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Abstract 

Background Cyanobacterial blooms are one of the most common stressors encountered by metazoans living in 
freshwater lentic systems such as lakes and ponds. Blooms reportedly impair fish health, notably through oxygen 
depletion and production of bioactive compounds including cyanotoxins. However, in the times of the “microbiome 
revolution”, it is surprising that so little is still known regarding the influence of blooms on fish microbiota. In this 
study, an experimental approach is used to demonstrate that blooms affect fish microbiome composition and func-
tions, as well as the metabolome of holobionts. To this end, the model teleost Oryzias latipes is exposed to simulated 
Microcystis aeruginosa blooms of various intensities in a microcosm setting, and the response of bacterial gut commu-
nities is evaluated in terms of composition and metabolome profiling. Metagenome-encoded functions are com-
pared after 28 days between control individuals and those exposed to highest bloom level.

Results The gut bacterial community of O. latipes exhibits marked responses to the presence of M. aeruginosa 
blooms in a dose-dependent manner. Notably, abundant gut-associated Firmicutes almost disappear, while poten-
tial opportunists increase. The holobiont’s gut metabolome displays major changes, while functions encoded in the 
metagenome of bacterial partners are more marginally affected. Bacterial communities tend to return to original 
composition after the end of the bloom and remain sensitive in case of a second bloom, reflecting a highly reactive 
gut community.

Conclusion Gut-associated bacterial communities and holobiont functioning are affected by both short and long 
exposure to M. aeruginosa, and show evidence of post-bloom resilience. These findings point to the significance of 
bloom events to fish health and fitness, including survival and reproduction, through microbiome-related effects. In 
the context of increasingly frequent and intense blooms worldwide, potential outcomes relevant to conservation 
biology as well as aquaculture warrant further investigation.
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Background
Organisms living in lakes and ponds are exposed to 
cyanobacterial blooms throughout their life [1–4]. 
Blooms are natural events, yet increased eutrophica-
tion and global change associated with human activities 
make them increasingly frequent, abundant and per-
sistent worldwide [5, 6]. Cyanobacterial blooms affect 
the whole ecosystem, including the health of teleost fish 
which occupy higher trophic levels [1, 2, 7]. They can 
trigger mass mortalities of animals due to oxygen deple-
tion. Cyanobacterial metabolites display a broad range of 
bioactivities and include various toxins, digestive enzyme 
inhibitors, antimicrobials, and cytotoxic compounds 
[8]. As a consequence, cyanobacteria cells, extracts and 
purified cyanotoxins all induce deleterious effects on tel-
eost fishes [2, 9–12]. One of the most toxic and frequent 
cyanotoxins is microcystin-LR (MC-LR), a hepatotoxin 
that accumulates in fish liver mostly following ingestion 
of contaminated prey or water. Intraperitoneal injection 
doses of 400 to 1000  μg.kg−1 are lethal to fish [13, 14]. 
MC-LR adversely affects fish development, reproduc-
tion and behavior [15, 16]. It specifically affects the liver 
in which MC-LR triggers inflammation, oxidative stress, 
and tissue necrosis [17–19]. Aquatic animals are exposed 
to cyanobacteria and their toxins through oral inges-
tion and transfer absorption through the intestine [15, 
20, 21]. In this respect, the role of gut-associated micro-
biota in holobiont’s response is currently underestimated 
[22]. In teleosts, gut microbiome tends to be less diverse 
than observed in larger vertebrates, and is often domi-
nated by Proteobacteria, Bacteroidetes, and Firmicutes 
[23, 24]. As for other vertebrates, gut-associated symbi-
onts play important roles in nutrition (polymer degrada-
tion, vitamin production), immunity, protection against 
pathogens, and homeostasis [25–27]. Various host- and 
environment-related factors are reported to influence gut 
microbiome structure [28], and the gut microbiota has 
recently emerged as a primary target for microbiome-
aware ecotoxicological concerns [29–33]. However, only 
a limited number of studies have investigated the effect 
of cyanobacterial blooms on fish gut microbiota [10, 34–
36]. Whole chemical extracts of few Microcystis strains 
were for example shown to influence the composition of 
gut bacterial communities of medaka fish in microcosm-
based experiments, while MC-LR alone did not [35]. This 
and few other works emphasize that metabolite cock-
tails and whole cells, rather than toxins alone (micro-
cystins), should be considered for realistic assessment of 
the microbiome impairs [2, 15, 35, 37], yet the effect of 
exposure to a range of environmentally relevant levels of 
cyanobacteria has not been evaluated so far.

In the present study, the impact of a cyanobacte-
rial bloom on the composition and functions of fish 

gut-associated bacterial communities, and on the 
metabolite composition in various host tissues is evalu-
ated using an experimental approach. Due to its resist-
ance to stress and disease, the teleost fish Oryzias latipes 
(medaka) has emerged as a model of choice for aquatic 
ecotoxicology in general, and a body of literature now 
specifically documents the effects of cyanotoxins on ani-
mal tissue [38–41]. Herein, O. latipes, has been exposed 
to  Microcystis aeruginosa, the most common bloom-
forming cyanobacterium in temperate lentic freshwaters 
[42]. Three exposure levels were defined within a range 
of values commonly reported in natural lakes and ponds. 
The highest exposure level, 100 µg.L−1 Chla, corresponds 
to a high bloom intensity, yet commonly reported in 
eutrophic lakes [43], while the medium level (10  µg.L−1 
Chla) is commonly considered a threshold value indica-
tive of a bloom [44]. A first 28-day exposure simulated a 
long bloom event. Because blooms are highly dynamic 
events in natural systems, post-bloom resilience was 
investigated. Then, the hypothesis of a priming effect, 
translating into a lower impact of a second bloom, was 
tested. To this end, a post-bloom depuration phase was 
conducted for 4 days, followed by a second exposure to 
the highest M. aeruginosa concentration for 5 days. Bac-
terial community compositions were characterized using 
16S rRNA gene sequencing, and metabolite contents 
were profiled by LC-MS/MS. Metagenomes of unex-
posed control fish gut communities were compared to 
those of specimens exposed to the highest bloom level 
to compare their respective annotated functions. Bac-
terial community and metabolites compositions were 
then compared using a multi-omics approach to iden-
tify correlation networks associated with teleost holobi-
ont response. By testing the dose-dependent effect of a 
cyanobacterial bloom on teleost gut bacterial microbiota, 
documenting holobiont post-bloom response, and inves-
tigating the effect of a second bloom, this study addresses 
for the first time the dynamics of holobiont response to 
cyanobacterial blooms.

Methods
Experimental design and sampling
Experimental procedures were carried out in accord-
ance with European legislation on animal experimen-
tation (European Union Directive 2010/63/EU) and 
were approved for ethical contentment by an independ-
ent ethical council (CEEA Cuvier n°68) and author-
ized by the French government under reference number 
APAFiS#19316-2019032913284201 v1.

Experiments were performed in 10-liter aquaria 
(microcosms) with 7-month-old adult male Japanese 
medaka fish Oryzias latipes provided by the AMAGEN 
platform (Gif-sur-Yvette, France). Before the whole 
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experiment, five fish were sampled as controls for the 
histological analyses then fish were pre-acclimatized 
in clear water (2  weeks) in 15 aquaria, each one con-
taining 8 fish. Prior to the first exposure at day 0, five 
fish were randomly sampled among the aquaria, and 
10 mL of water of each aquarium were pooled, as ref-
erences of initial fish and water conditions (d0, Fig. 1). 
Fish were then exposed for 28 days to five treatments: 
water (control, 0); water containing Z8 medium [45], 
i.e., the medium used to cultivate cyanobacteria (con-
trol for water enrichment with nutrients from Z8); 
and water containing three environmentally relevant 
concentrations of live Microcystis aeruginosa, i.e., 1, 
10, and 100 µg.L−1 Chla (1, 10, 100), respectively (d28, 
Fig. 1). Each treatment was carried out in three aquaria 
(labelled a, b, and c). At d28, four fish, and 150 mL of 
water were sampled in each aquarium. Bottom-growing 

biofilms and faeces were also sampled by scraping using 
sterile scalpel and tweezers, respectively. After sam-
pling, remaining fish from each of the three aquaria 
exposed to one condition were pooled and transferred 
to a single aquarium, filled with clear water (treatment 
0) for a 4-day depuration period of exactly 110 h (d33, 
Fig.  1). At d33, three fish and 150  mL of water were 
sampled in each aquarium. All fish were then exposed 
in the same aquaria for 5  days (exactly 134  h) to the 
highest concentration of M. aeruginosa, 100  µg.L−1 
Chla (d39, Fig.  1). At d39, four fish, 150 mL of water 
and faeces were sampled in each aquarium. Along the 
two successive exposures, 10 mL of M. aeruginosa cul-
ture were sampled every 2 days but only one sample per 
week was analyzed further. Dataset S1 provides details 
of sampled individuals and performed analyses.

Fig. 1 Experimental design and O. latipes sampling strategy. After a 14-day acclimatization period, adult male O. latipes were exposed to two 
successive exposures. During the first 28 days (d0 to d28), fish were exposed to five different treatments, each carried out in three 10-L aquaria. 
Treatments consisted of two controls (0, Z8) and three concentrations of Microcystis aeruginosa (1, 10, and 100 µg.L−1 Chla). After that, a 4-day 
depuration phase followed (d28 to d33) performed in clear water (0), then fish were exposed again for 5 days (d33 to d39) to M. aeruginosa 
(100 µg.L−1 Chla). Colors represents the different treatments: blue = water, yellow = Z8 growth medium, light green = 1 µg.L−1 Chla, green = 
10 µg.L−1 Chla, dark green = 100 µg.L−1 Chla. Samples were collected at d0 (day 0), d28 (day 28), d33 (day 33), and d39 (day 39). Further analyses 
were performed on M. aeruginosa culture, water, biofilm, fish food, feces samples, and different tissues (Supplementary Note 1 and Figure S1a–d). 
Dataset S2 provides details on sampling counts
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Microcystis aeruginosa production
Blooms were simulated in lab using the non-axenic and 
easy-to-cultivate M. aeruginosa mono-clonal strain PMC 
728.11 maintained in the Paris Museum Collection which 
can produce diverse variants of bioactive metabolites 
(Supplementary Note 2). The strain was cultivated in Z8 
medium at 25 ± 1 °C with a 16-h:8-h light/dark cycle (at 
14 µmol.m−2.s−1) in 2-L bottles all along the experiment 
(LED strips TR-LD-24VDC-SMD5050-NW and modula-
tor). The concentrations of M. aeruginosa were estimated 
using Chlorophyll a extraction [46] and absorbance 
measurements as a proxy using a spectrophotometer 
(Cary 60 UV-Vis, Agilent). Every 2  days, after water 
renewal, M. aeruginosa was measured in each aquarium 
using a fluorometer (FluoroProbe III, bbe Moldaenke), 
and appropriate volume of the culture was added as per 
the desired final concentrations (1, 10, or 100  µg.L−1 
Chla).

Monitoring of experimental parameters
Water was aerated using a pump (Air-Flow 4, SuperFish, 
Netherlands). Every second day throughout the experi-
ment, water parameters were monitored (pH, tempera-
ture, conductivity, nitrates, and nitrites), aquaria were 
cleaned (faeces removed by aspiration), half of the water 
was replaced with fresh water composed of 2/3 osmosis 
(RiOs 5, Merck Millipore) and 1/3 filtered. On the same 
timeline, M. aeruginosa concentrations were measured 
and adjusted to maintain bloom levels in exposed treat-
ments, and 1  mL of sterile Z8 medium was added in 
the Z8 treatment. Fish were exposed to constant tem-
perature (23 ±  1  °C), pH (7.5  ±  0.1), and conductivity 
(234 ± 22 µS.cm−1), to low levels of nitrates (≤ 1 mg.L−1) 
and nitrites (≤ 4 mg.L−1), to a 12-h:12-h light/dark cycle 
(Philips MASTER TL-D 36W/840). They were fed twice 
daily (~  3–5% of the fish biomass per day) with Nutra 
HP 0.3 (Crude protein 57, Crude fat 17, N.F.E 7.5, Ash 
10, Crude fiber 0.5, Phosphorus 1.7, Vitamins A, D3, E; 
Skretting, Norway). Microcystin (MC) concentration 
was monitored on a regular basis on water samples in M. 
aeruginosa-containing treatments and quantified using 
enzyme-linked immunosorbent assay (ELISA) analyses 
(Microcystins-ADDA SAES ELISA, Eurofins Abraxis). 
Each sample was analyzed in duplicates and MC con-
centrations were determined according to the MC-LR 
response standard curve (Dataset S2).

Fish, M. aeruginosa culture, water, biofilm, food, and feces 
processing
Fish were anesthetized in 0.1% tricaine methanesulfonate 
(MS-222; Sigma, St. Louis, MO) buffered with 0.1% 
 NaHCO3 and sacrificed. Whole guts (including content, 
due to small size), muscles and livers were dissected, 

flash-frozen in liquid nitrogen and stored at − 80 °C. For 
histopathological examinations, livers from fish sam-
pled before the whole experiment and at d28 and d39 
(one fish per aquarium) were dissected, fixed in David-
son fixative as previously described [15], maintained for 
24  h at 4  °C then dehydrated in 70% ethanol and con-
served at 4  °C. Livers samples were then embedded in 
paraffin and blocks were cut into 4-µm thick sections, 
stained with hematoxylin-eosin-saffron (HES), periodic 
acid schiff (PAS), and Perls Prussian blue, and observed 
under photonic microscope (Zeiss, Germany). Aquarium 
water samples were filtered on a 0.22-µm filter (Nucleo-
pore Track-Etch Membrane) and frozen. M. aeruginosa 
culture (4  mL) and biofilm samples were centrifugated 
(10  min, 10  °C, 3220×g) and pellets were frozen. Feces 
pellets were directly frozen. A food sample was kept for 
DNA extraction.

Metabolites extraction
Metabolite contents were extracted from fish livers, 
whole guts (including content) and muscles, M. aerugi-
nosa cultures, and biofilms. Prior to sonication, muscles 
were freeze-dried then ground using a bead beater (Tis-
sueLyser II, Qiagen) while cultures and biofilms were 
only freeze-dried. Samples were weighted, then sonicated 
in 75% methanol (1 mL per 100 mg of tissue, 3×, on ice) 
and centrifuged (10  min, 4  °C, 15,300×g). Supernatants 
containing metabolite extracts were kept at –  20  °C for 
mass spectrometry analyses. All pellets were discarded, 
except gut pellets dried and kept at – 80 °C to perform a 
subsequent DNA extraction on the same gut tissue.

Mass spectrometry data processing and analysis
Each metabolite extract from fish livers, guts and mus-
cles was analyzed by ultra high-performance liquid chro-
matography (UHPLC; ELUTE, Bruker) coupled with a 
high-resolution mass spectrometer (ESI-Qq-TOF Com-
pact, Bruker) at 2  Hz speed, on simple MS mode then 
on broad-band Collision Ion Dissociation (bbCID) or 
autoMS/MS mode on the 50–1500 m/z range. Three fea-
ture peak lists were generated from MS spectra within 
a retention time window of 1–15  min and a filtering of 
5000 counts using MetaboScape 4.0 software (Bruker). 
The three peak lists consisted of the area-under-the-
peaks of extracted analytes from the three tissues (gut, 
liver, muscle) sampled at d28, d33, and d39, resulting in 
1672, 909, and 3127 analytes, respectively. The genuine 
metabolite content of the culture was investigated on 
metabolite extracts using LC-MS/MS approach, com-
bined with molecular network analysis and metabolite 
annotation using a cyanobacterial metabolite reference 
database, as previously described [47]. Prior to analyses, 
Pareto scaling was applied on the datasets [48]. Principal 
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component analyses (PCA) were performed to compare 
the metabolite composition among groups using the mix-
Omics package [49] in R 4.1.0 (R Core Team, 2021). The 
variance among groups was compared conducting PER-
MANOVA (999 permutations) based on euclidean dis-
tance with vegan [50] followed by Bonferroni-adjusted 
pairwise comparisons with RVAideMemoire [51].

DNA extraction
DNA was extracted from gut pellets resulting from the 
metabolites extraction, culture, biofilm, faeces, water fil-
ters and food using the ZymoBIOMICS DNA Miniprep 
kit (Zymo Research, California). Prior to DNA extraction, 
all pellets were re-suspended in Eppendorf tubes with 
750 µL of the  ZymoBIOMICSTM lysis solution, then the 
contents were transferred to the ZR  BashingBeadTM lysis 
tubes. Water filters were cut into pieces then transferred 
to the ZR  BashingBeadTM lysis tubes. All steps were con-
ducted following the manufacturer’s instructions except 
for mechanical lysis, achieved on a bead beater (Tissue-
Lyser II, Qiagen) during 6 × 1 min. An extraction blank 
was sequenced as a control and the 8 ASVs that were 
>  1% of reads were removed from the whole dataset as 
potential contaminants. Together, they represented 0 to 
2.8% of reads in the different samples (mean 0.46%). The 
quality and quantity of the extracted DNA was tested on 
Q-bit (Thermo).

Bacterial 16S rRNA gene sequencing and analyses
The V4–V5 variable region of the 16S rRNA gene 
was amplified using 479F (5′-CAGCMGCYGCNG-
TAANAC-3′) and 888R primers (5′-CCG YCA ATTC-
MTTT RAG T-3′) [52], and sequenced (Illumina MiSeq 
paired-end, 2 × 250 bp, GenoScreen, France). Paired-end 
reads were demultiplexed, quality controlled, trimmed 
and assembled with FLASH [53]. Sequence analysis was 
performed using the QIIME 2 2020.11 pipeline [54]. Chi-
meras were removed and sequences were trimmed to 
367  pb then denoised using the DADA2 plugin, result-
ing in Amplicon Sequence Variants (ASVs) [55]. ASVs 
were affiliated to taxa using the SILVA database release 
138 [56] using the feature-classifier plugin and classify-
sklearn module [57, 58]. Sequences assigned as Eukary-
ota, Archaea, Mitochondria, Chloroplast and unassigned 
were removed from the dataset then the sample dataset 
was rarefied to a list of 6978 sequences.

Alpha- and beta-diversity analyses were performed 
using the phyloseq [59], vegan and RVAideMemoire pack-
ages in R. Linear mixed models (LMMs) were used to 
compare species richness among the five treatments 
and the three replicate aquaria within each treatment 
at d28, using the MuMIn [60] and lmerTest [61] R pack-
ages. We adapted the LMMs to the non-independency of 

individuals within each replicate, and defined the repli-
cates as random effects and the five treatments as fixed 
effects, according to the formula Y  ~  treatment  +  (1 
| treatment : aquarium). Principal coordinates analy-
ses (PCoA) based on weighted and unweighted UniFrac 
distances were performed to examine the dissimilarity 
of bacterial composition between groups. Among- and 
within-group variance levels were compared using PER-
MANOVA (999 permutations) and PERMDISP (999 
permutations), respectively. Differentially abundant taxa 
across groups were identified using the linear discrimi-
nant analysis (LDA) effect size (LEfSe) tool [62] in the 
Galaxy workspace [63] (http:// hutte nhower. sph. harva 
rd. edu/ lefse/). Default parameters were applied using a 
LDA score threshold of 3.5 and the multi-class strategy 
(one-against-all).

Microbiome‑metabolome integrative analysis
The integration of datasets, i.e., the area-under-the-peaks 
in metabolite profiles and the ASV counts describing 
the bacterial communities in the same sample, was per-
formed using the mixOmics package in R. Pareto scal-
ing was applied on the metabolome data, and a centered 
log-ratio transformation then a pre-filtering keeping only 
abundant ASVs, (i.e., representing at least 1% of the reads 
in at least one sample), were applied on the microbiome 
data. Following unsupervised analyses on each dataset, 
completed to explore and visualize any similar changes 
according to treatments, the integration was carried out. 
A supervised Projection to Latent Structures Discrimi-
nant Analysis (PLS-DA) was performed using DIABLO 
(Data Integration Analysis for Biomarker discovery using 
Latent cOmponent) [64], enabling to identify highly-
correlated variables (metabolites and ASVs) also dis-
criminating the different treatments. The integration of 
both datasets was realized using the full-weighted design 
matrice and the block.plsda function implemented in 
mixOmics. The plotDiablo function enabled to check the 
well maximized covariation between datasets by display-
ing a Pearson correlation score. Then, relevance networks 
displaying the most discriminant covariates (metabolites, 
ASVs) were produced using the network function with 
Pearson correlation cut-offs [65].

Metagenomic sequencing and analysis
Shotgun metagenome sequencing was performed on 
DNA from 10 gut samples collected at d28, 5 in treatment 
d28_0 and 5 from d28_100 (Illumina HiSeq, 2 × 150 bp, 
GenoScreen, France). Reads corresponding to animal 
sequences were identified by aligning each dataset against 
Oryzias latipes available at the NCBI, using BBMap/
bbsplit [66], and discarded. Remaining reads from each 
sample were assembled using metaSPAdes with default 

http://huttenhower.sph.harvard.edu/lefse/
http://huttenhower.sph.harvard.edu/lefse/
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parameters [67]. Scaffolds were first taxonomically anno-
tated using Contig Annotation Tool (CAT) [68] and 
Kaiju [69] allowing to detect sequences from O. latipes 
retroviruses and Microcystis genome which were then 
discarded. All scaffolds were clustered using MyCC [70] 
(k-mer size = 4, minimal sequence size = 1000) and bins 
were taxonomically annotated using Bin Annotation Tool 
[68]. Completeness of bins was assessed using CheckM 
[71]. Relative abundance of bins in each sample were also 
determined using BBMap. Significant bins between the 
two treatments were determined using Wilcoxon rank-
sum test. Finally, coding sequences predicted by Prodigal 
[72] were functionally annotated using eggNOG-emapper 
[73]. Resulting KEGG annotations were used as input to 
MinPath [74] in order to obtain the MetaCyc pathway 
information, and to Omixer-RPM [75] to specifically 
characterize gut metabolic modules (GMMs) as firstly 
described in [76], with pathway coverage threshold ≥ 80%.

Results
Monitoring of experiments
Oryzias latipes fish were maintained in suitable and 
stable conditions, and no fish died during the whole 
experimentation (Fig.  1 and Dataset  S2). During the 
first 28  days long exposure (d0–d28), concentrations of 
Microcystis aeruginosa in the three treatments (d28_1, 
d28_10, and d28_100) corresponded to expected lev-
els, 1.0 ±  0.2, 10.0 ±  0.8, and 100.2 ±  7.8  µg.L−1 Chla, 
respectively. Microcystin levels in water were 0.4 ±  0.0 
and 10.4  ±  2.1  µg MC-LR eq.L−1 in the d28_10 and 
d28_100 treatments, respectively, while microcystin was 
below detection level (<  0.15  µg.L−1) in d28_1. During 
the second M. aeruginosa exposure (d33–d39), fish were 
exposed to 102.8 ±  2.9  µg.L−1 Chla and 11.2 ±  2.8  µg 
MC-LR eq.L−1. The metabolic content of Microcystis 
aeruginosa cultures was examined (see Supplementary 
Note  2, Dataset S3, and Table  S1). Histopathological 
analyses did not reveal noticeable visual differences in 
fish liver tissue, with little to no carbohydrate reserves, 
and no lipofuscin and macrophagic hemosiderin.

Diversity and composition of the gut bacterial microbiota 
after 28 days of exposure
At d28, gut communities display between 42 and 219 
ASVs with higher average bacterial richness (136 ±  56 

ASVs) and evenness (0.556) reported in fish guts exposed 
to d28_Z8, and lower average bacterial richness (82 ± 25 
ASVs) and evenness (0.391) in the treatment d28_0 
(Dataset  S4). Gut-associated species richness is high-
est in the d28_Z8 treatment (LMM, p  <  0.05), while 
no differences are observed among replicates within 
each treatment (LMM, p  >  0.05). The Shannon index 
increases slightly with Microcystis concentration (d28_1: 
2.09, d28_10: 2.14, d28_100: 2.28). Visual comparisons 
on individual plots of principal coordinates analyses 
(PCoA) based on the weighted or unweighted UniFrac 
distances suggest changes occur in terms of both abun-
dances as well as community membership when fish are 
exposed to M.  aeruginosa (d28_1, d28_10, d28_100) or 
d28_Z8 compared to d28_0 (Fig.  2a, b). Bacterial com-
munity composition appears different among treat-
ments (PERMANOVA, weighted UniFrac, p  <  0.001), 
notably between d28_100 and the other four treatments 
(p < 0.01), as well as between d28_0 and d28_Z8, d28_1, 
and d28_100 (p  <  0.02). Differences between d28_Z8, 
d28_1, and d28_10 are not significant (p > 0.23) indicat-
ing comparable effect of a Z8 nutrients enrichment and 
lower M. aeruginosa doses. In addition, levels of variance 
in the different treatments are not significantly different 
(PERMDISP, p > 0.19).

In treatment d28_0 (water-exposed control), Fuso-
bacteriota (50  ±  16%), Firmicutes (28  ±  15%), Proteo-
bacteria (10 ± 6%), and Bacteroidota (5 ± 3%) dominate 
the microbiota, altogether representing 92.8  ±  6.9% of 
the reads. Relative abundances of these phyla are differ-
ent among other treatments. Notably, Firmicutes are far 
less abundant in d28_100 (3 ±  2%) compared to other 
treatments (d28_0: 28 ± 15%, d28_Z8: 28 ± 15%, d28_1: 
41 ± 14%, d28_10: 36 ± 12%) (Fig. 2c).

Many ASVs display significant differences across 
treatments in their relative abundances (Fig.  2e and 
Figure  S2a). We focus on the six dominant ASVs, i.e., 
representing at least 10% of reads in at least one sam-
ple, accounting from 11 to 72% of the reads. ASV1349, 
ASV1564, and ASV2363 exhibit lower relative abun-
dances in d28_0 (average below 0.7%). ASV1349 (Fla-
vobacterium) and ASV1564 (Aeromonas) are more 
abundant in d28_Z8 (7.6 ± 10% and 3.8 ± 3.5%, respec-
tively) and d28_100 (4.2 ± 4.1% and 6.2 ± 2.9%, respec-
tively). ASV2363 (Reyranella) is also more abundant in 

(See figure on next page.)
Fig. 2 Changes in the composition of gut bacterial communities after 28 days of exposure. a, b PCoA using the weighted (a) or unweighted (b) 
UniFrac distances on fish gut bacterial community in the five treatments. c Relative abundance of bacterial phyla across treatments. d Relative 
abundance of Firmicutes members (family level). Firmicutes are mainly represented by the Erysipelotrichaceae family, and a single ASV (ASV1662). 
Colored horizontal bars represent the different treatments (see Fig. 1). e Significant ASVs from the linear discriminant analysis (LDA) effect size 
(LEfSe) with a LDA score above 3.5, and their relative abundances across d28 treatments. The colored boxes on the y-axis represent the treatment 
where each ASV is most abundant; dots represent the average relative abundance; line spreads over the range of observed values. Only dominant 
ASVs, i.e., representing at least 10% of reads in at least one sample were further considered
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Fig. 2 (See legend on previous page.)
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d28_100 (5.8 ±  11.1%). ASV1662 affiliated to the genus 
ZOR0006, is the main Firmicutes (96–100% of all Fir-
micutes reads), and as previously mentioned, is least 
abundant in d28_100 compared to other treatments 
(Fig.  2d). ASV2042 (Romboutsia), dominant in a single 
sample (17.8%) while below 3.5% in all others, was not 
further considered. Finally, ASV1644 (unassigned Bac-
teria) displays similar abundances in treatments d28_0 
(5.6 ±  6.0%) and d28_100 (7.2 ±  9.7%) but is much less 
abundant in treatment d28_1 (0.7 ±  1.2%). Aside from 
the dominant ASVs that vary, ASV1620 (Cetobacterium) 
displays non-significant differences in abundance among 
treatments, representing 48 ± 16% of reads in d28_0 and 
average 27% to 46% of reads in other treatments.

Metagenome‑based comparison of gut communities 
in d28_0 and d28_100
Metagenome datasets obtained from 5 fish guts from 
d28_0 and 5 others from d28_100 yielded negligible 
amounts of Archaea and non-fish Eukaryota sequences. 
Among the 32 bacterial bins obtained, 8 were found to 
be more abundant after treatment (p  <  0.05, Wilcoxon 
rank-sum test) (Figure S2b), including seven which vary 

concordantly with ASVs sharing the same taxonomic 
annotation (Flavobacterium, Aeromonas, Gemmobacter, 
Rhizobiales, Figure S2a, b). Three bins showed a decreas-
ing abundance after treatment, including bin24, affiliated 
to the Firmicutes, with a majority of coding sequences 
associated to ZOR0006 (58.06%), the genus correspond-
ing to aforementioned ASV1662.

Gut Metabolic Modules were also investigated, with 
a total of 93 found within the 32 bins (Fig.  3). Each 
bin possesses a specific set of GMM involved in cen-
tral metabolism and degradation of organic molecules 
or cobalamin (vitamin  B12) biosynthesis. A hierarchi-
cal clustering based on the GMM presence/absence 
failed to gather bins following their abundance vari-
ation behavior between treatments. Interestingly, 
cobalamin biosynthesis is a largely shared metabolic 
feature in the medaka gut microbiome, since 17 bins 
harboured this GMM, including bin29 associated 
with Cetobacter. ZOR0006 related bin24 carries a lim-
ited set of GMM mostly involved in Carbohydrates 
degradation. It also harbours the lactate pyruvate 
interconversion function that is only shared with the 
Cetobacterium-affiliated bin29. When considering 

Fig. 3 Heatmap of GMM presence/absence in bins obtained from the medaka microbiome. GMM label colors represent the metabolic categories. 
Bin label colors correspond to their abundance variation between experimental conditions. Dendrograms are based on hierarchical clustering
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genomic investment in the three major organic 
substrate types degradation, namely amino-acids, 
carbohydrates and lipids, bins were split into two sub-
populations (Figure  S3): a first group gathering bac-
teria with a generalist strategy (in the center of the 
ternary plot), and a second one that is highly special-
ized in carbohydrates degradation, the latter includ-
ing the three bins showing an abundance decrease in 
exposure condition (bin11, bin24, and bin22). Beyond 
GMM, only 0.3% (6) of all enzymes are specific to 
these three bins (Figure  S2c), including one involved 
in lactose degradation (KO2788) but not essential for 
this pathway. On the other hand, 4.3% (95) of enzymes 
are specifically found in the 8 bins that are enriched 
in d28_100 (namely bin9, bin10, bin12, bin16, bin19, 
bin23, bin25, bin26). These represent 95 specific 
enzymes, including 14 involved in the biosynthesis of 
secondary metabolites, 10 in porphyrin and chloro-
phyll metabolism, and 6 in the biosynthesis of cofac-
tors. The analysis of clusters of orthologous groups 
(COGs), regardless of their annotation status, reveals 
that 963 of them (4.4% of the total COGs) are specific 
to the three bins that are the most abundant in d28_0, 
and that 2316 others (10.7% of the total gene families) 
are specific to the 8 bins that are the most abundant 

in d28_100. However, one should notice that most of 
these COGs carry no known functional annotation, 
compromising our understanding of the influence of 
gene content variations on microbiota functioning 
based on metagenomic assumption.

Gut metabolome variation and integration with gut 
microbiota composition after 28 days of exposure
A total of 1674 metabolites were detected across gut 
samples at d28. The PCA analysis separates the metab-
olite profiles of fish exposed to the different M.  aerugi-
nosa levels (d28_1, d28_10, d28_100) along the first axis, 
while the second axis mostly separates d28_0 from other 
treatments (Fig.  4a). The gut metabolite composition is 
different among treatments (PERMANOVA, euclidean 
distance, p  <  0.001), between d28_0 and the three M. 
aeruginosa treatments (p = 0.01), and between d28_100 
and all treatments (p < 0.03) but d28_10 (p = 0.19). Treat-
ments d28_Z8, d28_1, and d28_10 do not display dif-
ferences (p  >  0.3). No significant variation is observed 
among treatments in livers (p  =  0.13) (Figure  S4a). In 
muscles, differences occur (p < 0.001) especially between 
d28_0 and both d28_Z8 and d28_1 (p  =  0.01), and 
between d28_100 and all other treatments (p  =  0.01) 
except d28_0 (p = 0.33) (Figure S4b).

Fig. 4 Modification of the gut metabolome composition associated with bacteria changes. a Principal component analysis (PCA) representing gut 
metabolite profiles at d28. b Relevance network analysis illustrating the most correlated metabolites (in white) and ASVs (in orange) discriminating 
among the five treatments. Only variables (ASVs, metabolites) with correlation values above ± 0.695 are displayed. Pearson correlations between 
covariate metabolites and ASVs are represented by coloured segments (blue: negative association, red: positive association)
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A joint analysis of gut metabolites and bacterial com-
munities was performed, as described by Singh and col-
leagues [64]. The resulting combined dataset consists of 
two matrices of the 70 abundant ASVs, i.e., representing 
at least 1% of reads in at least one sample, and the 1674 
metabolites, sufficiently well correlated together (76%) to 
explore associations between ASVs and metabolites. The 
relevance network illustrates correlations between the 
most highly associated ASVs and metabolites discrimi-
nating among the five treatments. Four ASVs (ASV1349, 
ASV1564, ASV475, ASV1995) appear negatively corre-
lated with several metabolites and are the least abundant 
in d28_0 (Fig. 2e and Fig. 4b). Differently, the two other 
ASVs, namely ASV1543 (Epulopiscium) and ASV2350 
(Barnesiellaceae), are positively correlated with few 
metabolites and are the most abundant in d28_0 (Fig. 4b). 
Unfortunately, due to the general lack of proper metabo-
lite databases [77], only few of the metabolites presenting 
high correlation with abundant ASVs could be annotated, 
and these mainly corresponded to amino acids or small 
peptides (Dataset S5).

Diversity and composition of the gut bacterial microbiome 
and metabolome after depuration (d33) and a second 
exposure (d39)
After d28, fish from all 5 treatments were transferred to 
clean water (Fig. 1). At d33, some specimens were sam-
pled, while others were transferred to a second expo-
sure to M. aeruginosa (100  µg.L−1 Chla), then sampled 
at d39. The species richness of gut-associated commu-
nities decreases between d28 and d33 (over 82 versus 
50 ± 24 ASVs), then increases at d39 (76 ± 22 ASV). The 
PCoA discriminates between gut communities from fish 
exposed to 100 µg.L−1 Chla (d28_100 and d39) and other 
treatments (Figure S5a). Community compositions differ 
among treatments (PERMANOVA, weighted UniFrac, 
p  <  0.001). Treatment d33 differs from all other treat-
ments (p  <  0.05) except for d28_0 (p =  0.063); in other 
words, bacterial communities at d33 are mostly similar 
to those observed in the d28_0 treatment. Interestingly, 
Microcystis-affiliated ASVs are almost absent (below 0.2% 
of reads) from the water and absent from gut samples at 
d33. Communities at d39 differ from all other treatments 
(p < 0.05), except for d28_100 (p = 0.063); indicating that 
bacterial communities at d39 are similar to those from 
the d28 treatment exposed to the highest bloom inten-
sity. Interestingly, Microcystis-affiliated ASVs are abun-
dant at d39 in the water (9.8 to 18.1% of reads) and occur 
in the gut samples (up to 4.6%). Variance differs among 
treatments (PERMDISP, p  <  0.01), particularly between 
d33 and all other treatments (p < 0.05), and between d39 
and treatments d33 and d28_Z8 (p < 0.05), with d33 and 
d39 displaying lower variance. Some phyla are present in 

similar abundances at d33 and d39, including Fusobacte-
riota (62 ± 8% and 66 ± 14%, respectively), Proteobacte-
ria (12 ± 6% and 19 ± 9%) and Bacteroidota (9 ± 3% and 
7 ± 3%, Fig. 5a, b). Firmicutes, again mostly consisting of 
ASV1662, are present at d33 and almost absent at d39 
(15.4 ± 6.4% versus 0.8 ± 1.8%). Other significant changes 
have been observed in specific ASVs between d33 and 
d39 (Figure  S6a) among which seven were already 
observed to vary between the different d28 treatments 
(Fig.  2e and Figure  S2a). Interestingly, ASV1620 (Ceto-
bacterium), that was found abundant and stable among 
the different d28 treatments, is still remarkably stable at 
d33 and d39 (58.8 ± 7.4% and 61.7 ± 13.2%).

The gut metabolite profiles are significantly different 
among treatments (PERMANOVA, euclidean distance, 
p  <  0.001, Figure  S5b), especially between d33 and all 
treatments (p < 0.05) except d28_Z8 and d28_1, as well as 
between d39 and all others (p < 0.05) except d28_Z8 and 
d28_10. Contrary to bacterial microbiota composition, 
the d33 metabolomes are overall different from d28_0, 
and those of d39 are different from d28_100. A good 
correlation (81%) was observed between the gut ASVs 
and the metabolites discriminating between d33 and 
d39 when investigating the two matrices, containing 31 
abundant ASVs and 1674 metabolites, respectively. The 
relevance network notably revealed two ASVs, belonging 
to genus Vibrio (ASV1406, ASV2161), that are negatively 
correlated with numerous metabolites, while two ASVs, 
belonging to genus Reyranella (ASV1030, ASV2363) 
appear positively correlated with numerous metabo-
lites (Figure  S6b). No differences occur among treat-
ments in liver samples (p > 0.05, Figure S5c). In muscles, 
metabolomes at d33, d39, and d28_100 appear similar 
(p > 0.10), but different from all other treatment groups 
(Figure S5d).

Occurrence of dominant ASVs in compartments other 
than gut
Dominant ASVs were searched for in fish food, M. aer-
uginosa culture, water, biofilm, and faeces (Figure  S7). 
ASV1620 (Cetobacterium) is most abundant in guts 
(44.3  ±  20.4%) then in faeces (28.6  ±  15.3%), congru-
ent with its best matches in the database which are 
fish gastrointestinal bacteria (zebrafish, Nile Tilapia). 
ASV1349 (Flavobacterium) and ASV1564 (Aeromonas) 
are most abundant in faeces (8.8 ± 9.6% and 7.8 ± 2.8%, 
respectively), then guts (2.1  ±  4.4% and 3.4  ±  2.6%, 
respectively) and biofilms (2.0  ±  3.3% and 3.4  ±  2.5%, 
respectively). This is congruent with their respective 
BLASTN hits with bacteria from fish intestinal tracts or 
aquatic environments. ASV1644 (unassigned Bacteria) is 
also most abundant in faeces (10.7 ± 7.4%), then in guts 
(3.7  ±  6.6%), but could not be assigned taxonomically. 
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The Firmicutes ASV1662 (ZOR0006) mainly occurs in 
guts (19.3  ±  16.9%) and is slightly abundant in faeces 
(1.2 ± 1.4%), in accordance with the habitat of its closest 
matches, namely fish intestinal bacteria. Finally, ASV2363 
(Reyranella) is most abundant in biofilms (4.4  ±  8.7%) 
compared to other compartments (water 2.2  ±  6.3%; 
feces 1.3 ± 2.7%; guts 1.2 ± 4.1%), and is related to vari-
ous environmental bacteria.

Discussion
Results from the 28-day exposure indicate that Micro-
cystis aeruginosa blooms modify the fish gut bacterial 
microbiota compositions and have different effects on 
different taxa. Firmicutes, a phylum commonly found 
in gut bacterial communities of vertebrates and very 
likely implied in host metabolism processes [78–80], 
appear particularly sensitive as they decrease sharply 
upon exposure to the highest bloom intensity. Firmi-
cutes were largely represented by a single bacterium 
(Erysipelotrichaceae_ZOR0006) that was almost absent 

outside of gut samples, suggesting being an indigenous 
and resident symbiont of O. latipes gut [81]. Kaakoush 
and colleagues [82] have previously discussed the central 
role of Erysipelotrichaceae in host metabolism and health 
in relation to diet specificity. According to our results 
based on the functional classification proposed by Vieira-
Silva, ZOR0006 displays a limited repertoire of metabolic 
modules compared to other bins such as Cetobacterium 
(16 vs. 54 GMM, respectively). Furthermore, most of the 
functions present in ZOR0006 are also encoded by other 
bacteria in the microbiome, with the notable exception 
of the lactate-pyruvate interconversion module, a rare 
yet potentially important function otherwise only found 
in Cetobacterium. Indeed, lactate homeostasis is thought 
to be essential in the gut [83]. Although high concentra-
tions are associated with inflammatory bowel disease in 
humans [84, 85], lactate has been shown to inhibit the 
growth of pathogenic bacteria [86], whereas pyruvate 
stimulates it [87]. In addition, lactate has recently been 
shown to be involved in the repair of the gut epithelium 

Fig. 5 Depuration and a second Microcystis bloom impact the gut microbiota community. Relative abundance of gut bacterial phyla at d33, after 
4 days in water following the d28 treatment (a), and at d39 after 5 additional days exposed to M. aeruginosa (b). Colored horizontal bars represent 
the different imposed treatments: blue = water, dark green = 100 µg.L−1 Chla. Individuals sampled from a given aquarium (blue then green box 
below histograms) are organized in columns
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[88]. Symbiont abundance changes could thus affect the 
gut epithelium function as a barrier. Interestingly, the 
degradation activities of ZOR0006, like those of the other 
two bacteria whose abundance decreased after exposure, 
are totally oriented towards carbohydrates, suggesting a 
specialized degradation metabolism. The ZOR0006 genus 
has already been observed to decrease in fish gut micro-
biota after exposing zebrafish to high concentrations of 
antibiotics or fungicides [89, 90]. Interestingly, the drop 
of ZOR0006 abundance observed in this study occurs at a 
level between 10 and 100 µg.L−1 Chla. Together with the 
observation of the greater influence of the highest bloom 
condition on the whole gut community, this suggests 
the existence of a cyanobacterial bloom threshold above 
which the gut microbiota composition is particularly 
altered. On the other hand, some abundant gut bacteria 
appear stable throughout the bloom, and even during the 
depuration and second exposure, the most remarkable 
being the bacterium affiliated to Cetobacterium (Fuso-
bacteria). This genus is generally associated with healthy 
fish microbiota and notably contributes to host health as 
a cobalamin (vitamin B12) producer [91–93]. In addition 
to the confirmation of cobalamin biosynthesis ability, 
our analysis proved Cetobacterium to possess the larg-
est set of GMM, a functional feature that could suggest 
a highly significant role as a symbiont. Cetobacterium is 
most likely a fish gut resident and has previously been 
reported stable in medaka fish upon exposure to pure 
microcystin-LR and cell extract of the Microcystis strain 
[35], supporting its maintenance through the exposure to 
cyanobacterial bloom and respective metabolites. Finally, 
relative abundances of some other bacteria increase dur-
ing the Microcystis bloom. These could include tran-
sient gut bacteria that originate from the environment 
and proliferate once established in the gut, one example 
being Reyranella which also occurs in biofilms. These 
may also include rare gut resident taxa that can take 
advantage of peculiar conditions to proliferate. In our 
study, some of these bacteria, corresponding to Flavo-
bacterium, Aeromonas, and Shewanella, are common 
inhabitants of fish guts or the environment, or potential 
fish gut pathogens according to the literature [94–96]. A 
similar increase of opportunistic bacteria was recently 
documented in guts of zebrafish exposed 96h to M. aer-
uginosa [10]. As previously shown for several metabolite 
mixtures from cyanobacterial cell extracts [35], exposure 
to whole cyanobacterial cells thus has a major impact on 
gut community compositions, indicating that fish micro-
biota might be impacted during the bloom as well as after 
bloom senescence which causes the release of the cyano-
bacterial cell contents into the surrounding water [97]. 
However, only the highest concentration of the bloom 
and/or its cell extract, that was explored in the present 

study, could induce most evident microbiota changes, 
suggesting that the microbiota responsiveness might be 
dose dependent. The cyanobacterial strain PMC 728.11 
contains various secondary metabolites that may be 
responsible for variations in fish gut microbiota. Among 
those already identified and specifically those potentially 
produced by the strain [35, 98], cyanopeptides, such as 
aerucyclamides and bacteriocins, are thought to exhibit 
potent antimicrobial or cytotoxic bioactivities [99, 100], 
and could directly impact the microbiota during Micro-
cystis cell digestion into the intestine lumen.

Metagenome-based investigation confirms the variations 
of taxa abundances, but very few taxa-specific known (i.e., 
annotated) functions were identified for the bacteria that 
displayed the highest abundance variations, including for 
the Firmicutes ZOR0006 which displays the smallest set of 
GMM. This is at first consistent with the common claim 
that a change in microbiota composition does not neces-
sarily imply a change in the functions as estimated by gene 
content [101, 102]. However, similar genes are not neces-
sarily expressed in the same way in different bacterial taxa, 
and thus phenotypes might still change dramatically despite 
the potential occurrence of similar gene contents. Indeed, 
variations in metabolite profiles reveal obvious functional 
variations induced by the different treatments, in particu-
lar changes in gut metabolite composition associated with 
increasing bloom concentrations. These changes could thus 
be related to unannotated COGs, much more numerous 
among the differentially abundant bacteria compared to 
annotated KO, or could result from variations in the expres-
sion of metabolic pathways in the holobiont. Whatsoever, 
the correlation observed between some dominant bac-
teria and many metabolites supports that the response of 
gut microbiota composition and that of the holobiont’s gut 
metabolome are linked. Gut community disruption is asso-
ciated with metabolic changes, especially in the presence of 
higher bloom levels. This could lead to a potential dysbiotic 
state, however defining eubiotic versus dysbsiotic state is 
not straightforward, as discussed elsewhere [103, 104], and 
will require exploring various additional holobiont physio-
logical variables. Altogether, the crosstalk between gut bac-
teria and metabolites remains difficult to characterize. For 
example, the presence of pathogens enhanced by bloom-
induced toxicological impairs of fish physiology could sec-
ondarily affect the holobiont gut metabolism. Alternatively, 
the variation of the quantity of some gut metabolites could 
allow the development of opportunistic pathogens, as 
reported in mammals [105, 106]. Interestingly, variations of 
metabolite composition in muscles and livers remains lim-
ited in comparison to those observed in the gut, even after 
28  days, implying that the gut metabolome compartment 
is more responsive to the Microcystis aeruginosa exposure. 
This observation is congruent with the fact that the gut is 
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more directly exposed to the surrounding environment, 
through ingestion of water that contains various organ-
isms and their associated compounds, and emphasizes the 
relevance of investigating the gut microbiota, as the gut 
epithelium sits at the interface between the host and its 
environment [32, 33]. Changes in microbiome and overall 
holobiont functions seem to be deeply linked, despite that 
the respective contribution of the host and the bacteria 
community cannot yet be disentangled due to the current 
impossibility to link a metabolite to its organism of origin 
within the holobiont and will require further dedicated 
functional analysis [107].

After the first 28-day bloom, depuration in clear water 
seems to have restored, to a certain extent, gut micro-
biota compositions. Indeed, compositions at d33 tended 
to resemble those of naïve specimens, not previously 
exposed to M. aeruginosa or to Z8 (d28_0). This indicates 
that the gut community composition is resilient, even 
over a relatively short time. The following second high-
intensity bloom on the other hand yielded bacterial com-
munities resembling those of specimens exposed to the 
first high-intensity bloom (d28_100), including the dis-
appearance of Firmicutes and the stability of Cetobacte-
rium. This indicates that a short duration bloom (5 days) 
already has a strong effect [37]. Gut communities thus 
quickly respond to the presence or absence of M. aerugi-
nosa and associated bioactive compounds. Effects of the 
first and the second bloom are however not strictly iden-
tical. Firmicutes for example show reproducible behavior, 
disappearing upon first and second bloom, and seem to 
quickly re-establish post-bloom, suggesting they are not 
resistant, but remarkably resilient. However, the relative 
abundance of other taxa (including Flavobacterium, Rey-
ranella, Shewanella), whose abundance increased upon 
the 28  days bloom, did not increase during the second 
5-day exposure. It remains here difficult to compare vari-
ations of most non-dominant bacteria between d33 and 
d39 because of the substantial inter-individual variation 
of microbiota composition, combined with the limited 
sample size in terms of individual number per condi-
tion, compared to d28 conditions. Stress associated with 
specimen handling, the transfer of fish to newly cleaned 
aquaria after 28 days, has previously been referenced as 
a moderate, but possible, source of stress [108] and also 
could be involved to a certain extent in some of the dif-
ferences. Contrary to gut community compositions, the 
metabolite composition in fish guts after the depuration 
and the second exposure did not tend towards those 
observed in unexposed and highest bloom at d28, respec-
tively. So, metabolite compositions do not linearly follow 
the trends found in community compositions. This also 
suggests that the depuration and the second exposure 
may have been too prompt to induce major shifts in the 

gut metabolome, as these compartments may present dif-
ferent kinetics. Thus, the dynamics of gut microbiota and 
metabolome are very likely not identical, and the micro-
biota composition may somehow respond to changes 
faster than the metabolome. This would suggest that 
longer blooms occurring in nature may have more effect 
and functional consequences for the holobiont homeo-
stasis compared to shorter blooms [109, 110].

Conclusions
Overall, this study emphasizes that cyanobacterial blooms 
have the potential to alter fish gut microbiota composi-
tion and holobiont functions. Additionally, the drop of 
Firmicutes abundance induced by M.  aeruginosa bloom 
which threshold level would be comprised between 10 
and 100  µg.L−1 Chla, together with the observation of a 
greater influence of higher bloom condition (100) on the 
overall gut community, support the existence of a notable 
tipping point for the responsiveness of gut microbiome to 
cyanobacterial bloom intensity. This finding could have 
important eco(toxico)logical consequences, as these lev-
els are commonly reached in natural ecosystems during 
typical Microcystis bloom episodes worldwide, suggest-
ing that destabilization of fish gut communities might 
be a very common event [42]. In nature, cyanobacterial 
blooms are nowadays becoming increasingly frequent 
[3], and sometimes persistent among seasons. Freshwa-
ter fish, especially those living in shallow water ponds, 
face numerous bloom episodes of varying durations 
during their lifetime. Consequences of iterative (up to 
chronic) exposures on the holobiont should be explored. 
Indeed, successive blooms without enough recovery time 
could induce a cumulative drift of the gut microbiota and 
metabolome, leading to suboptimal states that may lead to 
host health impairment [111]. This phenomenon could be 
of major significance for fish health in eutrophic natural 
ecosystems as well as aquaculture ponds where cyanobac-
teria often proliferate. Testing the effects of a single live 
M. aeruginosa strain administrated by simple balneation 
on a model teleost fish is a first step towards understand-
ing bloom effects on fish microbiota and holobiont health. 
In the future, particular attention should also be paid to 
the natural diversity of cyanobacterial within blooms, as 
successive blooms often involve different species that pro-
duce different metabolite cocktails [112].
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evenness) in the different sample types. Means are represented by a 
red dot. (d) Principal coordinates analysis (PCoA) representing bacterial 
communities from the different compartments using the weighted Uni-
Frac distance. Figure S2. (a-b) Differentially abundant fish gut bacteria 
between treatments d28_0 (blue) and d28_100 (dark green) based 
on 16S rRNA reads (a) and shotgun metagenome sequencing (b). The 
absence of 16S rRNA sequences in metagenome bins does not allow to 
directly connect ASVs with bins, however the coloured taxon names rep-
resent bacteria with the same taxonomic affiliation. Lowest assigned tax-
onomic levels are displayed with the level specified by a single letter. 
(a) Discriminant ASVs based on the Linear discriminant analysis (LDA) 
effect size (LEfSe) with a LDA score above 3.5 and their variations in rela-
tive abundance in fish guts. The coloured boxes represent the treatment 
where each ASV is found the most abundant. The dots represent average 
relative abundance, the lines spread over the range of observed values. 
Only dominant ASVs (see text), were considered and further investigated. 
(b) Taxonomic affiliations (using the BAT method) of bins displaying 
significantly different relative abundances based on the Wilcoxon rank-
sum test (p < 0.05) and their relative abundance across fish gut samples. 
The CAT method was used to affiliate bin10 (Rhodospirillales) at a lower 
taxonomic level, i.e. Reyranella massiliensis. The treatment where each 
bin is significantly more abundant is represented by the coloured box. 
(c) Overlap of KO counts among three groups: KO from bins significantly 
more abundant in d28_0 (blue) or in d28_100 (dark green) (p <0.05, Wil-
coxon rank-sum test), or KO from bins non-significantly different between 
the two treatments (beige) (p > 0.05). Figure S3. Triplot representation of 
bin contributions in the degradation potential of the whole microbiome, 
defined as the fraction of GMM coded by a bin in each of the three 
major degradation types, amino acids, lipids and carbohydrates. Bin 
colors correspond to their abundance variation between experimental 
conditions. Figure S4. Principal component analyses (PCA) illustrating 
the metabolite composition in fish livers (a) and muscles (b) from the 
five different treatments during 28 days. Figure S5. Comparisons of the 
composition of bacterial communities (a) and metabolite profiles (b) in 
fish guts, and the composition of metabolite profiles between the three 
different sampled organs, guts (b), livers (c) and muscles (d). The three 
organs were either exposed long-term during 28 (d28) days (full circles or 
diamonds) or short-term during 4 (d33) or 5 (d39) days (open circles or 
diamonds). (a) Principal coordinates analysis (PCoA) on weighted UniFrac 
distance illustrating bacterial composition in fish guts. (b-d) Principal 
component analyses (PCA) representing metabolite profiles in fish guts, 
livers and muscles. Figure S6. (a) Significant ASVs from the LEfSe analysis, 
differentially abundant between d33 gut samples (in water) and d39 gut 
samples (in 100 µg.L-1 Chla). The coloured boxes represent the treatment 
where ASVs are found more abundant. Dots and lines indicate mean and 
range of values, respectively. The displayed taxonomic affiliations corre-
spond to the lowest assigned level, displayed using the first taxon letter. 
The two ASVs (ASV2363, ASV1662) underlined are also found differentially 
abundant between d28_0 and d28_100. (b) Relevance network analysis 
representing the most correlated ASVs and metabolites discriminat-
ing d33 and d39 gut samples. Only ASVs (in orange) and metabolites 
(in white) associated with Pearson correlation scores above ±0.714 are 
displayed. Coloured segments represent Pearson correlation values, 
either positive (red) or negative (blue). Figure S7. Relative abundance of 
dominant ASVs across compartments other than gut (culture, water, bio-
film, gut and faeces). ASVs were searched for in the fish food sample dis-
carded at the rarefaction step, but any ASVs were found (only 1% of 
reads for ASV1620). Table S1. Composition of annotated metabolites of 
the PMC 728.11 Microcystis aeruginosa strain. Percentages represent the 
proportions of each annotated cluster on the total annotated clusters. 
Abbreviation: AA = Amino Acids.

Additional file 2: Dataset S1. Sampling counts during the whole 
experiment.

Additional file 3: Dataset S2. Monitoring of abiotic and biotic param-
eters during the experiment.

Additional file 4: Dataset S3. Annotations of metabolites from the Micro-
cystis aeruginosa strain PMC 728.11.

Additional file 5: Dataset S4. 16S rRNA gene sequencing and quality 
filtered read counts, SRA database accession numbers, and measures of 
alpha-diversity metrics (species richness, Shannon, evenness).

Additional file 6: Dataset S5. Annotations of the most correlated 
metabolites with bacteria from fish guts at day 28.
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