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Abstract 

Background Disruption of the microbial community in the respiratory tract due to infections, like influenza, could 
impact transmission of bacterial pathogens. Using samples from a household study, we determined whether 
metagenomic-type analyses of the microbiome provide the resolution necessary to track transmission of airway 
bacteria. Microbiome studies have shown that the microbial community across various body sites tends to be more 
similar between individuals who cohabit in the same household than between individuals from different households. 
We tested whether there was increased sharing of bacteria from the airways within households with influenza infec-
tions as compared to control households with no influenza.

Results We obtained 221 respiratory samples that were collected from 54 individuals at 4 to 5 time points across 
10 households, with and without influenza infection, in Managua, Nicaragua. From these samples, we generated 
metagenomic (whole genome shotgun sequencing) datasets to profile microbial taxonomy. Overall, specific bacteria 
and phages were differentially abundant between influenza positive households and control (no influenza infection) 
households, with bacteria like Rothia, and phages like Staphylococcus P68virus that were significantly enriched in the 
influenza-positive households. We identified CRISPR spacers detected in the metagenomic sequence reads and used 
these to track bacteria transmission within and across households. We observed a clear sharing of bacterial com-
mensals and pathobionts, such as Rothia, Neisseria, and Prevotella, within and between households. However, due to 
the relatively small number of households in our study, we could not determine if there was a correlation between 
increased bacterial transmission and influenza infection.

Conclusion We observed that airway microbial composition differences across households were associated with 
what appeared to be different susceptibility to influenza infection. We also demonstrate that CRISPR spacers from the 
whole microbial community can be used as markers to study bacterial transmission between individuals. Although 
additional evidence is needed to study transmission of specific bacterial strains, we observed sharing of respiratory 
commensals and pathobionts within and across households.
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Introduction
Influenza infection as a contagious respiratory illness 
causes significant morbidity and mortality worldwide. 
Bacterial co-infection during influenza infection, par-
ticularly in the elderly and immunocompromised popula-
tions, can play an important role in disease progression 
leading to complications and severe disease outcomes 
[1]. Infections with respiratory viruses can also disrupt 
the microbiome of the airways and potentially contribute 
to disease severity [2]. Several studies have demonstrated 
viral disruption of the microbiota in the respiratory tract 
with changes in relative abundance of bacterial taxa such 
as Pseudomonas, Corynebacterium, and Streptococcus [3, 
4].

Across body sites, such as the gut and skin, individu-
als from the same households have a more similar micro-
biome than individuals who do not cohabit [5, 6]. This 
apparent sharing of the microbiota can be due to vari-
ous factors, including diet and genetics; however, direct 
bacterial transmission could also be a factor. For bacteria 
to transmit to a new host, the invading bacteria need to 
interact with the residing microbes and establish colo-
nization [7, 8], which is more likely to occur when the 
microbiome in the new host is disrupted. The transmis-
sion of opportunistic pathogens in the respiratory tract, 
such as Streptococcus pneumoniae, is known to be asso-
ciated with respiratory tract viral infection and younger 
age of the infected subject [7, 9]. Thus, we set out to study 
bacterial transmission in the respiratory tract in the con-
text of influenza infection, which may disrupt the micro-
biome, further facilitating transmission.

Currently, most studies on bacterial transmission focus 
on specific bacterial species and use single-nucleotide 
polymorphisms (SNPs) in marker genes [10] or whole 
bacterial genomes [11, 12]. If using metagenomics data, 
this targeted approach would require very large sequenc-
ing depth and could only sufficiently profile SNPs from 
the most well-assembled bacterial genomes. An alterna-
tive is to focus on CRISPR arrays, which have been used 
in tracking specific bacterial strains from isolates [13, 14] 
as well as strain tracking and sequence diversity analysis 
from microbial communities [15, 16]. Here, we leveraged 
this unique nature of bacterial CRISPR arrays as mark-
ers to track transmission of bacterial communities within 
households during influenza infection.

CRISPR functions as the bacterial immune system to 
defend against virus infection by integrating a 20–70 bp 
viral spacer into the CRISPR locus when the bacte-
ria are first exposed to the virus. Bacteria that have the 
integrated sequences are then able to defend themselves 
against viruses that match those spacer sequences [17]. 
Viral spacers are constantly acquired by the bacteria and 
integrated at the end of CRISPR arrays, proximal to the 

leader sequence [17]. Although the spacer sequences that 
the bacteria acquire from a specific virus are not entirely 
random, as bias in spacer sequence distribution has been 
observed [18, 19], the possible number of unique spacer 
sequences bacteria can acquire from a virus infection is 
large and thus random [20]. Given the dynamics of the 
CRISPR arrays, we demonstrate that these can indeed 
be used to specifically identify shared bacteria between 
the respiratory microbiome of different individuals, thus 
allowing us to leverage metagenomics datasets to poten-
tially track the transmission dynamics of pathogens.

Results
Study cohort and sample collection
We obtained 221 respiratory samples (pooled nasal and 
throat swabs) that were collected from 54 individuals 
participating in the Household Influenza Transmission 
Study (HITS) in Managua, Nicaragua. In total, 10 house-
holds with 4–8 members in each household participated 
in the study, and samples were collected at 4 to 5 time 
points for each individual, at 2- to 4-day intervals. Sam-
ple collection was independent of influenza infection; 
thus, some of the samples were collected at time points 
when the individual was not yet infected or had recov-
ered (Table S1). The households were assigned to high, 
low, or no influenza virus (control) infection groups 
based on the number of individuals per household who 
tested positive for influenza. High infection households 
had all or 2/3 of the household members testing posi-
tive at some point over the serial sampling (58 house-
hold members), while the low infection households had 
less than a third of household members testing positive 
for influenza at any time point (2–3 members). The “no 
flu” households represent uninfected controls (Table S1). 
We did not sample all the household members from the 
low influenza and control households. Influenza infec-
tion was diagnosed by rtPCR, and the infections were 
all due to influenza A virus subtype H3N2. Total DNA 
was extracted from each sample and was subjected to 
whole genome shotgun (metagenomics) for an in-depth 
microbiome analysis of the upper respiratory tract across 
household members. Of the 221 samples, we obtained 
167 metagenomics datasets. Figure S1 provides an over-
view of the overall bioinformatics pipeline for this study 
with the different analyses performed.

Microbial compositional differences between flu infection 
households
To assess the quality of the data, we profiled the micro-
bial composition in subjects across flu infection and 
control (no flu infection) households, as previous stud-
ies established that influenza can disrupt the microbial 
community, impacting diversity and composition of the 
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microbiota [3, 4]. We first quality filtered the sequence 
reads and removed human reads from the datasets 
(median 6.8  M (IQR = 9.8  M), post filtering of human 
reads). We then assembled the reads into contigs to 
generate metagenome-assembled genomes (MAGs) 
and assessed bacterial origins of the MAGs by taxo-
nomic assignment (Fig. S1a). Secondly, filtered reads 
were mapped back to each MAG to generate bacterial 
profiles for each sample (Fig. S1a). To analyze micro-
bial communities across the household groups, we 
compared the relative abundance of bacteria for differ-
ent comparisons (household subjects and samples are 
summarized in Tables  1 and 2). As there were more 
children (age < 18 years old) than adults with influenza 
infection in this cohort, we added age as a covariate in 
our analyses. We identified significant differences in 
bacterial diversity between household groups (PER-
MANOVA [21] p-value = 1e-4; Fig.  1a). We applied 
differential abundance analysis (limma [22]) to iden-
tify specific bacterial taxa that drove the differences 
in the beta diversity. We established that respiratory 
tract commensals and pathobionts such as Rothia, Veil-
lonella, and Prevotella were significantly enriched in 
the high and low flu infection households, while Hae-
mophilus and Corynebacterium were enriched in the no 
flu infection households (Fig. 1a). Some of the bacterial 
species that are differentially abundant between house-
hold groups are also ranked in the top 30 across sam-
ples for mean relative abundance (Fig. S2).

By comparing flu-negative samples from individuals 
in the influenza infection households with the (flu neg-
ative) samples from the control households, we identi-
fied significant differences in microbial composition 
(p-value = 0.0001). Many of the bacteria enriched in the 
flu infection households (Fig.  1a) are also enriched in 
the flu-negative samples from the flu infection house-
holds (Fig.  1b) including pathobionts such as Rothia, 
regardless of influenza infection status.

To also identify phage origins for the MAGs, we used 
VirSorter [23] and vConTACT2 [24] and generated phage 
profiles with number of reads mapped to each viral 
MAGs per sample (Fig. S3). Across the dataset, the most 
prevalent MAGs identified by vConTACT2 cluster with 
Chivirus and Lily virus, which include Salmonella phage 
species and a phage of soil and insect bacteria, respec-
tively (Fig. S3a). By comparing the relative abundance 
of these MAGs between household groups, we found 
MAGs clustering with the genera P68virus to be enriched 
in the high infection households (FDR = 0.042) and the 
ones clustering with Triavirus to be enriched in the low 
infection households (FDR = 0.043). These MAG clusters 
included Streptococcus and Staphylococcus phages (Fig. 
S3b). Top virus MAGs that clustered with phage genera, 
Decurrovirus and Poushouvirus, of common soil (Arthro-
bacter) and skin (Corynebacterium) bacteria, were 
enriched in the no infection households (FDR = 1.26e-5 
and 0.043) (Fig. S3b).

Shared CRISPR spacers to identify transmission events
One important question when considering the disruption 
of the respiratory microbiome in a respiratory viral infec-
tion is whether certain bacteria with pathogenic potential 
are likely to be transmitted. Since many commensals and 
pathobionts are natural members of the respiratory com-
munity [25, 26], determining the dynamics of respiratory 

Table 1 Summary table for individuals across the households

The p-values were calculated by using ANOVA and Fisher’s exact tests

Flu infection

Number of households High infection
N = 4

Low infection
N = 4

No infection
N = 2

p-values

Number of individuals 23 23 6

Age median (SD) 8 (6.5) 13 (9.5) 7 (8.3) 0.0981

Gender 1

 Female (%) 16 (70) 17 (70) 4 (70)

 Male (%) 7 (30) 6 (30) 2 (30)

Table 2 Summary table for flu infection and no infection 
samples

The p-values were calculated using ANOVA and Fisher’s exact tests

Flu infection

Infection
N = 42

No infection
N = 93

p-values

Age median (SD) 6 (5.4) 14 (8.2) 4.47E-07

Gender 0.02051

 Female (%) 15 (47) 74 (80)

 Male (%) 17 (53) 19 (20)
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Fig. 1 Differential taxa enrichment between individuals from flu infection and no infection households. a PCA plot of diversity of the microbial 
composition for different influenza infection households. Blue indicates high flu infection households, turquoise indicates low flu infection 
households, and gray indicates control households. Differential abundance of bacteria between high flu infection versus no flu infection or 
between low flu infection versus no flu infection households. b PCA plot of diversity of the microbial composition for flu-negative individuals 
from flu infection or control households. Red indicates flu infection households, and gray indicates control households. Differential abundance 
of bacteria between uninfected individuals from flu infection and control households. Numbers next to bacterial taxa names indicate relative 
abundance ranking across all samples; taxa in bold are part of the top 30 most abundant taxa (see Fig. S2)
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commensal bacteria shared within and between house-
holds is challenging when using metagenomic data. We 
thus used CRISPR spacers identified from the metagen-
omics data as potential barcodes for tracking bacterial 
transmission. Although CRISPR arrays have previously 
been used for strain identification of transmitted bacte-
rial isolates [13, 14], we applied a similar approach but 
to track bacterial transmission within and across house-
holds from the respiratory metagenomes. We first iden-
tified spacer sequences from the metagenomics reads 
using Crass [27] where we found 188,876 spacers in total 
(Fig. S1b). We pooled the spacers across all the samples 
and identified spacers shared between samples based on 
90% sequence similarity (61% of the spacers were unique; 
Fig. S1b). We then determined the proportion of spac-
ers that were shared between any two samples. Sam-
ples from the same individual collected at different time 
points shared more spacers than samples from different 
individuals (Fig. 2a). We also found that the proportion of 
shared spacers was higher when comparing samples from 
individuals living in the same household and individu-
als from different households (Fig. 2a), indicating poten-
tial transmission within households. To further compare 
spacers identified from individuals within and across 
households, we pooled the serial samples for each subject 
and redid the analysis in subject-to-subject comparisons. 
Individuals from the same households have a higher pro-
portion of shared spacers than individuals from different 
households (Fig. 2b), indicating more shared bacteria. As 
the number of subject-to-subject comparisons is not bal-
anced for within and between households, we removed 
comparisons between individuals with lower than 2% 
shared spacers (Fig.  2b), leading to an equal number of 
comparisons within and between households, help-
ing us weigh comparisons between individuals from the 
same and different households equally and removing 
noise. A connection network was then generated based 
on the proportion of shared spacers between individu-
als (Fig.  2c) where the nodes are the individuals, and 
the edges are weighted by the value of the proportion of 
shared spacers. We also detected subnetworks within the 
network using the shared spacer data between individu-
als (Fig. 2c). The correlation between the partition of the 
nodes to the subnetworks and the household metadata 
was 0.79, indicating individuals within the same house-
holds were more tightly connected based on their pro-
portion of shared spacers.

To determine which bacterial taxa were shared 
between individuals from the spacer profiles, we 
mapped the reads containing shared spacers to the 
bacterial MAGs for which we obtained taxonomic 
assignments (Fig. S1b). Given that the insertion of the 
phage sequences into the bacterial genomes is mostly 

random [20], the bacterial species that contain spac-
ers that are the same in different individuals can be 
inferred as being shared between these individuals. We 
thus found bacterial species from 7 bacterial genera 
that we infer to be shared within and between house-
holds (Fig.  2d). The shared bacteria included respira-
tory commensals and pathobionts such as Rothia and 
Neisseria. We compared the enrichment of shared bac-
teria between household groups, but while some bac-
teria were shared more often within certain household 
groups than others (Fig. S4), we did not have power to 
get statistical support.

From the spacer analysis, we have observed more shar-
ing of spacers between time points from the same indi-
vidual than across individuals (Fig.  2a). However, there 
are also changes in the spacer contents across time points 
from the same individuals (median normalized connec-
tions between time points from the same individuals 
were 0.19, Fig. 2a). Thus, we further investigated the spac-
ers mapped to the bacterial species we mentioned above 
(Fig. 2d) but for each time point individually (Fig. S5). We 
captured changes in CRISPR spacer content over time 
as there were shared spacers across time points, as well 
as unique spacers for the specific bacteria analyzed (Fig. 
S5). To evaluate how these bacteria were shared between 
individuals across our complete cohort, we constructed 
networks using the MAGs that have shared spacers 
(Fig. 3). In the shared bacterial networks, however, there 
was no overrepresentation of flu-infected individuals. 
Even when testing for overrepresentation of shared bac-
teria within flu infection households as compared to the 
control households and removing individual pairs that 
shared less than 6% of the spacers (Fig. S6a), thus focus-
ing on individuals within the same households (Fig. S6b), 
there was no correlation between bacterial transmission 
and flu infection levels (Fig. S6c). We also compared the 
proportion of shared spacers across pairs of individuals 
when (a) both individuals were infected with flu, (b) one 
of them was infected, or (c) neither was infected (Fig. S7). 
Although we did get significant p-values, the differences 
in the distributions were moderate.

Discussion
The respiratory tract microbiome, because of its func-
tion in health [25], should play an important role dur-
ing respiratory tract infections. Here, we generated 
metagenomic datasets from nasal and throat swabs to 
profile bacterial taxa and track bacterial transmission 
within and across households. We observed that while 
influenza-positive households were significantly different 
in microbial composition from the control (flu negative) 
households, with a few bacteria differentially abundant 
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between the groups, there was no significant difference 
in how bacteria were shared within households, with or 
without influenza.

Among the bacterial species enriched in the infec-
tion households, we identified species of the potentially 
pathogenic genus Rothia [28]. We also observe various 

Fig. 2 CRISPR spacers shared between samples and individuals. Proportion of shared spacers between samples or individuals were compared and 
used to construct the connection network between individuals. a Boxplot indicating proportion of spacers shared between samples from the same 
individuals, different individuals in the same households, and individuals from different households. The colors indicate whether the samples are 
from the same households (purple) or different households (orange). b Density plot and boxplot for proportion of spacers shared at the individual 
level within and between households. The black line on the density plot indicates the cutoff where there is the same number of comparisons 
within and between households. c The connection network was generated based on the proportion of shared spacers between individuals for the 
data above the cutoff in (b). The nodes represent individuals, and the edges represent proportion of shared spacers. Same color nodes indicate 
individuals come from the same household, and the numbers on the nodes represent the subnetwork they were partitioned into. d The barplots 
show the shared bacteria between individuals, normalized by the number of connections, and whether the individuals were from the same or 
different households
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Streptococcus species enriched in both the infection and 
control households, although some species of Strepto-
coccus are known to associate with viral-bacterial co-
infections [29–31]. Similarly enriched in the no infection 
households was Corynebacterium, which was previously 
found to be negatively associated with influenza infection 
[3]. Our study shows a household effect on the micro-
biome in influenza infection as we observed that indi-
viduals from flu infection and no infection households 
had different airway microbial profiles. This observa-
tion supports other studies showing that some individu-
als may be more vulnerable to influenza infection due to 
their microbiome composition differences [32], and that 
modulation of the microbiome could help protect against 
influenza infections [33].

Other studies have also observed microbiome compo-
sitional similarities between individuals within the same 
households [5, 6], such as for the skin microbiome due 

to similar exposure to external conditions [6]. However, 
analyses based on microbial compositional similarities 
cannot differentiate between the effects of diet, genetic 
inheritance, and transmission that shape the microbiome. 
In this study, we demonstrate potential transmission of 
respiratory bacteria that contribute to the shared micro-
biota within households. The use of CRISPR arrays to 
identify bacterial species and track bacterial transmission 
was previously done using bacterial isolates [13, 14] and 
metagenomics data type [15]. The novelty of our study is 
that we leverage for the first time CRISPR array spacers 
identified in the metagenomics data from clinical sam-
ples to track short-range bacterial transmission within 
and between households. We showed a higher percent-
age of shared CRISPR spacers between individuals from 
the same households, which is likely due to transmis-
sion events. The individuals connected with shared bac-
teria include both children and adults, with and without 

Fig. 3 Network connecting individuals with shared bacteria. Individuals sharing the same bacteria strains identified by CRISPR spacers were linked 
with the subject IDs shown next to the nodes. The color of the nodes indicates household information. The bacteria taxa are shown in the legend 
and colors of the edges. Circle and box indicate whether the subjects are children or adults; pink color is to highlight flu-positive individuals
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influenza. Children within households can drive bacterial 
transmission as they may have closer contact with other 
household members. However, we do not have bacte-
rial isolates or longer time points before influenza infec-
tion to validate bacterial transmission and to determine 
whether this happened during influenza infection.

By using the CRISPR spacers and bacterial genomes 
that the shared spacers mapped to, we have shown 
shared bacterial strains within and across households. 
The dynamics of the CRISPR array contents are affected 
by various factors. Coevolution between the CRISPR sys-
tem and the phages it encounters [19, 34], DNA recom-
bination of the CRISPR arrays between bacterial strains 
[35], and the balance between maintaining the CRISPR 
systems and survival [36] can contribute to the evolution 
of the CRISPR arrays. Although we were not able to infer 
the evolutionary rates of the CRISPR arrays in our data 
due a lack of full-length CRISPR arrays for all MAGs, 
we showed that we could capture the dynamic nature 
in the CRISPR array contents for the shared bacteria 
across sampling timepoints. Thus, the CRISPR arrays of 
the shared bacteria we analyzed were actively replacing 
or incorporating spacers, at least within the time frame 
of our sample collection (9- to 12-day period of sample 
collection). Coupling these types of data with long-read 
sequencing datasets would likely allow better tracking of 
specific bacterial strain transmission on a larger scale.

There are a few limitations in this study. First, while 
the use of CRISPR arrays did allow the identification 
of shared bacteria between individuals, not all bacte-
rial species have a CRISPR system [37]; thus, our analy-
sis is restricted to a limited set of bacteria. Also, we do 
not have bacterial isolates paired with the metagenom-
ics datasets, which would have allowed us to estimate 
CRISPR evolutionary rates for different bacterial spe-
cies. Second, we were limited by the number of house-
holds in the study and thus cannot draw any conclusion 
between bacteria-sharing and influenza infection rate. 
The households with high or low influenza infection only 
indicate the members in the households were infected 
with influenza, but we do not have estimates of influenza 
infection patterns (i.e., who infected whom) within these 
households.

In conclusion, the analysis of the metagenome data 
demonstrates microbiome compositional differences 
between individuals from influenza infection and no 
infection households. Despite these differences, bacte-
ria appear to be readily transmitted within and across 
households in both flu-positive and control individuals. 
We demonstrated CRISPR spacers can be used to study 
bacterial transmission in the microbial community using 
metagenomics datasets. However, although we showed 
commensal bacteria and potential pathobionts are shared 

within and across households, CRISPR array evolution 
rates are needed to validate specific bacterial transmis-
sion between individuals.

Material and method
Data collection
Samples were collected from individuals participating 
in the Household Influenza Transmission Study (HITS) 
in Managua, Nicaragua, between July 2013 and October 
2014. The HITS sample cohort included child index cases 
enrolled in the Nicaraguan Influenza Cohort Study and 
their family members who developed influenza as well as 
some influenza-negative control households. Respiratory 
specimens consisted of pooled nasal and throat swabs 
collected from household members every 2–4 days over a 
9- to 12-day period. Samples were shipped to the Center 
for Genomics and Systems Biology, New York University, 
and stored at – 80 °C. The HITS study was approved by 
the institutional review boards at the Nicaraguan Minis-
try of Health and the University of Michigan. Informed 
consent or parental permission was obtained for all par-
ticipants, and children aged 6  years and older provided 
assent.

DNA isolation and library preparation for metagenome 
sequencing
Genomic DNA was isolated from the remaining volume 
of each sample with the PowerSoil DNA Isolation Kit 
(Qiagen) and stored at − 80  °C. Libraries were gener-
ated using Nextera DNA Flex Library Prep Kit (Illumina, 
Inc., San Diego, CA, USA). Libraries were quantified by 
qPCR using the KAPA Library Quantification Kit (KAPA 
Biosystems, Wilmington, MA, USA) on a Roche 480 
LightCycler (Roche, Basel, Switzerland); their size dis-
tributions were measured on a 4200 TapeStation using 
a D1000 ScreenTape (Agilent Technologies, Santa Clara, 
CA, USA). Libraries were diluted to 4  nM in dilution 
buffer (10-mM Tris, pH 8.5) and combined with equi-
molar input into 9 sequencing pools (20 − 25 libraries per 
pool). Paired-end sequencing (2 × 150 bp) was performed 
at the Genomics Core Facility (Center for Genomics and 
Systems Biology, New York University) on the Illumina 
NextSeq 500 instrument according to the manufacturer’s 
instructions (Illumina, Inc., San Diego, CA, USA) with 
a few libraries sequenced on the Illumina HiSeq 2500 
instrument.

Metagenomics data processing and bacterial taxonomic 
assignments
The metagenomics reads were filtered to remove adap-
tors and low-quality reads using Trimmomatic v0.36 [38] 
followed by DeconSeq2 v1.32.0 [39] to remove human 
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reads. The median reads number for metagenomes was 
6.8 M (IQR = 9.8 M).

Bacterial and viral taxonomic assignments
Processed FASTQs were assembled into metagenome-
assembled genomes (MAGs) using metaSPAdes v3.15.2 
run with default settings [40]. For the identification of 
bacterial MAGs, the processed FASTQs were mapped to 
a catalogue of MAGs from all samples using minimap2 
v2.24 [41] keeping at most 5 secondary alignments. Using 
vamb v3.0.9 [42] with a minimum bin size of 200  k  bp, 
the MAG catalogue was used with mapping data to bin 
MAGs based on similarity and co-abundance informa-
tion. GTDB-tk v2.1.1 [43] was used to assign taxonomic 
classifications to each of the bacterial MAG bins.

For the viral MAG analysis, VirSorter2 v2.2.3 [23] was 
used to identify phages in our MAG catalogue with a 
minimum length of 1-kbp run with the flag –keep-orig-
inal-seq. The potential host regions left at the ends of 
the proviruses were trimmed from the identified phage 
contigs using checkV v0.8.1 [44]. Protein sequences 
were called for all viral sequences using prodigal v2.6.3 
[45] with the flag -p meta. Protein sequences were used 
to taxonomically identify each viral contig using vCon-
TACT2 v0.11.3 [24] against the viral RefSeq database 
using Diamond v0.9.24 [46] to create the protein–protein 
similarity matrix, MCL v14-137 [47] to generate pro-
tein clusters, and ClusterONE v1.0 [48] to generate viral 
clusters.

Counts for bacterial and viral MAGs were calculated 
by mapping the reads back to their respective MAG cata-
logues using minimap2 v2.24. Alignment files were fil-
tered to exclude non-primary and secondary alignments 
using the SAM flag 2308. Read counts to each contig 
were quantified using the idxstats function of samtools 
v1.9 [49].

Bacteria and virus differential abundance analyses
Beta diversity of the metagenomics datasets was deter-
mined using Bray–Curtis distance, and the global 
diversity between different groups was determined by 
PERMANOVA [21]. The bacterial taxa differential abun-
dance analysis was done using DAtest (Version 2.8.0) 
where 21 differential abundance analysis methods were 
tested against the datasets. Because limma had the high-
est score, AUC, and power in the analysis, we ran limma 
on the bacterial taxonomic profiles and viral taxonomic 
profiles to identify bacteria differentially abundant 
between the groups with an FDR smaller than 0.05.

CRISPR spacer analysis and network analysis
The spacers were identified from each metagenom-
ics dataset using Crass [27]. The spacers across all the 

samples were clustered, and spacers with sequence simi-
larity greater than 90% using CD-HIT [50] were deter-
mined as being the same spacers across samples. The 
percent of shared spacers between samples was deter-
mined as the number of shared spacers between any two 
samples divided by the average of total spacers in the 
two samples. Percent of shared spacers was compared 
between samples from the same individuals, different 
individuals in the same households, and different house-
holds. When comparing at the individual level, the spac-
ers from different time points for the same individual 
were combined to do the analysis. The network connect-
ing individuals based on shared spacers was generated 
using igraph [51] in R studio, and the edge weight was the 
percent of shared spacers between individuals. Subnet-
works were also analyzed using igraph. Reads contain the 
spacers were mapped back to their respective MAG cata-
logues using minimap2 v2.24. Alignment files were fil-
tered to exclude non-primary and secondary alignments 
using the SAM flag 2308.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 023- 01568-0.

Additional file 1: Fig. S1. Analysis pipeline. (a) (yellow and red paths) 
The metagenomics reads post-quality filtering and removal of human 
reads were assembled into contig—metagenome assembled genomes 
(MAGs)—using metaSPAdes. Viral MAGs were identified using CheckV and 
VirSorter2 and taxonomic assignments were done using vConTACT2. Bac-
terial MAGs were binned with vamb and taxonomic assignment was done 
using GTDB-Tk. We then mapped the reads back to the taxonomically 
assigned viral or bacterial MAGs to generate the bacterial and viral profiles 
for downstream differential abundance analyses. (b) (brown paths) We 
identified and extracted the spacers from the metagenomic reads using 
Crass. Spacers with 90% sequence identity were clustered together. We 
then used these spacers to identify the shared spacers between individu-
als and within and across households. Reads with spacers shared between 
individuals were mapped to the bacterial MAGs that had taxonomic 
assignments. Bacterial species containing shared spacers were identified 
as being shared between individuals. Fig. S2. Top 30 most abundant bac-
terial taxa. Bacterial taxa were ranked by their mean relative abundance 
across samples. The top 30 bacterial taxa are shown in the boxplot with 
the x axis representing the relative abundance for each sample. Fig. S3. 
Viral MAGs identified. (a) Top viral MAG taxa identified as sorted by median 
relative abundance. The x-axis shows the relative abundance of the viral 
taxa of all samples while the y-axis indicates the viral taxa, listed as family/
genus and phage species included within MAG clusters. (b) Viral MAGs 
differentially abundant between the high flu infection household vs 
control or low flu infection household vs control, identified with FDR cut-
off as 0.05. The log2 fold changes are shown on the x axis with the blue/
turquoise indicating flu infection household groups and gray the control 
household group. Fig. S4. Shared bacteria between flu infection house-
holds. The bar plots show the bacteria shared between individuals and 
how many pairs of individuals from the high flu infection, low flu infection 
and no flu infection households shared bacteria. Fig. S5. Mapping of the 
spacers to the bacteria shared between individuals for each sample. For all 
panels, the x axis represents the spacers mapped to the specific bacteria 
as indicated by the plot titles while the y axis represents the subject ID 
and timepoint of the sample. The colored dots mark households, as per 
Fig. 3. The shaded boxes indicate which family members had a direct con-
nection based on the sharing of bacteria. Fig. S6. Sharing of Bacteria and 

https://doi.org/10.1186/s40168-023-01568-0
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flu infection. (a) Density and boxplot plot for percent of spacers shared 
at the individual level within and between households. The red line on 
the density plot indicates the cut-off where all the “between household” 
individual pairs were removed. (b) The connection network was generated 
based on the percent of shared spacers between individuals for the data 
above the cut-off in (a). The nodes represent individuals and the edges 
represent percent of shared spacers. Same color nodes represent individu-
als from the same household. (c) Dotplot for proportion of individuals 
in each household that were connected. Number of individuals in (b) in 
each household were divided by the total number of individuals in the 
households and compared across flu infection groups. The x axis indicates 
household code and the panels show the household from high, low, or 
no flu infection groups. Fig. S7. Proportion of shared spacers between 
individuals with different flu infection status. The box plot shows the 
proportion of shared spacers between any two individuals that were: (1) 
both positive for flu, (2) one positive for flu, one negative for flu or (3) both 
negative for flu. We compared the proportion of shared spacers between 
the three groups and Kruskal-Wallis test p values are shown between any 
two groups. * indicates p values <2.22e-16.

Additional file 2: Table S1. Sample metadata.
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