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Abstract 

Background Whole microbiome RNASeq (metatranscriptomics) has emerged as a powerful technology to function-
ally interrogate microbial communities. A key challenge is how best to process, analyze, and interpret these complex 
datasets. In a typical application, a single metatranscriptomic dataset may comprise from tens to hundreds of millions 
of sequence reads. These reads must first be processed and filtered for low quality and potential contaminants, before 
being annotated with taxonomic and functional labels and subsequently collated to generate global bacterial gene 
expression profiles.

Results Here, we present MetaPro, a flexible, massively scalable metatranscriptomic data analysis pipeline that is 
cross-platform compatible through its implementation within a Docker framework. MetaPro starts with raw sequence 
read input (single-end or paired-end reads) and processes them through a tiered series of filtering, assembly, and 
annotation steps. In addition to yielding a final list of bacterial genes and their relative expression, MetaPro delivers 
a taxonomic breakdown based on the consensus of complementary prediction algorithms, together with a focused 
breakdown of enzymes, readily visualized through the Cytoscape network visualization tool. We benchmark the 
performance of MetaPro against two current state-of-the-art pipelines and demonstrate improved performance and 
functionality.

Conclusions MetaPro represents an effective integrated solution for the processing and analysis of metatranscrip-
tomic datasets. Its modular architecture allows new algorithms to be deployed as they are developed, ensuring its 
longevity. To aid user uptake of the pipeline, MetaPro, together with an established tutorial that has been developed 
for educational purposes, is made freely available at https:// github. com/ Parki nsonL ab/ MetaP ro. The software is freely 
available under the GNU general public license v3.
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Introduction
Innovations in culture-independent microbiology, cou-
pled with advances in high-throughput DNA sequencing, 
have profoundly transformed our understanding of the 
relationships between microbial communities and their 
environments [1–3]. In the context of human health, 
it is increasingly apparent that the composition of the 
intestinal microbiome has a significant impact on many 
diseases including type I diabetes, inflammatory bowel 
disease (IBD), obesity, and rheumatoid arthritis [4–10]. 
Due to technological and financial constraints, micro-
biome studies have historically relied on marker gene 
surveys (e.g., 16S rDNA sequences); a technology that 
focuses on community composition but provides lim-
ited insights regarding functional capacity [11, 12]. More 
recently, attention has been turning to the use of whole 
microbiome DNA and RNA sequencing (metagenomics 
and metatranscriptomics), which yield more meaningful 
mechanistic insights through broad analysis of microbi-
ome gene content and gene expression [13–19]. These 
novel methods of analysis are enabled by the next-gen-
eration sequencing (NGS) platforms such as Illumina’s 
HiSeq and NovaSeq platforms, capable of generating 
the millions of sequence reads required to report on the 
thousands of genes encoded and expressed by microbial 
communities [20]. A significant challenge is how best to 
process and interpret these rich datasets that can com-
prise upwards of hundreds of millions of sequence reads 
per sample.

While a need for fast and effective tools to automati-
cally process metagenomic and metatranscriptomic 
pipelines has been identified, few tools are available, par-
ticularly for metatranscriptomic data. Web-based analy-
sis platforms such as MG-RAST [21] and COMAN [22] 
have limited support for metatranscriptomic analyses, 
though the scope and customizability of possible analy-
sis is narrow and the scale of analysis is limited by the 
availability of remote compute resources. Existing locally 
hosted metatranscriptomic pipelines such as SAMSA2 
[23], IMP [24], and MetaTrans [25] offer significantly 
more options than the web-based analysis pipelines 
but are insufficiently parallelized, limiting their ability 
to scale to large (e.g., 100 + GB) datasets. Further, since 
they require modifications of experimental protocols or 
intimate knowledge of computer operating systems to 
install and execute, they are less amenable to the non-
expert. The HMP Unified Metabolic Analysis Network 
(HUMAnN3) is a fast and scalable platform that was pri-
marily designed to analyse metagenomic datasets [26]. 
Its extension to analyze metatranscriptomic data comes 
with the expectation that paired (i.e., from the same sam-
ple) metagenomic data is available, a potential constraint 
due to sequencing costs.

Here, we present MetaPro, a flexible, portable, mas-
sively scalable end-to-end analysis pipeline for processing 
metatranscriptomic data. MetaPro is designed spe-
cifically to be easy to deploy and use. It is developed in 
Python3, and both the pipeline and associated tools are 
encapsulated in a Docker image, allowing for single-step 
installation and deployment on both local computers and 
scientific computing clusters [27, 28]. MetaPro also sup-
ports an auto-resume feature for subsequent runs of the 
same data through the pipeline or if the user wishes to re-
run a specific stage of the pipeline. MetaPro is designed 
with the assumption that new bioinformatics tools will 
be created that will outperform existing tools currently 
utilized by MetaPro. Thus, to keep MetaPro relevant, 
the software architecture enables users to swap, remove, 
and insert new tools where applicable. To demonstrate 
improved performance and functionality of MetaPro, we 
benchmark the speed, resource utilization, and annota-
tion capabilities of MetaPro and two state-of-the-art 
pipelines, HUMAnN3 and SAMSA2, against three com-
plementary metatranscriptomic datasets. To promote 
user uptake, both for the application of metatranscrip-
tomics to microbial communities, as well as the tool 
itself, MetaPro features a tutorial mode that takes the 
user through each step of the processing pipeline for edu-
cational purposes and to encourage adoption beyond the 
computer specialist.

Implementation
MetaPro—a flexible and scalable metatranscriptomics 
analysis pipeline
MetaPro was developed as a robust pipeline for the reli-
able analysis of metatranscriptomic datasets. Key design 
features include the flexibility to incorporate improved 
tools as they become available, a scalable architecture 
to facilitate analysis of hundreds of millions of sequence 
reads, and ease of use such that end-users are able to 
install MetaPro as a single software package. To enable 
these features, the MetaPro pipeline utilizes a modular 
architecture in which different tools are used at differ-
ent stages of processing with standard inputs and outputs 
(Fig. 1A).

MetaPro accepts demultiplexed FASTQ-formatted 
sequences as the initial input file for analysis. Similar to 
other pipelines, MetaPro is primarily designed for pro-
cessing the relatively short-read sequences (e.g., 100–
150  bp) generated by Illumina platforms that allow for 
cost-effective profiling of gene expression in complex 
microbial communities. MetaPro accepts either single or 
paired-end sequence reads, and after trimming and filter-
ing for adaptors, paired-end reads are merged and low-
quality sequences, as well as duplicate reads are removed. 
Next, MetaPro filters for known host genomes, vectors, 
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and both rRNA and tRNA sequences. For paired-end 
datasets, at any time one read of a pair (either forward 
or reverse) is filtered during adaptor or quality trimming, 
its matching read (assuming it passes the filter) is placed 
into a group of “singletons.” For host, vector, and rRNA 
filtering, if either of a read pair matches a host, vector, or 
rRNA sequence, then by default its paired read would be 
assigned as host/vector/rRNA accordingly. This results in 
a set of reads of putative mRNA origin. Next, the remain-
ing mRNA reads have their duplicates repopulated. Pre-
vious analyses have demonstrated improved annotation 
efficiency through assembling reads into longer contigs 
[35]. Here, we apply rnaSPAdes [36], a transcriptomic 
assembler within the SPAdes toolkit. Since contigs may 
contain multiple genes (i.e., as might occur with a poly-
cistronic transcript), we subsequently apply MetaGen-
eMark [37] to split each contig into discrete “genes.”

After the contig assembly step, two categories of 
sequences have been generated: (1) a set of discrete 
“genes” derived from contigs assembled from filtered 
paired-end and singleton reads and (2) a set of unas-
sembled “singleton” reads representing reads (includ-
ing merged and unmerged paired-end reads, as well as 
orphans that can arise during filtering of paired-end 
datasets). These putative mRNA sequences subsequently 
undergo three separate multistage processes to annotate: 
(1) gene identities, (2) taxonomic origin, and (3) enzy-
matic function. For gene annotations, MetaPro applies 
a tiered set of sequence similarity searches, starting with 
the fastest and least sensitive, BWA [16, 38], followed by 
pBLAT [39], then DIAMOND [40]. The former two tools 
rely on a non-redundant database of genome sequences, 
ChocoPhlAn [26], while DIAMOND utilizes the NCBI 
non-redundant (NR) protein database [41]. For enzyme 
annotation, MetaPro relies on an ensemble approach 
involving DETECT [42], PRIAM [43], and DIAMOND 
[40] searches against the UniProtKB/Swiss-Prot database 
[44]. Due to its greater precision, MetaPro incorporates 
all DETECT predictions while only incorporating the 
union of the predictions obtained from both the PRIAM 
and DIAMOND searches. Finally for taxonomic annota-
tions, MetaPro uses taxonomic assignments of the genes 
identified through prior searches of ChocoPhlAn and NR 

protein databases, supplemented with predictions from 
Kaiju [45] and Centrifuge [46], two high-performance 
short read taxonomic classifiers. These latter classifiers 
use the NR protein and NCBI nucleotide databases [41], 
respectively. Predictions from all sources are combined 
within a consensus framework to derive a single taxo-
nomic assignment to each contig/read using WEVOTE. 
[47]

Since we expect MetaPro will be typically deployed 
on cluster computing environments that feature limita-
tions in memory and/or processing time requirements, 
MetaPro has been designed to protect against potential 
points of failure through implementation of intermediate, 
human-readable, output files that serve as checkpoints. 
To keep up with the current state of technology, MetaPro 
was written in Python3. The user is also able to insert 
their own databases. Further, since ease of installation 
and use often represent significant barriers to software 
adoption, MetaPro minimizes software dependencies 
through the use of the Docker software deployment infra-
structure [27]. Docker simplifies the task of distributing 
pipelines by combining all the tools used by MetaPro in 
a single image resulting in uncomplicated, single-step 
installation, and deployment independent of computing 
architecture. Furthermore, MetaPro is fully compatible 
with Singularity [28], a secure containerization software 
based on Docker, that is frequently employed in cluster 
computing environments.

Results and discussion
Comparisons of MetaPro performance relative to other 
pipelines
Datasets for benchmarking
MetaPro’s approach to metatranscriptomic analysis is 
different from those of SAMSA2 [23] and HUMAnN3 
[26]. Though MetaPro and SAMSA2 merge paired-end 
reads, SAMSA2 discards unmerged reads while MetaPro 
considers them valid. HUMAnN3 does not merge reads 
at all. We illustrate the methodological differences using 
three complementary datasets (Table  1; Supplemen-
tal Table  1). These comprise 12 samples obtained from 
the cecum and colon of 5 germ-free, non-obese dia-
betic (NOD) mice inoculated with Altered Schaedler 

Fig. 1 Overview of MetaPro workflow and performance relative to two state-or-the art pipelines. A Overview of MetaPro’s workflow, including the 
tools and databases used at each step. The bar on the right indicates the relative time required for each phase of the pipeline. B Chord diagrams 
tracking the trajectory of sequence reads across each pipeline, in comparison to MetaPro. Each arch represents one category of reads, bands 
mapping between arcs indicate the proportion of reads assigned by each pipeline to the associated category. C Stacked barcharts depicting the 
number of reads annotated to specific taxa in NOD mouse samples, and kimchi samples by BWA alignments, MetaPro, HUMAnN3, and SAMSA2. The 
NOD mouse datasets were generated from gut samples from mice inoculated with a defined microbial consortium (Altered Schaedler Flora (ASF) 
[29]. In addition to the 8 taxa associated with ASF, reads were also assigned to Parabacteroidesgoldsteinii, a close relative of Parabacteroides ASF519 
(see legend). The kimchi datasets comprise five major taxa (see legend [30–34]). It should be noted that Leuconostoc gasicomitatum reported in the 
original publication is currently classified as a subspecies of Leuconostoc gelidum. For NOD sample SRR1828965, HUMAnN3 did not annotate any 
reads

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Flora (ASF) [29] bacteria; 5 samples obtained during 
a 29-day fermentation of kimchi [48] at days 7, 13, 18, 
25, and 29; and 8 samples obtained during the matura-
tion of an in vitro oral biofilm cultured from a complex 
human oral microbiome [49] at the 6, 9, 11, 13, 15, 17, 
21, and 24-h time points. The ASF consortium repre-
sents a standardized collection of 8 bacteria used in 
studies of the mouse gut microbiome. The availability of 
their genome sequence [13] provides an effective gold 
standard to benchmark pipeline performance. Similarly, 
genome sequence data is available for the five species of 
lactic acid bacteria that, together, dominate over 97% of 
the kimchi fermentation datasets. Lastly, the human oral 
microbiome dataset represents putative mRNA reads 
from a highly complex microbial community encompass-
ing over 700 bacterial taxa, many of which have yet to be 
cultured. A gold standard is not available for this data-
set. However, the intention of analysis of the human oral 
microbiome dataset was to assess the performance of the 
three pipelines on a dataset exhibiting similar complexity 
to microbial communities typically associated, for exam-
ple, with human health. The performance of each pipeline 
was assessed against each of these datasets to assess the 
following metrics: read filtering, gene annotation, taxo-
nomic assignments, and enzyme function assignments.

Read filtering
Sequence processing pipelines require the filtering of 
input read sequences based on the sequence quality 
and potential contamination. For metatranscriptom-
ics, sources of contamination include sequence adap-
tors, reads of host origin, and RNA reads derived from 
non-mRNA sources. Identification and removal of these 
reads are important to both reduce downstream process-
ing time as well as to avoid potentially incorrect infer-
ences of data generated by the pipeline. We therefore 

examined the performance of each pipeline to filter reads 
from each of the benchmark datasets (Table  1). Filter-
ing of contaminant reads is particularly important in 
the context of host-associated metatranscriptomic data-
sets as sequences of host origin can represent a signifi-
cant proportion of reads in a sample [15]. Both MetaPro 
and HUMAnN3 (which relies on a Bowtie2-based [50] 
sequence filtering tool termed Kneaddata [51]) provide 
the option to filter host-associated reads. Both pipelines 
allow for user-defined custom reference databases of 
host-associated reads to be used in this filtering step. In 
our performance testing, we used the same mouse and 
human host-associated sequence reference libraries in 
both tools to ensure comparability between the results. 
SAMSA2, on the other hand, does not allow for filter-
ing contaminant reads. We also tracked the reads of each 
dataset through each pipeline to assess the relative per-
formance of each pipeline’s filtering protocols (Fig.  1B). 
For the mouse NOD dataset, while a minor fraction of 
reads annotated as host by MetaPro were similarly anno-
tated by HUMAnN3, many others were annotated as 
either “unidentified” or “ambiguous” (this latter category 
reflects the challenge in accounting for read annotation 
associated with the processing of paired-end datasets 
by HUMAnN3—see below). SAMSA2 maps most reads 
annotated as host by MetaPro, to “unidentified,” or were 
filtered for low-quality.

Due to the lack of a polyA tail, bacterial RNASeq data-
sets often feature a high abundance of non-mRNA reads 
such as those of rRNA or tRNA origin [15]. Identification 
and removal of these reads can significantly reduce the 
size of the putative mRNA dataset and increase the speed 
of downstream analyses. Furthermore, during the gener-
ation of many metatranscriptomic datasets rRNA deple-
tion kits are typically employed to reduce these abundant 
sequence moieties. Such kits often perform better for 

Table 1 Sequence read processing efficiency of MetaPro, HUMAnN3, and SAMSA2

a Unlike MetaPro and SAMSA2, HUMAnN3 reports only the number of unique gene families

Dataset Pipeline Mean % of total reads that 
are putative mRNA

Mean % of annotated 
putative reads

Mean annotated putative 
reads, as a % of total reads

Mean 
unique gene 
 familiesa

NOD mouse MetaPro 17.16 71.64 12.73 14,308

NOD mouse HUMAnN3 79.95 2.80 2.24 2691

NOD mouse SAMSA2 39.33 10.85 4.27 11,499

Kimchi MetaPro 32.21 59.27 19.09 87,193

Kimchi HUMAnN3 89.26 11.71 10.45 9166

Kimchi SAMSA2 72.54 15.72 11.4 86,270

Oral Biofilm MetaPro 97.48 96.96 94.52 95,707

Oral Biofilm HUMAnN3 100 71.31 71.31 28,750

Oral Biofilm SAMSA2 98.98 80.40 79.58 298,315
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specific taxa, resulting in taxonomic bias in the removal 
of rRNA sequences. It is therefore important to bioin-
formatically filter for any remaining rRNA to minimize 
their impact on taxonomic readouts. MetaPro filters 
rRNA and tRNA using a two-tiered approach consisting 
of the BAsic Rapid Ribosomal RNA Predictor (Barrnap) 
[52] and Infernal [53]. Barrnap is a fast RNA filtering tool 
utilizing hidden Markov models of sequence families, 
whereas Infernal is a slower, more sensitive RNA filtering 
tool utilizing both RNA sequence and secondary struc-
ture to identify sequence-divergent RNA homologs that 
conserve their secondary structure. Combining these 
tools results in sensitive filtering of rRNA and tRNA at 
an increased speed compared to using only Infernal. In 
contrast, HUMAnN3 uses the Bowtie2-based KneadData 
[51] for rRNA sequence filtering and SAMSA2 uses Sort-
MeRNA [54], a fast sequence-based filtering tool, to filter 
rRNA sequences.

Due to the methodological differences discussed above, 
the three pipelines analyzed here each generated dif-
fering numbers of putative mRNA reads (Supplemen-
tal Table  1). When analyzing the NOD mouse dataset, 
MetaPro, SAMSA2, and HUMAnN3 predicted that an 
average of 24.0 ± 15.6%, 39.3 ± 11.5%, and 80.0 ± 8.3%, 
respectively, of the total reads in the sample as being of 
putative mRNA origin. The significantly higher pro-
portion of predicted mRNA reads in these samples by 
HUMAnN3 likely represent insufficient filtering of low-
quality or host-associated reads. When analyzing the 
kimchi fermentation dataset, MetaPro predicted that 
an average of 32.2 ± 12% of the total reads in the sample 
were putative mRNA while SAMSA2 and HUMAnN3 
predicted 72.5 ± 3.9% and 89.3 ± 1.2%, respectively. Like 
the NOD mouse dataset, the high proportion of pre-
dicted mRNA reads by SAMSA2 and HUMAnN3 likely 
represent instances of insufficient filtering. Lastly, when 
analyzing the human oral biofilm dataset, which had 
low quality and putative rRNA reads prefiltered [49], all 
three pipelines predicted that nearly all of the sample 
consisted of putative mRNA reads. MetaPro, SAMSA2, 
and HUMAnN3 predicted 97.5 ± 1.1%, 99.0 ± 0.4%, and 
100.0 ± 0.01% putative mRNA, respectively.

When comparing the relative performance of rRNA 
filtering between MetaPro and the other pipelines 
(Fig.  1B), we see in the mouse gut data that MetaPro 
identifies the same rRNA reads as SAMSA2; however, 
a substantial fraction of reads assigned as rRNA by 
MetaPro is assigned as either “unidentified” or “low-
quality” by SAMSA2. For the HUMAnN3 pipeline, 
due to challenges in annotation accounting associated 
with paired read data (see below), the majority of reads 
annotated as rRNA by MetaPro have “ambiguous” 
assignments in the HUMAnN3 pipeline. Further, the 

majority of reads annotated by HUMAnN3 as rRNA 
were deemed “low quality” by MetaPro. While similar 
behavior is observed with the kimchi samples for the 
comparison with SAMSA2, MetaPro and HUMAnN3 
exhibit a high degree of concordance in rRNA read 
assignments, highlighting the significant difference in 
how HUMAnN3 handles single-end and paired-end 
datasets.

Indeed many of the differences we observe across 
the three pipelines reflect the way in which each pipe-
line handles paired-end data. SAMSA2 separates the 
unmerged reads but only annotates the merged reads. 
This results in far fewer putative reads when compared 
to MetaPro or HUMAnN3. HUMAnN3, which uses 
the filtering tool—Kneaddata, treats the forward, and 
reverse reads as two concatenated sets, but with each 
read of a pair receiving the same sequence ID. Conse-
quently as reads progress through the HUMAnN3 pipe-
line, if pairs of reads receive discordant annotations, 
since there is no unique ID for the pair—the assign-
ment for that ID becomes ambiguous. For example, the 
same ID for a read defined as host can also correspond 
to a read defined as rRNA, while a read ID defined as 
rRNA can also appear as a putative gene. This results in 
HUMAnN3 annotating the most putative reads of the 
pipelines.

As noted earlier, MetaPro attempts to merge paired-
end reads to reduce compute overhead. This data 
reduction process results in two broad categories of 
sequences: a set of discrete “genes” derived from con-
tigs and a set of “singleton” reads representing unas-
sembled merged and unmerged reads. In subsequent 
annotation efforts, we make the assumption that 
paired-end reads (merged or unmerged) derive from 
the same gene. Thus, during the annotation step, in the 
case where the two reads of a pair do not match to the 
same gene, we assign both reads to the gene which has 
the highest scoring match. We acknowledge that it is 
possible that the two reads of a pair could map to dif-
ferent genes (for example as might occur from a poly-
cistronic transcript), and this possibility increases for 
libraries generated with larger insert sizes. At the same 
time, however, we note that at least for the NOD mouse 
datasets, only 0.2–7.8% of non-overlapping paired 
reads that assembled into contigs were annotated to 
different genes (Supplemental Table  2). This approach 
simplifies the accounting process and enables a level of 
transparency to the user, providing, for example, a map 
that documents the mapping of each read to “genes” 
within a contig. Reads do not appear more than once 
in this map, as each read assignment is based on the 
alignment score defined by BWA. Only the first, highest 
scoring, alignment match is used.
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Assigning reads to genes
The ability to assign a short read to a gene is a criti-
cal step towards functional and taxonomic profiling of 
metagenomic and metatranscriptomic datasets. Here, 
we assessed the ability of each pipeline to assign reads of 
putative mRNA origin to individual transcripts. For the 
NOD mouse and Kimchi datasets, we were interested 
in comparing each tool’s ability to map reads to genes 
associated with the taxa known to be present in these 
datasets. While MetaPro and SAMSA2 assign reads to 
distinct genes and proteins, HUMAnN3 reports only on 
the basis of gene families as defined by UniRef90 [55]. 
This is reflected in the reports of unique transcripts iden-
tified in the datasets (Table 1 and Supplemental Table 1), 
where MetaPro and SAMSA2 report similar results, 
except for the oral biofilm datasets where the larger num-
ber of unique transcripts reported by SAMSA2 is likely 
associated with less stringent criteria used in sequence 
similarity searches. For HUMAnN3, gene family abun-
dances are split by taxa and reported in terms of reads 
per kilobase (RPK), which combines matches to members 
of a gene family normalized for the length of each mem-
ber matched as well as for sequences that match to multi-
ple reference genes. Thus, to compare to the gene-centric 
reporting of MetaPro and SAMSA2, we used interme-
diate files generated by the Bowtie2 and DIAMOND 
searches in the HUMAnN3 pipeline to map reads to indi-
vidual genes and proteins. Reads mapping to genes from 
multiple taxa were allocated equally to each taxon (with 
the relative contribution of that read assigned to each 
taxon being a proportion of the number of taxa the read 
mapped to). Reads that were not subsequently aligned 
(and reported) to a UniRef90 gene family were removed.

From each pipelines mappings, we compared the num-
ber of putative mRNA reads annotated by each pipeline 
to genes and/or proteins associated with the 8 ASF (NOD 
mouse datasets) and 5 lactic acid bacteria (kimchi data-
sets) known to be present in each sample (Fig.  1C). To 
establish a gold standard for each sample, we used BWA 
[38] to perform sequence similarity searches of reads 
from each sample against a database comprising only 
the genomes of either the 8 ASF bacteria or the 5 lactic 
acid bacteria. The gold-standard was created using raw 
reads, prior to any filtering, allowing the performance 
of each pipelines filtering protocols to also be assessed 
in this analysis. While we note that sequence data for 
all 8 ASF and 5 lactic acid bacteria were present in data-
bases used by each pipeline, we expect that the consid-
erably greater taxonomic representation of sequences in 
these databases would result in false positive taxonomic 
assignments.

Across the 12 NOD mouse samples, our BWA-based 
benchmarking annotated a total of 8.6 million reads to 

genomes of the 8 ASF bacteria (Fig. 1C and Supplemental 
Table 3). In contrast to the number of reads annotated to 
be of putative mRNA origin, MetaPro was able to anno-
tate more reads to a known gene/protein (4.25 million) 
compared to SAMSA2 (1.49 million) or HUMAnN3 (1.47 
million) (Supplemental Tables  1 and 3). Furthermore, 
MetaPro also annotated a greater number and proportion 
of these reads to one of the 8 ASF bacteria (1.45 million 
reads, 34.1%), compared to both SAMSA2 (179,000 reads, 
12%) and HUMAnN3 (177,000 reads, 12%). A majority 
of the reads annotated to ASF bacteria by SAMSA2 and 
HUMAnN3 were associated with Clostridium ASF356. 
However, Parabacteroides ASF519, the most prevalent 
species in the samples as defined by the gold standard 
(66.2% ± 6.5% of reads), was absent from the HUMAnN3 
results and represented by only 7053 reads across all 12 
samples annotated by SAMSA2. Instead, it appears that 
both pipelines erroneously assign many reads to tran-
scripts derived from a closely related species, Parabac-
eteroides goldsteinii. In contrast, MetaPro identified 
581,849 reads aligning to Parabacteroides ASF519 in all 
12 samples. Furthermore, HUMAnN3 failed to assign 
any reads for sample SRR1828965 and was unable to 
assign reads to transcripts associated with Clostridium 
ASF502, Eubacterium plexicaudatum ASF492, Firmi-
cutes ASF500, and Lactobacillus ASF360. MetaPro and 
SAMSA2 also exhibited poor annotation rates for these 
taxa, although we note that the version of ChocoPhlAn 
that MetaPro used in these analyses did not contain Fir-
micutes ASF500. Overall, through precision-recall analy-
ses, we find that MetaPro exhibits greater recall than 
both HUManN3 and SAMSA2 for all 12 mouse samples, 
although we note that the limited number of annotations 
assigned by SAMSA result in a higher precision than 
MetaPro for several datasets (Fig. 2A).

To further track relationships of annotations across 
pipelines, we compared annotations derived from each 
pipeline against gold-standard assignments (Fig.  2B, 
Supplemental Fig. 1). In these analyses, we removed all 
rRNA reads detected by MetaPro. While many reads 
assigned by the gold standard to P. ASF519 mapped 
to reads assigned to P. ASF519 and its close relative, P. 
goldsteinii, by MetaPro, we also identified mappings to 
several other categories, notably “other organisms,” that 
include assignments at different levels of taxonomy. 
Furthermore, we found a relatively small proportion of 
reads defined by the gold standard as P. ASF519, which 
are defined as “unidentified” by MetaPro. Notably, both 
HUMAnN3 and SAMSA2 map a greater proportion of 
gold standard-defined P. ASF519 reads as “unidentified” 
(Supplemental Fig. 1A).

Across the five kimchi fermentation samples, BWA-
based benchmarking annotated a total of 49.6 million 
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reads to genomes of the 5 lactic acid bacteria (Fig. 1C 
and Supplemental Table 4). Similar to the NOD mouse 
samples, MetaPro was able to annotate more reads 
to a known gene/protein (19.6 million) compared to 
SAMSA2 (20.2 million) or HUMAnN3 (18.5 million) 
(Supplemental Tables  1 and 4). Furthermore, MetaPro 
also annotated more of these reads to one of the 5 
lactic acid bacteria (22.2 million reads, 75%), com-
pared to both SAMSA2 (11.3 million reads, 56%) and 
HUMAnN3 (15.2 million reads, 82%). Interestingly, 
sample SRR443366 proved challenging to identify 3 
of the 5 lactic acid bacteria: Weissella koreensis, Leu-
conostic carnosum, and Leuconostic gelidum, relative 
to other samples. Few reads were annotated to these 
taxa by both MetaPro and SAMSA2, and no reads were 
annotated to these taxa by HUMAnN3. Precision-recall 
analyses again demonstrated a superior performance of 
MetaPro relative to the other two pipelines (Fig.  2A). 
Mapping of (non rRNA) read assignments across 
tools further revealed a higher degree of concordance 
between MetaPro and gold standard assignments rela-
tive to the other two tools (Fig.  2B and Supplemental 
Fig. 1B).

From these analyses, we found that MetaPro outper-
forms SAMSA2 and HUMAnN3 in terms of assign-
ing putative mRNA reads to the appropriate taxon of 
origin. For HUMAnN3, the limited ability to assign 
reads to appropriate taxa may reflect the pipeline’s reli-
ance on paired metagenomic data and the use of Met-
aPhlAn3 [56] to identify taxa likely associated with the 
dataset being processed. This allows the use of smaller, 
more targeted, reference databases for sequence simi-
larity searches, greatly reducing runtime. However, this 
strategy may be compromised if the taxa have not pre-
viously been well sampled, potentially explaining the 
inability of HUMAnN3 to annotate any reads for sample 
SRR1828965.

We note that HUMAnN3 was recently developed to 
supersede a previous version, HUMAnN2. Comparisons 
reveal these two versions generally yield similar results 
(Supplemental Fig.  2; Supplemental Tables  1, 3 and 4). 
However, for the NOD mouse datasets, HUMAnN3 
assigned more reads to Clostridium ASF356 over its pre-
decessor, while HUMAnN2, unlike HUMAnN3, was able 
to assign at least some reads in sample SRR1828965. For 
the kimchi datasets, HUMAnN3 was able to assign more 
reads to Leuconostoc gelidum, and Leuconostoc carnosum 
and, unlike HUMAnN2, was able to assign reads in sam-
ple SRR443366. We suggest these differences in the abil-
ity to assign reads to the two datasets, and SRR1828965 
and SRR443366 may be related to the different versions 
of MetaPhlAn used by each pipeline to generate targeted 
reference databases.

Overall, we found that MetaPro best reflected the gold 
standard assignments, although as for the other pipe-
lines, MetaPro assigned many reads to sequences from 
other taxa not expected in the samples. While this high-
lights the need to improve gene annotation methods, we 
nonetheless note that such sequences represent potential 
homologs of genes encoded by the expected taxa and are 
thus likely to be functionally informative.

Inferring accurate taxonomic ranks
In the previous section, we benchmarked each pipeline’s 
ability to map putative mRNA reads to transcripts of 
genes encoded by the genomes of bacterial taxa known 
to comprise the datasets. However, determining the taxo-
nomic composition of a sample to elucidate taxa respon-
sible for providing critical functions remains a challenge 
in metatranscriptomic analysis. MetaPro features an 
additional stage for taxonomic annotation to assign taxa 
more accurately to putative mRNA reads. MetaPro uti-
lizes input from the short-read classifiers Kaiju and Cen-
trifuge [46], together with the inferred taxonomy from 
gene annotations derived from the initial tiered set of 
sequence similarity searches, to determine the taxonomic 
composition of a sample. The taxonomic output from the 
short-read classifiers and the gene annotation stage are 
combined into a single consensus taxonomic classifica-
tion using WEVOTE [47] in order to increase the preci-
sion of classification. WEVOTE considers the taxonomic 
predictions from the two short-read classifiers, as well 
as the gene annotations, using a simplified variant of the 
NCBI taxonomy tree structure and selects the highest 
confidence taxonomic classification based on the output 
from individual approaches. WEVOTE produces a con-
sensus classification depending on the pattern of taxo-
nomic classification produced by the three predictors. 
HUMAnN3 utilizes MetaPhlAn3 [57] for taxonomic pro-
filing based on clade-specific marker genes in the sample 
whereas SAMSA2 solely utilizes the curated taxonomic 
annotations present in the RefSeq database to determine 
read classification and performing taxonomic classifica-
tion after gene annotation.

To assess the performance of each pipeline, we com-
pared the total number of reads that were correctly 
annotated to specific taxonomic ranks, from species to 
phylum, within the 8 ASF and 5 lactic acid bacteria for the 
NOD mouse and kimchi fermentation datasets (Fig.  2C 
and Supplemental Fig.  3). For the NOD mouse datasets 
[15], MetaPro can annotate an average of 71.6 ± 7.4% of 
reads across all samples, 59.7 ± 8.5% down to the species 
level, and 3.4 ± 0.5% to the genus level. The remaining 
8.5 ± 3.5% of reads were annotated to the rank of family 
or higher. SAMSA2 annotated 8.1 ± 6.5% of each sample, 
with 0.2 ± 8.5% down to the species level, and 6.3 ± 5.7% 
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to the genus level, while HUMAnN3 annotated an aver-
age of 5.6 ± 6.7% reads to each sample only to the species 
level. HUMAnN3 defaults to reporting on species-level 
taxa.

For the Kimchi set, MetaPro can annotate an  aver-
age of 85.8 ± 8.5% of putative reads across all samples, 
76.3 ± 7.8% down to the species level, and 7.6 ± 2.3% 
down to the genus level. The remaining 1.9 ± 0.9% of 
the reads annotated to the rank of family or higher. 
SAMSA2 annotated an average of 13.4 ± 7.6% across all 
kimchi samples, with 5.2 ± 3.5% to the species level, and 
6.59 ± 4.40% to the genus level. The remaining 1.6 ± 0.3% 
annotate to a taxon of family or higher. HUMAnN3 
annotated an average of 11.7 ± 5.7% reads to the species 
level and only to the species level. Though we recognize 
that HUMAnN3 and MetaPro treat reads differently, we 
made a design choice to provide information at different 
taxonomic levels to better help the user understand the 
structure of their data. In contrast, HUMAnN3 relies on 
clade markers to improve annotation accuracy which can 
help, for example, troubleshoot potential errors that may 
have occurred during sample collection and processing.

In addition to the NOD mouse and kimchi fermenta-
tion datasets, we were also interested in examining the 
performance of the pipelines on classifying more complex 
datasets derived from human oral microbiomes (Fig. 2C 
and Supplemental Fig. 3). These datasets comprise 8 sam-
ples and provide more complex data to further assess 
the performance of the three tools, with the caveat that 
we do not know what taxa are present in these samples. 
MetaPro annotated an average of 93% ± 1% of the data, 
leaving 7% ± 1% unable to be identified SAMSA2 was able 
to annotate an average of 80% ± 1.9% of its putative reads, 
with 20% ± 1.9% of the reads unclassified to any known 
taxa. HUMAnN3 annotated an average of 63.8% ± 2.6% 
of its putative reads, leaving 36.1 ± 2.6% unmapped. Of 
MetaPro’s putative reads, an average of 75.6 ± 3.2% were 
identified down to the species level, and 14% ± 2.8% of 
the reads were annotated to the genus taxa. SAMSA2 
annotated an average of 65% ± 1.5% of its putative reads 
to a species, and 13% ± 0.5% of those reads to a genus. 
HUMAnN3 annotated all 64.8 ± 2.6% of its putative reads 
to a species.

Overall, we found that MetaPro’s ensemble approach 
to taxonomic annotation consistently outperformed the 
approaches employed by SAMSA2 and HUMAnN3, 
although we did note a performance improvement for 
HUMAnN3 over HUMAnN2 (Supplemental Fig. 2).

Annotating enzymatic functions
The ability of each pipeline to accurately infer enzymatic 
functions of the datasets is essential for understand-
ing the metabolic activity of a sample. Since annotations 

based on simple similarity searches can yield false posi-
tive rates of up to 50% [58], MetaPro relies on a robust 
approach that combines predictions from DETECT [42], 
with those from PRIAM [43] that are also confirmed 
by sequence similarity searches against the Swiss-Prot 
database [59]. Though these approaches are still based 
on sequence similarity, this combinatorial method out-
performs the use of any one individual method and has 
been effectively applied in a number of settings [60–65]. 
Though the approaches MetaPro uses are also based on 
sequence similarity, they have additional scoring and 
qualitative factors. DETECT uses a global alignment 
score, while PRIAM uses a position-specific scoring 
matrix. These additional qualitative scores enhance their 
performance over the traditional sequence similarity 
methods.

HUMAnN3 reports MetaCyc pathway abundances, 
but to do this, the gene families are translated from their 
UniRef IDs into MetaCyc reactions, using a static rela-
tional map. This map also includes enzyme commission 
(EC) [66] numbers. HUMAnN3 then uses a pathway-
to-reactions mapping, locating minimally satisfied paths 
using MinPath [67]. SAMSA2 uses a static relational 
mapping of the RefSeq [68] database for gene annotation, 
and the SEED subsystem [69] database for enzymatic 
function annotation. Both databases are searched using 
DIAMOND-based sequence similarity searches using a 
relatively permissive e value cutoff of 0.001.

MetaPro performs enzyme annotations by first trans-
lating genes identified through the BWA and pBLAT 
searches into proteins and adding these to the proteins 
identified through the DIAMOND-based searches. 
Enzyme predictions reported by MetaPro consist of all 
the DETECT results, together with the intersection of 
enzymes predicted by both PRIAM and DIAMOND 
using an e value cutoff of 1e − 5. MetaPro also includes 
a high-confidence mode that will only return enzymes 
(reported as ECs) that the pipeline detects with high 
stringency cutoffs for PRIAM (probability score greater 
than 0.5) and DIAMOND (e value cutoff of 1e − 10). 
MetaPro can sometimes predict multiple enzymes per 
protein. To resolve these instances, MetaPro compares 
the enzyme matches against a reference database of valid 
pairs of enzyme combinations compiled from the Swiss-
Prot database. Pairs that lack experimental support (i.e., 
not previously identified in Swiss-Prot) are removed. 
In situations where more than two enzymes are predicted 
in a single protein, the enzymes with the two highest 
probability scores are used.

In all samples, we found that MetaPro identifies more 
unique ECs than HUMAnN3 and SAMSA2 (Fig.  3A, 
Supplemental Fig.  4; Supplemental Tables  5 & 6). For 
example, comparisons of predictions for the NOD mouse 
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samples (Fig.  3A) reveals MetaPro identifies an average 
of 949 unique ECs/sample (622 defined as high-quality) 
compared to 465 and 170 for SAMSA2 and HUMAnN3, 
respectively. Of these, 350 were shared with SAMSA2 
and 153 were shared with HUMAnN3. Both SAMSA2 
(41 ECs) and HUMAnN3 (4 ECs) predicted combinations 
of ECs that have not been identified in the same protein 
in Swiss-Prot. The kimchi datasets show a similar perfor-
mance (Fig.  3A), with MetaPro identifying 1982 unique 
ECs/sample (1238 defined as high quality) compared to 
859 and 600 for SAMSA2 and HUMAnN3, respectively. 
Of these, 692 were shared with SAMSA2 and 512 were 
shared with HUMAnN3. For these datasets, SAMSA2 
and HUMAnN3 predicted 75 and 32 EC combinations 
of ECs that have not been identified in the same pro-
tein in Swiss-Prot. Finally, for the oral biofilm samples 
(Fig. 3A), MetaPro identified an average of 1465 unique 
ECs/sample (1024 defined as high quality), compared to 
858 and 1171 for SAMSA2 and HUMAnN3, respectively. 
Of these, 674 and 856 were shared with SAMSA2 and 
HUMAnN3, respectively. Furthermore, SAMSA2 and 
HUMAnN3 identified an average of 79 and 120 EC com-
binations not previously seen in Swiss-Prot annotated 
proteins.

In summary, MetaPro delivers superior performance 
over the other two tools with both a greater number of 
EC predictions and greater confidence of annotations 
(through the combined use of DETECT, PRIAM, and 
DIAMOND predictions) relative to the simple sequence-
similarity-based approaches used by the other two tools. 
As a sidenote, we did find that HUMAnN3 showed 
improved performance over HUMAnN2, with the latter 
identifying fewer ECs in both the kimchi and oral biofilm 
datasets (588 and 986 unique ECs, respectively) while 
also predicting a higher number of combinations of ECs 
not supported by Swiss-Prot annotations (Supplemental 
Fig. 4 and Supplemental Table 7).

Result reporting
To allow for more intuitive exploration of processed 
data, MetaPro features several text and visual outputs. 
For context, HUMAnN3 produces three text files: (1) 
a gene families file that details the abundance of each 
gene family in the community (as measured by reads 
per kilobase; RPK), stratified to show the contribu-
tion from each species; (2) a pathway abundance file 
that details a normalized abundance of pathway com-
ponents for each pathway, again stratified to show spe-
cies contributions; and (3) a pathway coverage table, 
which provides a confidence score for the presence of 
a pathway in the community, as well as in individual 
species. SAMSA2 is typically used to compare between 
two datasets but does generate files that report: (1) 

DIAMOND search results, (2) a taxonomic summary 
of read pair counts, and (3) an enzyme classification 
summary of read pair counts. In contrast, MetaPro 
produces the following: (1) a histogram of read qual-
ity, together with a summary of read processing (reads 
filtered for quality, host contamination, rRNAs and 
tRNAs; putative mRNAs; annotated mRNAs; number 
of unique transcripts; and number of unique ECs); (2) 
a detailed gene-to-read mapping of every read the pipe-
line annotated; (3) a summary of every taxon identi-
fied in the sample, together with read pair counts; (4) 
a list of ECs identified, together with the gene or pro-
tein providing the annotation; (5) a table of genes with 
associated reads per kilobase of transcript, per million 
mapped reads (RPKM), with details on the contribution 
of taxa that with further details on the contribution of 
taxa that are individually responsible for at least 1% of 
putative reads; (6) a CytoScape-compatible annotation 
table that can be readily imported into Cytoscape and 
mapped on to KEGG defined pathways to illustrate 
the contribution of specific taxa to enzymes expressed 
in the selected pathway (Fig.  3B). This latter mapping 
requires the use of the KEGGmapper and enhanced-
Graphics app plugins for the Cytoscape platform and 
is described in more detail in the accompanying tuto-
rial; and (7) a heatmap in  png image format, showing 
the relative contribution of the 20 most prevalent taxa 
to enzyme expression grouped in Kyoto Encylcopedia 
of Genes and Genomes (KEGG)-defined superpathways 
(Fig. 3C).

The read summary table contains: (1) total number of 
reads in the sample; (2) the number of high-quality reads; 
reads where the adaptors removed, trimmed of low-qual-
ity reads, and then merged; (3) a percentage of (2), rela-
tive to the total reads in the sample (1); (4) the number of 
host reads that have been removed by MetaPro (includ-
ing duplicates); (5) a percentage of column (4), relative to 
the total reads in the sample (1). (6) The number of vec-
tor reads removed by MetaPro (including duplicates). (7) 
A percentage of column (6), relative to the total reads 
of the sample (1). (8) The number of reads removed by 
MetaPro’s rRNA filter. (9) A percentage of column (8), 
relative to the total number of reads (1). (10) The num-
ber of putative reads (mRNA) to be annotated. (11) A 
percentage of column (10) to the total reads in the sam-
ple (1). (12) The number of reads annotated by MetaPro’s 
gene-annotation step. (BWA, pBLAT, and DIAMOND). 
(13) A percentage of the reads in column (12), relative to 
the number of putative reads (10). (14) The number of 
unique genes annotated by MetaPro’s gene annotation 
step ((BWA, pBLAT, and DIAMOND). (15) The num-
ber of unique enzymes MetaPro detected in its enzyme 
annotation step, using the “high” stringency settings. 



Page 11 of 23Taj et al. Microbiome          (2023) 11:143  

(16) The number of unique enzymes MetaPro detected 
in its enzyme annotation step, using the “low” stringency 
setting.

Computational overhead
Processing time represents an inherent tradeoff between 
the robustness of an analysis and the speed with which it 
can be completed. MetaPro, SAMSA2, and HUMAnN3 
are each designed to perform specific analyses. MetaPro 
focuses on the annotation of samples of metatranscrip-
tomic data to provide a detailed breakdown of taxonomic 
contributions. SAMSA2 was designed to perform com-
parative analyses between two datasets. HUMAnN3 was 
primarily designed primarily for the analysis of metagen-
omic data, reporting gene family abundances, but also 
accepts metatranscriptomic data. We compared the 
execution of the MetaPro, SAMSA2, and HUMAnN3 
pipelines across all 25 datasets using one computing 
node equipped with 20 Intel Skylake 2-core-CPU, 202 GB 
RAM, running CentOS 7. Each pipeline differs signifi-
cantly in their completion times (Table 2 & Supplemen-
tal Table  8). For the NOD mouse datasets, the mean 
completion time for each sample was 16,071 ± 5259, 
2342 ± 321 and 1310 ± 267 s for MetaPro, SAMSA2, and 
HUMAnN3, respectively. Similarly, for the five kimchi 
fermentation datasets, mean completion time per sample 
was 53,733 ± 18,287, 5883 ± 1739, and 11,067 ± 903  s for 
MetaPro, SAMSA2, and HUMAnN3 respectively. How-
ever, for the 8 human oral biofilm datasets, we found 
the mean completion times were longer for SAMSA2 
being 46,835 ± 2679, 53,939 ± 3191 and 14,282 ± 1126  s 
for MetaPro, SAMSA2, and HUMAnN3, respectively. 
With the exception of the oral biofilm datasets, MetaPro 
requires a longer execution time than the other pipelines, 
with, for example roughly 30% of runtime dedicated to 
the initial cleaning step, which includes rRNA removal 
(Fig.  1A). However, as indicated above, this increase in 
runtime stems from the preference to prioritize accuracy 

over speed. The majority of the execution time within 
MetaPro is accounted for by both the use of a large ref-
erence file (in the case of DIAMOND with the NR data-
base), as well as the use of robust tools for enzymatic 
function inference (Fig. 1A) rather than static mappings 
used by other tools. For example, in assigning reads to 
genes, MetaPro uses the entire ChocoPhlAN database, 
instead of the subset used by HUMAnN3. Furthermore, 
MetaPro performs 3 times as many annotation phases 
as SAMSA2. For the oral biofilm dataset, it was interest-
ing to note the longer execution time of SAMSA2. This 
appears related to the higher number of reported hits to 
the RefSeq database during read annotation. This likely 
resulted in a slow down due to the creation of the large 
output files associated with reporting the results of the 
searches.

Since the choice of database can impact runtime per-
formance, MetaPro’s ability to use customized databases 
offers the potential for the user to select smaller and 
more specialized databases that would result in signifi-
cant performance speedups. While MetaPro’s default use 
of large databases, and multiple passthroughs of data 
using different tools slows performance, it does ensure 
both enhanced coverage and improved accuracy of taxo-
nomic and functional (i.e., EC annotations) assignments. 
Nonetheless, we have included a section on how to add 
user defined databases to our software documentation.

Easy installation of MetaPro through docker
MetaPro is packaged as a Docker [70] container for easy 
distribution. Every third-party software tool MetaPro 
uses is installed under the docker container, as well as 
all custom scripts we developed as part of the pipeline. 
The user will still need to obtain their own copy of Meta-
GeneMark’s license key. MetaPro is compatible with Sin-
gularity [28], a specialized version of Docker meant for 
scientific computing environments. By using Docker and 
Singularity, MetaPro can interface with job schedulers 

Table 2 Average runtime performance of MetaPro, HUMAnN3, and SAMSA2

Dataset Pipeline Pre-processing St. dev Data analysis St. dev Total time St. dev

NOD mouse HUMAnN3 339.50 101.00 970.92 211.83 1310.42 267.13

NOD mouse SAMSA2 –- –- –- –- 2341.75 320.92

NOD mouse MetaPro 3869.12 3442.85 12,202.28 4696.80 16,071.40 5259.01

Kimchi HUMAnN3 1960.80 133.92 9106.20 809.62 11,067.00 902.83

Kimchi SAMSA2 –- –- –- –- 5882.60 1738.68

Kimchi MetaPro 24,853.02 3256.61 101,984.66 67,339.49 12,6837.68 70,477.12

Oral Biofilm HUMAnN3 3481.00 203.84 10,800.63 967.63 14,281.63 1126.46

Oral Biofilm SAMSA2 –- –- –- –- 53,938.88 3190.63

Oral Biofilm MetaPro 19,183.11 2479.90 41,996.21 3424.56 61,179.33 5191.15
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like any other docker-ized software. The current itera-
tion of MetaPro can only handle one data sample per 
run. It was not designed to work on multiple samples 
simultaneously. 

Hardware requirements
MetaPro requires at least 707  GB of disc space to store 
the default reference libraries. MetaPro also currently 
requires up to 6 times the amount of disc space that 
the sample dataset occupies. This is to ensure there is 
room for the intermediate files the pipeline creates. As 
for RAM, there is no hard limit, but we recommend at 
least 128 GB of memory due to the requirements of DIA-
MOND. MetaPro was meant for large data processing 
nodes, with ample RAM and CPU cores.

MetaPro online tutorial
To introduce and guide researchers through the process 
of analyzing metatranscriptomic data, MetaPro features 
a dedicated tutorial mode. The tutorial has been designed 
for both computational novices as well as more seasoned 
bioinformaticians starting out in metatranscriptomic 
analysis. The interactive tutorial takes users through 
the tasks of filtering data, aligning reads to databases, 
and scanning identified genes through taxonomic and 
enzyme classification tools. The tutorial includes addi-
tional intermediate steps, such as reading the quality of 
the data, and interfacing the data with visualization soft-
ware (CytoScape) to highlight the importance of each 
step and help the user understand how MetaPro parses 
the data. The tutorial is run within the MetaPro Docker 
container and was developed over several years of work-
shops and classes provided to both undergraduate and 
graduate students, as well as through the Canadian bioin-
formatics workshop series (https:// www. bioin forma tics. 
ca).

Conclusions
Increasingly, microbiome studies are shifting emphasis 
from identifying the composition of complex microbial 
communities to understanding how they function. Sup-
porting this shift is the emergence of whole microbiome 
RNASeq (metatranscriptomics). However, despite the 
recognized value of these datasets, few dedicated tools 
are currently available for their analysis. To address this 
need, we developed MetaPro, a single package capable of 
processing and analyzing metatranscriptomic datasets. 
Our benchmarking analyses show that MetaPro delivers 
superior performance over existing pipelines in terms 
of gene, taxonomic, and enzyme annotations. Output is 
delivered as normalized gene expression profiles in terms 
of RPKM, together with a novel visualization framework 
based on the network visualization tool, Cytoscape, that 

allows the display of enzyme expression and the taxa 
responsible in the context of individual metabolic path-
ways. To assess the performance of MetaPro, we used 
samples derived from NOD mousececal samples, kimchi 
fermentation, and samples from a human oral biofilm 
dataset to compare against HUMAnN3 and SAMSA2. 
The differences in features are summarized in a table 
(Table 3).

MetaPro is readily installable with limited depend-
encies allowing deployment across multiple compute 
architectures, including cloud computing environments, 
allowing for massively parallel scale up required for the 
hundreds of millions of reads typically generated in a 
single experiment. MetaPro is designed to be flexible to 
account for the incorporation of improved algorithms as 
they are developed. To help users understand the various 
steps involved in metatranscriptomic analysis, we pro-
vide an established tutorial that has been developed with 
non-specialists in mind. Currently, the only major limi-
tation to metatranscriptomic analysis using the MetaPro 
pipeline is speed of execution relative to existing tools. 
However, we consider speed to be secondary to accuracy. 
We are currently developing novel methods to enhance 
pipeline performance in terms of speed without compro-
mising accuracy of the results.

Methods
MetaPro workflow
The MetaPro workflow involves a series of steps which 
first filters, then annotates the sequence data. In initial 
preprocessing steps are as folloes: MetaPro identifies and 
removes low-quality reads and adapters. Reads are sub-
sequently merged and duplicates identified and removed. 
After merging, the reads are further filtered for reads of 
host origin and other potential contaminants. Next, reads 
associated with non-coding RNA moieties (e.g., rRNAs 
and tRNAs) are identified and filtered. The remaining, 
reads of putative mRNA origin are subsequently repop-
ulated with any duplicate reads, before being assembled 
into contigs, which are used to define discrete genes. 

Table 3 Comparison of tool characteristics

Feature MetaPro HUMAnN3 SAMSA2

Filter host using custom databases Yes No No

Filter vectors Yes No No

Filters rRNA Yes Yes Yes

Uses multiple processors Yes Yes No

Assembles contigs Yes No No

Merges reads Yes No Yes

Compatible with Docker Yes Yes No

https://www.bioinformatics.ca
https://www.bioinformatics.ca
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After pre-processing, MetaPro begins the annotation 
process by identifying which gene each read belongs to, 
using sequence aligners. Once complete, the pipeline 
attempts to assign the taxonomy of each read while also 
attempting to annotate enzymatic functions to each gene. 
Finally, MetaPro summarizes the details of its analysis 
into a series of output files (Fig. 1A).

Sequence preprocessing
MetaPro first identifies and removes segments of reads 
associated with adapters and low-quality bases at the 3’ 
end using AdapterRemoval v2.1.7 [71]. The number of 
threads used is set to the maximum allowable number of 
cores the computing environment provides. This is auto-
matically detected by MetaPro. The trimqualities flag is 
used, which trims the 5’/3’ termini of reads with quality 
scores up to the AdapterRemoval default quality mini-
mum of 2. Other settings rely on default values. Paired-
end reads may become separated at this time; if one read 
is removed, while the other remains. In this instance, 
the orphaned reads are collected and labeled as single-
tons. If the data is paired-end, the reads are merged using 
VSEARCH v2.7.1 [72] with the flag -fastq_mergepairs. 
Merged reads are moved to the singletons collection. 
Once merging is complete, the paired-end reads and sin-
gletons are filtered for low-quality using VSEARCH with 
the flags –fastq_filter, –fastq_ascii, and –fastq_maxee. 
The ascii argument is determined by checking the reads 
for specific characters, to determine the ascii code offset 
(33 or 64). If the data is single-end, merging is skipped.

At this stage, MetaPro will have created two catego-
ries of data: paired-end reads that were not merged 
(pair_1 and pair_2) and paired-end reads that suc-
cessfully merged (singletons). MetaPro next uses 
VSEARCH again to filter for low-quality reads from 
paired-end reads and singletons, with the –fastq_fil-
ter flag, using the default quality thresholds. Filtering 
low-quality reads out of paired-end data will result 
in mismatched reads whereby one read is high-qual-
ity, while the other is low quality. These orphaned 
reads are moved to the singletons by MetaPro using a 

custom script. Paired-end reads are strictly defined as 
read pairs featuring both forward and reverse reads. 
MetaPro then removes duplicate reads from the paired-
end and singletons data using CD-HIT v4.6.8 [73], to 
reduce the data load for subsequent steps.

Next, MetaPro provides the user with an option for 
filtering contaminant sequences and sequences derived 
from any host organism that might be associated with 
the sample (for example if the sample was collected 
from a mouse or human intestinal sample). This is 
defined through a configuration option set by the user 
before launching the pipeline. Though MetaPro lets 
users choose their own host filter sequences, by default, 
MetaPro uses mouse and human genome sequences. 
When filtering paired-end reads, if either paired-end 
read matches to a host, vector, or rRNA sequence, then 
by default its paired read would be assigned as host/vec-
tor/rRNA accordingly. The user can override this feature 
to allow both reads of a pair to pass these filters, if at least 
one of the pair passes, through setting the “filter strin-
gency configuration” option to “low”.

To identify sequence artifacts arising from library prep-
aration, MetaPro utilizes the UniVec_Core dataset com-
prising known sequencing vectors, sequencing adapters, 
linkers, and PCR Primers derived from the NCBI Uni-
Vec_Core Database [41]. Host organism sequences to 
be filtered are provided as a single FASTA formatted file 
by the user and identified through sequence similarity 
searches using BWA 0.7.17 [38] and pBLAT 2.0 [39]. Due 
to pBLAT’s inability to support paired-end data, MetaPro 
further sorts the reads with internal logic. If either one of 
a pair of reads matches a sequence in the contaminants 
file, both reads are filtered from downstream analysis. 
This behavior can be toggled to a more permissive rule 
where pairs are retained if either one of the pair does not 
match a sequence in the contaminants file. Host and vec-
tor filtering is performed on paired-end reads, and sin-
gletons. During this step, paired-end reads may become 
separated, when either read of a pair (forward or reverse) 
matches with a host or vector. When this occurs, the 
orphaned read is moved to the singletons collection.

(See figure on next page.)
Fig. 2 Relative performance of taxonomic classifications assigned by each pipeline. A Precision-recall graphs of MetaPro, HUMAnN3, and SAMSA2’s 
gene annotation strengths against the gold standard hits. True positives are annotations of reads from the pipeline that agree with the gold 
standard. True negatives are reads that are unidentified by both the pipeline and the gold standard. False negatives are reads that the gold-standard 
identified but were not annotated by the pipeline. False positives are when the pipeline annotated a read where the gold standard did not. Due to 
the low number of true positives across all samples and all tools, precision and recall are low, and the plots do not resemble a typical precision-recall 
plot. B Chord diagrams mapping the relationship of reads annotated by the gold-standard and MetaPro for NOD mouse gut and kimchi datasets. 
Arcs represent categories of reads. Bands between arcs indicate the proportion of reads mapping between categories, for example while many of 
reads mapped to Parabacteroides ASF519 are annotated as Parabacteroidesgoldsteinii in MetaPro, other reads are assigned by MetaPro to derive from 
a variety of other organisms. For the kimchi dataset, we observe a higher agreement between MetaPro and gold standard annotations. C Pie charts 
showing the breakdown of taxonomic assignments for each pipeline for a selection of samples. Each chart is constructed only from reads deemed 
to be of putative bacterial mRNA origin as defined by each pipeline. MetaPro annotates more putative reads to species than either HUMAnN3 or 
SAMSA2
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Fig. 2 (See legend on previous page.)
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Having identified and removed low quality and con-
taminating reads, MetaPro next filters for reads of 
rRNA origin. In a typical RNA extract, 90% or more of 
reads can be of rRNA origin [74]. While rRNA deple-
tion kits can significantly reduce the proportion of such 
reads, metatranscriptomic pipelines need to filter for any 
remaining reads of rRNA origin. rRNA filtering repre-
sents one of the most computationally expensive stages 
of the MetaPro pipeline. To accelerate this step, MetaPro 
first removes duplicate reads prior to filtering and repop-
ulates the data after filtering. To further increase effi-
ciency, rRNA filtering is first performed by Barrnap, a 
rRNA filtering tool based on nhmmer [75], and then by 
Infernal [53], which while more computationally inten-
sive, provides greater sensitivity through the application 
of covariance models based both on sequence and sec-
ondary structure comparisons. To better exploit parallel 
computing environments, MetaPro splits read data into 
smaller chunks consisting of 50,000 reads. Each chunk 
is then processed by Barrnap in parallel, after which the 
pipeline segregates sequence reads into putative mRNA 
reads and other reads. The putative mRNA reads are 
then processed a second time by Infernal, and reads 
not identified as mRNA are removed. Singletons and 
paired-end reads are filtered for rRNA. Paired-end reads 
may become orphans from rRNA filtering. As previous, 
orphaned reads are moved into the singletons collection.

To improve speed and accuracy of the subsequent 
annotation steps, the pipeline attempts to assemble 
reads into longer contiguous sequences (“contigs”) using 
the sequence assembler, rnaSPAdes [36]. Prior to con-
tig assembly, duplicate reads that were removed by CD-
HIT are added back in. This is to preserve the read depth 
of the data, used in assembly. However, only reads that 
have passed the various filtration steps are repopulated. 
Assembling reads into contigs reduces the amount of file 
reading and writing (I/O)-related tasks by shrinking the 
number of unique segments analyzed. Furthermore, by 
analyzing longer sequences, the subsequent alignments 

of the remaining data produce results of higher confi-
dence. Rather than assembling data prior to filtering, we 
chose to assemble contigs last due to the possibility of 
assembling contigs with contaminated reads and hence 
minimize the occurrence of chimeras. We further ensure 
that assembled reads do not derive from host, rRNA, or 
tRNA. This was to ensure that we would not mislabel 
whole sections of reads that may not be a contaminant or 
annotate something that was contaminated. Preliminary 
analyses involving assembling the data first were found to 
have minimal impact on results.

As contigs may represent transcriptional units con-
taining multiple genes, MetaPro applies MetaGen-
eMark v1 [37], a gene model predictor, to separate 
contigs into individual putative genes. MetaGeneMark 
defines sections within the contigs that are predicted 
to encode a gene. Reads are subsequently mapped to 
discrete genes through BWA sequence searches. The 
specific settings are a mismatch penalty (-B) of 40, a 
gap-open penalty (-O) of 60, a gap-extension penalty 
(-E) of 10, and a clipping penalty (-L) of 50. At the end 
of this stage, we have three categories of data: gene 
models derived from contigs, paired-end reads that did 
not align with these models, and singletons (filtered 
merged reads and filtered orphaned reads) that did not 
align with the models. A map of gene models to their 
mapped reads is created to track all reads as they travel 
through the pipeline (contig map).

Sequence preprocessing design rationale
MetaPro was made with several novel design choices 
that we will explain further. Firstly, we chose to merge 
the sequence reads prior to host/vector/rRNA filtering, 
and contig assembly to minimize the occurrence of chi-
meras, and to optimize the processing times of MetaPro. 
Though we acknowledge that this may result in lower 
quality downstream steps, we have found this has mini-
mal impact on the filtering. Based on an initial set of 
3.1 million reads generated from the cecal contents of 

Fig. 3 Enzyme annotation performance comparison and example outputs. A Stacked barcharts indicate the number of enzymes, as defined 
through enzyme classification (EC) assignments, annotated by each pipeline for the three sets of datasets: NOD mouse gut, kimchi, and human 
oral biofilm. In addition to displaying ECs’ unique or shared between MetaPro and the other two tools, also shown are ECs, predicted by HUMAnN3 
and SAMSA2 to occur in combination with another EC, in the same transcript, with no supporting evidence that such a combination has been 
previously observed (as defined through Swiss-Prot annotations). Further, for HUMAnN3, we show the number of EC assignments that occur in 
combinations of greater than 2 ECs. B A Cytoscape network representation of the tricarboxylic acid (TCA) cycle, together with the breakdown of 
EC expression by taxon. MetaPro generates a Cytoscape compatible annotation file which can be used to map gene expression data onto KEGG 
defined pathways using the KEGGscape and enhancedGraphics plugin applications. Here, each node represents an individual enzyme with its 
size indicating the overall expression of that enzyme in the dataset (as defined by RPKM). Colored sectors indicate the contribution of each taxon 
to expression of that enzyme. To simplify the display, taxa were manually merged into 8 taxonomic groupings. Here, we see that members of 
Klebsiella and Citrobacter are the main contributors to the TCA cycle. These outputs were generated from a sample in the human oral biofilm dataset 
(SRR5984039). C A summary overview showing the contribution of major taxa to KEGG-defined superpathways. After annotation of enzymes, 
MetaPro generates a heatmap in PNG format showing taxa responsible for expression (calculated as the sum of RPKMs assigned to each EC 
annotated for each taxon). Only taxa associated with at least 1% of total reads are shown (see the “Methods” section)

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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a non-obese diabetic (NOD) mouse (SRR1828998), we 
found that this new order identified only 13,179 addi-
tional host reads, representing 0.42% of the dataset.

Secondly, we have chosen to assemble the sequence 
reads after filtering to avoid the inclusion of contami-
nant reads in the assembly. We tested an alternate data 
workflow (Scenario B: (1) filtering for adaptors and low 
quality, (2) assembly of reads into contigs, (3) filtering of 
host and vector contaminants, and (4) filtering of rRNA) 
against the current workflow (Scenario A: (1) filtering for 
adaptors and low quality, (2) removal of sequence dupli-
cates, (3) filtering of host and vector contaminants, (4) 
filtering of rRNA, and (5) adding back sequence dupli-
cates) on the NOD mouse dataset SRR1828998 of 3.1 
million paired reads. In this test, scenarios A and B iden-
tified 893,895 and 556,362 reads as rRNA/tRNA, respec-
tively. Of these, 552,574 reads were common to both 
scenarios, indicating that Scenario A missed 3788 rRNA/
tRNA reads picked up by Scenario B, while Scenario B 
missed 341,321 rRNA/tRNA reads picked up by Scenario 
A. This analysis reveals that the assembly of rRNA/tRNA 
reads into contigs can result in their misidentification in 
downstream analyses. Next, we examined the presence of 
polycistronic reads. We scanned the assembled paired-
end reads against the MetaGeneMark genes and tallied 
the number of paired-end reads that aligned to different 
genes. We only considered paired-end reads that had 
successful alignments on both pairs. Though they do 
exist, we have found that for the NOD mouse dataset, 
only 0.2–7.84% of all assembled paired-end reads exhib-
ited discordant alignments (Supplemental Table 2). Nev-
ertheless, it is appreciated that polycistronic transcripts 
have the potential to contribute to the co-expression of 
neighboring (and likely functionally related) genes. While 
outside the scope of the current study, we expect future 
iterations of MetaPro will consider the impact of polycis-
tronic transcripts.

Gene annotation
During the annotation step, all data are processed in the 
same way. The forward and reverse unassembled paired-
end data are annotated together. Unassembled singletons 
are annotated separately, as are contigs. Prior to assem-
bly, each piece of data is split into smaller chunks in an 
effort to distribute the workload across all CPUs on the 
system. Each chunk of data is annotated separately using 
BWA 0.7.17 [38] against the ChocoPhlAn [26] database 
from HUMAnN3. Once the annotations for BWA have 
finished for all data, MetaPro interprets the reports, and 
filters the reads that have been annotated based on that 
report using a post-processing program we designed. In 
this post-processing step, the BWA report (samfile) is 
parsed, and files containing unannotated reads will be 

created based on the samfile. To determine whether a 
read has been annotated, the CIGAR string is used with 
a 90% alignment threshold chosen as a cutoff by deafult. 
While this setting can be altered by the user, our prior 
experience suggests that 90% offers a good compro-
mise between stringency and flexibility to account for 
sequencing errors and strain differences. In addition to 
unannotated reads, MetaPro also exports a gene-to-read 
map for every gene and read that was annotated. The 
reads not aligned by BWA are then sent through pBLAT.

MetaPro will filter the reads annotated by pBLAT [39] 
against ChocoPhlan again to retrieve unidentified reads, 
which are subsequently annotated through DIAMOND 
[40] comparisons to the non-redundant protein data-
base (NR). When DIAMOND is finished on all remaining 
reads, MetaPro will filter the annotated reads, resulting 
in unidentified reads that failed to be annotated by either 
BWA, pBLAT, or DIAMOND. Each step also creates 
a separate gene-to-read map. pBLAT and DIAMOND 
share the same cutoff schemes, based on three values 
extracted from the m8 report: percent-identity, align-
ment length, and bitscore. The alignment length is used 
in conjunction with the sequence length, to calculate an 
alignment percentage. The criteria for pBLAT and DIA-
MOND to declare a read’s match acceptable is as fol-
lows: (1) if either the percent-identity score falls below 
the threshold of 85%), (2) the alignment length percent-
age falls below the threshold of 65%, or (3) the bitscore 
is below the threshold of 60, the match is rejected. All 
thresholds are capable of being overridden by the user in 
the configuration settings.

We make the assumption that the forward read and 
the reverse read represent the same piece of datum (they 
derive from a single transcript). We also assume that 
there is a single best match for this datum (determined 
through quality scores derived from the annotation tool). 
Therefore, it is possible for the tools to declare multiple 
acceptable matches on a single read in a report, due to 
paired-end reads sharing the same sequence read identi-
fication, as well as multiple hits from the alignment tools. 
To resolve these differences, MetaPro will use different 
metrics depending on the tool. If there are multiple hits 
in BWA, MetaPro will consider the alignment score of 
each match. The highest score becomes the match for the 
read. In events of a tie, the first match in the report will 
be used. A read match’s alignment score must exceed the 
previous best to be used. In pBLAT and DIAMOND, the 
bitscore will be used in the same way.

Enzyme annotation
After annotating putative mRNA transcripts to genes, 
then converting those genes to proteins, MetaPro will 
attempt to annotate both the translated genes and the 
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proteins identified by DIAMOND searches of NR, to 
enzymatic functions, as defined by Enzyme Classifica-
tion (EC) identifiers. This involves a combination of the 
enzyme profile tools, DETECT [42] and PRIAM [43], 
together with DIAMOND searches against the Swiss-
Prot database [59]. The results are combined by prioritiz-
ing the annotation from DETECT and, in cases where 
enzymatic function could not be assigned using DETECT, 
enzymatic functions that are consistently assigned by 
both DIAMOND and PRIAM. This process may assign 
multiple ECs per transcript. Proteins with multiple EC 
assignments are further filtered to include only Ecs that 
have been observed to co-occur in the Swiss-Prot data-
base. MetaPro exports two EC reports; low-quality and 
high-quality. Both EC reports will contain all results from 
DETECT together with the intersection of predictions 
from PRIAM and DIAMOND, with an e value cutoff 
of < 1e − 5 for the low-quality report, and an e value cut-
off of < 1e − 10, together with a PRIAM probability score 
of ≥ 0.5 for the high-quality report.

Taxonomic annotation
The MetaPro pipeline uses a consensus of three strate-
gies to assign reads to taxonomic classifications. Firstly, 
the taxonomic identification numbers (“taxid”) for each 
gene/protein for which putative mRNA reads were pre-
viously annotated are retrieved based on accession num-
bers derived from the NCBI accession2taxid database 
[41]. Secondly, all putative mRNA sequences are pro-
cessed by the short-read classifiers Kaiju [45] and Cen-
trifuge [46]. Taxonomic classifications from each source 
(NCBI lookup, Kaiju and Centrifuge) are then merged, 
using the classification consensus tool, WEVOTE [47]. 
Since we expect NCBI lookup-based annotations to be 
of higher quality, MetaPro assigns greater weight to the 
NCBI lookup assignments (60% NCBI lookup, 20% Cen-
trifuge, and 20% Kaiju). This effectively results in the 
use of Kaiju and Centrifuge to cover potential gaps in 
annotation.

Output and visualizations
Read metrics and data quality
MetaPro compiles various read metrics within a text 
file. This file reports the total number of sequence reads 
from the raw input, the remaining number of high-
quality reads after filtering for quality and adaptors, the 
number of reads associated with the host (if applicable), 
the amount of rRNA and tRNA reads removed from 
the rRNA filtration step, the number of putative mRNA 
reads, the number of reads annotated to a gene or pro-
tein, the total number of unique transcripts found, and 
the number of unique enzymes detected in the data. 
MetaPro also creates a histogram of the number reads 

and their quality scores, before and after they have been 
filtered for low-quality reads. Finally, the pipeline reports 
on the N50 and L50 read statistics of the contigs formed 
during the assembly stage.

Gene expression
MetaPro produces a collection of genes, along with 
their constituent reads, summarized in a gene/protein-
to-read map. This gene/protein map labels each gene 
(ChocoPhlAn) or protein (NR), along with all the read 
IDs of the input data that annotate to that gene/protein. 
MetaPro additionally provides a table of genes/proteins, 
associated EC, and RPKM, as well as another table of 
genes/proteins, with their full taxonomy. MetaPro also 
produces a contig-to-read map that shows the reads asso-
ciated with each contig generated by rnaSPAdes.

Enzyme annotation
To add context to the enzyme annotation results, 
MetaPro exports a table file that is compatible with 
Cytoscape [76] import functions. The table provides a 
list of Ecs, and the expression (as measured by RPKM) of 
the various genes and proteins that identify to that EC. 
EC expression is further broken down by taxa, selected 
on the basis of minimal abundance. Specifically for each 
taxon, starting at the rank of species, if that taxon is not 
associated with at least 1% of total reads (default cutoff), 
then it is merged with other taxa that share the genus 
that also do not exceed the 1% criteria. This process is 
repeated to define groups of taxa at the level of family, 
order, class, and phyla that represent at least 1% of total 
reads. Together with the installation of two Cytoscape 
apps (KEGGscape and enhanceGraphics), KEGG-defined 
metabolic pathways can be imported as KGML files and 
enzymes in the pathways annotated with the MetaPro-
defined EC file. In typical applications, this can result in 
the representation of each enzyme as a pie chart or annu-
lar ring, in which the size of the pie chart/ring represents 
total expression (as defined by RPKM values) of that EC 
in the dataset and the segments indicate the taxa respon-
sible for contributing to the expression of that enzyme. 
In addition, MetaPro also generates a table of ECs, 
grouped together by super-pathways (EC_coverage.csv) 
and a table of super-pathways, and their constituent ECs, 
expressed as RPKM for the formation of the EC super-
pathway heatmap image.

Taxonomic annotation
MetaPro reports the taxonomic findings of the sample as 
a table of taxa and read pair counts. In brief, annotated 
genes and proteins are assigned to and grouped on the 
basis of taxonomic assignment. Reads assigned to each 
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gene/protein that belongs to a specific taxon are summed 
to provide to produce a read pair count for each taxa.

Computing considerations
Since cluster computing environments can impose limi-
tations on processing time available to the user, MetaPro 
was developed to improve data throughput through 
parallelization and ensure the completion of the pipe-
line through the implementation of an auto-resume 
feature. To address the former, for the rRNA filtra-
tion and gene annotation steps, we deploy a technique 
based on MapReduce [77] in which datasets are divided 
into smaller chunks of 50,000 sequences that are pro-
cessed on parallel threads. Other steps were found not 
to benefit from splitting the dataset and are simply run 
as serial processes on the global dataset. Since the pro-
cessing time required by MetaPro is typically unknown 
before runtime, to ensure that the processing of a data-
set is completed, particularly in computing environ-
ments where allocations may be time limited, MetaPro 
features a multi-level auto-resume feature. This is ena-
bled through a robust bookmarking system that keeps 
track of the state of processing prior to termination due 
to time constraints. Subsequent restarts allow MetaPro 
to resume processing on the remaining sharded data (i.e., 
for the rRNA filtering and gene annotation steps). For 
other steps, MetaPro will restart from the beginning of 
the stage that failed.

Performance scaling
MetaPro’s ability to scale in performance based on avail-
able resources comes in the form of coordinating the 
flow of parallel job launches of the third-party tools. 
For example, the gene annotation steps are all launched 
sequentially, based on the available hardware on the sys-
tem. MetaPro monitors resource usage and controls the 
traffic of job launches until there a free processor and 
enough free RAM to ensure a safe execution. The cur-
rent iteration of this mechanism has user-defined interval 
check times. Subsequent iterations will have automati-
cally calibrated delays. Currently, only rRNA removal and 
gene annotation identified as our largest bottlenecks use 
this controller.

Interfacing with a job scheduler
Singularity and Docker are software that manage soft-
ware environments (system configurations) for deploying 
onto a single computer. This software is typically used in 
conjunction with Kubernetes (a container orchestration 
software) in datacenters with multiple machines clus-
tered together. MetaPro is set up through Singularity 
to capitalize on this ease of deployment. Singularity has 
two modes: interactive mode (where users deploy the 

environment and interact with it directly) or execution 
mode (where users can access components within the 
environment through automated means, without human 
intervention). To interface with a job scheduler (an auto-
mated method), users would use Singularity’s execution 
mode to access MetaPro as a single command. MetaPro 
can only be used through the command-line-interface.

Initial set-up
To run MetaPro using the default libraries, a minimum of 
707 GB of disc space is required. This is to store the refer-
ence databases and all associated index files for the vari-
ous tools that are used. To run MetaPro with a sample 
dataset, a minimum disc space of 6 times the size of your 
data is needed. This space is to allow MetaPro to split and 
store interim data for faster processing times.

MetaPro features configurable parameters for many 
features that impact processing runtime. In a master con-
figuration file, users define the locations of the library 
and reference file paths required by the various tools 
employed by the pipeline. The configuration file also 
includes a series of settings to define stringency levels 
of filters and displays such as the cutoff for defining taxa 
to be reported in the enzyme annotation output file, the 
CIGAR match length cutoff for BWA gene annotation, 
and the identity, length, and score cutoffs for accepting 
pBLAT and DIAMOND gene annotations. The configu-
ration file lets users control the efficiency of the paralleli-
zation, by adjusting the size of the data chunks processing 
in the rRNA filtration and gene annotation steps. The 
user can also control the number of concurrent processes 
running at each step, and the memory allocated for rRNA 
filtering, and gene annotation. Finally, the configuration 
file lets users control the state of the interim files; interim 
files can be retained intact, compressed, or removed to 
save disk space.

Database expansion
Datasets and reference database sizes have exponentially 
expanded and are expected to continue this trajectory 
as the field grows. MetaPro’s scalability was designed to 
keep up with this pace by basing its performance on the 
available computing resources, while offering the most 
comprehensive coverage in annotation. However, the 
sizes of databases and state-of-the-art computing still 
necessitate computation times on the range of days, if not 
weeks. We are currently investigating methods to pre-fil-
ter databases to reduce MetaPro’s workload on any given 
sample. The strategy is to create curated database sub-
sets for MetaPro using a preliminary scan of a taxonomic 
classification tool, similar to the design of HUMAnN3.
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Read accounting for HUMAnN3 associated with paired-end 
data
While SAMSA2 and MetaPro provide transparency 
in terms of read accounting, mapping the assignment 
of individual reads in paired-end data remains a chal-
lenge for HUMAnN3 processed datasets as duplicate 
read IDs (representing the forward and reverse reads) 
can occur in multiple categories. To identify the fate of 
individual reads we therefore performed the follow-
ing steps. First, we collected read IDs for each step from 
Kneaddata—rRNA, host, putative mRNA, post-trimmed 
reads (for quality and adaptor), and post-repeat-trimmed 
reads (for repeats), as well as the read-taxon map gen-
erated through the bowtie comparisons performed by 
HUMAnN3. From these ID mappings, we then defined 
(1) rRNA reads as the set of rRNA read IDs subtracting 
out the read IDs common to host or putative mRNA; 
(2) putative mRNA reads as the set of putative mRNA 
read IDs subtracting out the read IDs common to rRNA 
or host; (3) host reads as the set of host read IDs sub-
tracting out the read IDs common to rRNA or putative 
mRNA; (4) trimmed reads as the set of raw (input) read 
IDs subtracting out the set of post-trimmed read IDs; (5) 
repeated reads as the set of post-trimmed read IDs sub-
tracting out the set of post-repeat-trimmed read IDs; (6) 
annotated reads as the set of read IDs associated with 
the rRNA reads defined by (1) that overlap with read IDs 
present in the read taxon map; (7) unclassified reads as 
putative mRNA reads subtracting out read IDs common 
to annotated reads; and (8) ambiguous reads as read IDs 
that are found in two locations (host and rRNA, rRNA, 
and putative mRNA, and host and putative mRNA).

Availability and requirements
Project name: MetaPro.

Project home page: https:// github. com/ Parki nsonL ab/ 
MetaP ro

Operating system(s): Platform independent.
Programming language: Python3.
Other requirements: MetaPro is deployed within 

Docker software deployment infrastructure [27].
License: GNU general public license v3 / The user 

will need to obtain their own copy of MetaGeneMark’s 
license key.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 023- 01562-6.

Additional file 1: Fig. S1. Read relationships of HUMAnN3 and SAMSA2 
against The Gold standard. Chord diagrams showing the relationships 
of the gold-standard annotated reads of the NOD mouse gut (A) and 
kimchi datasets (B) as they are processed by the HUMAnN3 and SAMSA2 
pipelines. Each arc of the diagram is a category of reads. Each band joining 

2 arcs represents the proportion of reads that map between categories. 
Many of the unidentified mouse gut reads in HUMAnN3 were identified 
as Parabacteroides ASF519. Similar to MetaPro, SAMSA2 identified a portion 
of the Parabacteroides ASF519 gold-standard reads to be Parabacteroides 
goldsteinii.  In the kimchi set, HUMAnN3 has more branching chords than 
MetaPro. SAMSA2 has a larger proportion of reads in Other organisms 
compared to MetaPro. In an ideal scenario, there would be a 1:1 relation-
ship between the Gold-standard and the pipelines.

Additional file 2: Fig. S2.Gene annotation performance of MetaPro, 
HUMAnN3, and HUMAnN2.  Stacked barcharts depicting the number 
of reads annotated to specific taxa in (A) NOD mouse samples, and (B) 
Kimchi samples by BWA alignments, MetaPro, HUMAnN3, and HUMAnN2. 
The NOD mouse datasets were generated from gut samples from mice 
inoculated with a defined microbial consortium (Altered Schaedler Flora 
(ASF); [29]). In addition to the 8 taxa associated with ASF, reads were also 
assigned to Parabacteroides goldsteinii, a close relative of Parabacteroides 
ASF519 (see legend). The kimchi datasets comprise five major taxa (see 
legend; [30–34]). It should be noted that Leuconostoc gasicomitatum 
reported in the original publication is currently classified as a subspecies 
of Leuconostoc gelidum. For NOD sample SRR1828965, HUMAnN3 did not 
annotate any reads; for kimchi sample SRR443366, HUMAnN2 did not 
annotate any reads.

Additional file 3: Fig. 3. Taxonomic classification performance of 
MetaPro, HUMAnN3, and HUMAnN2.  For the NOD mouse (A) and Kimchi 
(B) datasets, each pie chart shows a breakdown of taxonomic assign-
ments at the different taxonomic levels indicated, that are closest to the 
last common ancestor of the expected bacteria within the sample. For 
the human oral datasets (C), given the lack of gold standard assignments, 
each pie chart represents the relative abundance of reads assigned to 
different taxonomic levels. Unclassified reads represent annotated reads 
with no assigned taxon. The graphs indicate a substantial improvement in 
HUMAnN3’s annotation abilities over HUMAnN2.

Additional file 4: Fig. S4.Enzyme annotation performance of MetaPro 
and HUMAnN2.  Stacked barcharts indicate the number of enzymes, as 
defined through enzyme classification (EC) assignments, annotated by 
each pipeline for the three sets of datasets: (A) NOD mouse, (B) kimchi, 
and (C) human oral biofilm data. In addition to displaying ECs unique or 
shared between MetaPro and HUMAnN2, also shown are ECs, predicted 
by HUMAnN2 to occur in combination with another EC, in the same 
transcript, with no supporting evidence that such a combination has 
been previously observed (as defined through Swiss-Prot annotations). 
Further, for HUMAnN2, we show the number of EC assignments that occur 
in combinations of three or more ECs.

Additional file 5: Table S1. Summary of Sequence Read Processing 
for Three Metatranscriptomic Datasets (NOD Mouse gut; Kimchi and 
Human Oral Biofilm) Processed by HUMAnN3, HUMAnN2, MetaPro and 
SAMSA2.  This table reports the processing results from the four pipelines 
on samples from three different datasets. HUMAnN2 and HUMAnN3’s 
preprocessing tool concatenates paired reads into 1 single file and treats 
them as 2 separate reads. The NOD mouse samples are paired-end data, 
while the kimchi and human oral biofilm represent single-end sequence 
datasets. Unlike MetaPro and SAMSA2, HUMAnN3 and HUMAnN2 do not 
report transcripts but instead group proteins identified in their pipelines 
into gene families that are reported in the final column.

Additional file 6: Table S2. Polycistronic read statistics for NOD mouse.  
This table shows the tally of non-overlapping paired-end reads that were 
assembled into contigs by MetaPro through rnaSPADes and subsequently 
annotated into discrete genes by MetaGeneMark. This table also shows 
the prevalence of polycistronic reads that exist within the data. BWA was 
used to align the assembled paired-end reads against the genes to iden-
tify discordant alignments between the forward and reverse-end read of 
a pair with the same ID.  This table has seven columns: 1) the sample ID. 2) 
the sample description. 3) the total number of alignments is the number 
of alignments of a read to a gene that BWA reported. 4) The total number 
of pairs is the number of IDs that BWA aligned, be it forward, reverse, or 
both paired-end reads.  5) The paired-end disagreements column are 
the number of times a forward-end and reverse-end read had different 
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alignments for each NOD mouse sample.  6) The paired-end agreements 
column shows the number of times a forward-read and reverse-end read 
aligned to the same gene.  7)  The percentage of paired-end disagree-
ments, relative to the total number of paired-end reads in the sample. The 
percentage of disagreements (polycistronic reads) are at-best 0.23%, and 
at-worst 7.8% of assembled, non-overlapped paired-end reads in the NOD 
mouse samples.

Additional file 7: Table S3.Read annotation statistics for NOD mouse 
datasets from MetaPro, HUMAnN3, HUMAnN2, SAMSA2 compared with 
the gold standard.  This table shows the number of reads in each NOD 
mouse sample each pipeline assigned to the 8 ASF bacteria: Clostridium 
ASF356, Clostridium ASF502, Eubacterium plexicaudatum, Firimicutes ASF500, 
Lactobacillus ASF360, Lactobacillus murinus, Mucisprillim schaedleri, and 
Parabacteroides ASF519.  Due to the similarity between P. ASF519, and P. 
goldsteinii, the pipelines will sometimes annotate to P. goldsteinii rather 
than to P.ASF519.  P. goldsteinii was also a dominant species found within 
the samples outside of the 8 ASF bacteria.  The expected results were 
produced by annotating the reads with a reference containing only the 8 
ASF, using BWA.

Additional file 8: Table S4.Read annotation statistics for kimchi fermenta-
tion datasets from MetaPro, HUMAnN3, HUMAnN2, SAMSA2, compared 
with the gold standard.  This table shows the number of reads in each 
kimchi sample, annotated to the expected 5 lactic acid bacteria (LAB) 
from each pipeline: Leuconostic mesenteroides, Lactobacillus sakei, Weissella 
koreensis, Leuconostoc carnosum, and Leuconostoc gelidum. The expected 
results were obtained by annotating the kimchi datasets against a data-
base containing only the reference gene sequences for the 5 LAB, using 
BWA.

Additional file 9: Table S5.Comparisons of Enzyme annotations between 
MetaPro and HUMAnN3 for NOD mouse, kimchi, and human oral biofilm 
datasets.  This table compares the ECs of MetaPro against HUMAnN3 on 
the NOD mouse, kimchi, and human oral biofilm datasets.  The HUMAnN3 
ECs were filtered for EC co-occurrence pairs that were not found in 
Swiss-Prot, and multiple unique ECs that annotated to the same gene 
family.  The resulting HUMAnN3 ECs were contrasted against MetaPro’s 
EC, yielding a common set of ECs found in both tools, ECs found only 
by MetaPro, and ECs found only by HUMAnN3.  The same comparison is 
shown for MetaPro’s high-quality EC predictions.

Additional file 10: Table S6.Comparisons of Enzyme annotations 
between MetaPro and SAMSA2 for NOD mouse, kimchi, and human oral 
biofilm datasets.  This table compares the ECs of MetaPro against SAMSA2 
on the NOD mouse, kimchi, and human oral biofilm datasets.  The 
SAMSA2 ECs were filtered for EC co-occurrence pairs that were not found 
in Swiss-Prot, and multiple unique ECs that annotated to the same gene 
family.  The resulting SAMSA2 ECs were contrasted against MetaPro’s EC, 
yielding a common set of ECs found in both tools, ECs found only by 
MetaPro, and ECs found only by SAMSA2. The same comparison is shown 
for MetaPro’s high-qaulity EC predictions.

Additional file 11: Table S7.Comparisons of Enzyme annotations 
between MetaPro and HUMAnN2 for NOD mouse, kimchi, and human 
oral biofilm datasets.  This table compares the ECs of MetaPro against 
HUMAnN2 on the NOD mouse, kimchi, and human oral biofilm data-
sets.  The HUMAnN2 ECs were filtered for EC co-occurrence pairs that were 
not found in Swiss-Prot, and multiple unique ECs that annotated to the 
same gene family.  The resulting HUMAnN2 ECs were contrasted against 
MetaPro’s EC, yielding a common set of ECs found in both tools, ECs found 
only by MetaPro, and ECs found only by HUMAnN2.  The same compari-
son is shown for MetaPro’s high-qaulity EC predictions.

Additional file 12: Table S8. Computational performance statistics of 
MetaPro, HUMAnN3, and SAMSA2.  This table reports the amount of pro-
cessing time required for each run of the three pipelines.  MetaPro addi-
tionally exports the timing data of each stage independently. HUMAnN3’s 
pre-processing step is a separate stage using a separate tool called 
KneadData. SAMSA2 cleans the data in the pipeline, but it is integrated 
and does not export timing data.
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