial barrier integrity, which supports a relationship 
between increased inflammatory cytokines and epithe-
lial barrier damage. Indeed, we have previously shown 
that elevated levels of cytokines were associated with 
mucosal proteome signatures of decreased barrier pro-
teins [4]. Inflammation was directly linked to the bar-
rier proteins sciellin (SCEL), serpin B3 (SERPINB3), and 
involucrin (IVL). While there were no direct links identi-
fied between these proteins and the microbiome in our 
analysis, they did link to bacterial functions such as car-
bohydrate metabolism and signal transduction, and to 
metabolites including succinate, xanthine, and hexose-
phosphate, suggesting an indirect link between barrier 
damage and the microbiome via bacterial metabolism.

The microbiome can be a major contributor to mucosal 
inflammation [6]. L. crispatus was significantly higher 
in participants with low inflammation compared to 
both the medium and high inflammation groups, which 
supports the findings of other studies [1, 10, 14–16]. 
Inflammation was directly linked to Prevotella and Rumi-
nococcus. Prevotella has a recognized role in BV and is 
linked to inflammation and increased cytokine produc-
tion [81] and has been linked to increased inflammation 
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in other studies [1, 27, 28, 68]. In mouse models, vaginal 
introduction of Prevotella increased IL-6 and IL-8 pro-
duction and recruited and activated CD4+ T cells in the 
genital mucosa compared to L. crispatus inoculation [21]. 
Prevotella was linked directly to neutrophils and IP-10, 
suggesting these are potential mediators of Prevotella-
associated inflammation. Ruminococcus has been iden-
tified in the vaginal microbiota in other studies [64, 82], 
but its role in inflammation has not been studied. Rumi-
nococcus was linked directly to IL-1β and CD8+ T cells, 
although directionality of this is not known, so it is dif-
ficult to determine the effect of Ruminococcus on inflam-
mation. In addition, Ruminococcus was a low-abundance 
bacterial species identified, suggesting larger studies are 
needed to better understand its potential role in the cer-
vicovaginal microenvironment.

The functional metaproteomic data indicated changes 
in bacterial metabolism associated with inflammation. 
Interestingly, lactate and bacterial enzymes such as lac-
tate dehydrogenase, which are typically associated with 
low inflammation [28, 56, 83, 84], were not among the top 
features selected, whereas triosephosphate isomerase, 
detected primarily from L. crispatus, was selected. This 
suggests that enzymes involved upstream of homolactic 
fermentation may be better indicators or more impor-
tant contributors to metabolic stability that are needed 
to maintain low levels of inflammation. This informa-
tion may be helpful for the design of microbiome-based 
therapeutic interventions that are targeting the vaginal 
microbiome and selection parameters for L. crispatus 
strains for inclusion in these interventions. Inositol phos-
phate metabolism was also significantly decreased in 
participants with high inflammation. Microbiota-derived 
inositol phosphate has been found to regulate histone 
deacetylase (HDAC) activity in the gut, with commen-
sal bacteria stimulating HDAC activity through inositol 
triphosphate production and promoting epithelial repair 
in a mouse model of colitis [85, 86]. In support of this, we 
found that high inflammation associated with decreased 
human pathways of epithelial barrier integrity, including 
significant decreases in the keratinocyte-associated pro-
teins IVL and SCEL.

Xanthine was identified as a major metabolite under-
lying increased inflammation. Xanthine is a purine base 
that is found in most human tissues and fluids and its 
role in inflammation is not well studied, although it has 
been demonstrated to be increased in amniotic fluid fol-
lowing LPS exposure in mouse models and increased in 
women that had a spontaneous first-trimester miscar-
riage [87, 88]. Xanthine is a degradation product of ino-
sine, which has been studied in the context of both the 
gut microbiome and immunity [89, 90]. Increases in 

microbiome-derived inosine can promote antitumor 
immunity, which is dependent on the activation of CD4+ 
Th1 cells [89]. While increased levels of xanthine were 
also observed in this study, mechanistic experiments 
were only performed with inosine [89]. In addition, 
effector CD8+ T cells can utilize inosine to support cell 
growth and function in the absence of glucose in  vitro 
[90]. While inosine was detected by metabolomics in this 
study, it was not associated with inflammation status. 
Future studies should investigate the impact of both xan-
thine and inosine on cervicovaginal T cell function.

A major strength of this study is the in-depth multi-
‘omics analysis that was performed, including cytokines, 
multiparameter flow cytometry, metaproteomics, and 
metabolomics on paired samples, allowing us to under-
take more complex analysis such as Bayesian network 
to investigate potential interactions. While the Bayesian 
network analysis is descriptive and allows the identifi-
cation of potential relationships for future mechanistic 
studies, several of the interactions identified support 
published data. In addition, this study investigated cer-
vicovaginal inflammation in participants that would be 
considered healthy, illustrating potential factors that 
could contribute to an inflammatory microenviron-
ment in the absence of disease. Limitations of this study 
include the small sample size and lack of microbiome 
diversity, with only 8 participants (19%) having a clini-
cal diagnosis of BV, which is a major modulator of the 
cervicovaginal microenvironment. In addition, CD45, 
as a marker of hematopoietic-derived immune cells, was 
not included in the flow cytometry panel. While this 
precludes CD45 vs SSC gating, which could impact the 
identification of leukocyte subsets within samples, all 
immune cell subtypes were identified using lineage-spe-
cific markers. Finally, data on the menstrual phase and 
menopause was not collected. As there was no upper 
age limit for recruitment into this study, the average 
participant age was high, and it is likely that several par-
ticipants had reached menopause. While it is important 
to study the impacts of age or menopause on the cervi-
covaginal microenvironment, the hormonal and micro-
biome changes that occur over the menstrual cycle and 
with menopause may confound the findings.

In conclusion, this study identifies interactions 
between microbial metabolism and the cervicovaginal 
microenvironment that could modulate inflammation 
and host immunity. These data may have implications 
for susceptibility to infections in the female genital tract 
and other reproductive health outcomes. Further stud-
ies are needed to explore the interactions between bac-
terial metabolism, mucosal immunity, APCs, and genital 
inflammation.
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