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Abstract 

Background Over the past years, sequencing technologies have expanded our ability to examine novel microbial 
metabolisms and diversity previously obscured by isolation approaches. Long-read sequencing promises to revolu-
tionize the metagenomic field and recover less fragmented genomes from environmental samples. Nonetheless, how 
to best benefit from long-read sequencing and whether long-read sequencing can provide recovered genomes of 
similar characteristics as short-read approaches remains unclear.

Results We recovered metagenome-assembled genomes (MAGs) from the free-living fraction at four-time points 
during a spring bloom in the North Sea. The taxonomic composition of all MAGs recovered was comparable between 
technologies. However, differences consisted of higher sequencing depth for contigs and higher genome popula-
tion diversity in short-read compared to long-read metagenomes. When pairing population genomes recovered from 
both sequencing approaches that shared ≥ 99% average nucleotide identity, long-read MAGs were composed of 
fewer contigs, a higher N50, and a higher number of predicted genes when compared to short-read MAGs. Moreover, 
88% of the total long-read MAGs carried a 16S rRNA gene compared to only 23% of MAGs recovered from short-
read metagenomes. Relative abundances for population genomes recovered using both technologies were similar, 
although disagreements were observed for high and low GC content MAGs.

Conclusions Our results highlight that short-read technologies recovered more MAGs and a higher number of spe-
cies than long-read due to an overall higher sequencing depth. Long-read samples produced higher quality MAGs 
and similar species composition compared to short-read sequencing. Differences in the GC content recovered by 
each sequencing technology resulted in divergences in the diversity recovered and relative abundance of MAGs 
within the GC content boundaries.
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Background
In shotgun metagenomic approaches, limitations in the 
read length (i.e., ~ 100–250 bp sequences) often translate 
into fragmented reconstructed metagenome-assembled 

genomes (MAGs) with uncertain levels of genomic com-
pletion during de novo assembly. These complications 
are primarily due to highly repetitive regions, high levels 
of sequence microdiversity, multiple copies of genes, and 
AT-rich/GC-rich regions [1]. Overcoming these limita-
tions is paramount to understanding the role of microor-
ganisms in natural processes and analyzing their diversity 
in environmental and gut microbiomes.

The emergence of long-read sequencing technolo-
gies restores the hopes of overcoming these limitations 
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in genomic sequence recovery. Sequencing platforms 
from Oxford Nanopore and Pacific Biosciences (PacBio) 
can produce longer reads, although at the expense of a 
higher sequencing error rate and less sequencing depth 
compared to Illumina short-reads [2] (SR). For instance, 
the median length of reads ranges from 5 to 20 kbp and 
throughputs from 15 to 50 Gbp in LR technologies. 
Current sequencing chemistries yield observed modal 
read accuracies of 99.99%, 99.14%, and 99.9% for Illu-
mina, Oxford Nanopore, and PacBio, respectively [3, 4]. 
Moreover, advances in technological and bioinformatic 
approaches are closing the gaps between short- and long-
read sequencing technology applications, especially for 
recovering high-quality MAGs from the environment. 
Thus, long-read (LR) shotgun metagenomics is poised 
to set new standards for MAG quality. For instance, cur-
rent PacBio Sequel II technology offers circular consen-
sus sequencing (CCS), providing a low-error rate in high 
fidelity reads, although at a shorter read length than the 
traditional long-read technology [3]. Additionally, bet-
ter genome statistics (low number of contigs and high 
N50 values) [5–9] or the combination of short- and long-
reads for the recovery of high-quality MAGs [10, 11] 
have already showcased the benefits for the recovery of 
microbial genomes [12]. Nonetheless, whether a switch 
from SR to LR metagenomic approaches would intro-
duce biases for capturing the genetic potential of micro-
bial populations in terms of recovery of the MAGs is less 
known.

Methods
Sampling and sequencing
During the spring of 2020, surface seawater samples were 
collected from the “Kabeltonne” long-term ecological 
research station off the North Sea of Helgoland (54° 11.3′ 
N, 7° 54.0′ E) as described previously [13, 14]. Surface 
water samples were collected on March 10, 2020, April 
14, 2020, April 30, 2020, and May 6, 2020. All samples 
were filtered through 10- and 3-μm pore-size filters to 
remove phytoplankton and particle-associated micro-
organisms. Cells were collected using 0.2-μm pore-size 
polycarbonate filters, and DNA extractions were per-
formed using the ZR-Duet DNA/RNA MiniPrep Plus kit 
(Zymo Research). DNA extractions were split for Illu-
mina and PacBio, and all eight samples were individually 
sequenced (not multiplexed) at the Max Planck Genome 
Centre in Cologne, Germany. Sequencing was performed 
on an Illumina HiSeq 2500 (rapid mode) and a PacBio 
Sequel II platform. High-fidelity reads (HiFi) were gen-
erated using the circular consensus method (Table S1). 
Trimming and processing of raw Illumina reads were 
performed using BBduk v38.94 (BBtools; http:// bbtoo ls. 
jgi. doe. gov; settings: ktrim = r, k = 28, mink = 12, hdist = 1, 

tbo = t, tpe = t, qtrim = rl, trimq = 20, minlength = 100). 
Read quality assessments were performed using 
FASTQC v0.11.9 (www. bioin forma tics. babra ham. ac. uk/ 
proje cts/ fastqc/) and Nanoplot [15] v1.32.1. The aver-
age sequence coverage was determined using Nonpareil 
[16] v3.304. Since Nonpareil was not originally designed 
to be used with LRs, we used single ~ 250  bp fragments 
generated from each read contained in LR metagenomes 
(i.e., unique fragments per long read). LRs were cut into 
shorter sequence fragments using the shred.sh script 
from BBtools (length = 250 minlength = 100), and one 
random fragment was selected from each LR for fur-
ther analyses. Thus, for LR metagenomes, the average 
sequence coverage was predicted using the Nonpareil 
model and the original sequencing effort (lr) for each 
sample in the “predict.Nonpareil.curve” algorithm.

Assembling, binning, abundances, and taxonomy 
of metagenome‑assembled genomes
The assembly and binning of metagenome-assembled 
genomes (MAGs) using Illumina metagenomic sam-
ples were carried out as described previously [17]. First, 
contig sequence statistics were determined using the 
scripts Fasta.N50.pl, FastA.gc.pl, and FastA.qlen.pl from 
the enveomics collection [18]. The assemblies of SR 
were generated using SPAdes [19] v3.14.1 (meta option, 
kmers = 21,33,55,77,99, and 127), and contigs longer 
than 2.5 kbp were binned using CONCOCT [20] v1.1.0, 
MaxBin2 [21] v2.2.7, Metabat2 [22] v2.12.1, Binsanity 
[23] v0.4.4, and integrated using DAS_Tool [24] v1.1.2. 
Long-read metagenomic samples were assembled using 
Flye [25] (meta option) v2.8, and resulting contigs longer 
than 2.5 kbp were binned using Metabat2 v2.12.1 within 
anvi’o v6.2 [26]. Hybrid assemblies were performed using 
hybridSPAdes [27] as implemented in SPAdes v3.15.5 
using the same configuration above but providing the 
corresponding LR library (–pacbio). Bins from SR and 
LR technologies were also quality-refined in anvi’o v6.2 
[26]. Sequences encoding 16S rRNA genes were detected 
using barrnap v0.9 (https:// github. com/ tseem ann/ barrn 
ap). The mapping of LR for calculating sequencing depth 
needed for the binning of contigs and MAG abundance 
was performed using pbmm2 (https:// github. com/ Pacif 
icBio scien ces/ pbmm2/; --preset HIFI -× 97 -N 1), which 
is a wrapper for minimap2 [28]. All MAGs were filtered 
based on a quality metric based on completion and con-
tamination values obtained from checkM [29] v1.1.3 
([completion%] - 5*[contamination%] >  = 50). The de-
replication of MAGs was done to assess the number of 
MAGs sharing > 99% ANI obtained from each sequenc-
ing platform using dRep [30] v3.0.0. For statistical tests 
between pairs of MAGs, the Shapiro-Wilk normality test 
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and Wilcoxon rank tests were performed in the R statisti-
cal software v4.1.1.

For Illumina metagenomes, MAG abundances were 
determined as relative abundance (mapped reads/total 
reads) and as the quotient between the truncated aver-
age sequencing depth (TAD) [31] and the total sequenc-
ing depth of microbial genomes “genome equivalents” as 
determined in MicrobeCensus [32] v1.1.1. The truncated 
average sequencing depth was determined using Bed-
Graph files considering zero-coverage positions (bedtools 
genomecov -bga) [33] and the “BedGraph.tad.rb” script 
(-r 0.8) from the enveomics collection [18]. Abundances 
for MAGs derived from LR were determined using the 
average sequencing depth (i.e., non-truncated) as speci-
fied above and normalized using the median sequencing 
depth of 16 single-copy gene markers predicted in unas-
sembled long-reads (rpl2, rpl3, rpl4, rpl5, rpl6, rpl14, 
rpl15, rpl16, rpl18, rpl22, rpl24, rps3, rps8, rps10, rps17, 
and rps19; see gene prediction and annotation below).

MAGs defined as “shared” or detectable using both 
technologies were defined as those MAGs sharing 
>  = 99% ANI, as determined in fastANI [34] v1.32, 
obtained from each technology at one specific sampling 
date. Taxonomic classification of MAGs was performed 
using GTDB-tk [35] v1.7 and the GTDB [36] release r202. 
In GTDB-tk, MAGs are classified into species using a 
95% ANI threshold.

Comparison of gene predictions in unassembled 
and assembled long‑read metagenomes
Gene predictions in unassembled LR were performed 
using FragGeneScan [37] v1.31. However, we compared 
different tools to ensure better gene predictions. First, 
for the March 10, 2020, LR sample gene predictions 
were performed using Prodigal [38] v2.6.3 (meta option), 
MetaGeneMark [39] v3.38, and FragGeneScan [37] 
v1.31. For the last algorithm, we compared predictions 
using complete/short sequences (-w 0 or 1) and different 
sequencing error models (sanger_5 and sanger_10). All 
predicted sequences were compared against the TrEMBL 
protein sequence database (downloaded April 27, 2021) 
using DIAMOND [40] BLASTp v2.0.8.146 (--max-target-
seqs 5). Best matches were selected based on the high-
est bitscore value, and the query lengths longer than 100 
amino acids, e value ≥  1e−10, and sequence identity ≥ 40% 
were compared against its match reference length.

Code availability
Code, pipelines, and analyses are available on GitLab at 
https:// gitlab. mpi- bremen. de/ lorel lan/ ilmn- vs- pacb- 
helgo land.

Data availability
Metagenomes and MAGs data are available from the Euro-
pean Nucleotide Archive (ENA) project PRJEB52999 [14].

Results and discussion
Unassembled read statistics
We sequenced DNA extracted from bacterioplankton 
collected in the 0.2–3  μm size fractions at four time 
points during the spring of 2020 in the North Sea. The 
sampling points comprised one pre- and three bloom 
events, part of a time-series sampling campaign during 
2020 [14]. The Illumina SR approach recovered an aver-
age of 36 Gbp per sample (~ 240 bp paired-end reads), 
while the CCS PacBio LR approach recovered an aver-
age of 12 Gbp per sample (~ 6 kbp CCS reads) (Table 
S1). This difference translated into SR metagenomic 
samples having, on average, ~3 times more sequenced 
base pairs than LR samples, which is within the 
expected output for single sequenced samples [8]. Addi-
tionally, LR metagenomic samples had slightly higher 
GC content (0.43) compared to their SR counterpart 
(0.38) when all reads were considered (Table S1). The 
average coverage of the microbial community was over-
all similar between LR metagenomes (not significantly 
different; Fig. S1) as determined in Nonpareil [16]. The 
main difference was the LR sample from April 30, 2020, 
had a comparatively lower sequencing depth than other 
LR samples. Similarly, when determining sequence 
diversity using a combined measure of richness and 
evenness (total diversity), LR metagenomes had higher 
average sequence diversity, although not significantly 
different from SR metagenomes (Fig. S1). We mapped 
SR over LR of the corresponding sample to assess the 
degree of sequence overlap between metagenomic sam-
ples (Fig. S2). From the total number of SR per sample, 
an average of 80% had a match in the corresponding LR 
time point. Similarly, LR with an SR match represented 
an average of 93% for the four time points. Thus, both 
sequencing technologies recovered equivalent microbial 
community fractions and sequence diversity, although 
LR-based metagenomics captured a higher GC content 
sequence space.

Comparison of assemblies from SR and LR metagenomic 
samples
The total number of base pairs of assembled SR was, 
on average, more than four times the length of assem-
bled LR (1.7 vs. 0.42 Gbp; see Table S2). The contigs 
recovered from LR metagenomes had a higher N50 
of 86 kbp than the 1.2 kbp obtained from SR-derived 
contigs (500  bp cutoff; Fig. S3a and Table S2a). How-
ever, when these SR contigs were filtered using a 2.5 
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kbp length cutoff (which is the minimum length used 
for binning), the N50 increased to 7.5 kbp on average 
(Table S2b). More than ~84% of SR and ~66% of LR 
mapped back to their respective contigs (Table S2a). 
As expected for SR metagenomes, the sequencing 
depth of contigs reached higher values compared to LR 
for all dates (avg. ~2400x vs. 500x). However, average 
values were higher for LR than SR (~10x vs. 4.4x; Fig. 
S3b), indicating a more even distribution of sequenc-
ing depth values for the LR technologies. Thus, assem-
bled LR reads provide longer contigs than those from 
SR metagenomes.

Using LR reads in SR hybrid assemblers can increase 
the length of recovered contigs [41, 42]. In the librar-
ies analyzed here, N50 values increased, on average, 
from 1.2 to 2.3 kbp (500 bp cutoff ) and 8.2 kbp (2.5 kbp 
cutoff; Table S2c). Nonetheless, the recovered contigs 
comprised, on average, ~17% fewer bases than those 
only using SR. Thus, adding LR libraries to the assem-
bly increased the contig size but not the total length 
of the assembled space. Previous research has exten-
sively documented and compared hybrid assembly 
approaches in metagenomic samples [10, 11, 41, 42]. 
Therefore, we focused on contrasting SR and LR plat-
forms for MAG recovery.

Gene predictions in unassembled and assembled 
long‑read metagenomes
Among the most notable advantages of LR-based 
metagenomics is preserving long genomic regions on a 
single read. Nonetheless, indels can cause a frameshift 
in predicted protein sequences from LRs [43], espe-
cially when using unassembled sequences. Thus, we 
compared the length of predicted protein sequences 
from unassembled LR metagenomes to those in a com-
prehensive database. Commonly used tools, such as 
Prodigal [38], resulted in a higher fraction of smaller 
predicted protein sequences (length of predicted 
protein/length of reference protein; median = 0.93, 
IQR = 0.525, Fig. S4a). Gene prediction tools that can 
better manage errors in sequencing, such as FragGe-
neScan [37], resulted in a tighter distribution of pre-
dicted protein sequences (median = 1, IQR = 0.164, 
Fig. S4a). Thus, error-correction gene prediction tools 
are advantageous for indels correction in unassem-
bled CCS reads. Prodigal was preferred when working 
with assembled reads (Fig. S4b, c). The distribution of 
predicted protein lengths compared to the lengths of 
references was more spread in SR (median = 0.983, 
IQR = 0.45) than LR metagenomic samples (median = 1, 
IQR = 0.052).

Comparing SR and LR technologies for recovering MAGs 
from the same DNA sample
The main goal of this study was to compare the capabili-
ties of both SR and LR sequencing technologies for the 
recovery of bacterial and archaeal genomes (i.e., MAGs). 
First, we summarize the parallel comparisons of MAGs 
recovered from the same DNA extractions sequenced 
using SR and LR technologies. A total of 341 and 254 
MAGs were reconstructed from the four SR and LR 
metagenomic samples, respectively (Fig.  1a). Remark-
ably, 88% of the MAGs recovered from LR metagenomic 
samples carried at least one copy of the 16S rRNA gene, 
contrasting with only 23% of the SR MAGs (Fig.  1b). 
Nonetheless, more 16S rRNA genes could be expected 
if a higher 2.5 kbp contig cutoff is used for the binning 
of contigs, although, at the expense of higher MAG frag-
mentation. No significant differences in completion were 
observed between all recovered LR and SR MAGs. How-
ever, all recovered LR MAGs were less contaminated 
than SR MAGs (Table S3; p < 0.05). Consistently, 35% 
(89/254) of the LR-derived MAGs meet the MIMAGs 
[44] high-quality criterion, whereas only 3.5% (12/341) 
of the SR MAGs follow under the same quality thresh-
olds. The genome-based taxonomic composition was 
similar for both sequencing technologies (Fig.  1a). For 
instance, Bacteroidia (~ 47%) and Gammaproteobacteria 
(~ 25%) were the dominating groups in MAGs from both 
sequencing approaches, in agreement with the taxo-
nomic profile of blooms from previous years [13].

To compare genomic statistics of MAGs representing 
the same populations recovered from the same sample 
using both sequencing platforms, we generated pairs of 
genomes based on ANI ≥ 99% (Fig.  2). A parallel com-
parison of phylogenetic reconstructions derived from 
SR and LR MAGs was congruent, and a similar topology 
was observed (Fig.  2a). MAGs sharing ANI ≥ 99% were, 
for almost all cases, placed in similar positions in the 
tree. LR MAGs were composed of ~ 10 times fewer con-
tigs than their ANI 99% SR counterpart (median = 8 vs. 
83, p < 0.05 test; Fig. 2b). N50 values were also more than 
11 times higher for LR MAGs (median ~ 350 kbp vs. ~ 30 
kbp, p < 0.05). Interestingly, MAGs recovered from LR 
metagenomes were slightly longer than those from SR 
(median = 1.98 Mbps vs. 1.85 Mbps, p < 0.05). LR-derived 
MAGs also carried more predicted genes than the SR 
MAG pair (median = 1872 vs. 1704, p < 0.05; Fig. S5a). 
However, the differences in the number of predicted 
genes were not associated with particular taxonomic 
groups. This difference is likely a consequence of longer 
contigs built from reads containing complex regions not 
represented in SR, which are harder to reconstruct using 
SR approaches. Nonetheless, other statistics such as GC 
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content, completion, and contamination were similar 
between the pair of MAGs.

Differences in abundance and diversity in SR‑ 
and LR‑derived MAGs
Overall, the comparison of relative abundance deter-
mined for the paired MAGs was correlated between 
sequencing technologies (Fig. S6). Nonetheless, diver-
gences from the expected abundances for the pair of 
MAGs were evident when inspected at each time point, 
especially for the three samples obtained during the 
bloom (April 14, 2020, April 30, 2020, and May 6, 2020). 
Unlike the March sample, the linear regression for the 
samples in April and May was less predictive, and a 
higher abundance for LR MAGs was evident (Fig. S6). 
These differences are primarily due to the increased rep-
resentation (i.e., sequencing depth) of populations with 
higher GC content, such as Gammaproteobacteria, com-
pared to Bacteroidia in LR metagenomes (Fig.  3a and 
Fig. S5b). However, a similar relative abundance for main 
taxonomic groups was observed between SR and LR 

MAGs when all, or those detected in both technologies, 
were determined (Fig. S5c, d). The exception was the 
higher abundances of Bacteroidia MAGs belonging in SR 
metagenomic samples at the last time point, in agreement 
with the observations at the MAG level. Thus, genomes 
with high GC content, such as Gammaproteobacteria 
and Acidimicrobiia, have increased sequencing depth in 
LR metagenomes. In contrast, Bacteroidia MAGs (with 
lower GC content) have a comparatively higher sequenc-
ing depth in SR metagenomic samples. Discrepancies in 
relative abundance between technologies due to GC con-
tent cannot be discarded for other groups likely not well 
captured in this analysis.

A critical aspect of ecological inferences based on 
recovered MAGs is determining whether both technolo-
gies can retrieve comparable units of diversity or spe-
cies. To reduce the redundancy of MAGs belonging to 
the same populations captured from each time point, 
we de-replicated and selected representative MAGs at 
99% ANI. Although 99% ANI is a high cutoff [45], de-
replicated genomes resulted in 16% more MAGs from SR 

Fig. 1 Metagenome-assembled genome recovered using short- and long-read metagenomic technologies. a Taxonomic profiles at the domain 
level (innermost ring), phylum level (internal ring), and class (external ring) levels for SR and LR MAGs recovered from all individual samples. b (Top) 
Detected 16S rRNA genes sequences (external ring) and high-quality MAGs (completion > 90%, contamination < 5%, 23S rRNA, 16S rRNA, 5S rRNA, 
> 18 tRNA, internal ring) recovered using SR and LR metagenomes. (Bottom) Total MAGs (external ring) and the number of de-replicated MAGs at 
the 99% ANI threshold from SR and LR metagenomes
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metagenomic samples (216 SR and 187 LR MAGs). This 
higher diversity is due to the higher sequencing effort (or 
the number of base pairs) obtained from SR compared 
to LR sequencing runs. When comparing the taxonomic 
affiliation of MAGs, 28 and 11 species were detected only 
in SR and LR MAGs, respectively. Interestingly, among 
these groups of uniquely recovered species, LR MAGs 
had an average higher GC content when compared to 
the SR MAGs (0.51 vs. 0.38; Fig.  3b). These differences 
likely reflect the inherent genomic characteristics of the 
groups enriched within each sequencing technology [46]. 
Biases in low and high GC content spaces are recognized 
for SR technologies [47], while reports on LR approaches 

have noted anywhere from minimal GC biases in mock 
communities [8] to a higher recovery of high GC con-
tent sequences in metagenomes [46, 48, 49]. According 
to our results, most SR-only species belonged to Bacte-
roidia, Alphaproteobacteria, and Gammaproteobacteria, 
whereas for LR-only species, Acidiimicrobiia, and Ver-
rucomicrobiae were the two major classes. At the genus 
level, ~ 79% (22/28) and ~ 64% (7/11) of the unique MAGs 
belonged to genera only recovered in SR and LR metage-
nomes. At the phylum level, the exception was a Gemma-
timonadota MAG with 63% GC content only recovered 
in LR metagenomes (PACB-20200310-m34, Fig. 3b). This 
Gemmatimonadota MAG had an abundance of 0.04% 

Fig. 2 Comparisons between pairs of MAGs sharing ≥ 99% ANI. a Phylogenetic reconstructions of MAG pairs using short- and long-read 
metagenomic samples. MAGs sharing ≥ 99% ANI recovered from LR and SR metagenomes were used to generate a maximum-likelihood tree based 
on a group of 120 conserved genes. Colors represent different classes determined in GTDB-tk. b MAG pairs recovered from SR and LR metagenomes 
sharing ≥ 99% ANI compared according to genome size contigs, N50, number of contigs, GC content, completeness, and contamination
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of the total community (truncated average sequencing 
depth, TAD80 = 3.77x, breadth of coverage = 88.34% at 
1x TAD80) in the corresponding SR metagenome (March 
10, 2020). These results suggest that SR approaches failed 
in recovering this MAG due to low sequencing depth and 
high GC content of the target genome.

To test the effect of low sequencing depth and breadth 
of the coverage in the recovery of unique species, we 
performed a cross-platform mapping of SR and LR to 
the MAGs, representing unique species recovered with 
the opposite technology (Fig. S7). For the most part, the 
cross-mapping of SR and LR on unique MAG species 
resulted in low sequencing depth (median = 6.4 vs. 2.8) 
and breadth of the coverage (median = 96 vs. 88.3%) for 
SR and LR technologies. Thus, uniquely detected spe-
cies in each dataset are likely due to a combined effect 
of differences in GC content [46] and sequencing depth 
between technologies.

Other considerations when choosing LR technologies
Currently, PacBio LR shotgun metagenomics is of higher 
cost per Gbp than SR (~ 2.4 times higher for our project, 
a further breakdown of costs is available in Table S1). The 
cost per Gbp of Nanopore is currently between Illumina 
and PacBio. Nanopore technologies offer the affordabil-
ity and benefits of recovering longer reads or the pos-
sibility of including short technologies for the better 
recovery of high-quality MAGs [4, 10, 50]. Nonetheless, 
sequencing error and read lengths should be considered 
when selecting between LR technologies [4]. Despite the 

cost differences, the results presented here can guide 
researchers in deciding if LR metagenomics would be 
beneficial over SR approaches.

The current stage of algorithms and approaches for LR 
metagenomics is still limited compared to the large tool-
box of SR technologies. While the methodology used 
here reflects the most appropriate tools and algorithms 
available at the time, we recommend that future studies 
pursue a critical assessment of newer approaches [12] 
when using LR techniques. The dataset presented here 
can also serve as a reference for testing and comparing 
algorithms and approaches for shotgun LR metagenomic 
sequencing.

Conclusions
Our results highlight that switching from SR to LR 
metagenomic sequencing for microbial community 
analyses would still capture similar taxonomic composi-
tion from population genomes but recover higher-qual-
ity MAGs. Nonetheless, SR technologies offered more 
sequenced bases (e.g., three more times base pairs on 
average) than LR sequencing on single runs. This higher 
sequencing effort also translated into a higher number 
of dereplicated MAGs compared to LR metagenomic 
samples (i.e., a higher diversity of population genomes). 
This observation is relevant when the goal is to recover 
low-abundant organisms. Our work indicates a strongly 
decreased genome fragmentation and increased recov-
ery of 16S rRNA genes in LR MAGs. These two features 
translate into better preservation of the order of genes in 

Fig. 3 Differences between sequencing technologies at the MAG level. a The left plot compares the quotient between relative abundances of MAG 
pairs in SR and LR metagenomes determined at their respective sample of origin versus the GC content of the genome. The right histograms show 
the distribution of the quotient values for Bacteroidia and Gammaproteobacteria MAGs (the arrows indicate median values). The top histogram 
shows the distribution of GC content for all MAG pairs compared. Colored dots represent the assigned classes and follow the same palette as 
previous figures. b Unique species-level MAGs recovered from SR and LR. The horizontal flow diagram shows the taxonomic affiliation for unique 
species determined at the 95% ANI level in GTDB-tk. The dots summarize the novelty taxonomic level for each of the MAGs (p = phylum, c = class, 
o = order, f = family, g = genus, s = species). The bars on the right side represent the average GC content for the contigs of each MAG



Page 8 of 9Orellana et al. Microbiome          (2023) 11:105 

unassembled LR or LR-derived contigs. For instance, the 
generation of 16S rRNA probes for fluorescence in  situ 
hybridization for single-cell identification and quantifi-
cation. Even though a high fraction of overlapping reads 
was detected between technologies, differences in GC 
content likely resulted in slight differences in the recov-
ery and abundance of some population genomes.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 023- 01557-3.

Additional file 1: Figure S1. Average coverage and sequence diversity for 
SR and LR metagenomic samples. a. The estimated abundance-weighted 
average community coverage as determined in Nonpareil for each SR 
and LR metagenomic sample. For LR metagenomes, we first selected 
~250 bp fragments from each LR and then used them to generate a 
model. Coverage was predicted from generated models and the original 
sequencing effort b. Sequence diversity (total diversity; Nd) as defined in 
Nonpareil. Figure S2. Read overlapping between short- and long-read 
metagenomic samples. The bars show the mapping of SR on LR for each 
time point. The dark shades indicate the mapped fractions, and the light 
shades show unmapped SR and LR. Figure S3. Assembly statistics for 
contigs generated using short- and long-read metagenomic samples. a. 
N statistics for contigs generated using SR and LR metagenomic samples. 
b. Distribution of sequencing depth (x-axis) for contigs generated using 
SR and LR metagenomic samples. Figure S4. Distribution of predicted 
protein lengths using different gene prediction tools vs. best hit match 
in UniProt TrEMBL. a Only predicted proteins >= 100 amino acids were 
used for all comparisons. The boxplots show the quotients between the 
length of predicted proteins using FragGeneScan (FGS), MetaGenemark, 
and Prodigal and the best match in UniProt TrEMBL for the unassembled 
long-reads of the 2020-03-10 sample. b. Distribution of predicted protein 
lengths from contigs vs. best match in UniProt TrEMBL for the 2020.03.10 
LR sample. Figure S5. Statistics for pairs of MAGs recovered from SR and 
LR metagenomes. a. Difference between the number of predicted genes 
in MAG pairs recovered in SR and LR metagenomic samples. The boxplot 
in the lower right corner summarizes the comparison of predicted genes 
for MAG pairs. b. GC content for pairs of SR and LR MAGs colored accord-
ing to their class taxonomic affiliation. The right side of the plot shows 
histograms for the distribution of GC content values of MAGs belonging 
to Bacteroidia and Gammaproteobacteria class levels. The thick black line 
depicts the median value of the distribution. c,d. Relative abundance for 
all MAGs recovered (c) and pairs of 99% ANI MAGs (d). Colors represent 
the taxonomic affiliation of MAGs according to GTDB-tk. Figure S6. 
Relationship between relative abundances of MAG pairs in SR and LR 
metagenomes for each time point. Figure S7. Comparison of the breadth 
of the coverage vs. sequencing depth for cross-mapping of reads. The 
figures summarize the mapping of (a) short-reads on long-read derived 
MAGs and (b) long-reads on short-read MAGs. Uniquely detected species 
are colored according to the inferred taxonomy. The rest of the points rep-
resent MAG species detected in both technologies. The dotted purple line 
represents the expected breadth of coverage for a given level of sequenc-
ing depth, according to Lander and Waterman (1998). The letters indicate 
the novelty taxonomic level for each of the MAGs (p=phylum, c=class, 
o=order, f=family, g=genus, and the species level is omitted for clarity).

Additional file 2: Table S1. General sequence statistics for unassem-
bled short- and long-read metagenomic samples. Table S2. General 
statistics for assembled reads. Summary for assemblies using 500 bp (a) 
and 2,500 bp (b) contig length cutoffs. Assembly statistics for the hybrid 
assembly approach (c). Table S3. List of generated MAGs. Names and 
general taxonomic classification for the MAGs used in this work. Accession 
numbers (ENA), completion, and contamination values for each MAG are 
also provided.
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