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May microbial ecological baseline exist 
in continental groundwater?
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Abstract 

Background Microbes constitute almost the entire biological community in subsurface groundwater and play 
an important role in ecological evolution and global biogeochemical cycles. Ecological baseline as a fundamental 
reference with less human interference has been investigated in surface ecosystems such as soils, rivers, and ocean, 
but the existence of groundwater microbial ecological baseline (GMEB) is still an open question so far.

Results Based on high-throughput sequencing information derived from national monitoring of 733 newly con-
structed wells, we find that bacterial communities in pristine groundwater exhibit a significant lateral diversity 
gradient and gradually approach the topsoil microbial latitudinal diversity gradient with decreasing burial depth 
of phreatic water. Among 74 phyla dominated by Proteobacteria in groundwater, Patescibacteria act as keystone 
taxa that harmonize microbes in shallower aquifers and accelerate decline in bacterial diversity with increasing 
well-depth. Decreasing habitat niche breadth with increasing well-depth suggests a general change in the relation-
ship among key microbes from closer cooperation in shallow to stronger competition in deep groundwater. Unlike 
surface-water microbes, microbial communities in pristine groundwater are predominantly shaped by deterministic 
processes, potentially associated with nutrient sequestration under dark and anoxic environments in aquifers.

Conclusions By unveiling the biogeographic patterns and mechanisms controlling the community assembly 
of microbes in pristine groundwater throughout China, we firstly confirm the existence of GMEB in shallower aquifers 
and propose Groundwater Microbial Community Index (GMCI) to evaluate anthropogenic impact, which highlights 
the importance of GMEB in groundwater water security and health diagnosis.
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Background
Groundwater, the world’s largest available store of fresh-
water resource, provides more than two billion people 
with drinking water and supplies approximately 40% 
of global irrigation [1]. Groundwater is vital to global 
biogeochemical cycles [2, 3]. As the most ancient and 
diverse life form on Earth, microbes comprise almost 
the sole ecological community found in groundwater [4, 
5]. Over billions of years, groundwater microbes have 
participated in the metabolism of key elements such as 
carbon, nitrogen, sulfur, phosphorus, and various met-
als and thereby have influenced the biogeochemistry of 
subsurface and even surface ecosystems [6, 7]. Compared 
with the surface environment, aquifer ecosystems are 
harsh habitats for biological survival due to their being 
devoid of photosynthesis, oxygen, and readily available 
organic carbon [2, 8] and so offer ideal targets for the 
study of microbial ecology, evolution, and environmental 
adaptation [9, 10]. In the past decade, the tree of life has 
significantly expanded owing to the discovery of vast pre-
viously uncharacterized and uncultured microbial popu-
lations in aquifers [11–13]. For example, Brown et al. [11] 
newly defined >35 candidate phyla radiation (CPR), also 
known as Patescibacteria, by reconstructing 789 draft 
genomes from groundwater samples. The superphylum 
Patescibacteria has received extensive attentions, given 
its unique features of ultra-small cell size, small genome 
size, and lack of CRISPR viral defense, which brings new 
understandings on life of microbes in extreme environ-
ments [12, 14]. Different assemblages of Patescibacteria 
organisms are key to turning the globally relevant subsur-
face biogeochemical cycles [15, 16].

The ecological baseline delineates the original state of 
ecosystem attributes such as environmental parameters, 
biological composition, and service functions and could 
be applied to the design of operational monitoring pro-
grams that quantify ecosystem change in response to 
anthropogenic disturbance and contamination [17, 18]. 
Ecological baselines of soil, river, and ocean ecosystems 
established based on macro-organisms (e.g., fishes [19] 
and invertebrates [20]) have demonstrated that a return 
to the nearly original state could be expected upon the 
baselines being correctly determined and human inter-
ference being effectively controlled. Nowadays, ground-
water is facing dual global threats to its water quality and 
quantity globally [21], and so an improved understand-
ing is urgently needed of groundwater geochemistry and 
ecology in order to assess anthropogenic impact. Previ-
ous indices developed for groundwater ecological assess-
ment, such as the groundwater quality index (WQI) [22], 
have invariably overlooked the significance of ground-
water microbes. Meanwhile, the ubiquity, strong adapt-
ability, and dispersal abilities of groundwater microbes 

have led to controversy as to whether or not microbial 
elements should be included in establishing the ground-
water ecological baseline [23]. Thanks to the encourag-
ing progresses in advanced technologies, such as new 
generation high-throughput sequencing [24], which pro-
vide tremendous opportunity to uncover the mysterious 
world of microbes and enable us to explore the ground-
water microbial ecological baseline (GMEB).

With the rapid development of high-throughput 
sequencing, numerous studies have established that 
microbes exhibit obvious microbial biogeographic pat-
terns in a wide variety of natural ecosystems, includ-
ing terrestrial [25] and marine [26] systems. However, 
previous studies concerning groundwater ecosystems 
have been mostly limited to small scale, for example, 
contaminated areas [27], typical basins [28], and spe-
cial geological zones [29], and so are unable to provide a 
holistic view of GMEB at large scale. Meanwhile, under-
standing of the mechanisms that govern microbial com-
munity assembly is crucial for predicting the response 
of ecosystems to human activity. Several investigators 
have indicated that microbial biogeographic patterns are 
controlled by deterministic processes, including abiotic 
and biotic factors [27, 30, 31]. Such deterministic pro-
cesses increase the predictability of microbial commu-
nities, providing theoretical support for the presence of 
a microbial ecological baseline. Other researchers have 
stressed the important roles of ecological drift, disper-
sal limit, and even historical contingency in community 
assembly [32, 33]. Noting the significant habitat differ-
entiation of complex heterogeneous environments in the 
subsurface, niche differentiation appears to offer a sen-
sible ecological interpretation of variations in microbial 
diversity and composition [34, 35].

Considering the severe scarcity of baseline data con-
cerning the groundwater microbial ecosystem, we imple-
mented a national monitoring campaign covering 733 
newly constructed and 130 reconstructed wells across 
China (Fig. 1a) and established a unique microbial data-
set, which enables us to address the following major 
questions: (1) Does GMEB exist at continental scale? 
(2) What are the lateral and vertical patterns of baseline 
microbial communities in different geo-environments? 
(3) What are the dominators and keystone taxa in pris-
tine groundwater? (4) Could the principal processes of 
community assembly be beneficial in shaping the GMEB? 
(5) Whether there is a good index to assess the anthropo-
genic impact on groundwater based on the GMEB?

Materials and methods
Study area and sample collection
As the largest country in Asia, China has abundant 
groundwater resources distributed across various 
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climatic belts and geo-environmental zones and is ideal 
for exploring microbial communities in groundwater 
at continental scale. We obtained groundwater samples 

from 733 newly constructed wells and 130 reconstructed 
wells. In the newly constructed wells, sampling com-
menced immediately after exposure of groundwater 

Fig. 1 The atlas of dominant microbes in continental groundwater. a 863 sampling sites distributed throughout China. Groundwater samples 
collected from 733 newly constructed and 130 reconstructed wells are marked by circles and triangles. For newly constructed wells, red and white 
circles represent phreatic and confined groundwater samples. The background is a composite of seven geo-environmental zones. b Phylogenetic 
tree of core taxa in groundwater. The colors in the innermost ring indicate taxonomic information on core taxa at class level. On ring  b1, black 
indicates a representative strain matched at the ≥ 97% similarity level, and gray indicates taxa identified as having uncultured lineage. The colors 
on rings  b2 and  b3 denote environmental preference. The histogram  (b4) in the outermost ring displays average relative abundance
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to the external environment, thus providing first-hand 
samples useful as a baseline of groundwater microbes 
throughout China. Sampling from reconstructed wells 
enabled comparison with groundwater microbial com-
munities in newly constructed wells, including 504 phre-
atic and 229 confined wells. The monitoring wells were 
distributed across seven geo-environmental zones cover-
ing 31 provinces in China (Fig. 1a, Table S1 and S2). The 
sampling campaign occupied a wide geographical space 
extending from 18.3° N to 52.0° N and from 76.1° E to 
133.5° E. We particularly focused on areas facing ground-
water problems, such as the Beijing-Tianjin-Hebei region 
where the groundwater has experienced severe overex-
ploitation and salinization.

Prior to sampling, groundwater in a given monitoring 
well was abstracted at a controlled discharge below 100 
mL/min using a submersible sampling pump. Outflow 
water quality indicators (pH, electrical conductivity, oxi-
dation-reduction potential, and turbidity) were measured 
using a portable tester (AP-800, Aquaread Ltd.) at inter-
vals ranging from 5 to 15 min until water quality stabi-
lized over three consecutive measurements (≤ ±10%). 
More than 3000 L of groundwater were drained from 
each sampling site and filtered by hollow fiber mem-
branes to enrich microbial cells (Toray, 0.01 μm). The 
hollow fiber membranes were transported with dry ice to 
designated laboratories and stored at −80 ℃.

Groundwater samples were collected in 5-L sterile 
PET bottles for physicochemical content analysis. Prior 
to analysis, the samples were transported to the labora-
tory within 12 h and stored at −4 °C. According to the 
standard methods prescribed by the Ministry of Ecology 
and Environment of China, an array of physicochemi-
cal parameters, including total dissolved solids (TDS), 
chemical oxygen demand  (CODMn), ammonium nitrogen 
 (NH4

+-N), and nitrate nitrogen  (NO3
--N), were deter-

mined. Key metal elements (e.g., sodium (Na), potassium 
(K), calcium (Ca), and magnesium (Mg)) were measured 
by ICP-MS (Thermo Fisher Scientific, USA). Bicarbo-
nate  (HCO3

-) and carbonate  (CO3
2- ) were measured 

using potentiometric titration, and fluoride  (F-), chloride 
 (Cl-), and sulfate  (SO4

2-) were determined by ion chro-
matography (Thermo Fisher Scientific, USA). All phys-
icochemical parameters were normalized using Min-Max 
standardization.

DNA extraction and bioinformatics analysis
The substances captured by the hollow fiber membranes 
were dissolved in ultrapure water by ultra-sonication, 
then filtered through 0.22-μm polycarbonate membranes 
(Millipore, USA). Genomic DNA was extracted using 
the MoBio PowerSoil® kit (MoBio Laboratories, Carls-
bad, CA, USA) according to manufacturer protocols. 

DNA quantity and quality (Table S3) were determined 
using a NanoDrop Spectrophotometer (NanoDrop Tech-
nologies Inc., Wilmington, DE, USA). Polymerase chain 
reaction (PCR) was used to amplify the V3-V4 hypervari-
able region of the bacterial 16S rRNA gene (3 min at 95 
°C, followed by 29 cycles at 95 °C for 30 s, 55 °C for 30 
s, and 72°C for 45 s, and concluding with a final exten-
sion step at 72 °C for 10 min). Primers used for bacterial 
16S rRNA gene PCR amplification were 338F (5′ -ACT 
CCT ACG GGA GGC AGC AG-3′) and 806R (5′ -GGA 
CTA CHVGGG TWT CTAAT-3′) [36]. Sequencing was 
performed by Shanghai Majorbio Bio-pharm Technology 
Company Ltd. (Shanghai, China).

DNA sequences were quality-filtered on the Major-
bio Cloud Platform (https:// cloud. major bio. com/) using 
QIIME v1.9.1 [37]. Operational taxonomic units (OTUs) 
were clustered with 97% similarity cutoff using UPARSE 
(version 7.1) [38], and chimeric sequences were identified 
and removed using UCHIME. A representative sequence 
of each OTU was selected for taxonomic assignment. 
Bacterial OTUs were assigned by the RDP classifier [39] 
against the SILVA 16S rRNA database (http:// www. arb- 
silva. de/). A confidence threshold of 70% was used to 
analyze the taxonomy for all OTUs. OTUs identified at 
the level of phylum, family, order, class, genus, and spe-
cies were 86.7%, 80.4%, 61.6%, 38.3%, 23.9%, and 8.5%, 
respectively.

Statistical analysis
Identification of the core microbial taxa (OTUs)
The core microbial taxa in groundwater were identified 
from the huge, unique datasets established for this study, 
following two criteria [40]. Firstly, we identified the most 
abundant OTUs based on average relative abundance < 
0.01%. Secondly, only ubiquitous OTUs occurring in 
> 50% of the total samples were considered. To identify 
the environmental preference of each core microbial taxa 
between newly constructed and reconstructed wells, the 
Wilcoxon rank-sum test was applied using the wilcox.
test function in “stats” package in R version 3.6.1 (https:// 
www.r- proje ct. org/). A similar test was conducted for 
core taxa between confined and phreatic groundwater in 
newly constructed wells. Sequences of core OTUs were 
compared with those archived in the National Center for 
Biotechnology Information (NCBI) nucleotide database, 
using the Basic Local Alignment Search Tool (BLAST) 
to obtain a more accurate phylogenetic tree. The clos-
est sequences and selected reference sequences were 
aligned using ClustalW software. After alignment, gaps 
were trimmed with the trimAl tool (threshold = 0.2). The 
phylogenetic tree was constructed by the MEGA 7.0 tool 
using a neighbor-joining algorithm with a bootstrap test 
of 1000 replicates and maximum composite likelihood 

https://cloud.majorbio.com/
http://www.arb-silva.de/
http://www.arb-silva.de/
https://www.r-project.org/
https://www.r-project.org/
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model [41] and visualized using an online Interactive 
Tree Of Life server (https:// itol. embl. de/).

Alpha and beta diversity
The OTU table for subsequent comparative analysis was 
rarefied to the same sequencing depth (23,976 sequences 
per sample). Alpha diversity was quantified using 
MOTHUR [42]. Taxonomic and phylogenetic diversi-
ties were measured using the Shannon diversity index 
and Faith’s phylogenetic diversity. Linear and polyno-
mial regression fits were constructed using the nlme R 
package. Non-metric multidimensional scaling (NMDS) 
was used to visualize the dissimilarity of beta diversity 
based on the Bray–Curtis distance. One-way analysis of 
variance (ANOVA) and analysis of similarity (ANOSIM) 
were calculated to test the significance of differences 
in community diversity and structures among specific 
groups using the “aov” and “anosim” functions in vegan 
R package, respectively. Distance–decay relationships 
(DDRs) were calculated as the slopes of linear least-
squares regressions for relationships between the natural 
logarithm of geographic distance and the natural loga-
rithm of Bray–Curtis community similarity.

Identification of biomarker
Linear discriminant analysis effect size (LEfSe) was used 
with Wilcoxon and Kruskal–Wallis tests to discover high-
dimensional biomarkers and explain taxa differences over 
varying well-depth ranges and geo-environmental zones. 
The LEfSe biomarker detection was performed in QIIME 
using the logarithmic LDA threshold > 3.5 and the statis-
tical parameters of P < 0.05.

Network analysis
Co-occurrence network analysis at genus level was per-
formed to investigate the complex interactions among 
microbial communities for different well-depth ranges 
(0–20, 20–40, 40–60, 60–80, and > 80 m). Firstly, rare 
genera with relative abundance of < 0.01% were removed. 
Secondly, all possible Spearman’s correlation coefficients 
between two genera were calculated. Then, species pairs 
with strong (Spearman’s |r| > 0.6) and significant (FDR-
adjusted P < 0.001) correlations were selected to filter 
the data for reduced network complexity. Co-occurrence 
network visualization and modular analysis were con-
ducted using the interactive platform Gephi (http:// 
gephi. github. io/). The topology of networks (including 
average degree, average path length, clustering coef-
ficient, graph density, and modularity) and node-level 
topological features (including degree, betweenness, and 
closeness centrality) were characterized using the igraph 
R package. Higher average degree, clustering coefficient, 
graph density, and lower average path lengths suggest a 

more connected co-occurrence network [43]. High mean 
degree, high closeness centrality, and low betweenness 
centrality were jointly used as thresholds for identifying 
keystone taxa [44].

Niche breadth
The niche breadth (B) index was estimated according to 
the formula [45]:

where Bj indicates the niche breadth of species j; Pij is the 
proportion of species j present in habitat i. Species with 
a higher B-value are considered to be habitat generalists 
whereas species with a lower B-value are habitat special-
ists. Habitat niche breadths and mean niche breadths 
(OTUs) at community level were calculated as the sum-
mation and average of B-values of all taxa occurring in a 
single community [46].

Ecological models
Fitness of zero-sum multinomial (ZSM), pre-emption, 
broken stick, log-normal, Zipf, and Zipf–Mandlebrot 
models were employed to confirm whether niche or 
neutral processes determined the community assembly 
within a sample. Akaike information criterion (AIC) val-
ues for the pre-emption, broken stick, log-normal, Zipf, 
and Zipf–Mandlebrot models were calculated using the 
“radfit” function in the vegan R package. The AIC value 
of ZSM model was determined using Tetame [47]. All 
models were compared based on their AIC values, with 
a lower AIC value indicating a better fit of the model to 
the sample [48]. The normalized stochasticity ratio (NST) 
was used to estimate ecological stochasticity of com-
munity assembly, with 50% taken as the boundary point 
between more deterministic (< 50%) and more stochas-
tic (> 50%) assemblies [49, 50]. NST values for microbial 
communities in different groundwater samples were cal-
culated according to taxonomic and phylogenetic metrics 
using the NST R package.

Influence of environmental variables
Variation partitioning analysis (VPA) was conducted to 
address the relative roles of geographical and environ-
mental factors and their combined effect on community 
variations, based on the Bray–Curtis distance [51]. The 
Mantel test (999 permutations) was performed to exam-
ine the correlation between environmental variables and 
community structures. Environmental variables with 
variance inflation factors >10 were removed to ensure the 
absence of multicollinearity among environmental varia-
bles. Constrained correspondence analysis (CCA) of beta 
diversity with environmental variables was undertaken 

Bj = 1/
N

i=1
Pij

2

https://itol.embl.de/
http://gephi.github.io/
http://gephi.github.io/
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to investigate community distribution. VPA, Mantel test, 
and CCA were carried out using the vegan R package. 
Pearson and Spearman correlation analyses were per-
formed using SPSS software (IBM Corporation, USA), 
and the corresponding heatmap plotted using the ggplots 
R package. Detailed information on the grouping vari-
ables and statistical hypothesis for the analytical methods 
used in the study is provided in Table S4. Bonferroni cor-
rection p.adjust methods in the stats R package were used 
to provide strong control of the family-wise error rate.

Groundwater Microbial Community Index (GMCI)
GMCI described the characteristic of microbial commu-
nity by means of an integrated variable, analogous to and 
modified from the Invertebrate Community Index (ICI) 
[52] and Rapid Assessment Approach [20]. The proce-
dure was as follows: (1) Construction of baseline data. 
Selection of the baseline sites as reference data must fol-
low two principles, i.e., no-disturbance (or minimal level 
of anthropogenic interference) and relatively similar type 
of habitat to the monitoring site. (2) Selection of a sub-
set of microbial indicators. Microbial diversity, domina-
tors, key species, and biomarkers of pristine groundwater 
were selected as initial indicators. Any species with an 
occurrence rate less than 20% or average relative abun-
dance less than 0.5% was excluded. (3) Observation and 
expectation ratio (O/E ratio) of microbial indicators was 
determined for the test sites. The 60% baseline and test 
samples were randomly selected to estimate the expec-
tation value and set the alarm O/E ratio of each indica-
tor, while each of the remaining samples was judged as 
to whether it had experienced strong anthropogenic 
interference by comparing its O/E ratio with the alarm 
O/E ratio. Indicators with low identified accuracy rate 
(accurate identified number / actual number of recon-
structed wells) and high error rate (error identified num-
ber / actual number of newly constructed wells) would 
be eliminated. (4) Integration and calculation of GMCI. 
Multiple reliable indicators with weights and scores 
were integrated into a single index namely GMCI. An 
alarm threshold value of GMCI = 1.0 was used to evalu-
ate the status of each observed microbial community in 
groundwater, and the identified accuracy and error rate 
of anthropogenic interference then calculated.

Results
Profiles of microbial communities in groundwater
A total of 97,569 OTUs (operational taxonomic units 
sharing ≥ 97% sequence similarity), belonging to 74 phyla 
and 1703 genera, were obtained by high-throughput 
sequencing of groundwater samples acquired through-
out China. Proteobacteria was the most abundant phy-
lum (20.5% of the total OTUs and 52.1% of the total 16S 

rRNA sequences), followed by Bacteroidota, Campilo-
bacterota, Patescibacteria, Actinobacteriota, Firmicutes, 
Desulfobacterota, Chloroflexi, Acidobacteriota, Nitros-
pirota, Methylomirabilota, and Verrucomicrobiota (Addi-
tional file 2: Fig. S1).

Similar to microbial communities in other systems [40, 
53], the species rank abundance distribution of ground-
water microbes at national scale presented a typical 
peak-and-tail distribution (Additional file  2: Fig. S2), in 
which 1186 most abundant OTUs accounted for 74.9% 
of the total abundance, whereas 93.0% OTUs comprised 
regionally rare OTUs with a mean relative abundance of 
< 0.001% [54]. Based on previous studies [40], we defined 
the core microbial taxa as OTUs of occurrence frequency 
> 50% and mean relative abundance > 0.01%. About 0.42% 
of OTUs (411) constituted the microbial core community 
in groundwater, accounting for 53.8% of the total abun-
dance (Fig. 1b). Less than 20% of the core OTUs matched 
an available reference genome at > 97% similarity level 
and 23.4% were uncultivated lineages. Most of the core 
OTUs belonged to Proteobacteria (Gammaproteobacte-
ria and Alphaproteobacteria), Actinobacteriota, Bacteroi-
dota, and Firmicutes. It is likely that these core taxa share 
certain phenotypic traits and/or life-history strategies to 
adapt to harsh subterranean habitats. For example, the 
genus Pseudomonas contained the most abundant and 
the largest number of core phylotypes in groundwater, 
which proved to have low nutritional requirements and a 
high diversity of energy metabolisms [55].

Lateral and vertical pattern of baseline microbes
Biogeographic patterns can provide important perspec-
tives by which to understand ecological and evolution-
ary processes in a natural ecosystem [23]. Here we used 
Shannon’s diversity index and Faith’s phylogenetic diver-
sity (PD) to derive biogeographic patterns of microbial 
alpha diversity in groundwater from 733 newly con-
structed wells across China. The taxonomic and phylo-
genetic diversities of groundwater microbes exhibited 
similar biogeographic patterns (Pearson’s coefficient: r 
= 0.85, P < 0.001), peaking at mid-latitudes (around 40° 
N, Fig. 2a, 2b) with a clear increasing trend from west to 
east of China (Additional file 2: Fig. S3). Microbial diver-
sity across the seven geo-environmental zones exhibited 
significant discrepancy (one-way ANOVA test: P < 0.001) 
in phreatic water, highest in the Huanghuaihai-Yangtze 
River Delta Plain zone (II) and lowest in the South China 
Bedrock Foothill zone (III) (Additional file  2: Fig. S4). 
According to previous studies on the age-depth relation-
ship in groundwater [56], phreatic water could be further 
classified into several levels in terms of the range of well 
depth (e.g., 0–40, 40–80, and > 80 m). As the well-depth 
range decreased from > 80 to 0–40 m, the latitudinal 
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diversity gradient (LDG) in shallower groundwater (R2 
= 0.16, P < 0.001) approached the topsoil LDG pattern 
(Additional file 1: Table S5 and Additional file 2: Fig. 2c), 
and the vertical change gradient was especially obvious in 
eastern China (zone I, II, and III, Fig. 2d).

The distance–decay relationship (DDR) is regarded as a 
fundamental pattern in ecology [53, 57]. The community 

similarity of groundwater microbes decreased signifi-
cantly as geographical distance increased (Mantel r = 
0.17, P < 0.001). M icrobial communities between varying 
geo-environments displayed steeper DDR slopes (Addi-
tional file  2: Fig. S5, slope = −0.21) than those within 
individual geo-environmental zones (slope = −0.10), sug-
gesting an apparent influence of regional hydrogeological 

Fig. 2 Biogeographic patterns of groundwater baseline microbes in China. a Spatial distribution of groundwater microbial diversity across seven 
geo-environmental zones. b Microbial latitudinal diversity gradient (LDG) in groundwater. Red solid and black dashed lines show polynomial 
and linear fits based on ordinary least square regression, with the shaded area representing 95% confidence intervals. Values of the adjusted R2 
of the polynomial fits and Pearson’s r of the linear fits are provided. c Comparison of LDG pattern in three well-depth ranges of phreatic water 
with that on the topsoil. d Vertical trend of LDG pattern in eastern (zone I, II, and III), middle (zone IV and V), and western (zone VI and VII) China. 
Quadratic coefficients of polynomial fits of LDG are used to represent their variation rate in varying well-depth ranges
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factors on microbial communities in groundwater. This 
finding was further confirmed by ANOSIM test at the 
OTUs level (RANOSIM = 0.27, P < 0.001).

Given that the vertical layering of strata is known to 
be unique and complex [2], we explored the relation-
ship between microbial communities and placing depth 
of wells. In comparison to more productive systems (e.g., 
topsoil) [25, 58], microbial diversity in groundwater was 
much lower and exhibited a declining trend with increas-
ing burial depth under varying geo-environments (Addi-
tional file  2: Fig. S6a and S7). This vertical trend was 
especially evident in phreatic water (Pearson’s coefficient: 
r = 0.41, P < 0.001), compared with the irregular varia-
tion of microbial diversity in confined water (P > 0.05). 
Non-metric multidimensional scaling (NMDS) analysis 
showed an obvious variation in microbial composition 
at OTUs level with well depth in phreatic water (Addi-
tional file 2: Fig. S6b), as confirmed by strong correlation 
between the second NMDS and well depth (r = −0.46, 
P < 0.001). Microbial communities in shallower phre-
atic water exhibited steeper DDR slope (0–40 m: slope= 
−0.18, Mantel r = 0.24, P < 0.001) and significantly higher 
β diversity (P < 0.001) than in deeper phreatic water (>80 
m: slope= −0.02, Mantel r = 0.08, P > 0.05) (Additional 
file 2: Fig. S8).

Biomarkers for depth‑based microbial baselines in varying 
geo‑environments
To better understand the spatial heterogeneity of ground-
water baseline microbial communities, we investigated 
the groundwater biomarkers in varying well-depth ranges 
(Fig.  3a) and geo-environmental zones (Fig.  3b and Fig. 
S9). Vertically, Patescibacteria, Nitrospirota, Chloroflexi, 
and Methylomirabilota preferred to occur in shallower 
groundwater (0–40 m), Firmicutes was more likely to 
appear in groundwater in the medium well-depth range 
(40–80 m), while Proteobacteria favored deeper ground-
water (>80 m) and was the only phylum whose relative 
abundance increased significantly with well depth (Addi-
tional file  2: Fig. S10, r = 0.47, P < 0.001). Laterally, we 
provided the most representative biomarkers of each 
geo-environments. For example, genus Ralstonia could 
serve as a groundwater biomarker to distinguish from 
microbial communities in other geo-environmental 
regions, considering their much higher abundance in 
Qinghai-Tibet Plateau Alpine Frozen Soil zone (Fig. 3c).

As a superphylum of prevalent concern in recent years 
[14, 16], Patescibacteria was observed in more than 99.1% 
of groundwater samples, comprising 19.9% of the total 
OTUs (only second to Proteobacteria) and 5.7% of the 
total sequences (Additional file 2: Fig. S1). Relative abun-
dance of Patescibacteria peaked in the Northeast Plain-
Mountain zone (biomarker, 10.7±1.3%) and troughed 

in the Northwest Arid Desert zone (1.1±0.3%), mainly 
owing to habitat preferences of class Parcubacteria and 
ABY1 (Additional file  2: Fig. S11b). Patescibacteria pre-
sented the most significant declining trend in relative 
abundance with increasing well depth in phreatic water 
(Additional file 2: Fig. S10, slope = −0.36, r = −0.55, P < 
0.001) and exhibited a positive correlation with ground-
water microbial diversity (Additional file 2: Fig. S12, r = 
0.56, P < 0.001). In general, the vertical variation in domi-
nant taxa appeared to weaken at lower taxonomy levels 
(e.g., class, order, family, and genus) (Additional file  1: 
Table  S6), confirming previous claims that distributed 
randomness was greater among similar functional taxa 
and niche differentiation was stronger for a local com-
munity [59]. However, certain classes of Patescibacteria, 
notably Parcubacteria, Microgenomatia, Gracilibacteria, 
and Berkelbacteria, exhibited significant declines in rela-
tive abundance with increasing well depth (Additional 
file 2: Fig S11c).

Coexistent patterns of baseline microbes
Microbial coexistent patterns in groundwater were 
further investigated through the establishment of co-
occurrence networks based on microbial correlation 
relationships (Spearman’s |r| > 0.6 and FDR-adjusted P < 
0.001) for several well-depth ranges (Fig. 4a). Microbes in 
deeper groundwater exhibited stronger interconnectivity 
than in shallower groundwater, characterized by higher 
average degree, clustering coefficient, and graph density, 
but lower average path length of subnetwork [43] (Addi-
tional file 1: Table S7). Positive and negative interactions 
in a co-occurrence network have previously been found 
to reflect potential mutualistic and antagonistic relation-
ships among microbes [60]. Significant negative cor-
relation was found only in deeper groundwater (6.02% 
negative edges for well depths > 80 m) possibly due to 
stronger competition among interspecies in deeper 
groundwater, whereas mutualism or commensalism were 
more likely to occur in shallower groundwater.

Node-level topological metrics such as degree, close-
ness centrality, and betweenness centrality can be used 
to identify keystone taxa [44]. In Fig. 5, most nodes in 
networks belonged to Proteobacteria whose relative 
abundance tended to increase with increasing burial 
depth. However, the degree and closeness centrality of 
Proteobacteria members were significantly lower than 
that of Patescibacteria (P < 0.01), implying a greater 
importance of Patescibacteria in maintaining struc-
ture and function of microbial communities in phre-
atic water. The keystone taxa largely belonged to the 
class ABY1 and Gracilibacteria in shallower ground-
water, with both having close connections with the 
taxa of Proteobacteria, Chloroflexi, Dependentiae, and 
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Verrucomicrobiota. Whilst those in deeper groundwa-
ter (> 80 m) seemed more diverse, with the majority 
of taxa being capable of adapting to extreme environ-
mental conditions or subsistence on persistent organic 
pollutants, such as Sphingomonas which is capable of 
degrading polycyclic aromatic hydrocarbons [61].

Groundwater microbial ecological baselines supported 
by deterministic processes
To provide supporting evidence for GMEB, we assessed 
community assembly processes using several ecological 
models. Under the Akaike Information Criterion (AIC), 
we preliminarily confirmed the existence of GMEB by 

Fig. 3 Biomarkers of varying groundwater samples. LEfSe cladogram showing biomarkers of a three well-depth ranges and b varying 
geo-environmental zones. Abundant taxa with average relative abundance of ≥ 0.5% are assigned to kingdom (innermost), phylum, class, order, 
family, and genus (outermost). Each biomarker is colored by its environmental preferences. c Spatial distribution of representative biomarkers 
for depth-based microbial baselines in varying geo-environments
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revealing the bacterial community assembly that was 
dominantly shaped by deterministic processes (Fig. 4a), 
with an exception of only 3.0% samples fitted to the 
ZSM model (neutral processes) [62]. This finding was 
further evidenced by the lower normalized stochas-
ticity ratios [50] (NST < 50%) of community assembly 
based on taxonomic (average 29.62%) and phylogenetic 
metrics (average 32.54%) (Additional file  1: Table  S8). 
Moreover, community-level habitat and OTU-level 
mean niche breadths were used to examine the vari-
ation in groundwater microbial diversity with burial 
depth. In phreatic water, habitat niche breadths were 

higher than those in confined water (P < 0.001) and 
exhibited an obvious declining trend with increasing 
burial depth (Pearson’s coefficient: r = −0.35, P < 0.001; 
polynomial fit: R2 = 0.12, P < 0.001) (Fig.  5b), further 
confirmed the increased competition among microbes 
for survival resource and space in deeper groundwater. 
Conversely, the mean niche breadths in phreatic water 
were significantly lower than in confined water (P < 
0.001) and demonstrated a strongly positive correla-
tion with well depth (Pearson’s coefficient: r = 0.28, P 
< 0.001; polynomial fit: R2 = 0.13, P < 0.001) (Fig. 5c), 
suggesting the significance of niche differentiation in 

Fig. 4 Coexistence patterns of baseline microbes. a Co-occurrence networks of microbial community at genus level (average relative abundance 
> 0.01%) for phreatic water samples. Each node represents one genus, and each edge represents a strong and significant correlation between two 
genera (Spearman’s |r| > 0.6 with FDR-adjusted P < 0.001). The size of each node is proportional to the degree, and the phyla of nodes are labelled 
in distinct colors. Black and red edges indicate positive and negative relationships. b Comparisons of relative abundance and node-level topological 
features (degree, betweenness centrality, and closeness centrality) between Proteobacteria and Patescibacteria. *0.01 < P < 0.05, **0.001 < P < 0.01, 
and ***P < 0.001
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shaping groundwater microbial ecological baseline 
pattern.

We performed variance partition analysis (VPA) based 
on Bray–Curtis similarity to evaluate the relative impor-
tance of environmental selection in groundwater micro-
bial community assembly. Overall, the environmental 
variables provided a much more detailed picture of the 
spatial variation of the microbial community, particularly 
in shallower phreatic water (0–40 m, 15.27%, Additional 
file  2: Fig. S8b). Among the 58 parameters considered, 
the Mantel test suggested a relatively higher correla-
tion between microbial structures and chemical oxy-
gen demand (COD), nanganese (Mn), and bicarbonate 
 (HCO3

-) in groundwater (Additional file  2: Fig. S13). 
Canonical correspondence analysis (CCA) further indi-
cated that geochemical signatures represented by  Na+, 
 K+,  Cl-, and  HCO3

-, which were closely related to the 
hydrogeological conditions in varying geo-environmental 

zones, had significant impact on the distribution of 
groundwater microbes (Additional file 2: Fig. S14).

Discussion
Ecological baselines are essential for reconciling argu-
ments about maintenance of biological diversity, origi-
nal state of biotic communities, and ecosystem functions 
[63]. The existence of ecological baseline on subsurface 
groundwater is still an important and open question due 
to the extreme susceptibility to pollution. The concept 
of a groundwater microbial ecological baseline (GMEB) 
is an extension of the ecological baseline of earth sur-
face ecosystems [17, 18] and is proposed specifically for 
subsurface groundwater ecosystems where microbes are 
almost the only organisms present [64]. We define the 
GMEB as a reference for comparing microbial commu-
nities in groundwater affected by human intervention 
with those in the absence of human intervention. The 

Fig. 5 Deterministic community assembly of groundwater baseline microbes. a Proportions of samples fitted to pre-emption, broken stick, 
log-normal, Zipf, Zipf-Mandlebrot, and ZSM models at varying well-depth ranges (total, 0–40, 40–80, and > 80 m) in phreatic and confined water. 
ZSM was a neutral-based model, whereas the other models were niche-based. b, c Variations in habitat niche breadth and mean niche breadth 
(OTUs) of each sample with well-depth. Boxplots illustrate habitat niche breadth and mean niche breadth in phreatic (blue) and confined (red) 
water for varying well-depth ranges (0–40, 40–80, and > 80 m). Blue and red lines display the polynomial regression of niche breadth against well 
depth in phreatic and confined water
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GMEB has four unique characteristics: (1) the GMEB 
should be in pristine groundwater and need to be derived 
from “newly constructed wells” to avoid to the utmost 
extent the interference of human activities, (2) the GMEB 
should be capable of reflecting the whole bacterial com-
munity including uncultured bacterial species with help 
of the advanced high-throughput sequencing technology, 
(3) the GMEB should be determined based on a good 
number of samples taken from representative sites cover-
ing a typical variety of hydrological and geological envi-
ronments at continental scale, and (4) the GMEB should 
be largely driven by deterministic processes in terms of 
specific niche. In the present work, we implemented a 
large-scale monitoring campaign to obtain first-hand 
data from “newly constructed wells” to establish the 
GMEB and parallel data from “reconstructed wells” to 
evaluate anthropogenic impacts on microbial community 
structures at the test sites. The stability of microbial com-
munities in groundwater has been proved spatiotempo-
rally with the proviso that habitats remained unchanged 
[65, 66]. The higher community similarity within the 
same geo-environment and its significant distance decay 
in pristine groundwater throughout China supported the 
fundamental assumption that similar biological compo-
nents should be expected at congeneric environments in 
the absence of human intervention [20].

Recent progress in high-throughput sequencing has 
provided us with a relatively unbiased compositional 
snapshot of microbial communities [24] and helped us 
uncover the mysterious world of subsurface microbes. 
Based on the present unique bacterial dataset derived 
from pristine groundwater, we depicted the baseline pat-
terns by comparing the microbial latitude diversity gradi-
ent in pristine groundwater at different burial depths and 
in the topsoil. Laterally, baseline microbes exhibited a 
unimodal LDG pattern with highest diversity at latitudes 
close to 40° N, suggesting mid-latitude of high humidity 
and warm temperature would provide optimum survival 
habitats for microbes. Vertically, the LDG got closer to 
those on the topsoil with decreasing burial depth [25, 
58], indicating the divergent microbial pool at the surface 
would directly influence microbial diversity in shallower 
groundwater. In short, the geo-environment, as a com-
plex macroscopic factor controlling hydrological connec-
tivity and chemical characteristics of groundwater, has 
played an important role in shaping the biogeographic 
patterns of baseline microbes across China. Groundwa-
ter microbial diversity is highest in the Huanghuaihai-
Yangtze River Delta Plain zone due to relatively frequent 
surface-groundwater interactions promoted by local 
hydrogeological characteristics including multi-fault 
structures, widespread loose and non-rock clay accumu-
lation, and slow horizontal runoff [67].

Microbial ecological baseline patterns in pristine 
groundwater might be primarily mediated by certain 
dominant and key taxa [68]. Proteobacteria, the most 
typical habitat generalists [45], were confirmed as abso-
lute dominators of groundwater microbial community. 
Driven by the mass propagation of their few taxa, Pro-
teobacteria tended to have greater relative abundance in 
extreme environments, which would in turn inhibit local 
microbial diversity (Fig. S11, r = −0.54, P < 0.001). On 
the other hand, the majority of Patescibacteria members 
exhibited niche specialization and demonstrated sig-
nificant declines in relative abundance and diversity with 
increasing well depth. Patescibacteria were character-
ized by small genome size, presence of potential attach-
ment and adhesion proteins, and absence of numerous 
biosynthetic capacities, suggesting that they could not 
live alone and instead would be parasites or form mutu-
alistic arrangements with other microorganisms [15, 16]. 
Network analysis further revealed the mediating role of 
Patescibacteria as keystone taxa in shallow phreatic water 
(Fig.  5b). Through anaerobic fermentative metabolism, 
certain members of Patescibacteria were capable of pro-
ducing organic carbon, including hydrogen, acetate, for-
mate, and ethanol, for other microbes [12, 14]. Moreover, 
Patescibacteria may promote and maintain the intercon-
nectedness and connectivity of the microbial community 
via quorum sensing signals and potential co-metabolism 
[69]. Some phylotypes of Patescibacteria were unable to 
colonize successfully in absence of available symbiotic 
partners because of the scarcity of available niches, fur-
ther accelerating decline in microbial diversity in deeper 
phreatic-water layer.

The existence of GMEB relies on niche differentia-
tion with respect to microbes in pristine groundwater, 
implying the importance of deterministic processes in 
community assembly [34]. In surface water, microbial 
communities tend to be driven by stochastic processes 
due to strong flow-induced turbulence [70]. In pristine 
groundwater, however, microbial communities are pre-
dominantly shaped by deterministic processes due to 
restrictions of relatively isolated, stable, and high hetero-
geneous habitats, leading to the possible occurrence of 
a GMEB. The persistent march of selection by subterra-
nean environmental constraints would preserve micro-
organisms capable of efficient energy utilization and/
or special strategies of nutrient sequestration to better 
cope with low energy flux [6, 71]. Our study has indicated 
that a relatively high proportion of autotrophic microbes 
can exist in groundwater, being strongly influenced by 
specific electron acceptors or donors (e.g.,  HCO3

-, Fe, 
Mn, and nitrate) (Additional file 2: Fig. S15). These find-
ings could partially explain how microbial communities 
adapt to subterranean dark, anoxic, and nutrient-limited 



Page 13 of 17Zhong et al. Microbiome          (2023) 11:152  

environments. From the perspective of assessing anthro-
pogenic impact on groundwater ecosystems, shallower 
phreatic water should be of much greater significance 
for the establishment of GMEB considering its easier 
susceptibility to human footprints. Interestingly, envi-
ronmental selection has been found to provide a rela-
tively poor explanation of microbial community variation 
in deeper phreatic and confined groundwater, but this 
does not affect the claim about existence of a microbial 
baseline in shallower phreatic water (Additional file  2: 
Fig. S16). Beyond the scope of shallower phreatic water, 
a higher mean niche breadth of taxa has been observed 
due to increased proportions of habitat generalists with 
high biological adaptability through a long-term series 

of ecological successions [45], ultimately leading to rela-
tively low diversity and high community homogeneity in 
deeper groundwater.

Subterranean microbes are particularly sensitive to 
anthropogenic intervention in their evolutionary adap-
tations [72]. The GMEB suggests that similar microbial 
structures should be expected at congeneric environ-
ments in the absence of human intervention. Therefore, 
the anthropogenic impact on microbial community 
structures in the test sites could be evaluated by compar-
ing with the baseline at reference sites with similar habi-
tats [17, 18]. At a national scale, our monitoring results 
have indicated that anthropogenic perturbation did 
cause an increase in microbial diversity and alteration 

Fig. 6 Evaluation of anthropogenic interferences on groundwater bacterial communities. a Non-metric multidimensional scaling (NMDS) analysis 
based on Bray–Curtis similarity showing compositional discrepancy on microbial community between newly constructed and reconstructed wells. 
Beijing and Xinjiang regions are selected as the representative regions suffering strong and weak human intervention, respectively. b Comparisons 
of GMCI assessment results of microbial communities in newly constructed and reconstructed wells. Left figure shows GMCI assessment results 
of two representative regions base on national baseline data, while right one is based on regional baseline data. The identified accurate rate (green) 
and error rate (yellow) are provided in the panel legend
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of community structure even at phylum level (Addi-
tional file 2: Fig. S17). To facilitate evaluation of anthro-
pogenic impact in practical groundwater monitoring, 
we proposed Groundwater Microbial Community Index 
(GMCI), which integrated microbial diversity, key spe-
cies, and biomarkers (see “Methods”). For GMCI≥1.0, 
the anthropogenic impact would be significant at spe-
cific test sites matched against the same reference group 
(Additional file  1: Table  S9, S10, and S11), with larger 
GMCI indicating a stronger effect of human activity. To 
fully understand the effects of human activities on micro-
bial ecological baselines in groundwater, we devised two 
categories of microbial baseline: one is the baseline at 
reference sites in regions experiencing intensive human 
intervention, such as the Beijing region, and the other is 
in regions with less human interference, such as the Xin-
jiang region. Without loss of generality, the difference in 
monitored community dissimilarity between newly con-
structed and reconstructed wells (Fig. 6a and Additional 
file 2: Fig. S18) in these two representative regions corre-
sponded to the GMCI-based assessment results (Fig. 6b), 
which shed light on the potentials to establishing a fea-
sible framework for human-impact evaluation under 
representative scenarios. It should be noted that the 
GMCI-based assessment had some obvious drawbacks. 
For example, the sequencing depth and sampling meth-
ods significantly influenced the resolution and accuracy 
of high-throughput sequencing, which required us to for-
mulate standard monitoring methods for microbial com-
munities. Noting the present inadequacy of GMCI data, 
priority should be given to the classification of reference 
groups and construction of a reference database for typi-
cal microbial habitats. At global scale, the establishment 
of GMEB system would be a new contribution to the dec-
ades-long International Geosphere-Biosphere Program 
(IGBP), which focused on possible anthropogenic influ-
ence and other factors that determine habitability of the 
earth [73].

Conclusions
We confirmed the existence of the GMEB at continental 
scale by unveiling the biogeographic pattern of bacteria in 
pristine phreatic water based on a unique dataset derived 
from recent monitoring of 733 newly constructed wells in 
seven geo-environmental zones across China. The GMEB 
exhibits a latitudinal diversity gradient pattern which 
approximates that in topsoil with decreasing well depth, 
and the alpha diversity peaks in the belt around 40° N 
due to frequent groundwater-surface interactions facili-
tated by special geo-environments. We found that Pro-
teobacteria was the dominator (contributing over half the 
total abundance) in groundwater, while Patescibacteria 

acted as hubs harmonizing symbiotic microbes in shal-
lower phreatic aquifers and promoting the vertical decay 
of microbial communities downwards. We revealed the 
endogenous mechanism for microbial co-occurrence in 
shallower phreatic water, and the ideal exogenous con-
ditions for baseline microbes predominantly driven by 
deterministic processes under varying geo-environments. 
Furthermore, we proposed GMCI-based assessment to 
facilitate evaluation of anthropogenic impact in practi-
cal groundwater monitoring, highlighting the fundamen-
tal importance of GMEB for health diagnosis and water 
security of underexplored groundwater ecosystems. In 
the long run, much more information is needed to enrich 
the reference database and continuously improve the 
system of reference groups constituted by microbes and 
their matched habitats. Multimetric approaches need 
to be developed that account for the combined effect 
of multiple attributes and provide an overall evaluation 
of the status of the microbial community under severe 
anthropogenic interference. In this regard, the con-
cept of a “habitat ~ microbial reference ~ subterranean 
truth” system is recommended to reflect the relationship 
between geo-environment and microbial structure in 
groundwater ecosystems at regional, national, and global 
scales.
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polynomial fits and Pearson’s r of the linear fits are provided. Fig. S4. Violin 
plot comparing microbial diversity across seven geo-environmental zones 
in phreatic water of varying burial depth ranges. Fig. S5. Distance-decay 
curves showing the relationship between geographic distance and 
community similarity. Red and blue lines denote the least-square linear 
regressions between geo-environmental zones and within the same 
geo-environmental zone. Slope and P values (one-sided) for regression 
slopes are stated. Fig. S6. Depth stratification of microbial communi-
ties in pristine groundwater. a, Alpha-diversity variation with well depth in 
newly constructed wells (n = 733), confined water (n = 229), and phreatic 
water (n = 504). Black and red lines show linearand polynomial regres-
sions, with shaded representing 95% confidence intervals. b, Non-metric 
multidimensional scaling (NMDS) analysis based on Bray-Curtis similarity 
showing compositional variation with well depth in phreatic water. 
The color gradient denotes the well depth of each sample. c, Boxplot 
of community similarity in phreatic water for three well depth ranges. 
Asterisks denote the significance of correlations (***P <0.001). Fig. S7. 
Vertical distributions of microbial diversity inphreatic water under varying 
geo-environments. Adjusted R2 of the polynomial fits are provided. Fig. 
S8. a, Distance-decay relationships (DDRs) showing community similarity 
against geographic distance between sampling sites in phreatic water of 
three well depth ranges. Red lines denote ordinary least-squares linear 
regressions, with the shaded area representing 95% confidence intervals. 
Slope of DDRs, mantel Spearman correlations (r), and probabilities (P) 
are listed inthe legends. b, Variance partition analysis showing relative 
contributions of environmental (Env.) and geographical (Geo.) factors 
and their combined effect on community variations based on Bray-Curtis 
similarity. Fig. S9. LEfSe cladogram of microbial community obtained 
for varying well-depth ranges (a), geo-environmental zones at shallower 
(b), medium (c) and deeper (d) phreatic water. All detected taxa with 
average relative abundance ≥ 0.5% were assigned to domain (innermost), 
phylum,class, order, family, and genus (outermost). Differentially abundant 
taxa (biomarkers) are colored according to their most abundant regions. 
Fig. S10. Variation in relative abundance of dominant phylawith well 
depth in phreatic water. Red and blue lines show linear and polynomial 
fits based on ordinary least-square regression, with the shaded areas rep-
resenting 95% confidence intervals. Adjusted R2 of the polynomial fitsand 
Pearson’s r of the linear fits are provided. Variation in relative abundance 
of dominant phyla with well depth in phreatic water. Fig. S11. Composi-
tion and distribution of Patescibacteria in groundwater. a, Taxonomic tree 
of identified Patescibacteria OTUs in groundwater. The color of circles 
indicates taxonomic information of each OTU, and the size of circles is 
proportional to the relative abundance. The grey circles represent the 
OTUs with no affiliation at the corresponding taxonomic level. b, Average 
relative abundance of Patescibacteria classes in varying types of wells 
and geo-environmental zones. c, Variation of the relative abundance of 
Patescibacteria classes with well depth in phreatic water. The blue lines 
show the polynomial fit based on ordinary least squares regression, with 
the shaded areas representing 95% confidence intervals. *0.01 < P < 
0.05, **0.001 < P < 0.01 and ***P < 0.001. Fig. S12. Relationship between 
microbial diversity and relative abundance of Proteobacteria, Parcubacteria, 
Chloroflexi, and Verrucomicrobiota in reconstructed wells (a), phreatic water 
(b), and confined water (c). Red lines indicate ordinary least square linear 
regressions across all samples in each habitat. Shaded areas represent 95% 
confidence intervals. Adjusted Pearson correlations (r) of the linear fits are 
provided. Fig. S13. Ecological drivers of microbial community in phreatic 
and confined water. Pairwise Spearman correlation coefficients between 
environmental parameters are indicated by the color gradient. Asterisks 
denote the significance of correlations (*0.01 < P< 0.05, **0.001 < P < 0.01, 
and***P < 0.001). Taxonomic composition (based on Bray-Curtis distance) 
was related to each environmental parameter (basedon Euclidean dis-
tance) by Mantel tests. Edge width corresponds to Mantel r statistics, and 
edge color denotes statistical significance. Fig. S14. a, Constrained cor-
respondence analyses (CCA) reveal environmental parameters governing 
the distribution of microbial communities in phreatic and confined water. 
b, The panels show respective geochemical signatures as percentagesof 
chloride  (Cl−), sulfate  (SO4

2−), and thesum of carbonate  (CO3
2−) and bicar-

bonate  (HCO3
−) ions in phreatic and confined water for the seven geo-

environments in China. Fig. S15. Cluster heatmap analysis demonstrating 

that microbial dominant taxa (average relative abundance > 1%) at 
phylum (a) and genus (b) level display abundance patterns correspond-
ing to geochemical parameters. Fig. S16. Heatmap showing Pearson 
correlation between main geographical and environmental factors and 
the diversity and structure of microbial communities in phreatic water 
for different well depth groups. Asterisks denote the significance of 
correlations (*0.01< P < 0.05, **0.001 < P < 0.01, and ***P < 0.001). Fig. 
S17. Comparison of diversity and composition of microbial communities 
between reconstructed and newly constructed wells. a, Boxplots showing 
that both taxonomic and phylogenetic diversities in reconstructed wells 
are significantly higher thanin newly constructed wells. The hinges show 
the 25th, 50th, and 75th percentiles. b, Sankey diagrams showing the 
relative abundances of dominant phyla (> 1%) in reconstructed and newly 
constructedwells. Fig. S18. a, LEfSe analysis identifying the groundwa-
ter biomarker of reconstructed (blue) and newly constructed wells (red). 
All detected taxa (relative abundance ≥ 0.5%) are assigned to domain 
(innermost), phylum, class, order, family, and genus (outermost). Taxa 
meeting an LDA significant threshold of > 4.0 are selected as most likely to 
explain differences in microbial communities between reconstructed and 
newly constructed wells. b, Comparison of average relative abundance of 
biomarkers between reconstructed and newly constructed wells in Beijing 
and Xinjiang regions.
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