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Vitamin  B12 produced by Cetobacterium 
somerae improves host resistance 
against pathogen infection 
through strengthening the interactions 
within gut microbiota
Xiaozhou Qi1, Yong Zhang1, Yilin Zhang1, Fei Luo1, Kaige Song1, Gaoxue Wang1* and Fei Ling1* 

Abstract 

Background Pathogen infections seriously affect host health, and the use of antibiotics increases the risk of the 
emergence of drug-resistant bacteria and also increases environmental and health safety risks. Probiotics have 
received much attention for their excellent ability to prevent pathogen infections. Particularly, explaining mechanism 
of action of probiotics against pathogen infections is important for more efficient and rational use of probiotics and 
the maintenance of host health.

Results Here, we describe the impacts of probiotic on host resistance to pathogen infections. Our findings revealed 
that (I) the protective effect of oral supplementation with B. velezensis against Aeromonas hydrophila infection was 
dependent on gut microbiota, specially the anaerobic indigenous gut microbe Cetobacterium; (II) Cetobacterium was a 
sensor of health, especially for fish infected with pathogenic bacteria; (III) the genome resolved the ability of Cetobac-
terium somerae CS2105-BJ to synthesize vitamin  B12 de novo, while in vivo and in vitro metabolism assays also showed 
the ability of Cetobacterium somerae CS2105-BJ to produce vitamin  B12; (IV) the addition of vitamin  B12 significantly 
altered the gut redox status and the gut microbiome structure and function, and then improved the stability of the 
gut microbial ecological network, and enhanced the gut barrier tight junctions to prevent the pathogen infection.

Conclusion Collectively, this study found that the effect of probiotics in enhancing host resistance to pathogen 
infections depended on function of  B12 produced by an anaerobic indigenous gut microbe, Cetobacterium. Further-
more, as a gut microbial regulator,  B12 exhibited the ability to strengthen the interactions within gut microbiota and 
gut barrier tight junctions, thereby improving host resistance against pathogen infection.

Keywords Probiotics, Cetobacterium, Vitamin  B12, Pathogen resistance, Gut microbiome, Co-occurrence network

Background
Bacterial infections frequently spread from host to host 
by the tainted food or water contact. They rapidly spread 
among the host causing various diseases [1]. The use of 
antibiotics is now a common treatment for pathogen 
infections, but long-term use of these drugs can result 
in bacterial resistance as well as other health risks. In 
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recent years, probiotics have gained widespread interest 
due to their excellent performance in disease prevention 
and alleviation. Probiotics exert their benefits through 
four main mechanisms: improvement of the barrier func-
tion, immunomodulation, metabolic function, and inhi-
bition of potential pathogens [2, 3]. In addition to these, 
the presence of probiotics can also induce strong eco-
logical and evolutionary forces to reshape the gut native 
microbial communities [4, 5]. Moreover, these changes in 
microbiome facilitate the treatment of various diseases 
and the maintenance of host health [6, 7]. To better uti-
lize probiotics, the potential mechanisms of probiotics in 
regulating intestinal microbiota are therefore needed for 
further investigation.

Gut microbiota is a complex system that plays an 
important role in regulating physiology, immune, and 
nutrition of host [8–10]. Recent studies have demon-
strated that gut microbes form an interactive ecological 
network to maintain host health, while the lack of a sta-
ble microbiota structure contributes to host disease [11, 
12]. For example, antibiotic treatment increases the risk 
of gastrointestinal infections in humans, such as infection 
with Clostridium difficile [13]. Germ-free animals have 
considerable physiologic and immunologic variations 
from their counterparts raised conventionally, suggest-
ing that microbiome plays a significant role in physiology 
and immunology of host. Moreover, changes in humans 
gut microbes have been strongly associated with diabetes, 
nonalcoholic fatty liver disease, obesity, and cancer [14–
17]. Therefore, a thorough understanding of the factors 
that lead to microbiome variance in hosts is necessary to 
comprehend how microbiota affect host physiology and 
how to regulate microbiota to promote host health [18]. 
Diet is one of the most important external factors that 
might influence the composition of the gut microbiota 
[19]. A high-protein [20], high-fat diet [21], probiotics 
[22], and antibiotics [23] can all cause alterations in some 
bacterial groups. Recent studies have reported that antibi-
otic-treated and normally reared zebrafish exhibited dif-
ferent susceptibilities to infection by pathogenic bacteria, 
which were also observed in zebrafish with different gut 
microbiota compositions [24], suggesting that zebrafish is 
an animal model that can be used to study the correlation 
between gut microbes and host health [18, 25, 26].

Most of the gut microbiota’s contribution to host physiol-
ogy is related to microbial metabolism, with bacteria con-
tributing the most to ecosystem function in terms of relative 
genetic content [27, 28]. In general, microbes metabolize 
exogenous and endogenous substrates into nutrients for 
direct use by the host, and metabolites can also regulate 
the immune system by affecting the physiology and gene 
expression of host cells [29]. Additionally, the presence of 
different metabolic activity can help the microbiota occupy 

ecological niches and limit pathogen colonization at various 
sites through competition [30, 31]. Metabolites from spe-
cific classes of microbiota, such as short-chain fatty acids 
[32], bile acids [33], tryptophan [34], and B vitamins [35] not 
only affect host health, but also have an impact on interac-
tions between host gut commensal bacteria. For example, 
large portion of vitamins produced by gut microbiota may 
be taken up by non-vitamin-producing gut microbes par-
ticipating in symbiotic relationships, which suggested that 
vitamins may has the ability to reshape microbial com-
munities [36, 37]. Vitamin  B12 is a necessary water-soluble 
vitamin that is needed for maintaining neuronal health and 
hematopoiesis [38]. Some studies have shown that vitamin 
 B12 deficiency can cause megaloblastic anemia and neuro-
logical disorders [39] and that supplementation is beneficial 
in several inflammatory diseases including sepsis, arthritis, 
Alzheimer’s disease, multiple sclerosis, and chronic fatigue 
syndrome [40]. Recent research suggested that vitamin  B12 
was crucial for maintaining human health in other areas, 
such as the structure and function of the gut microbiome 
[41]. Despite growing evidence that specific commensal 
microbes in the host gut can produce vitamin  B12, the effect 
of microbially produced  B12 on host resistance to bacterial 
infection is unclear.

Probiotics, including Bacillus and lactic acid bacteria, 
were used as a promising approach for decreasing infec-
tions [42]. Bacillus velezensis is an important biological 
control agent that is widely used in animal disease control 
[43]. Zebrafish, as an omnivorous freshwater fish belong-
ing to the Cyprinidae family, shares homology with the 
human genome [44]. The zebrafish model is widely used 
in the researches of resistance against bacterial infection, 
gut microbiome, and disease prevention and cure [45–47]. 
Here, Bacillus velezensis and zebrafish were used as probi-
otic and animal models, respectively, to describe the effect 
of probiotics modulating the intestinal commensal bacte-
ria of zebrafish on host resistance to pathogen infections. 
Specifically, we (I) investigated microbial changes in the gut 
caused by probiotics and analyze the key indigenous bacte-
ria using 16S rRNA gene profiling sequencing, (II) investi-
gated functional characteristics and key metabolites of this 
indigenous bacterium, using whole-genome sequencing 
combined with HPLC, and (III) investigated the mecha-
nism of vitamin  B12 in enhancing host resistance to patho-
gen infections.

Results
Protective effect of oral supplementation with Bacillus 
velezensis against Aeromonas hydrophila infection depends 
on gut microbiota
A bacterial strain 1704-Y was isolated from the zebrafish 
gut and identified as Bacillus velezensis based on mor-
phological observation and phylogenetic analysis of gyrB 
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gene (GenBank accession no. OM176702) (Fig. S1a-c) 
[48], and showed to be potentially safe for fish use by 
the hemolysis and antibiotic susceptibility tests (Fig. 
S1d, f; Table S2). In order to study the effects of strain 
1704-Y on the prevention of pathogenic infection in fish, 
zebrafish were fed a basic diet supplemented with or 
without Bacillus velezensis 1704-Y for 28 days (Group Y/
CK), and then bath infected with Aeromonas hydrophila 
(Group TY/TCK) (Fig. 1a). The results showed that die-
tary administration of BV1704-Y for 28 days significantly 
improved the survival rate of zebrafish bath infected 
with A. hydrophila (Group TY/TCK, P < 0.05, Fig.  1b). 
Meanwhile, a common cocktail of antibiotics was used 
to deplete the intestinal bacteria according to previous 
studies [49, 50]. Zebrafish were given mixed antibiotics 
(120 mg/kg metronidazole, 120 mg/kg neomycin sulfate, 
and 60  mg/kg vancomycin) for 1  week before feeding 
trial (Fig. 1a). However, no protective effect was observed 
when the fish were fed a diet containing an antibiotic 
mix for 7  days before oral administration of BV1704-Y 
(Fig. 1b). Moreover, dietary supplementation of BV1704-
Y significantly decreased Aeromonas load in the fish gut, 
liver, and kidney after the challenge (Group TY/TCK, 
P < 0.05), whereas after administration with the antibiotic 
mix, the decline in Aeromonas load was not found in the 
gut and liver (Fig. 1c–e). These results suggest that a diet 
with the antibiotic mix removed the protective effect of 
oral supplementation of BV1704-Y, thereby indicating 
gut microbiota played a key role in the protection of fish 
from A. hydrophila infection.

Resistance to A. hydrophila infection is conferred by one 
member of fish gut microbiota, Cetobacterium somera
To determine how gut microbiota affected the protective 
effect induced by BV1704-Y, first, a 16S rRNA gene ampli-
con sequencing method was used to compare gut micro-
biota composition before and after oral administration. 
The results of α-diversity showed that there was no obvi-
ous difference in bacterial richness and diversity between 
the fish fed with and without BV1704-Y. Interestingly, A. 
hydrophila infection significantly increased the diversity 
of the microbiota in the fish orally administrated with 
BV1704-Y (Group Y/TY, P < 0.05), as supported by Shan-
non index and number of Observed_OTUs, but no signif-
icant difference was detected in these metrics (including 
Simpson index) of the control fish between pre- and post-
infection (Fig.  2a, Fig. S2a, b). The principal coordinate 
analysis (PCoA) based on Bray–Curtis distances revealed 
that bacterial communities in the fish fed with BV1704-
Y were markedly distinct from the control after bath 
infection with A. hydrophila (Group TY/TCK, ANOSIM 
R = 0.647, P = 0.001) (Fig.  2b). In addition, the composi-
tion of gut microbiota at phylum and genus levels also 

showed the differences in gut microbiome among dif-
ferent groups (Fig.  2c, Fig. S2c). The relative abundance 
of the most abundance phyla, Fusobacteria, was signifi-
cantly increased in the fish supplemented with BV1704-Y 
compared to the control fish (Y vs CK, P = 0.0221) (Fig. 
S2d), while the abundance was also higher in TY group 
than that in TCK group (P = 0.0293) (Fig. S2e). A set of 
9 genera were present in all samples and considered as 
core gut microbiome [51]. The top 5 most abundant core 
genera (the cumulative relative abundance was 90%) were 
distributed in that four dominant phyla. Among them, 
one genus (Cetobacterium) belonged to Fusobacteria, 
three genera (Aeromonas, Enterobacteriaceae_unclassifie
d, Shewanella) belonged to Proteobacteria, and one genus 
(Flavobacterium) belonged to Bacteroidetes. Mean-
while, Cetobacterium was the genus with the highest 
relative abundance (67–92%) among the core microbes. 
Subsequently, linear discriminant analysis effect size 
(LEfSe) showed that two genera including Cetobac-
terium (P = 0.0221) and Microbacteriaceae_unclassi-
fied (P = 0.013) were enriched in Y group while another 
two genera including Vibrio (P = 0.0183) and Entero-
bacteriaceae_unclassified (P = 0.0046) were depleted 
compared with CK group (Fig.  2d,e). Moreover, LEfSe 
identified seven different bacterial genera enriched in TY 
group, while five other bacterial genera were depleted in 
TY group compared with the TCK group (Fig. S2f-r). Of 
note, only Cetobacterium was the bacterium that differed 
both between CK and Y groups and between TCK and 
TY groups. Furthermore, Pearson correlation between 
the top 20 most abundant genera and infection status or 
diet with BV1704-Y showed that bacterial taxa enriched 
in the Y group including Cetobacterium had a positive 
correlation with the diet containing BV1704-Y, and also 
had a negative correlation with infection status (Fig. 2f ). 
Moreover, the results of the antibiotic treatment test also 
showed that feeding BV1704-Y did not protect zebrafish 
against A. hydrophila infection when the abundance of 
Cetobacterium in the gut was decreased (Fig.  1b, Fig. 
S2s). Interestingly, numerous previous studies also found 
that dietary supplemented with probiotics increased the 
abundance of Cetobacterium in the fish gut and protect 
the host from pathogenic infections [24, 52–55].

We next sought to determine if Cetobacterium had 
the ability to enhance host defenses against the patho-
gen infection. First, a strain of Cetobacterium somerae 
CS2105-BJ was isolated from the gut contents of 
healthy zebrafish, and phylogenetically character-
ized by 16S rRNA sequence analysis (GenBank acces-
sion no. ON248483). The characteristics of C. somerae 
CS2105-BJ was rod-shaped cells, central swelling, gram-
stain-negative, and micro-aerotolerant. Subsequently, 
we performed an infection experiment in which the 
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zebrafish were fed basic diets with or without C. somerae 
CS2105-BJ (CS2105-BJ) for 28  days (Group Ceto/
CK), and then bath infected with A. hydrophila (Group 
TCeto/TCK) (experimental design illustrated in Fig. 2g). 
The results showed that the survival of the fish adminis-
trated with CS2105-BJ was significantly higher than that 

of the control fish after the challenge infection (P < 0.05, 
Fig.  2h). In addition, we found that dietary administra-
tion of CS2105-BJ significantly increased Cetobacterium 
load in fish gut (P < 0.05, Fig. 2i), and also resulted in a 
remarkable reduction in Aeromonas load in gut, liver, 
and kidney of the fish at 10 days post the infection with 

Fig. 1 Microbiota is essential to protect fish against A. hydrophila infection after B. velezensis 1704-Y supplementation. a The experimental design. (i) 
The zebrafish were fed a basic diet supplemented with/without B. velezensis 1704-Y (1 ×  107 CFU/g diet) for 28 days (Group Y/CK), respectively, and 
then bath infected with A. hydrophila AH2006-3 J at a concentration of 1 ×  108 CFU/mL (Group TY/TCK); (ii) The zebrafish were fed a diet containing 
an antibiotic mix (120 mg/kg metronidazole, 120 mg/kg neomycin sulfate and 60 mg/kg vancomycin) for 7 days (Group AY/ACK), and then received 
the same treatments as (i) (Group TAY/TACK). b Kaplan–Meier graph of the zebrafish survival after bath infection with A. hydrophila. * indicates 
significant difference (P < 0.05) between different groups. c–e Aeromonas load (Aero gene copies/g of fish tissues) in fish tissues (gut, liver and 
kidney) sampled prior to bath infection or at 10 days post-infection. Significant differences (P < 0.05) between different groups are indicated with 
different lowercase letters above the bars
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A. hydrophila (P < 0.05, Fig.  2j). Collectively, the data 
indicated that C. somerae from the zebrafish gut made a 
substantial contribution to protection of the fish against 
the bacterial infection.

Functional annotation of complete genome unravels 
probiotic characteristics of C. somerae CS2105‑BJ
We next performed genomic data analysis in order to 
get a comprehensive view of the protective potency of 
C. somerae CS2105-BJ for fish. The strain genome, de 
novo assembled using PacBio sequencing reads, is the 
first complete genome sequence available for this spe-
cies and contains a single circular chromosome of 
1,904,440 bp with six plasmids (plasmid 1: 704,842 bp; 
plasmid 2: 181,744  bp; plasmid 3: 128,183  bp; plasmid 
4: 40,685  bp; plasmid 5: 9413  bp; plasmid 6: 4104  bp) 
(Fig. 3a). The average GC content is 29.15%. Meanwhile, 
there were no virulence factors found in the genome of 
C. somerae CS2105-BJ. The assembled results were also 
corrected with high-quality Illumina sequencing reads 
(Table S3). Furthermore, a total of 2732 protein-coding 
genes were predicted, and among them, 2371 (86.7%) 
genes were annotated as functional genes, and 361 
(13.3%) genes were hypothetical genes. Approximately 
57% of the protein-coding genes (1565 genes) were clas-
sified to 39 KEGG functional categories and 213 func-
tional pathways (Fig. S4). Of particular concern is that 
the functional category of “metabolism of cofactors 
and vitamins” (112 genes) was the fourth most abun-
dant categories, followed by “carbohydrate metabo-
lism” (289 genes), “amino acid metabolism” (140 genes), 
and “membrane transport” (139 genes). In addition, 
the results of Clusters of Orthologous Groups (COG) 
annotations showed that the genome of CS2105-BJ has 
a complete set of genes required for the de novo synthe-
sis of vitamin  B12 (called  B12 hereafter), also known as 
cyanocobalamin (Fig. 3b). It is well known that  B12 can 
provide various beneficial functions to human and ani-
mal health, such as the protection of gut against gastric 

ulcerations, the modulation of gut microbial ecology, 
and the stimulation of the immune responses [56–60]. 
Additionally, some recent data have demonstrated that 
 B12 was able to contribute to the host defense against 
pathogenic infection [61]. We therefore speculated 
that the protective effect against A. hydrophila infec-
tion was associated with  B12 biosynthesis capability of 
C. somerae CS2105-BJ. We next evaluated the ability of 
this C. somerae CS2105-BJ strain to produce  B12 in vitro 
and in vivo. The  B12 production was increased with pro-
liferation of the bacteria in  vitro and reached a maxi-
mum value of 140  ng/mL (Fig. S5a). Furthermore, our 
results showed that oral supplementation of C. somerae 
CS2105-BJ significantly enhanced  B12 level in the fish 
gut (Fig. S5b), and importantly, a strong positive cor-
relation between  B12 level and Cetobacterium load was 
observed (r = 0.9575; P < 0.0001) (Fig. S5c), suggesting 
the concentration of  B12 in the fish gut mainly depends 
on C. somerae.

In order to further affirm the protective effect of  B12 
produced by C. somerae, we used excess zinc to replace 
cobalt ions, and thereby reduced the amount of vita-
min  B12 in the fish gut according to previous studies 
[62–64]. Zebrafish were randomized into four groups: 
control group (CK), Cetobacterium supplemented group 
(Ceto), excess zinc supplemented group (Zn), combined 
treatment with Cetobacterium and excess zinc group 
(Ceto + Zn). The results showed that vitamin  B12 was 
significantly decreased after zinc treatment (Fig. S6a). 
Moreover, the concentration of  B12 in Ceto group was 
significantly higher than that in CK group, and Ceto + Zn 
group (P = 0.024; P = 0.025, respectively) (Fig. S6a). Inter-
estingly, after infection with A. hydrophila, the survival 
rate of zebrafish in Ceto group was also significantly 
higher than that in CK and Ceto + Zn groups, respec-
tively (P = 0.038; P = 0.021) (Fig. S6b). These results sug-
gested that vitamin  B12 produced by gut microbes plays a 
key role in protecting the host from A. hydrophila infec-
tion. Although we did not examine other metabolites 

(See figure on next page.)
Fig. 2 Resistance to A. hydrophila infection is conferred by Cetobacterium somerae. a Shannon index comparison among the different groups. 
The zebrafish in Group Y and CK were fed a basic diet supplemented with/without Bacillus velezensis 1704-Y (BV1704-Y), respectively, and then 
bath infected with A. hydrophila 2006-3 J (AH2006-3 J) at a concentration of 1 ×  108 CFU/mL (Group TY/TCK). b A principal coordinate analysis 
(PCoA) based on Bray–Curtis distance from the different groups (Y, CK, TY, and TCK) (ANOSIM R = 0.647, P = 0.001). c Relative abundance of the 
top 20 genera in the fish gut from the different groups. d Discriminative biomarkers identified by linear discriminant analysis effect size (LEfSe) 
with logarithmic LDA score > 3.0. e Relative abundance of selected different taxa. Data are expressed as box plot. ∗ P < 0.05, ∗  ∗ P < 0.01 by Mann–
Whitney U test with Bonferroni-adjusted P-values. f Heat map of Pearson’s correlation coefficients between the top 20 genera and the diets (Y:CK, 
left) or infection status (CK:TCK, right). Dark red indicates a stronger positive correlation, dark blue indicates a stronger negative correlation, and 
white indicates no correlation. Black asterisk (*) means FDR-corrected P-value < 0.05. g The experimental design. The zebrafish were fed a basic 
diet supplemented with/without Cetobacterium somerae CS2105-BJ (1 ×  107 CFU/g diet) for 28 days (Group Ceto/CK), and then bath infected with 
AH2006-3 J at a concentration of 1 ×  108 CFU/mL (Group TCeto/TCK). h Kaplan–Meier graph of the zebrafish survival after bath infection with 
AH2006-3 J. i Cetobacterium load (gene copies/g of fish gut) in the gut of fish sampled prior to bath infection. j Aeromonas load (Aero gene copies/g 
of fish tissues) in fish tissues (gut, liver and kidney) sampled prior to bath infection or at 10 days post-infection. Significant differences (P < 0.05) 
between different groups are indicated with different lowercase letters
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and also could not rule out the possible role of the other 
metabolites (may be also important), our data sufficiently 
support the conclusion that vitamin  B12 is indispensable 
for host resistance to pathogenic infections.

The protection effect of  B12 against A. hydrophila infection 
is reliant on the gut microbiota
Then, we wonder whether  B12 could also play a protective 
role against A. hydrophila infection. The experimental 

Fig. 2 (See legend on previous page.)
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design is illustrated in Fig. 4a. Notably, dietary adminis-
tration of exogenous  B12 significantly improved the sur-
vival rate of zebrafish following bath infection with A. 
hydrophila (P < 0.05, Fig. 4b), and also reduced the Aero-
monas load in liver, and kidney of the fish in TB group 
compared to the controls in TCK group (Fig. 4c, d). Fur-
thermore, we observed a strong negative relationship 
between  B12 level and Aeromonas load in liver and kidney 
(r =  − 0.9567, P < 0.0001; r =  − 0.9130, P = 0.0002; Fig. 4e, 
f ). These results suggested a protective function for  B12 in 
protection against Aeromonas infection.

More than 80% of gut microbes require exogenous 
 B12, while less than 25% synthesize it themselves [65]. 
Moreover,  B12 as a key metabolite in shaping the com-
position of the human gut microbiota has also recently 
gained attention [57, 66]. We postulated that the pro-
tective effect of  B12 may be related to the gut microbi-
ota. Previous studies in zebrafish have shown that the 

use of antibiotics can disrupt and clear gut microbes 
[67]. Before the feeding trial, we fed zebrafish with a 
diet containing mixture antibiotics (120  mg/kg met-
ronidazole, 120  mg/kg neomycin sulfate and 60  mg/
kg vancomycin) to deplete the commensal microbes, 
according to a published work (Fig.  4a) [50]. Impres-
sively, the decline of Aeromonas load in the liver and 
kidney was not observed after the zebrafish bath infec-
tion with A. hydrophila, which was accompanied by an 
abolition of the protective effect (Fig.  4b–d). In addi-
tion, we also found that the protective effect of  B12 on 
zebrafish was concentration-dependent (Fig. S7). We 
speculated that the small portion of high exogenous  B12 
were unabsorbed and reached the distal gut where they 
were available to interact with the microbiota [57, 65]. 
Although we cannot rule out the involvement of other 
mechanisms in the protection effects of  B12, the data 
from these experiments support the hypothesis that  B12 

Fig. 3 Genome analysis reveals the ability of C. somerae CS2105-BJ to synthesize vitamin  B12 de novo. a Circular genomic map of CS2105-BJ 
chromosome and six plasmids. From the innermost to outermost circle, Circle 1 represents genome size; Circle 2 (dark purple and bottle green) 
represents GC skew; Circle 3 (black) shows GC plot; Circles 4 and 7 are color-coded according to the COG classification of the genes located on the 
forward and reverse strands, respectively. Circles 5 and 6 show the CDSs (dark blue), tRNA genes (dull red), and rRNA regions (purple). b Genomic 
organization of vitamin  B12 biosynthetic genes. The pink arrows represent the genes for Uroporphyrinogen-III synthesis; the purple ones represent 
genes involved in the corrin ring synthesis; the orange one represents cobalt chelatase gene for insertion of cobalt ions into the corrin ring; the 
green ones represent genes for the attachment of the aminopropanol arm and assembly of the nucleotide loop in vitamin  B12; the blue ones 
represent the genes encoding ABC transport systems for vitamin  B12
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protected the host against A. hydrophila infection is 
dependent on the gut microbiota.

Vitamin  B12 induces alterations in gut microbiome 
structure and function
We therefore analyzed the impact of  B12 on the bacte-
rial communities in the zebrafish gut. Compared to the 

control group (CK), the Shannon index (P = 0.0064) 
was higher in  B12-supplemented group (B) while 
the Observed_OTU (P = 0.3343) and Chao1 index 
(P = 0.3966) was similar between the two groups (Fig. 
S8). To estimate the overall structure of the gut micro-
biota, the principal coordinate analysis (PCoA) of the 
variation between microbiome based on Bray–Curtis 

Fig. 4 Gut microbiota are the basis of  B12 protection against A. hydrophila infection in zebrafish. a The experimental design. (i) The zebrafish were 
fed a basic diet supplemented with/without vitamin  B12 (200 μg/kg diet per day) for 28 days (Group B/CK), respectively, and then bath infected with 
A. hydrophila strain at a concentration of 1 ×  108 CFU/mL (Group TB/TCK). (ii) The zebrafish were fed a diet containing an antibiotic mix (120 mg/kg 
metronidazole, 120 mg/kg neomycin sulfate and 60 mg/kg vancomycin) for 7 days (Group AB/ACK), and then received the same treatments as (i) 
(Group TAB/TACK). b Kaplan–Meier graph of the zebrafish survival after bath infection with A. hydrophila. * indicates significant difference (P < 0.05) 
between different groups. c, d Aeromonas load (Aero gene copies/g of fish tissues) in fish tissues (liver and kidney) sampled prior to bath infection 
or at 10 days post-infection. Significant differences (P < 0.05) between different groups are indicated with different lowercase letters above the bars. 
e, f Linear correlation between the  B12 content and pathogen load in liver and kidney, respectively. Linear correlation was performed with Pearson’s 
linear correlation 
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was constructed. The results showed that there was a 
clear separation between the two groups (ANOSIM 
R = 0.7817, P = 0.003) (Fig.  5a), suggesting that dietary 
administration of  B12 significantly changed the gut 
microbiome community structure. Moreover, this analy-
sis showed that the samples from TB were clustered 
together, suggesting that zebrafish fed with vitamin  B12 
had a more stable composition of gut microbial com-
munities after infection with A. hydrophila (Fig. S9a). 
Similar to the results of PCoA analysis, there were sig-
nificant differences in the relative abundances of several 
bacterial taxa between the CK and B group. The analy-
sis at the phylum level indicated that the most abundant 
phyla were Proteobacteria (46.6–58.0%), Firmicutes 
(21.3–11.1%), and Fusobacteria (2.28–12.7%), followed by 
Actinobacteria (4.91–7.30%), Bacteroidetes (9.48–1.46%), 
and Planctomycetes (4.88–2.69%) (Fig. 5b). Additionally, 
a higher ratio of Bacteroidetes/Firmicutes (mean 0.446 
versus 0.131) was found in group B compared to CK 
(also in group TB compared to TCK) (Fig. 5b, Fig. S9b), 
indicating that dietary administration of  B12 had a huge 
contribution to the gut health [68, 69]. Concurrently, the 
heatmap of the top 50 genera also revealed a significant 
impact of  B12 on gut microbiota (Fig. S10). The changes 
in bacterial composition between the two groups were 
further assessed using linear discriminant analysis effect 
size (LEfSe), which was used to identify the specific bac-
terial genera that were typical of the different treatments 
(Fig.  5c). The results revealed that Shigella and Escheri-
chia, which were connected with gut microbiome dysbio-
sis [70, 71], were decreased in  B12-supplemented group, 

while many potentially beneficial microbes, such as Bac-
teroides, Lachnospiraceae_uncalssified, Cellvibrio, and 
Clostridium, were increased.

The results of phenotype prediction according to the 
gut microbiome communities matched our experimen-
tal findings well (Fig. 5d). Gram-negative bacteria, which 
carry the most common co-pathogens [72], showed a sig-
nificant decrease in abundance in group B, while gram-
positive bacteria increased (P < 0.05), suggesting that 
dietary administration of  B12 decreased potential patho-
genicity. Of interest, the prediction results also displayed 
a significant decrease of potential pathogenicity (P < 0.05) 
in group B (Fig. 5d). In addition, the gram-negative bacte-
ria and potential pathogenicity was significantly lower in 
TB group comparted to TCK group (Fig. S9d). Anaerobic 
bacteria were key regulators in maintaining the intestinal 
homeostasis [73]. The relative abundance of anaerobic 
bacteria drastically increased after  B12 treatment, indi-
cating that  B12 might facilitate the enrichment of anaero-
bic microbes in gut. Moreover, the relative abundance of 
anaerobic bacteria in TB group was higher than that in 
TCK group (Fig. S9d). Moreover, the Pearson correlation 
coefficient revealed a strong positive correlation between 
the  B12 content and the anaerobic microbiota abundance 
(r = 0.7845, P = 0.0015) (Fig. S11). As is widely recognized, 
anaerobic microbiota are greatly influenced by gut redox 
potential [74]. Our data indicated that the gut redox 
potential, a key indicator reflecting the intestinal oxygen 
status [73], was decreased in group B compared to con-
trol (Fig. S12a). Meanwhile, the  B12 content correlated 
negatively with the redox potential in gut according to 

Fig. 5 Vitamin  B12 induces alterations in gut microbiota structure and function. a Principal coordinate analysis (PCoA) of Bray–Curtis distance 
was analyzed based on OTU level for microbiota beta diversity (ANOSIM R = 0.7817, P = 0.003). b Phylum-level taxonomic distributions of the 
microbial communities in gut of zebrafish fed with different diets. c Liner discriminant analysis effect size (LEfSe) was used to analyze the 
difference in microbial abundance between control and  B12 supplemented group. The LDA value threshold was set at 4.0. d Bacterial community 
phenotypes of the gut microbiome were predicted using BugBase. Statistical significance was identified by the Wilcoxon test with false 
discovery rate (FDR)-corrected pairwise P-values. *, P < 0.05. e Functional alterations of the gut microbiome in zebrafish fed with control (CK) and 
 B12-supplemented diet (B). Statistical significance was determined by using LEfSe, with a P value of < 0.05 (Wilcoxon test) and a linear discriminant 
analysis (LDA) score  (log10) of > 2.5 being considered significant
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the results of Pearson correlation analysis (r =  − 0.8878, 
P = 0.0001) (Fig. S12b). These results suggested that die-
tary administration of  B12 might reduce the redox state 
in the gut. Interestingly, the stress tolerance in TB group 
was stronger than that in TCK group (Fig. S9d), suggest-
ing that the microbial community in the TB group was 
more stable. To get insights into the functional profiles of 
gut microbiota affected by  B12, we performed PICRUSt 
analyses to predict the function of gut microbiota, and 
analyzed KEGG level 3 pathways with LEfSe (Fig.  5e). 
Compared to CK group, the sequences in group B 
showed enrichment of bacterial proliferation and coloni-
zation pathways involving bacterial motility proteins and 
bacterial chemotaxis, which might promote interactions 
between key constituents of the microbiota and the host 
[75, 76], suggesting that  B12 mediated microbe-microbe 
and microbe-host interactions. After infection with 
A. hydrophila, the sequences in TB group enrichment 
of quorum sensing and metabolism (Fig. S9e) suggest 
stronger microbial interactions in the TB group [77]. Col-
lectively, these results indicated that  B12 supplementa-
tion significantly enhanced the diversity and community 
structure of the gut microbiome, and also had an impact 
on the redox status of the gut, improving the interaction 
between intestinal microbiota.

B12 enhanced the complexity and stability of the gut 
ecological network
In the gut, various microbes interacted with each other 
to form a complicated ecological network to reduce the 
risk of disease occurrence and maintain the health of 
the host [12]. To identify potential interactions of the 
gut microbiota changed by  B12 supplementation, we 
constructed co-occurrence networks using a molecular 
ecological network analysis pipeline (MENs) based on a 
random matrix theory (RMT) [78]. The samples in CK 
and B group each had a 0.88 threshold value applied to 
them [79, 80]. The networks created at the OTU level 
showed that all gut microbiota networks’ topologies fit 
the power law distribution well  (R2 > 0.65), indicating 
that they possessed scale-free properties. The network 
total nodes, total links, average degree, average path 
distance, and average clustering coefficient were calcu-
lated for gut bacterial community in CK and B groups. 
To check the statistical significance of the created net-
work indices, random networks were created (Table  1). 
Multiple network topological characteristics, including 
average path distance, average clustering coefficient, and 
connectedness, demonstrated that the gut microbial net-
works in B and CK were considerably different (Table 1). 
Compared to CK, the network in B had more nodes and 
links, increasing the density of connections and resulting 

in more complex network patterns (Fig. S13, Table  1). 
Meanwhile, the higher average degree, average cluster-
ing coefficient, and connectedness also reflected the 
increased complexity of the network in group B [81]. Col-
lectively, these results suggested that  B12 supplementa-
tion increased complexity of gut microbiome ecological 
network in zebrafish.

We concentrated on large modules (> 5 nodes) in both 
the CK and B networks by emphasizing the relevance of 
OTUs and the proportion of major phyla to find poten-
tial alterations in gut microbial interactions after  B12 con-
sumption. Of interest, negative correlations account for 
79.3% of observed links in B network, showing that taxa 
generally tended to co-exclude (negative correlations, 
green links) rather than co-occur (positive correlations, 
red links), yet the opposite was true for the network in 
CK (Fig.  6a; Table  1), suggesting that the gut microbial 
ecological network in B was more stable than that in CK 
[82]. The network in group B had the larger modules 
(M1, M2, M4, and M5) that comprised many more nodes 
(32, 18, 24, and 22) than that in CK as a result of the net-
work modules in group B becoming more connected 
(Fig. 6a). In addition, the network analyses for TCK and 
TB also showed that there were more negative correla-
tions in the TB group (Fig. S14). Moreover, the network 
in TB group had larger modules than that in TCK group 
(Fig. S14), suggesting that the gut microbial ecological 
network in TB group was more stable than that in TCK 
group. Furthermore, the composition of OTUs in the 
modules altered significantly after  B12 administration. 
Specifically, Proteobacteria and Firmicutes dominated 
the large modules (> 5 nodes) in CK network, while only 
Proteobacteria dominated the large modules (> 5 nodes) 
in B network (Fig. 6a). Then, the values of among-module 
connectivity (Pi) and within-module connectivity (Zi) 
of each OTU were used to identify possible keystone 
taxa. We classified these nodes into four groups: module 
hubs (Zi > 2.5 and Pi ≤ 0.62), network hubs (Zi > 2.5 and 
Pi > 0.62), connectors (Zi ≤ 2.5 and Pi > 0.62), and periph-
erals (Zi ≤ 2.5 and Pi ≤ 0.62) [81]. Due to their impor-
tance in the network topology, network hubs, module 
hubs, and connectors have been proposed as keystone 
taxa [81]. In this study, only one network hub and one 
module hub were detected in the B network. Meanwhile, 
compared with the CK network, the B network had more 
connectors (Fig.  6b), indicating that  B12 supplementa-
tion significantly enhanced the interaction relationship 
between intestinal microbiota. Interestingly, the detected 
network hub (OTU0155) and module hub (OTU0026), 
as well as most of the connectors, were rare taxa, sug-
gesting that less abundant bacteria play regulator roles 
in the microbial ecological network [83]. Taken together, 
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 B12 supplementation increased the complexity of the gut 
microbial ecological network and improved the interac-
tions between gut microbes.

To quantify the effects of  B12 supplementation, micro-
bial diversity, potential keystone taxa, and network com-
plexity on the pathogen resistance of host, a partial least 
squares path model (PLS-PM) was constructed (Fig. 7a). 
The results indicated that  B12 supplementation was posi-
tively correlated with bacterial diversity (0.51), network 
complexity (0.72), and the potential keystone taxa (0.43) 
but not significantly correlated with the infection level 
(Fig. 7). Unexpectedly, the bacterial diversity had no sig-
nificant effects on the potential keystone taxa, network 
complexity, and infection level. Meanwhile, network 
complexity was also significantly impacted by the poten-
tial keystone taxa (0.48). In addition, we also found that 
network complexity (− 0.40) showed significant effects on 
the infection level, suggesting that a complex and stable 
network had positive effects on the pathogen resistance 
(Fig. 7). Overall, these results indicated that  B12 supple-
mentation improved host pathogen resistance mainly 
through influencing potential keystone species in the gut 
and enhancing the complexity of the gut microbial eco-
logical network.

B12 maintains normal expression of gut tight junction 
proteins after the pathogen infection
Permeability of the gut barrier is the basis for the forma-
tion of infection outcomes in the gut by pathogens [84, 
85]. Therefore, we assessed the expression of main tight 
junction proteins (Claudin15, Occludin, and Zo-1) of the 
gut by Western blot (WB). Our results showed that die-
tary administration of  B12 significantly upregulated Clau-
din15, Occludin, and Zo-1 proteins (P < 0.01) (Fig. 8). In 
contrast, no difference in the expression of Claudin15, 
Occludin, and Zo-1 was observed between ACK and AB 
(Fig.  8), indicating that the effect of vitamin  B12 on gut 
tight junction proteins disappears after antibiotics dis-
rupt the gut microbiome. These results suggest that  B12 
influenced gut tight junction protein expression levels 
through the regulation of intestinal microbes. Moreover, 
protein levels of Claudin15 and Zo-1 after the patho-
gen infection were significantly decreased. Interestingly, 
 B12 effectively maintained the normal expression of gut 

tight junction proteins in zebrafish after the infection. 
However, the protein levels of Claudin15, Occludin, and 
Zo-1 in TAB group were similar to those in TACK group, 
suggesting that oral administration of antibiotics signifi-
cantly reduced the effect of  B12 on the maintenance of gut 
barrier integrity. To further confirm these results, mRNA 
(Zo-1, Occludin and Claudin15) levels were determined 
by RT-PCR as well. As shown in Fig. S15, vitamin  B12 
increased Zo-1, Occludin, and Claudin15 expression in 
the mRNA level (P < 0.05) while the infection decreased 
the expression of these genes. Similar to the results of 
western blot, RT-PCR results demonstrated that no dif-
ference in the expression of Claudin15, Occludin, and 
Zo-1 was observed between ACK and AB (TACK and 
TAB), indicating that the effect of vitamin  B12 on gut 
tight junction disappeared after the antibiotic treatment. 
In addition, we also analyzed the expression of intestinal 
tight junction proteins-related genes in zebrafish fed with 
B. velezensis and Cetobacterium, and found that dietary 
supplemented with B. velezensis or Cetobacterium sig-
nificantly improved the expression of Zo-1, Occludin, and 
Claudin15, which had a similar trend with  B12 (Fig. S16).
Overall, the results of the present study suggested that 
 B12-influenced gut microbiota network maintained the 
normal expression of gut tight junction proteins in path-
ogen-infected zebrafish.

Discussion
Gut microbes are key factors in host defense against 
pathogen infection [86], and are incredibly important 
to host health [66]. In the present study, we identified a 
distinct mechanism by which probiotics drive intestinal 
commensal bacteria to produce vitamin  B12, a microbial-
derived metabolite, protecting the host from pathogenic 
infections. These findings highlight the relevance of the 
gut microbiota and associated metabolites in protect-
ing host against the pathogen infection. Our data also 
support the idea of the using of Cetobacterium or even 
vitamin  B12, as the key interventions for prevention of 
pathogen infection.

The characterization of gut microbiota composition 
is a hot topic for researchers to study the intersection 
of host microbiome and health [3]. It is well known that 

(See figure on next page.)
Fig. 6 Vitamin  B12 influence the modules and the keystone taxa in the gut ecological network. a Network modules in different groups. Large 
modules (> 5 nodes) are shown in circular layout. Major phyla are indicated by the node colors. Positive and negative correlations are indicated by 
red and green connections, respectively. The matching pie charts for each network in the right panel indicate the distribution of the major phyla. 
The module ID of each large module is indicated by M1 to M6. b Classification of nodes in CK and B networks to find possible keystone OTUs. Each 
symbol represents an OTU. Pale green symbols represent the nodes in group B. Pink symbols represent the nodes in group CK. Zi > 2.5 and Pi > 0.62 
indicates network hubs; Zi > 2.5 and Pi ≤ 0.62 indicate module hubs; Zi ≤ 2.5 and Pi > 0.62 indicate connectors; and Zi ≤ 2.5 and Pi ≤ 0.62 indicate 
peripherals. Detailed taxonomic information for node is listed in Table S4
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Fig. 6 (See legend on previous page.)
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probiotics could modulate the composition and func-
tion of gut microbiota [87, 88]. We found that Bacil-
lus velezensis 1704-Y supplementation could protect 
zebrafish against Aeromonas hydrophila infection by 
modulating the gut microbiota. Similar results were 
found in analogous studies in mammals, where pre-
addition of Lactobacillus could significantly change the 
structure of the gut microbiome to improve the resist-
ance to Escherichia coli [89]. Wang et  al. found that 
probiotics attenuate obesity comorbidities through spe-
cific impacts on the gut microbiota in mice [90]. More-
over, studies in some animal models had demonstrated 

that probiotics protect host against pathogen infection 
through the modulation of gut microbiota [91–93]. 
Although the mechanisms by which probiotics regu-
late gut microbes still need further study, the current 
results all suggest that protection of the host from 
pathogen infections by modulating gut microbes is one 
of the beneficial pathways of probiotics.

Meanwhile, this study also found that Cetobacterium, 
the gut indigenous microbiota, was the key microbe to 
protect zebrafish against Aeromonas hydrophila infec-
tion after dietary supplementation of probiotic Bacil-
lus velezensis 1704-Y. A growing number of studies have 

Fig. 7 Effects of the major factors on the pathogen resistance as determined by the PLS-PM analysis. a PLS-PM showing the cascading relationships 
of different factors. An observable variable or a latent variable is represented by a box. The loading for bacterial diversity, the potential keystone 
taxa, the network complexity, and infection level that create the latent variables are shown in the dashed rectangles. After 1000 bootstraps, path 
coefficients are calculated and represented by the width of the arrow (red stands for positive relationship, green stands for negative relationship). 
The dashed arrow indicates a coefficient that did not differ significantly from 0 (P > 0.05). The GoF statistic was used to evaluate the model, and 
the GoF value was 0.74. b Standardized effects of each factor on zebrafish pathogen resistance profiles calculated from the results of partial least 
squares path modeling. The direct and indirect impacts are added together to form the total effects
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demonstrated that probiotic treatment can increase the 
relative abundance of Cetobacterium in the gut of fresh-
water fish [42, 94]. Cetobacterium is an anaerobic indig-
enous bacterium present in the gut of most freshwater 
fish [95]. In recent years, anaerobic indigenous gut bacte-
ria, which played a crucial role in human health and dis-
ease, have received increasing attention from researchers. 
Anaerobic indigenous gut bacteria could consume die-
tary fiber and produce short-chain fatty acids to benefit 
the host. For example, Faecalibacterium prausnitzii, a 
major commensal anaerobic gut bacterium, exhibited 
anti-inflammatory effects on Crohn disease patients and 
could alleviate intestinal inflammation [96]. In addition 
to this, Akkermansia muciniphila, a mucin-degrading 
anaerobic bacterium, had been proved that could pro-
duce butyric acid to provide energy for gut epithelial cells 
and maintain the gut barrier and health [97, 98]. These 
suggested that gut indigenous anaerobic bacteria and 
their metabolites played a non-negligible role in main-
taining the health of the host. We also found that Ceto-
bacterium was a dominant member of gut microbiota of 
healthy fish, while its levels were significantly reduced in 

the gut of infected fish, suggesting that Cetobacterium 
was a sensor of health, especially for fish infected with 
pathogenic bacteria. A recent research demonstrated 
that Aeromonas veronii infection induced a significant 
decrease in the relative abundance of Cetobacterium in 
the gut of Yangtze finless porpoise [53]. Similarly, Ofek 
et  al. also proved that diseased tilapia had a lower rela-
tive abundance of Cetobacterium in the gut compared to 
healthy tilapia [99]. In this study, we also found that Aero-
monas infection significantly decreased the abundance of 
Cetobacterium in the gut. Meanwhile, both correlation 
analysis and antibiotic treatment tests also showed that 
reducing the level of Cetobacterium in the gut increased 
the susceptibility of zebrafish to pathogenic bacteria. 
Based on the results of previous studies and the results 
of this experiment, we made a reasonable hypothesis that 
Cetobacterium is a key factor maintaining the fish health 
and providing the protection against some pathogenic 
bacteria. Moreover, genomic analysis showed that Ceto-
bacterium has all the genes needed to synthesize vitamin 
 B12 de novo, and HPLC results from in vitro metabolism 
tests showed that Cetobacterium could produce vitamin 

Fig. 8 B12 enhances the tight junctions in the gut of zebrafish. a Western blots showing the expression of Zo-1, Occludin, and Claudin15 in the 
gut of zebrafish. b–d Densitometric analysis of Western blots from protein samples of the gut. Data were normalized for β-tubulin expression and 
expressed as fold change. Values represent means ± SD. Significant differences (P < 0.05) between different groups are indicated with different 
lowercase letters above the bars. CK: The zebrafish were fed a basic diet; B: The zebrafish were fed a basic diet supplemented with vitamin  B12; 
ACK: The zebrafish treated with antibiotics for 7 days prior to administration of basic diet; AB: The zebrafish treated with antibiotics for 7 days 
prior to administration of  B12; TCK: The zebrafish were fed a basic diet and then bath infected with A. hydrophila; TB: The zebrafish were fed a basic 
diet supplemented with vitamin  B12 and then bath infected with A. hydrophila. TACK: The zebrafish treated with antibiotics for 7 days prior to 
administration of basic diet, and then fed a basic diet and then bath infected with A. hydrophila; TAB: The zebrafish treated with antibiotics for 7 days 
prior to administration of basic diet, and then fed a basic diet supplemented with vitamin  B12 and then bath infected with A. hydrophila 
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 B12. Approximately 80% of gut microbes appear to require 
vitamin  B12, while less than 25% of gut microbes can syn-
thesize vitamin  B12 [65], indicating that vitamin  B12 was 
an essential factor in maintaining normal life activities of 
bacteria. Currently, only Fusobacteria, Veillonella, Kleb-
siella, Pseudomonas, Lactobacilli, and Bifidobacteria had 
the ability to produce vitamin  B12 in the gut [100]. More-
over, recent studies had proved that Akkermansia mucin-
iphila might also had the ability to synthesize vitamin  B12 
[101]. Furthermore, Cetobacterium has the ability to pro-
duce vitamin  B12 allowing it to impact these bacteria to 
interact with their hosts and other members of the gut 
microbiota, which further deepened our understanding 
of how this important anaerobic indigenous gut bacte-
rium affected fish health. The data herein of microbiota 
and metabolism analysis suggested that Cetobacterium 
was a key anaerobic indigenous gut bacterium for main-
taining host health in freshwater fish.

Here, we discovered that vitamin  B12 has a novel func-
tion as a regulator of host gut microbial interactions, 
which helps to strengthen interactions within the gut 
microbiota and improves host resistance to pathogen 
infections. We found that the protective effect of  B12 
on zebrafish was concentration-dependent. We specu-
lated that oral high-dose  B12 supplements were largely 
unabsorbed and reached the distal gut where they were 
available to interact with the microbiota. Unlike other 
water-soluble vitamins, which are largely absorbed 
and enter the circulation, vitamin  B12 absorption in the 
ileum becomes saturated around 2 μg/meal [102]. There 
are many studies focused their attention on studying 
the relationship between  B12 receptors and host health 
[103–105]. Hansen et al. proved that dietary vitamin  B12 
did not affect transcription of tcn1 and tcn2 in the proxi-
mal intestine and in the distal intestine, and the cubn 
and amn were expressed in the distal intestine but were 
not affected by diet [106]. Kelly et  al. had proved that 
oral high-dose  B12 supplements is delivered to the distal 
gut, where it was available to interact with the micro-
biota, and they also detected higher concentrations of 
 B12 in the fecal contents of the mice supplemented with 
excess vitamin  B12 [107]. In the present study, we found 
that higher concentrations of  B12 were detected in the 
hindgut of zebrafish fed with high concentrations of 
 B12, which is similar to the previous studies. Also, we 
did not detect the expression of vitamin  B12 receptors, 
but it is important to understand the vitamin  B12 recep-
tor distribution in the maintenance of zebrafish health. 
Although this study did not prove the upper limit of sat-
urable uptake of vitamin  B12 in the zebrafish gut, these 
results showed that higher concentrations of  B12 were 
detected in the hindgut of zebrafish supplemented with 

high concentrations of  B12, which is similar to the previ-
ous studies [107, 108]. Moreover, the dietary administra-
tion of vitamin  B12 significantly increased gut microbial 
diversity and altered microbial composition in this study. 
Additionally, it increased the ratio of Bacteroidetes/Fir-
micutes, which was closely associated with health of gut 
[68]. Most of the opinions are that the ratio of Bacteroi-
detes/Firmicutes was associated with obesity [109, 110]. 
Bin et al. also found that enterotoxigenic Escherichia coli 
infection caused a significant decrease in the ratio of Bac-
teroidetes/Firmicutes in the gut of piglets and caused 
diarrhea [111]. These results indicated that Bacteroi-
detes/Firmicutes played an important role in host health, 
which was similar with our data. Meanwhile, vitamin  B12 
supplementation significantly reduce the redox poten-
tial in the gut, suggesting that vitamin  B12 could modu-
late redox homeostasis. High oxygen environment could 
provide a more suitable environment for pathogenic 
bacteria to expand their virulence [112]. Disturbances in 
the redox balance in the gut could potentiate inflamma-
tion, impair barrier function, prevent colonization with a 
healthy microbiome, and threaten host health. Our find-
ings proved that vitamin  B12 could prevent disturbances 
of the redox balance, suggesting that vitamin  B12 reduced 
the oxygen environment in the gut and provided a suit-
able living environment for probiotic bacteria, which in 
turn may promote microbial interactions. The study from 
Busti et al. proved that the reduction of the oxygen level 
in the gut environment contributed to the modulation of 
gut microbiota favoring the presence of obligate anaero-
bic [113]. Indeed, the supplementation of  B12 significantly 
increased the complexity and stability of the gut ecologi-
cal network. For example, the number of nodes and links 
increased due to the supplementation of  B12, indicating 
enhanced microbial interactions. The gut microbiome 
contains thousands of microbes that interact with each 
other to form complicated networks, and this stability 
of the gut network is considered important for health 
of host [82]. Correspondingly, major shifts in microbial 
community composition are often associated with ill 
health [82, 114]. In the ecological network, the species 
were used as nodes and their relationships as links [115], 
which is essential for characterizing species interactions 
and dynamics of gut network [116]. We also observed 
much higher modularity in  B12 addition group. Modular-
ity is a very important concept in ecological network. It 
could be originated from specificity of interactions, con-
vergent evolution, and natural selection, and it could be 
important for system stability [117]. Yang et  al. demon-
strated that probiotic supplementation led to more mod-
ule to maintain gut microbiota homeostasis [118]. The 
higher modularity indicated that the supplementation of 
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 B12 enhance the stability of gut ecology system. Previous 
studies have suggested that competition promotes sta-
bility in the gut ecosystem and that cooperation creates 
dependencies that foster instability in microbial com-
munities [82]. Indeed, we observed a higher number of 
negative interactions in  B12 addition group, suggesting 
that the supplementation of  B12 could improve the sta-
bility of the gut ecological network. Overall, the data of 
the present study indicated that vitamin  B12 is an impor-
tant regulator in maintaining the interactive relationships 
between members of the gut microbiota.

Subsequently, we used the PLS-PM model to explore 
the relationship among the gut microbiota network, 
the  B12 supplementation, and pathogen resistance of 
zebrafish. Before this, a systematic review of the effects of 
vitamin  B12 on gut microbiome was conducted by Guet-
terman et  al., which demonstrated that  B12 was associ-
ated with gut microbiome outcomes, including beta 
diversity, alpha diversity, relative abundance of bacteria, 
and functional capacity [41]. However, few studies have 
been conducted to evaluate the impact of vitamin  B12 
on the pathogen resistance of host. The results of PLS-
PM showed that  B12 had no directed correlation with the 
pathogen resistance, but had directed correlation with 
the gut microbiota network. Meanwhile, the gut micro-
biota network had directed correlation with the patho-
gen resistance of zebrafish. These suggested that vitamin 
 B12 could not directly interact with the host to protect 
the zebrafish against the pathogen infection but affected 
pathogen resistance by increasing the stability of the gut 
microbiota network, which further responded to the 
importance of vitamin  B12 as a regulator among micro-
biota for the host. Moreover, the results of west blot 
analysis showed that  B12 did not directly affect gut tight 
junction proteins, but upregulated them through regulat-
ing gut microbes. Tight junction protein expression has 
been demonstrated to control gut barrier functions, and 
an increase in tight junction protein levels could prevent 
or reverse pathogen impacts [119]. Until now, it remains 
unclear what the underlying molecular mechanisms are 
on the effects of vitamin  B12 on the gut barrier. However, 
it is known that commensal bacteria and probiotics have 
been shown to promote gut barrier integrity both in vitro 
and in  vivo [120–123]. Previous studies demonstrated 
that Claudin15, Occludin, and Zo-1 were the key proteins 
in maintaining the integrity of the gut epithelial barrier 
[124–126]. In this study, the expression of these proteins 
(Claudin15, Occludin, and Zo-1) was upregulated in the 
zebrafish receiving  B12 supplementation. Meanwhile, we 
found that the effect of vitamin  B12 on the expression 
level of gut tight junction proteins disappeared after the 
antibiotic treatment. We speculated that the effect of 
vitamin  B12 on gut tight junction proteins depended on 

gut microbes. These data suggested that  B12-influenced 
gut microbiota network might alleviate the increased gut 
permeability caused by pathogen infections. However, 
at this stage, we did not investigate the mechanisms by 
which the supplementation of  B12 enhance the stability of 
gut microbiota network. Deeper verification tests based 
on meta transcriptome and metabonomic are necessary, 
and further research on this issue will contribute to bet-
ter utilization of vitamin  B12.

Conclusions
The use of probiotics and their metabolites is a practical 
alternative to promote animal health and prevent dis-
ease. We proved that the microbiome alterations influ-
enced by Bacillus velezensis BV1704-Y could control 
the pathogenic load in tissues and improve the survival 
of zebrafish. Further analysis found that Cetobacterium, 
anaerobic indigenous gut microbe, might be a sensor of 
health, especially for fish infected with pathogenic bac-
teria. Genomic analysis and metabolic assays suggested 
that Cetobacterium had the ability to produce vitamin 
 B12. Supplementation of vitamin  B12 reduces the redox 
potential in the gut, induces alterations in gut microbi-
ome structure and functions, and improves microbial 
interactions and enhances the stability of the gut micro-
biota network. Moreover,  B12 supplementation did not 
directly influence the pathogen resistance of zebrafish, 
but by impacting the gut microbiota network. In addi-
tion, the stable gut microbiota network upregulated the 
tight junction proteins of the intestine and protected 
host against pathogen infections (Fig.  9). Our findings 
provided a new mechanism of action of probiotics in 
enhancing host resistance to pathogen infections from 
the perspective of probiotic action on the gut microbi-
ome. And also demonstrates the novel function of  B12 as 
a regulator to enhance microbial interactions. This dis-
covery may deepen the understanding of the impact of 
probiotics on host health and help to elucidate the health 
benefits of vitamin  B12 against pathogen infections.

Materials and methods
Zebrafish and experimental design
All experiments were done using 4-month-old AB wild 
type zebrafish (0.45 ± 0.05  g; 3.5 ± 0.2  cm), which were 
obtained from the China Zebrafish Resource Center 
(Wuhan, China). All zebrafish maintained under labora-
tory conditions with a 14-h light and 10-h dark cycle and 
adapted to the laboratory conditions for 2  weeks. Each 
tank containing dechlorinated and aerated water (pH 
7.5 ± 0.5) at 28 ± 1  °C. More than 6.5  mg/L of dissolved 
oxygen was present in the tank.
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Experiment 1: B. velezensis BV1704‑Y supplementation 
experiment
To study the effects of B. velezensis BV1704-Y on resist-
ance of zebrafish to Aeromonas hydrophila infection, 
a total of 120 zebrafish were randomly divided into 
two groups with three 20-L tanks (20 fish/tank) each. 
Zebrafish were fed with control diet (CK) or B. velezen-
sis BV1704-Y-supplemented diet (1 ×  107  CFU/g diet) 
(Y) for 28 days [127]. In order to investigate the role of 
gut microbiota in the process of probiotic protection of 
the host against pathogen infection, a common cocktail 
of antibiotics was used to deplete the intestinal bacteria 
according to previous studies [49, 50]. Zebrafish received 
an antibiotic mix consisting of vancomycin (2 g/kg diet), 
metronidazole (4 g/kg diet), and neomycin sulfate (4 g/kg 
diet) in the diet for 7 days, and then antibiotics-contain-
ing diets were replaced with the control and B. velezensis 
BV1704-Y-supplemented diet (AY), which were fed for 
28 days [127], respectively. All diets were 3-mm-diame-
ter pellets. Fish were hand-fed diets at 3% of body weight 
twice a day (9:00 and 16:00) and consumed all feed 
offered within 30 s after feeding [106], and the amount of 
feed intake was about 0.8 g of feed per feeding. The gut, 
kidney, and liver were collected under aseptic conditions 
from each zebrafish immediately after the feeding trial, 
and stored at − 80 °C until further analysis. Then the rest 
of zebrafish in each group (15 fish in each replicate) were 
bath infected with A. hydrophila, while the control and B. 
velezensis 1704-Y-containing diets were kept fed during 

the infection period. The experimental design is shown in 
Fig. 1a.

Experiment 2: C. somerae CS2105‑BJ supplementation 
experiment
A total of 120 zebrafish were randomly divided into 
two groups with three 20-L tanks (20 fish/tank) each. 
Zebrafish were fed with control diet (CK) or C. somerae 
CS2105-BJ-supplemented diet (1 ×  107  CFU/g diet) 
(Ceto) for 28 days, and then received the same treatments 
as Experiment 1. The experimental design is shown in 
Fig. 2g.

Experiment 3: vitamin B12 supplementation experiment
A total of 120 zebrafish were randomly divided into 
two groups with three 20-L tanks (20 fish/tank) each. 
Zebrafish were fed with control diet (CK) or vitamin 
 B12-supplemented diet (B) (200  μg/kg diet) for 28  days. 
Then received the same antibiotic treatment as in Experi-
ment 1 and marked as ACK and AB, respectively. Sub-
sequent operations were the same as in Experiment 1, 
except that the B. velezensis 1704-Y-supplemented diet 
was replaced with a  B12-supplemented diet. The experi-
mental design is shown in Fig. 4a.

Isolation of Cetobacterium
Zebrafish from B. velezensis BV1704-Y-treated were col-
lected. Gut was removed and grinded into homogen-
ate with 200  μl sterile saline solution. Serial dilutions 

Fig. 9 Mechanisms of probiotic protection of the host against pathogen infections. Dietary supplementation with Bacillus velezensis BV1704-Y 
induces an increase in the abundance of the indigenous gut microbiota (Cetobacterium) and thus metabolizes sufficient amounts of vitamin  B12. 
Vitamin  B12 is used by the surrounding microbiota to form a more stable and complex gut ecological network while reducing the redox potential 
in the gut and maintaining the anaerobic state of the intestinal lumen, which further promotes the expression of intestinal tight junction proteins 
(Claudin15 and Zo-1) and prevents the infestation of Aeromonas 
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of 100  μl  (10−3,  10−4, and  10−5) containing homogenate 
were inoculated on BHI agar and incubated at 28 °C for 
48 h in an anaerobic environment. The single colony cul-
tured in the medium was chosen and incubated again in 
the anaerobic bottle with 5 mL BHI broth medium. PCR 
was utilized with 16S rRNA gene universal primers (27F 
and 1492R) to verify the bacterial solution. The right 
samples were kept, and whole-genome sequencing was 
done for added verification.

Infection of Aeromonas hydrophila AH2006‑3 J
Aeromonas hydrophila AH2006-3  J (GenBank acces-
sion no. OP778940) was isolated in disease outbreak 
fish pond and screened as the most invasive strain from 
dozens of different A. hydrophila strains. For Aero-
monas hydrophila infection, zebrafish were immersed 
in water containing bacteria with a final concentra-
tion of 1 ×  108  CFU/mL for 10  days [67]. The water 
and bacteria were changed every 2 days, and mortality 
was recorded every day. At the end of experiment, the 
gut, kidney, and liver of zebrafish were sampled under 
aseptic conditions and stored at − 80  °C until further 
analysis.

Bacterial load quantification
Total gut, liver, and kidney DNA was extracted using a 
QIAamp-DNA Stool Kit (Qiagen, Hilden, Germany). 
Primers for amplification of genes are listed in Table S1. 
Amplified sequences were cloned into pMD19-T plas-
mids (Takara, Dalian, China), to perform a 10-fold dilu-
tion and generate a standard curve for calculation of the 
bacterial load [128, 129]. The values obtained from bac-
terial copies were calculated relative to the weight of the 
tissues.

Microbiome analysis
The gut total DNA was extracted by the QIAamp Pow-
erFecal DNA Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. The V3–V4 
regions of the bacterial 16S rRNA gene were ampli-
fied using the 341F-806R primers (341F: 5′—CCT AYG 
GGRBGCASCAG—3′; 806R: 5′- GGA CTA CNNGGG 
TAT CTAAT—3′) [130]. High-throughput sequenc-
ing was performed on the Illumina MiSeq platform 
at LC-Bio Co., Ltd (Hangzhou, China). In order to cre-
ate feature tables and feature sequences, the sequences 
that were obtained from sequencing were subjected to 
quality filtering and modification. The sequences were 
aligned using the SILVA Database (v.138) [131] as a ref-
erence database, and the taxonomic information was 
categorized by RDP classifier (v2.2) with 80% confidence 
[132]. R software (v3.5.2) was used to calculate and dis-
play alpha diversity, including the Shannon, Simpson, 

Richness, and Chao1 indices. Bray–Curtis distance-based 
PCoA analysis was performed using the vegan R pack-
age. Using the LEfSe method [133], we further selected 
the significant microbiome characteristics in different 
groups at genus taxonomic rank. PICRUSt2 [134] was 
used to infer the expected metagenomes and the function 
of the gut microbiota, and the LEfSe method was used to 
determine the differentially abundant KEGG pathways 
between groups.

Genome sequencing and de novo assembly
The genomic DNA of Cetobacterium was extracted for 
whole-genome sequencing. Following that, Personal Bio-
technology Company (Shanghai, China) used the Pacific 
Biosciences platforms and Illumina MiSeq platforms to 
sequence the genome. Quality control was performed 
by using AdapterRemoval [135] and SOAPec [136]. By 
using SPAdes [137] and A5-miseq [138], the filtered reads 
were assembled to create scaffolds and contigs. The data 
received by Pacbio platform sequencing were assem-
bled using Canu software [46]. Subsequently, all assem-
bled results were combined to produce a comprehensive 
sequence. Finally, using pilon software [139], the genome 
sequence was obtained after the rectification. The com-
plete genome sequence was deposited at GenBank under 
the BioProject accession number CP092519-CP092525.

Determination of vitamin  B12 and redox potential
To extract vitamin  B12 from the hindgut, the contents 
were disrupted by boiling for 15 min in 0.1 M phosphate 
buffer containing 0.01% potassium cyanide at pH 6.0. 
After centrifugation at 4500 × g for 15 min, the superna-
tants were collected and passed through 0.22-μm filters 
[59]. Vitamin  B12 was detected using a modified HPLC 
method that was previously reported [59, 140]. At room 
temperature, all chromatographic separations were car-
ried out. The mobile phases were a mixture of methanol 
with 0.1% formic acid (A) (Aladdin, Jinan, China) and 
ultra-purified water with 0.1% formic acid (B), which was 
degassed by an ultrasonic water bath; the flow rate was 
0.5 mL per min. The gradient elution was programmed as 
follows: 0–2 min, 20% A; 2–3 min, 20–25% A; 3–11 min, 
25–35% A; 11–19 min, 35–20% A; 20–22 min, 100–100% 
A; 22–26  min, 100–20% A; and 26–36  min, 20% A. A 
Diode Array Detector (1260 Infinity II, US) was used to 
measure the column eluate at 361 nm, and the injection 
volume was 100 μl.

For the redox assessment, 20  mg of gut contents was 
diluted in 2  mL of distilled water and centrifugated at 
8000 rpm for 10 min. The redox potential was measured 
in accordance with the manufacturer’s instructions using 
a pH/redox meter (REX, Shanghai, China) [73, 74].
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Network analysis
The Molecular Ecological Network Analysis (MENA) 
pipeline (http:// ieg2. ou. edu/ MENA/), as previously pub-
lished [81], was used to conduct network analysis to 
examine microbial relationships and network complexity 
of gut microbiota in various groups. Based on the OTU 
abundances that had been log-transformed, the Pearson 
coefficient was determined. Prior to network formation, 
the relevant similarity threshold (St) was automatically 
determined using random matrix theory (RMT) [78]. 
Following that, all gut microbial networks were created 
using the same St (i.e., 0.88). The network graphs were 
displayed using the Cytoscape software (3.8.2).

Various indexes, including average degree, average 
path distance, average clustering coefficient, connect-
edness, and modularity were used to describe the char-
acterization of individual nodes in the network and the 
overall topologies or structures of different networks. To 
test the significance of the constructed empirical MENs, 
100 random networks were generated for each empirical 
network. The means and standard deviations computed 
from the 100 randomizations for each characteristic were 
compared to the corresponding empirical MENs [81].

Each node (i.e., OTU) in networks was evaluated for 
its connectivity using the metrics of within-module con-
nectivity (Zi) and among-module connectivity (Pi) to 
find potential keystone taxa that may have an impact on 
the patterns of gut microbiota assemblage [81]. This can 
divide all nodes into four categories: Zi > 2.5 and Pi > 0.62 
indicated network hubs; Zi > 2.5 and Pi ≤ 0.62 indicated 
module hubs; Zi ≤ 2.5 and Pi > 0.62 indicated connectors; 
and Zi ≤ 2.5 and Pi ≤ 0.62 indicated peripherals. Connec-
tors, module hubs, and network hubs can all be seen of as 
potential keystone taxa [141].

Partial least squares path modeling analysis
The PLS-PM was performed using R package of “plsmp” 
to quantify the effects of different factors (i.e., bacterial 
diversity reflected by Shannon and Richness; keystone 
taxa box was reflected by connectors and hubs; network 
complexity was reflected by degree and connectedness) 
on the pathogen resistance of zebrafish, which indicated 
by pathogen load and mortality.

Western blot analysis
Gut samples were homogenized in RIPA buffer supple-
mented with 1% of protease and phosphatase inhibitors 
(Beyotime Biotechnology, Shanghai, China), and pro-
tein content was measured with a BCA Protein Assay kit 
(CWBIO, Suzhou, China). Total proteins (20–50 μg) were 
resolved using 10% SDS-PAGE gel electrophoresis and 
transferred to PVDF membrane (0.22 μm pore; Millipore, 

Billerica, USA). After blocking with 5% (w/v) skim milk 
at room temperature for 1 h, membranes were then incu-
bated with the primary antibodies at 4 °C overnight (dilu-
tions of respective antibodies are given in Table S5). Next 
day, membranes were incubated with the HRP-labeled 
secondary antibody for 40 min at room temperature and 
the chemiluminescent substrate was used to detect the 
protein bands. Densitometry analysis of bands was done 
using ImageJ software.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 023- 01574-2.

Additional file 1: Figure S1. Identification, hemolytic assay and 
antibiotics susceptibility of Bacillus velezensis strain 1704-Y (BV1704-Y). a 
The colony characteristics of BV1704-Y in LB agar plate. b Gram stain status 
and morphological features of BV1704-Y. c Phylogenetic tree constructed 
by the neighbor-joining method based on the gyrB gene sequences. d 
Hemolytic assay for BV1704-Y. e Antibiotics susceptibility testing of 
BV1704-Y by the paper disc diffusion assay (1-Ofloxacin; 2-Ampicillin; 
3-Ceftazidime; 4-Erythromycin; 5-Chloramphenicol; 6-Polymixin B). The 
detailed information on antibiotics susceptibility of BV1704-Y is listed in 
Additional file 2: Table S2. Figure S2. Dietary supplemented with Bacillus 
velezensis induced the change of gut microbiota composition in zebrafish. 
Simpson index (a) and number of observed OTUs (b) comparison among 
the four different groups (Y, CK, TY and TCK). c Relative abundance of the 
top 6 phyla in the gut samples from the four different groups. (d) The 
relative abundances of Fusobacteria in the gut sample from Y and CK. (e) 
The relative abundances of Fusobacteria in the gut sample from TY and 
TCK. (f ) Different bacterial taxa enriched in the TY and TCK zebrafish by 
LEfSe (LDA score [log 10] > 3.0). (g-r) Relative abundance of selected 
different taxa. Data are expressed as box plot. *P < 0.05, **P < 0.01 by 
Mann–Whitney U test with Bonferroni-adjusted P-values. (s) Relative 
abundance of Cetobacterium after antibiotics treated. The statistical 
difference was examined using Kruskal–Wallis H-test followed by Dunn’s 
multiple comparisons test with Bonferroni-adjusted P-values. Figure S3. 
Heat map of Pearson’s correlation coefficients between the top 20 genera 
and infection status (Y:TY). Dark red indicates a stronger positive 
correlation, dark blue indicates a stronger negative correlation, and white 
indicates no correlation. Black asterisk (*) means FDR-corrected 
P-value < 0.05. Figure S4. Distribution of genes across KEGG functional 
categories in the genome of C. somerae CS2105-BJ. Figure S5. C. somerae 
CS2105-BJ produces  B12 both in vitro and in vivo. a The  B12 production of 
CS2105-BJ strain in different growth phases. b The content of  B12 in the 
gut of fish sampled prior to bath infection. * means FDR-corrected 
P-value < 0.05. c The liner regression between the content of  B12 and the 
abundance of Cetobacterium in the gut of fish (CK and Ceto). r and P were 
obtained by Pearson’s correlation analysis. Figure S6. a Vitamin  B12 
content in the intestine of zebrafish in different treatment groups. b 
survival rate of zebrafish in different groups after infection with Aeromonas 
hydrophila. Figure S7. The protective effect of  B12 on zebrafish is 
concentration-dependent. a The content of  B12 in the gut of fish sampled 
prior to bath infection. CK: The zebrafish were fed a basic diet; 50: The 
zebrafish were fed a basic diet supplemented with vitamin  B12 (50 μg/kg 
diet per day); 100: The zebrafish were fed a basic diet supplemented with 
vitamin  B12 (100 μg/kg diet per day); 200: The zebrafish were fed a basic 
diet supplemented with vitamin  B12 (200 μg/kg diet per day). Significant 
differences (P < 0.05) between different groups are indicated with different 
lowercase letters above the bars. b Kaplan–Meier graph of the zebrafish 
survival in different groups after bath infection with A. hydrophila. * 
indicates significant difference (P < 0.05) between different groups. Figure 
S8. Vitamin  B12 induces alterations in gut microbiota structure. Microbiota 
alpha diversity was measured by 16S rRNA gene sequence analysis of the 
gut content samples using Shannon index, Chao1 index, and Observed_
otus. Error bars were median with interquartile ranges. * P-value < 0.05. 

http://ieg2.ou.edu/MENA/
https://doi.org/10.1186/s40168-023-01574-2
https://doi.org/10.1186/s40168-023-01574-2
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Figure S9. Vitamin  B12 induces alterations in gut microbiota structure and 
function. a Principal coordinate analysis (PCoA) of bray curtis distance was 
analyzed based on OTU level for microbiota beta diversity (ANOSIM 
R = 0.7893, P = 0.001). b Phylum-level taxonomic distributions of the 
microbial communities in gut of zebrafish fed with different diets. c Liner 
discriminant analysis effect size (LEfSe) was used to analyze the difference 
in microbial abundance between TB and TCK group, The LDA value 
threshold was set at 4.0. d Bacterial community phenotypes of the gut 
microbiome were predicted using BugBase. Statistical significance was 
identified by the Wilcoxon test with false discovery rate (FDR)-corrected 
pairwise P values. *, P < 0.05. e Functional alterations of the gut microbi-
ome in zebrafish fed with control (TCK) and  B12-supplementd diet (TB) 
after infection with A. hydrophila. Statistical significance was determined 
by using LEfSe, with a P value of < 0.05 (Wilcoxon test) and a linear 
discriminant analysis (LDA) score  (log10) of > 2.2 being considered 
significant. Figure S10. The heatmap shows relative abundance changes 
for the bacterial genera among the 50 most abundant in any sample. The 
relative values in the heatmap (after normalization), represented by colors, 
show the distribution of bacterial species at the genus level among the 
samples. Red color represents higher abundance, and blue lower 
abundances. Figure S11.  B12 affects the relative abundance of anaerobic 
microbiota in gut. Pearson linear correlation between the relative 
abundance of anaerobic microbiota and vitamin  B12 quantification of 
zebrafish fed with control and  B12-supplemented diet in gut. Figure S12. 
 B12 affects the gut redox potential. a Intestinal redox potential levels. b 
Pearson linear correlation between Redox potential and vitamin  B12 
quantification of zebrafish fed with control and  B12-supplemented diet in 
gut. Figure S13.  B12 affects the ecological network of gut microbiome. 
Demonstration of constructed molecular ecological networks generated 
using the Molecular Ecological Network Analysis (MENA) pipeline based 
on OTU relative abundances of gut microbiota. Each link denotes a 
correlation between two nodes, and each node stands in for a single OTU. 
Smaller network modules (between 2 and 5 nodes) are depicted in gray, 
whereas larger network modules (above 5 nodes) are shown in various 
colors. Figure S14. Network analyses for TCK and TB. Large modules (> 5 
nodes) are shown in circular layout. Positive and negative correlations are 
indicated by red and green connections, respectively. The module ID of 
each large module is indicated by M1 to M11. Figure S15. Vitamin  B12 
affect the relative mRNA expression of Zo-1, Occludin, and Claudin15. 
Relative mRNA expression of Zo-1, Occludin, and Claudin15 in different 
groups. Data were normalized for β-actin expression and expressed as fold 
change. Values represent means ± SD. Significant differences (P < 0.05) 
between different groups are indicated with different lowercase letters 
above the bars. CK: The zebrafish were fed a basic diet; B: The zebrafish 
were fed a basic diet supplemented with vitamin  B12; ACK: The zebrafish 
treated with antibiotics for 7 days prior to administration of basic diet; AB: 
The zebrafish treated with antibiotics for 7 days prior to administration of 
 B12; TCK: The zebrafish were fed a basic diet and then bath infected with A. 
hydrophila; TB: The zebrafish were fed a basic diet supplemented with 
vitamin  B12 and then bath infected with A. hydrophila. TACK: The zebrafish 
treated with antibiotics for 7 days prior to administration of basic diet, and 
then fed a basic diet and then bath infected with A. hydrophila; TAB: The 
zebrafish treated with antibiotics for 7 days prior to administration of basic 
diet, and then fed a basic diet supplemented with vitamin  B12 and then 
bath infected with A. hydrophila. Figure S16. B. velezensis/Cetobacterium/
Vitamin  B12 affect the relative mRNA expression of Zo-1, Occludin, and 
Claudin15. Relative mRNA expression of Zo-1, Occludin, and Claudin15 in 
different groups. Data were normalized for β-actin expression and 
expressed as fold change. Values represent means ± SD. Significant 
differences (P < 0.05) between different groups are indicated with different 
lowercase letters above the bars. CK: The zebrafish were fed a basic diet; Y: 
The zebrafish were fed a basic diet supplemented with B. velezensis; B12: 
The zebrafish were fed a basic diet supplemented with vitamin  B12; Ceto: 
The zebrafish were fed a basic diet supplemented with Cetobacterium; 
TCK: The zebrafish were fed a basic diet and then bath infected with A. 
hydrophila; TY: The zebrafish were fed a basic diet supplemented with B. 
velezensis and then bath infected with A. hydrophila; TB12: The zebrafish 
were fed a basic diet supplemented with vitamin  B12 and then bath 
infected with A. hydrophila; TCeto: The zebrafish were fed a basic diet 

supplemented with Cetobacterium and then bath infected with A. 
hydrophila. 

Additional file 2: Table S1. Sequences of primers used for qPCR analysis. 
Table S2. Susceptibility of Bacillus velezensis 1704-Y to 6 different antibiot-
ics. Table S3. Statistics for short-read Illumina sequencing. Table S4. The 
detailed taxonomic information for each node. Table S5. List of antibodies 
used for western blots.

Additional file 3. 
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