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Abstract 

Background Understanding how the host’s microbiome shapes phenotypes and participates in the host response 
to selection is fundamental for evolutionists and animal and plant breeders. Currently, selection for resilience is 
considered a critical step in improving the sustainability of livestock systems. Environmental variance (VE), the within‑
individual variance of a trait, has been successfully used as a proxy for animal resilience. Selection for reduced VE could 
effectively shift gut microbiome composition; reshape the inflammatory response, triglyceride, and cholesterol levels; 
and drive animal resilience. This study aimed to determine the gut microbiome composition underlying the VE of 
litter size (LS), for which we performed a metagenomic analysis in two rabbit populations divergently selected for low 
(n = 36) and high (n = 34) VE of LS. Partial least square‑discriminant analysis and alpha‑ and beta‑diversity were com‑
puted to determine the differences in gut microbiome composition among the rabbit populations.

Results We identified 116 KEGG IDs, 164 COG IDs, and 32 species with differences in abundance between the two 
rabbit populations studied. These variables achieved a classification performance of the VE rabbit populations of over 
than 80%. Compared to the high VE population, the low VE (resilient) population was characterized by an underrepre‑
sentation of Megasphaera sp., Acetatifactor muris, Bacteroidetes rodentium, Ruminococcus bromii, Bacteroidetes togonis, 
and Eggerthella sp. and greater abundances of Alistipes shahii, Alistipes putredinis, Odoribacter splanchnicus, Limosilac-
tobacillus fermentum, and Sutterella, among others. Differences in abundance were also found in pathways related to 
biofilm formation, quorum sensing, glutamate, and amino acid aromatic metabolism. All these results suggest differ‑
ences in gut immunity modulation, closely related to resilience.

Conclusions This is the first study to show that selection for VE of LS can shift the gut microbiome composition. The 
results revealed differences in microbiome composition related to gut immunity modulation, which could contribute 
to the differences in resilience among rabbit populations. The selection‑driven shifts in gut microbiome composition 
should make a substantial contribution to the remarkable genetic response observed in the VE rabbit populations.

Background
The dynamics and composition of gut microbiome have 
a substantial impact on the host’s phenotypes. Previous 
studies on livestock have suggested that microbial vari-
ation contributes to production phenotypes, explaining 
between 13 and 33% of key traits [1, 2]. It is thus funda-
mental for evolutionists and animal and plant breeders 
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to understand how the host’s microbiome shapes pheno-
types and contributes to host response to selection [3], 
even though the complexity of microbiome inheritance 
and microbiome heritability (host genetics controlling 
microbiome) make this a challenging topic.

The livestock industry is demanding more sustainable 
production systems, and resilience is one of the critical 
traits to be improved, this being the ability of individu-
als to maintain or quickly recover their performance after 
environmental disruptions [4]. In the last few years, envi-
ronmental variance (VE) has successfully been used as a 
key measure of animal resilience [5–7]. VE is defined as 
the within-individual variance of a trait. Animals show-
ing a low VE for a given trait seem to cope better with 
environmental disturbances that affect this trait and 
show lower mortality [6, 7]. Quantitative genetics and 
genomic studies in different species underline the close 
association of VE with the inflammatory response [8–11], 
while variations in gut microbiome composition can reg-
ulate the health status of individuals [12]. Conversely, the 
immune system, particularly the inflammatory signals, 
plays an important role in the development of intestinal 
disorders and autoimmunity [13–15]. Moreover, the edu-
cation of host immunity is essential to establish the nor-
mal microbiota and develop an immune system which 
protects individuals against pathogens [16]. Suckling is 
important for that because the dam can pass bacterial 
components and antibodies through the milk, which is an 
advantage for colonization of the gut by maternal micro-
bial species [17]. Selection for VE might therefore effec-
tively shift gut microbiome composition, affecting the 
inflammatory response and driving animal resilience [7].

This study aimed to determine the microbiome com-
position underlying the VE of litter size (LS) because of 
its relationship with animal resilience. For this, we per-
formed a metagenomic analysis considering the com-
positional nature of the data in two rabbit populations 
divergently selected for high and low VE of LS [18]. The 
populations were selected from the same environmental 
conditions, this being an exceptional biological material 
to confirm the host-microbial evolution. They showed a 
notable genetic response to disruptive selection for VE 
of LS, with a notable correlated response in mortality, 
biomarkers of the immune response, and resilience [7, 
11]. The resilience potential was assesed in rabbit from 
generation 10 using a vaccination challenge. Differences 
were found between the rabbit populations, show-
ing that rabbits from the low VE of LS population were 
more resilient [7]. In addition, genomic analyses of rab-
bits from generations 11 and 13 identified relevant host 
genes associated with the variation in VE of LS [9, 10], 
supporting the link between the inflammatory response 
and VE and thus its correlation with animal resilience.

Methods
A divergent selection experiment for high and low VE 
of LS was carried out in rabbits at the Miguel Hernán-
dez University in Elche, Spain [18]. Thirteen generations 
of selection were performed. The rabbits were kept in the 
same room under the same environmental conditions, 
feeding, and were coetaneous. Cecum samples were col-
lected from 70 doses of generation 13 (36 from the popu-
lation with low VE of LS and 34 from the population with 
high VE of LS) slaughtered after their first parity. The first 
parity has been used as a challenge because it is a very 
stressful moment in the life of the dam. These samples 
were homogenized in 50-mL Falcon tubes and aliquoted 
in 2-mL cryotubes for immediate snap-freezing in liquid 
nitrogen and storage at − 80 °C until processed.

Bacterial DNA was isolated from 0.15 g of cecum sam-
ples using the DNeasy PowerSoil Kit (QIAGEN Inc., 
Hilden, Germany). DNA concentration and purity were 
estimated by measuring the 260/280 ratio with a Nan-
odrop ND-1000 and verifying by a Qubit™ 4 Fluorom-
eter (Invitrogen, Thermo Fisher Scientific, Carlsbad, 
CA, USA). Whole bacterial genomes were sequenced 
at the FISABIO Sequencing and Bioinformatic Service 
(Valencia, Spain) by Illumina NextSeq 500 in 150-bp 
paired-end reads. Average coverage was set to 4,000,000 
million paired-end reads per sample with a minimum 
of 2,000,000 paired-end reads. The shotgun library was 
made by the Nextera XT DNA Library Preparation Kit 
(Illumina Inc., San Diego, CA, USA).

Quality control of raw FASTQ files was done on 
FASTQ v0.11.06 software [19], and two raw FASTQ files 
were discarded from the analysis to low sequencing qual-
ity. Before analysing the whole metagenome data, the 
raw FASTQ files were preprocessed. The host genome 
(Oryctolagus cuniculus genome v.2.0.101) was removed 
by a pipeline that included the Bowtie2 v4.1.2 [20], SAM-
tools v1.2.1 [21], and BEDTools v2.29.0 software [22]. 
The full pipeline is available in Additional file 1. Illumina 
adapter removal and quality trimming of reads were per-
formed on Trimmomatic v0.39 software [23] using “lead-
ing” and “trailing” settings of 8 bases with a minimum 
length of 96, a sliding window of 10, and a minimum 
quality score of Q15 (see Additional file 2). The cleaned 
FASTQ files were analysed with the “default” settings of 
the “seqmerge” mode of SqueezeMeta v1.3.1 software 
[24] (see Additional file 3). This software is a fully auto-
matic metagenomic analysis pipeline that uses the latest 
publicly available version of the GenBank nr, eggNOG, 
KEGG, and PFAM database for taxonomic and func-
tional assignment (for further details, see Tamames & 
Puente-Sánchez, 2019 [24]). Each output dataset had the 
count abundance of j variables: the KEGG IDs (j = 5008), 
COG IDs (j = 14,577), or the taxonomic ranks per sample. 
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The taxonomic rank dataset was split into four different 
groups: phylum (j = 108), family (j = 277), genus (j = 647), 
and species (j = 573).

All the statistical analyses were done in R [25]. A prin-
cipal component analysis of each dataset was computed 
to remove outlier animals, according to the population 
structure. Of the 70 animals, 34 from the low VE of LS 
(resilient) population and 28 from the high  VE (non-resil-
ient) population remained in the datasets. Variables with 
almost 20% zeros [26] within each population or in total 
(without a relevant difference of zeros among populations 
higher than 0.5) were removed, and one count was added 
to all datasets to deal with the remaining zeros. The data 
were transformed by the additive log-ratio (ALR) trans-
formation to consider their compositional nature [27], 
using one fixed variable as denominator or reference var-
iable ( Xref  ), with all the other variables as numerator ( Xj):

where the number of total ALR is j-1, j being the total 
number of variables in the dataset. The dataset reference 
variable (KEGG IDs, COG IDs, and taxonomic ranks) 
was selected according to three requirements suggested 
by Greenacre et  al. (2021) [27]: (a) the lowest variance 
of the log-count abundance ( log(Xj) ), (b) a high-count 
abundance ( Xj ), and (c) a Procrustes correlation higher 
than 0.9 to avoid lack of isometric in the transformed 
datasets. We used the lowest coefficient of variation of 
the log(Xj) to select the reference variables instead of 
the lowest variance. For the taxonomy assignments, the 
following reference variables for each taxonomic rank 
dataset were selected: the phylum Firmicutes, the fam-
ily Lachnospiraceae, the genus Butyrivibrio, and the spe-
cies Clostridium sp. For KEGG and COG IDs datasets, 
we used the count abundance of the recA gene (K03553 
and COG0468, respectively) as the reference variable, as 
suggested in the SqueezeMeta software manual [24]. The 
recA gene is present in most bacteria, archaea, and eukar-
yotes organisms and has a low copy number variation 
between taxa [28]. We checked, based on our dataset, 
that the gene recA for KEGG IDs and COG IDs overcame 
all the requirements to be a reference variable [27]. ALR 
transformed data was auto-scaled to mean 0 and stand-
ard deviation 1 before performing any statistical analysis.

Partial least square-discriminant analysis (PLS-DA) 
was used to identify the relevant genes and taxa to clas-
sify the rabbits among high and low  VE of LS. The PLS-
DA models were computed on the mixOmics package 
in R [29]. A categorical vector Y of length n was used as 
input, indicating the rabbit population of each sample 
(resilient = 34 and non-resilient = 28), and an X matrix 

(1)ALR j|ref = log
Xj

Xref
= log Xj − log(Xref )

n× j dimensions, where n is the number of samples and 
j the number of ALR. A PLS-DA model with ten com-
ponents was fitted for each ALR-transformed dataset 
(KEGG IDs; j = 4,150, COG IDs; j = 10,893, phylum; 
j = 35, family; j = 96, genus; j = 212, species; j = 196). An 
iterative process was done until each model reached the 
highest classification performance or a balanced error 
rate (BER) lower than 0.02. In each iteration, the optimal 
number of components for each model was selected con-
sidering the BER displayed for the Mahalanobis distance, 
computed by fourfold cross-validation repeated 100 
times. Feature/variable selection was performed using 
the variable important prediction (VIP), i.e. the influence 
of the variables on the model projection and classifica-
tion for the number of components previously selected. 
The optimal number of variables to select were those 
with a VIP higher than 1 [30].

The prediction performance of the final models was 
validated by two tests: a confusion matrix and a per-
muted-confusion matrix. The former was constructed 
by fourfold cross-validation repeated 10,000 times. The 
models’ accuracy and precision were calculated consider-
ing the resilient population as the true-positive value. We 
also computed a permuted-confusion matrix randomiz-
ing the categorical Y vector of the rabbit populations to 
check whether the classification performance of the final 
models was spurious. These were considered spurious 
when the percentage of true positives in the permuted-
confusion matrix was far from 50% (random probability 
of two categories). A full record of the method used is 
included in Additional files 4, 5 and 6.

Bayesian statistics [31] was used to determine the rel-
evance of the difference between the two rabbit popula-
tions in the microbial genes and taxonomy selected by 
PLS-DA (see Additional file 7). The analysis was by four 
chains with a length of 50,000 iterations, a lag of 10, and 
a burn-in of 1000 iterations and flat priors. To check 
whether the model converged the R-hat statistic had to 
be below 1.05 [32]. The marginal posterior distribution 
of the differences among the resilient minus non-resilient 
population was computed to estimate its posterior mean 
and the probability of the difference being higher (if the 
difference is positive) or lower (if negative) than 0 (P0). 
The posterior mean of the differences was indicated as 
units of standard deviations (SD) of each variable (unit of 
SD). Variables with an SD higher than 0.5 and a P0 higher 
than 0.9 were considered the most relevant for the classi-
fication and differentiation of the two rabbit populations.

The alpha- and beta-diversity were computed using 
the ALR at the species level to measure the differences in 
microbiota composition among the rabbit populations. 
The alpha-diversity was measured by Shannon’s (H′) and 
inverse Simpson indexes. The same indexes analysed the 
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species diversity and evenness in the samples. Differences 
in the distribution of alpha-diversity among rabbit pop-
ulations were considered when the p-value of a Mann–
Whitney U-test was lower than 0.05. Beta-diversity was 
measured by the Bray–Curtis dissimilarity matrix, and a 
nonmetric multidimensional scaling (NMDS) was car-
ried out to retrieve the loadings of the first two dimen-
sions. Differences in microbial species composition were 
tested by the permutational multivariate analysis of vari-
ance (PERMANOVA; p-value < 0.05) on the loadings of 
the two first MDS dimensions. A full record of the alpha- 
and beta-diversity calculation is included in Additional 
file 8.

Results and discussion
After the additive log-ratio (ALR) transformation, the 
partial least square-discriminant analysis (PLS-DA) 
identified 361 relevant variables, including the follow-
ing: 116 KEGG IDs, 164 COG IDs, 6 phyla, 15 families, 
28 genera, and 32 species. Most models achieved a high 
classification performance of the rabbit populations in 
terms of resilience potential, given that rabbits with high 
VE are considered less resilient than those with low VE 
(Table 1) (see Additional files 4, 5 and 6). The best models 
were those using the KEGG and COG IDs for functional 
assignment and the species level for taxonomic assign-
ment (Table 1). The models using counts from functional 
assignment allowed higher discrimination than those 
from the taxonomic assignment (Table 1). The taxonomic 
ranks were inferred from the functional assignment 
[24], having a lower statistical power for discriminating 
between the two rabbit populations (Fig.  1) due to the 
loss of information in the assignment.

Likewise, the higher (Fig.  1A) had less discrimination 
power than the lower taxonomic ranks (Fig.  1B). Clus-
tering counts in the higher taxonomic ranks (phylum or 
family) could hide their variation between the popula-
tions due to grouping bacteria with dissimilarity in their 
functions. The results show that a few species (32) were 
relevant for the classification among the two rabbit popu-
lations, obtaining an accuracy of 0.87 and a precision of 
0.89 (Table 1). These results were supported by the alpha- 
and beta-diversity scores, which did not differ between 
the two rabbit populations (Fig.  1 D–F), indicating that 
in general, both populations have a similar microbiota 
composition except for a few species identified by the 
PLS-DA.

The Bayesian statistical analysis (see Additional file  7) 
showed that 303 variables (including both genes and 
taxa) from the initial 361 identified by PLS-DA analysis 
(Table 1) had a posterior mean of the differences among 
the rabbit populations of at least 0.5 of the SD of the vari-
able (see Additional file  9) in which the probability of 
differences being higher or lower than 0 (P0) was higher 
than 0.97. The Bayesian results showed that most of the 
variables included in the PLS-DA models (Table  1) are 
key variables for discriminating between rabbit popula-
tions, with relevant differences in mean abundance (see 
Additional file  9). These differences must have arisen 
because of the divergent selection for VE of LS, since the 
animals were coetaneous and kept under the same envi-
ronmental conditions (diet, management, temperature, 
etc.).

Relevant results in the PLS-DA models using the 
taxonomic ranks are detailed below. The species Alis-
tipes shahii (0.60 unit of SD), Alistipes putredinis (0.51), 
Odoribacter splanchnicus (0.58), and Limosilactobacillus 

Table 1 PLS‑DA model specifications using counts from genes and taxa of the resilient and non‑resilient rabbit populations

PLS‑DA models with taxa were those with phylum, family genus and species. PLS‑DA models with genes were those with the KEGG and COG IDs
a Number of variables in the final model
b Number of components in the final model
c Final PLS‑DA model classification performance (%) of each rabbit population (true‑positive value from the total assignation to each rabbit population)
d Population with low VE of LS
e Population with high VE of LS
f Accuracy and precision of the final model considering the resilient population as true positive

PLS-DA model Na Componentb Classification performancec Accuracyf Precisionf

Resilientd Non-resiliente

Phylum 6 2 66.68 66.32 0.67 0.66

Family 15 3 78.97 78.89 0.79 0.79

Genus 28 1 74.28 82.70 0.79 0.81

Species 32 2 84.87 88.87 0.87 0.89

KEGG 116 3 99.83 99.77 1 1

COG 164 3 99.88 99.99 1 1
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fermentum (0.57) were more abundant in the resilient 
animals (Fig.  2), as were the higher taxonomic ranks of 
these species (Fig. 2): genera Odoribacter (0.83), Alistipes 
(0.75), Lactobacillus (0.56), and Rikenella (0.51); families 
Odoribacteraceae (0.84) and Rikenellaceae (0.74); and the 
phylum Bacteroidetes (0.59). Health-beneficial proper-
ties have been reported from these taxa, in part due to 
their effects on the inflammatory and immune-adaptive 
response [33–35]. These effects on the immune system 
have been suggested to be mediated by short-chain fatty 
acids (SCFs) and Th17 cells. SCFs have anti-inflamma-
tory properties [12, 36], and differentiation of Th17 cells 
is essential for the host to develop a correct tolerance to 

foreign and nonpathogenic commensal species, playing 
an important role in gut immunity [37].

Harmful microbial species such as Acetatifactor muris 
(− 0.72 of SD unit) and Eggerthella sp. (− 0.63) were more 
abundant in the non-resilient rabbits (Fig. 2), which was 
consistent with their associations with autoimmunity and 
inflammatory diseases [38, 39]. Species like Megasphaera 
sp. (− 0.75), Bacteroides rodentium (− 0.70), Ruminococ-
cus bromii (− 0.67), and Bacteroides togonis (− 0.63) also 
showed higher abundance in the non-resilient population 
(Fig.  2). A gut metabolomic study suggested differences 
in the feed efficiency between these rabbit populations 
[40] which could explain the differences in the abundance 

Fig. 1 Gut microbiome composition dissimilarity. Representation of the first (Comp 1) and second components (Comp 2) of the final partial 
least square‑discriminant analysis (PLS‑DA) models (Table 1) and alpha‑ and beta‑diversity scores from the resilient (red) and non‑resilient (blue) 
rabbit populations. PLS‑DA plotting was performed using three different datasets: a phyla abundances, b species abundances, and c KEGG IDs 
abundances. The alpha‑ and beta‑diversity scores were calculated with the additive log ratio of each species abundance according to a reference 
species (Clostridium sp.). Alpha-diversity was computed using d Shannon’s H index and e inverse Simpson index. Beta-diversity was computed by 
calculating f the Bray–Curtis dissimilarity matrix. Differences among populations were established with a p‑value lower than 0.05
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of Ruminococcus bromii. Ruminococcus bromii is a key-
stone in breaking down starch, allowing other gut micro-
biota species to cross-feed [41]. We found no evidence 
in the literature of possible negative effects of Megas-
phaera sp., Bacteroides rodentium, Ruminococcus bro-
mii, and Bacteroides togonis on host health, but the 
effect of microbial species on individual health remains 

unclear. There are discrepancies in the literature on the 
gut microbiota composition related to health and disease. 
For instance, species such as Alistipes putredinis have 
been identified as both beneficial and harmful species 
[33, 38], as have the genus Sutterella (0.83) and the fam-
ily Sutterellaceae (0.60), with a higher abundance in resil-
ient rabbits (Fig.  2). The Sutterella genus was identified 

Fig. 2 Principal component analysis of gut microbiome composition. Representation of first (PC1) and second principal component (PC2) of 
the additive log‑ratio transformation of the relevant variables for distinguishing between resilient and non‑resilient populations. SD indicates the 
unit of standard deviations of each variable from the posterior mean of the differences between the marginal posterior distributions of the rabbit 
populations. The SD colour gradient highlights the degree of difference, blue and red being the greatest differences among the rabbit populations. 
The blue‑shaded area indicates that higher microbiome abundance in the non‑resilient population. The red‑shaded area indicates higher 
microbiome abundance in the resilient population. SCP, proteins involved in signalling and cellular processing; ABC transp., proteins of the family 
ABC transporter; quorum s., proteins involved in quorum sensing. PilB, PilC, PilM, and PilT proteins that conform the pilus
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in healthy and inflammatory bowel disease patients [42], 
particularly in those with ulcerative colitis [43]. The stud-
ies could only suggest the participation of the Sutterella 
genus in the modulation of the inflammatory response 
[43] through the alteration of IgA levels, an important 
immunoglobulin to neutralize pathogens and prevent 
infections [44]. All relevant species for the classification 
between the resilient and non-resilient animals can be 
found in the Additional file  9. Due to discrepancies in 
the effects of some of the identified microbial species on 
health and disease, in-depth research is needed to estab-
lish their true impact on animal resilience.

We also identified differences in relevant pathways that 
might contribute to the differences in VE and resilience 
between the rabbit populations. We identified 42 KEGG 
IDs in signalling and cellular processing (see Additional 
files 4 and 5), which were generally more abundant in 
the non-resilient population (Fig. 2). We also highlighted 
those KEGG and COG IDs related to the ABC transport-
ers (50), quorum sensing (11), and pilus protein confor-
mation (4), three components essential to form biofilms 
[45, 46], which have been associated with both an ill 
and a healthy gut. So again, it was necessary to identify 
the tipping point between a beneficial or harmful effect 
[47]. The genes aconitate hydratase (K01681; − 0.73), 
glutamate synthase (K00284; − 1.1), and glutamate 
formiminotransferase (K13990; 0.80) also showed differ-
ences between the rabbit populations (Fig. 2). The latter 
supported the differences found in the gut metabolite 
formiminoglutamate, which was found to be lower in 
the rabbits from the low VE population [40]. Differences 
in glutamate levels were also observed [40]. Therefore, 
these results could indicate different ways of synthesizing 
L-glutamate depending on the substrate used. The gluta-
mate balance might influence the inflammatory response 
affecting the rabbit health [48, 49].

Differences in the genes belonging to the chorismite 
metabolism were also found for chorismate mutase 
(K14170; -0.94) and chorismate lyase (K18240; 0.78). 
There are few studies in the literature on the impact of 
these enzymes’ end products (prephenate and 4-hydroxy-
benzoate, respectively), even though these genes are 
important for the metabolism of the aromatic amino 
acids phenylalanine, tyrosine, and tryptophan, which 
are linked to mucosal integrity and immune homeosta-
sis in the gut [50]. AAA metabolic intermediates, such 
as kynurenine, anthranilate, and indole, differed in abun-
dance between the rabbit populations [40], indicating the 
relevance of this metabolic pathways to the biological dif-
ferences between the rabbit populations, namely VE and 
animal resilience. All relevant genes for the classification 
between the resilient and non-resilient animals can be 
found in the Additional file 9.

Since microbial inheritance is complex, more research 
is required to understand the implication of the differ-
ences in the microbiome composition found in this study. 
The microbiome variability between these two rabbit 
populations could be an effect or a cause of the remark-
able genetic response for VE of LS [18]. Microbial spe-
cies with a contribution to the phenotype can be selected 
throughout generations, while selection could also mod-
ify the microbiota composition of species with microbial 
heritability, i.e. influenced by the genome of the host and 
not necessary with a contribution to the selected trait 
[3, 51]. A number of studies show how the host genome 
shapes the microbial abundance of around 10–97% of 
total microbial species and microbial heritability ranging 
between 0.008 and 0.64 [52, 53]. In these rabbit popula-
tions, several genomic regions were associated with the 
differences in VE [9, 10], so that the underlying genes 
might also affect the gut microbiota composition. For 
instance, the DOCK2 gene identified as associated with 
the rabbit population on the rabbit chromosome 3 [9, 10] 
has been suggested to modify gut microbiota composi-
tion in a study on knockout mice [54]. Further studies are 
needed to determine the impact of the host genome on 
shaping the VE of LS and animal resilience.

Microbiota composition is multifactorial, and differ-
ent species could have different roles in health, accord-
ing to the host genotype, diet, microbial interactions, 
and environmental factors, among others [12, 55]. Stand-
ardized factors affecting the gut microbiome composi-
tion are necessary to obtain reproducible results. This 
study has an advantage over other studies, as diet and 
environmental conditions were the same for both rabbit 
populations for 13 generations and the rabbits were coe-
taneous. Controlling these factors allowed us to decipher 
the commensal consortia or microbiota composition 
possibly associated with the VE selection studied. Our 
results suggest that modulation of metabolism affecting 
gut immune functions, such as AAA metabolism, medi-
ates some of the differences in resilience between rabbit 
populations [7, 11].

Conclusions
This is the first study to show that selection for VE of 
LS can shift the gut microbiome in animals under the 
same environmental conditions. We identified 116 
KEGG IDs, 164 COGs IDs, and 32 species with differ-
ences in abundance between two rabbit populations 
with outstanding differences of VE for LS after 13 gen-
erations of selection as a result of the VE selection per-
formed. The resilient rabbit population (with low VE of 
LS) had lower abundance of Megasphaera sp., A. muris, 
B. rodentium, R. bromii, B. togonis, and Eggerthella sp. 
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and greater abundance of A. shahii, A. putredinis, O. 
splanchnicus, L. fermentum, and Sutterella, among oth-
ers. Differences in abundance were also found in path-
ways related to biofilm formation, quorum sensing, 
glutamate, and amino acid aromatic metabolism. The 
results suggest that differences in gut immunity modu-
lation could drive the differences in resilience among 
rabbit populations. We also suggest that DOCK2 could 
be one of the host’s genes that influence gut microbi-
ota composition. Due to the limited information in this 
field, further studies should be carried out to validate 
these results.
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