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Abstract 

Background The human gut microbiota is a complex community comprised of trillions of bacteria and is critical for the 
digestion and absorption of nutrients. Bacterial communities of the intestinal microbiota influence the development of 
several conditions and diseases. We studied the effect of host genetics on gut microbial composition using Collaborative 
Cross (CC) mice. CC mice are a panel of mice that are genetically diverse across strains, but genetically identical within a 
given strain allowing repetition and deeper analysis than is possible with other collections of genetically diverse mice.

Results 16S rRNA from the feces of 167 mice from 28 different CC strains was sequenced and analyzed using the Qiime2 
pipeline. We observed a large variance in the bacterial composition across CC strains starting at the phylum level. Using 
bacterial composition data, we identified 17 significant Quantitative Trait Loci (QTL) linked to 14 genera on 9 different 
mouse chromosomes. Genes within these intervals were analyzed for significant association with pathways and the 
previously known human GWAS database using Enrichr analysis and Genecards database. Multiple host genes involved 
in obesity, glucose homeostasis, immunity, neurological diseases, and many other protein‑coding genes located in these 
regions may play roles in determining the composition of the gut microbiota. A subset of these CC mice was infected with 
Salmonella Typhimurium. Using infection outcome data, an increase in abundance of genus Lachnospiraceae and decrease 
in genus Parasutterella correlated with positive health outcomes after infection. Machine learning classifiers accurately 
predicted the CC strain and the infection outcome using pre‑infection bacterial composition data from the feces.

Conclusion Our study supports the hypothesis that multiple host genes influence the gut microbiome composition 
and homeostasis, and that certain organisms may influence health outcomes after S. Typhimurium infection.

Introduction
The nutrient-rich environment of the human intesti-
nal tract harbors up to 100 trillion microbes [1]. Ster-
ile at birth, our colon becomes densely populated with 
microbes, in the range of  1011–1012 cells/ml, the high-
est recorded density for any microbial habitat [2]. These 
microbes become an integral part of the digestive sys-
tem breaking down complex molecules, modifying 
host-derived molecules (like bile acids for example), and 
modulating the immune response [3].

Differential abundance of certain microbes in the intes-
tine has been implicated in various diseases, including 
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inflammatory bowel disease (IBD), obesity, and food 
allergies [4–6]. Some microbial metabolites interact with 
the gut-brain axis and have been associated with autism 
[7], Parkinson’s disease [8], Alzheimer’s disease [9], epi-
lepsy [10], and stroke [11]. Other microbes influence cir-
cadian rhythm disturbances, depression, and disruption 
of sleep patterns [12]. Despite these associations, estab-
lishing causal relationships between a microbiome and a 
disease is challenging.

The recombinant inbred panel of mice called the Col-
laborative Cross (CC) was created to model a genetically 
diverse population. Eight founder strains, A/J, C57BL/6 J, 
129S1/SvImJ, NOD/LtJ, NZO/HiLtJ, CAST/Ei, PWK/
PhJ, and WSB/EiJ, were bred in a funnel fashion to gen-
erate a large panel of inbred strains with balanced allele 
frequency and dense, evenly distributed recombination 
sites. The CC panel approximates the genetic diversity 
found in humans and has a high resolution for map-
ping quantitative trait loci (QTL) [13–15]. CC mice have 
been widely used to define host genetic loci implicated 
in various infectious diseases including West Nile virus, 
tuberculosis, and influenza as well as other phenotypes 
including glucose tolerance, DNA damage, and Epilepsy 
[16–22]. In Ebola infections in CC mice, a diverse pheno-
typic variation ranging from high resistance to complete 
lethality was observed across CC strains, and a central 
transcriptional regulatory gene called Tek (TEK receptor 
tyrosine kinase) correlated with weight loss and mortality 
after infection [17]. In CC mice, liver and spleen bacterial 
load varies across strains after infection with S. Typhimu-
rium (STm) [23]. A candidate gene Slc35f1 (solute carrier 
family 35, member F1), which has lactate dehydroge-
nase activity and is predicted to influence the pyruvate 
metabolism pathway in STm, was identified as potentially 
important [24].

Though the microbiome has traditionally been seen as 
influenced by the environment, recent studies have linked 
the influence of host genetics to microbiome composi-
tion [25]. In human twin studies, bacterial representation 
was more similar in monozygotic twins than in dizygotic 
twins, supporting a positive association between genetic 
factors and microbiome [26]. Re-analysis of data from 
previous human twin studies has established a similar 
association with the host genetics and the microbiome 
[26–28]. The effects of genetics, diet, and the environ-
ment make establishing causal relationships challenging 
in human studies.

In murine models with controlled diet and environ-
ment, a relationship between the host genetic makeup 
and the microbiome is becoming apparent. QTL analy-
sis on the advanced intercross mouse population has 
shown that microbial abundance is a polygenic trait [29, 

30]. Pleiotropy in QTL regions was observed for both 
closely related and unrelated bacteria. Other mouse pop-
ulation analyses identified several microbial abundance 
QTLs and correlated them to immune response, obesity, 
and insulin secretion genes from the host [31, 32]. The 
CC population has also been used to associate micro-
bial metabolites with GI cancers, lipid metabolism, and 
inflammation [33]. Recently, the intestinal microbiome 
composition of CC mice has been associated with a sleep 
phenotype, memory, anxiety-like behavior, and Azoxym-
ethane-induced toxicity [34–37].

Over a 2-year time period, we collected feces from 
28 CC mouse strains, including three males and three 
females of each strain, and performed 16s rRNA gene 
sequencing. Individuals within a strain had similar 
microbiota composition, while there were significant dif-
ferences between the strains starting at the phylum level. 
Microbial abundance data at the genus level identified 
significant genes associated with individual genera across 
the genome. After collection of feces, a subset of CC 
strains was infected with Salmonella enterica serotype 
Typhimurium (STm) in a parallel series of experiments 
[23]. We used the survival data after STm infection to 
identify and correlate the microbes associated with STm 
infection outcome. A machine learning algorithm pre-
dicted the correct CC strain and the infection outcome 
using bacterial composition data. The increase in abun-
dance of genus Lachnospiraceae and decrease in genus 
Parasutterella correlated with a positive health outcome 
after infection.

Methods
Animals
Eight- to 12-week-old male and female Collaborative 
Cross mice (CC) were bred at the Division of Compara-
tive Medicine at Texas A&M University. In preparation 
for a different series of experiments, mice were implanted 
with an E-mitter telemetry device (STARR Life Sciences 
Corp.) and permitted to recover for 1  week (detailed 
methodology described in [23]). All mice were trans-
ferred to a second facility and individually housed at 
least 5  days before the collection of feces. Individually 
housed mice had hardwood chip bedding in ventilated 
cages, with nestlet squares, a cardboard hut, and were fed 
a standardized rodent diet (Teklad Global 19% protein 
extruded rodent diet, irradiated, 2919, from ENVIGO) 
and sterile water ad libitum.

Ethics statement
Mouse studies were conducted in accordance with the 
Guide for the Care and Use of Laboratory Animals of 
the National Institutes of Health. All mouse studies were 
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conducted at the Texas A&M Health Science Center 
using protocols (AUP—2015–0315D and 2018–0488D) 
approved by the Texas A&M Institutional Animal Care 
and Use Committee (IACUC).

Fecal collection, storage, and DNA extraction
Feces were collected by placing mice on a paper towel 
under an inverted glass beaker. Sterile forceps were used 
to transfer at least three fecal pellets per animal to cryovi-
als and feces were stored at − 80 °C until use. Total DNA 
from one fecal pellet for each animal was extracted using 
MagAttract PowerSoil DNA EP Kit from Qiagen.

Salmonella infection
CC mice were infected by gavage with virulent wild-
type Salmonella enterica serotype Typhimurium strain 
HA420 (ATCC14028s   nalr) as previously described [23, 
38]. Briefly, HA420 was grown to the stationary phase at 
37  °C with aeration, serially diluted, and plated for bac-
terial CFU to determine the exact titer of the inoculum. 
One week after moving to a different facility, mice were 
inoculated by gavage with approximately 2–5 ×  107 CFU 
of S. Typhimurium HA420 in 100  µl of LB broth. Body 
temperature and activity data from the telemetry device, 
body condition scores, and weight loss data from daily 
health checks were used to monitor disease progres-
sion. Mice that developed severe clinical symptoms 
were humanely euthanized by  CO2 asphyxiation. If mice 
remained healthy at the end of the experiment, they were 
euthanized at 7 days post-infection.

Sequencing of 16S rRNA genes
Amplicon libraries were prepared for the variable V3 and 
V4 regions of the prokaryotic 16S rRNA gene. Briefly, 
extracted microbial DNA from one fecal pellet per ani-
mal was amplified using 16S amplicon PCR forward 
primer = 5′ TCG TCG GCA GCG TCA GAT GTG TAT AAG 
AGA CAG CCT .

ACGGGNGGC WGC AG and 16S amplicon PCR 
reverse primer = 5′ GTC TCG TGG GCT CGGA.

GAT GTG TAT AAG AGA CAG GAC TAC HVGGG TAT 
CTA ATC C in a BIORAD thermocycler using the follow-
ing cycling conditions (denaturation at 95  °C for 3  min 
followed by 25 cycles of 95  °C for 30  s, 55  °C for 30  s, 
72 °C for 30 s, and a final extension at 72 °C for 5 min). 
The PCR products were purified with AMPure XP beads 
to purify the V3 and V4 amplicon to be free from primers 
and primer-dimer species. The purified amplicons were 
dual indexed using a Nextera XT Index kit and sequenced 
using the Illumina Miseq platform at the Texas A&M 
Institute of Genome Sciences and Society (TIGSS) to 
generate 2 x300 base pair (bp) paired-end sequences.

Preprocessing of sequences
A DADA2 pipeline was used for processing the 16S 
Illumina amplicon sequence data. Forward reads were 
trimmed at 17 and 285  bp and reserve reads were 
trimmed at 21 and 205  bp to remove the primers and 
bases with a median quality score of less than 25. Denois-
ing, merging, and removal of chimeric sequences reduced 
the total sequences from 31,405,204 to 11,346,536 (Fig 
S1). After removing the Amplicon Sequence Variants 
(ASVs) that were not present in at least two samples, and 
mitochondrial and chloroplast sequences, 1637 unique 
ASVs were obtained.

Data processing
Metagenomic bioinformatic analysis was performed 
using QIIME 2 2020.6 [39]. Raw sequence data were 
demultiplexed and quality filtered using the q2-demux 
plugin followed by denoising with DADA2 (via q2-dada2) 
[40]. Taxonomy was assigned to Amplicon Sequence 
Variants (ASVs) using the q2-feature-classifier [41] clas-
sify-sklearn naïve Bayes taxonomy classifier against Silva 
138 SSURef NR99 full-length OTU reference sequences 
specifically trained using the 16S rRNA gene sequencing 
primers at 99% identity [42]. The feature table was fil-
tered to include only the assigned reads of the kingdom 
bacteria and to remove singleton features and mitochon-
drial and chloroplast sequences. All amplicon sequence 
variants (ASVs) were aligned with mafft [43] (via 
q2-alignment) and used to construct a phylogeny with 
fasttree2 [44] (via q2-phylogeny). Samples were rarefied 
(subsampled without replacement) to 21,250 sequences 
per sample to reduce the effect of sampling depth. 
Alpha-diversity metric (Shannon’s Index), beta diversity 
metrics (unweighted UniFrac [45], and Bray–Curtis dis-
similarity [46]), and principal coordinate analysis (PCoA) 
were estimated using q2-diversity. Group significance 
between alpha and beta diversity indexes were calculated 
with QIIME2 plugins using the Kruskal–Wallis test and 
permutational multivariate analysis of variance (PER-
MANOVA), respectively [47]. Additionally, analysis of 
similarity (ANOSIM) was performed on the beta diver-
sity values [48]. Specific cage information for these ani-
mals was lost during a system shift in our animal facility. 
Therefore, we used the date of animal arrival to our facil-
ity over a 2-year period, combined with strain to calcu-
late littermate effects.

ANCOM
16S analysis of a single hypervariable region does not 
provide accurate classification at the species level. Thus, 
we used genus-level data. The abundance table was 
reduced to genus level and taxa that were not present 
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in at least four different CC strains were removed. This 
table was used for further downstream analysis. Differ-
ential abundance testing was performed using ANCOM, 
to compare the relative abundance of a taxon between 
two groups by performing statistical tests on data trans-
formed by an additive log-ratio of the abundance of a 
given taxon versus the abundance of all other taxa indi-
vidually [49]. The analysis was performed using the R 
package—ANCOMBC, considering structural zeros 
grouped by strain and sex as covariates [50].

Heritability
Broad-sense heritability was calculated using the formula 
H2 = VG/VP = VG/(VE + VG) as previously described [51, 
52]. VG and VE are the variance explained by the genetic 
and the environmental component respectively while VP 
is the total phenotypic variance for a given trait. Genus-
level abundance data was used for this analysis. For each 
phenotype, VG was calculated as the mean variance 
between the replicates of the same strain. VP was calcu-
lated as the variance across all the strains for each corre-
sponding phenotype. The maximum value for heritability 
is one.

QTL analysis
QTL analysis was performed using R/qtl2 software [53]. 
This method performs genome scans using a linear mixed 
model to account for the complex population structure 
in the CC mice. Rank-transformed genus-level abun-
dance was used as the phenotype and the genotypes were 
imputed from QTLViewer [54]. A genome-wide scan was 
performed using the scan1 function. The generated Loga-
rithm of Odds (LOD) score is the likelihood ratio com-
paring the hypothesis of a QTL at a given position versus 
that of no QTL. To establish genome-wide significance, 
each individual phenotype was randomly shuffled 999 
times and LOD scores were calculated for each iteration. 
Values at or above the  85th percentile were considered 
significant for that phenotype.

Candidate gene selection and enrichment
The Genomic confidence interval was calculated by drop-
ping the LOD scores by 1.8, for each significant peak. 
The Mouse Genome Informatics (MGI) was used to 
find genes and QTL features within each interval [55]. 
To further shortlist candidate genes, the founder strain 
distribution pattern was queried against the CC vari-
ant database (V3 version) [56]. Variants were further 
shortlisted based on the impact scores calculated by the 
Ensembl Variant Effect Predictor (VEP) [57]. GeneCards 
database was used to collect human gene summaries, 
previously known human GWAS and Super pathways 
[58]. Gene enrichment analysis was performed using 

Enrichr [59, 60]. Briefly, genes with variants that matched 
the founder strain distribution pattern were imputed in 
the Enrichr web interface. Data tables for KEGG Human 
pathways 2021 and MGI mammalian phenotype 2021 
were downloaded. Terms with a P-value of < 0.05 were 
considered significant.

Machine learning
A random forest classifier (scikit-learn 0.24.2) was used 
to perform the machine learning analysis on the genus-
level data [61]. For the strain classification, one indi-
vidual per strain was randomly selected as test data and 
the classifier was trained on the remaining data. The test 
data was then used to predict the accuracy. Cross-valida-
tion was performed using all the members of the train-
ing data. The accuracy of the model is the average score 
of the cross-validated model. For health classification, a 
similar model was used with 25% test data and 75% train-
ing data. The area under the receiver operating character-
istics (AUROC), a probability curve based on the degree 
of separability, was also used as a performance measure-
ment for this trained classifier along with average cross-
validated accuracy.

Results
Composition of the bacterial community is variable 
across CC strains
One hundred sixty seven mice aged 8–12 weeks, 3 males 
and 3 females representing 28 CC strains (except for 
CC078—only two females), were included in this study. 
We noted a large variability in the bacterial composi-
tion of the feces across the CC strains that we studied 
(Fig. 1A). After assigning taxonomy using the SILVA 138 
reference database, the Naïve Bayes classifier identified 
10 phyla, 14 classes, 20 orders, 47 families, 113 genera, 
and 236 species with 99% sequence identity. At level 2, 
Bacteroidota (60.96%) was the most abundant phylum, 
followed by Firmicutes (34.52%) and Pastescibacteria 
(1.29%). The remaining seven phyla constituted less than 
4% of the overall microbial composition and presence 
varied across strains (Table 1). Muribaculaceae, followed 
by Lachnospiraceae and Alistipes, were the top three gen-
era by total counts. Only 20 genera were present in at 
least 95% of the samples and 37 genera were present in 
less than 25% of the samples (Table S1). This high vari-
ability both at the phylum and the genus level reflects the 
diversity of gut microbiome across the CC strains.

Bacterial communities within a strain are more similar 
than across strains
The Shannon index, a diversity measure based on rich-
ness, was calculated for individual animals (Fig. 1B). Indi-
viduals within a strain had similar diversity values while 



Page 5 of 16Nagarajan et al. Microbiome          (2023) 11:149  

the values varied widely across the strains. The average 
diversity values for strains ranged from 5.7 to 7 with a 
mean value of 6.2 and a standard deviation of 0.3. The 
range of these values further demonstrates the diver-
sity across the CC strains. Pairwise Kruskal–Wallis tests 

showed a significant difference (P < 0.001) in Shannon 
index across CC strains.

A non-phylogenetic quantitative metric, Bray–Cur-
tis dissimilarity, and phylogenetic qualitative metric, 
unweighted UniFrac, were used to measure beta diver-
sity. Principal component analysis (PCOA) plots of Bray–
Curtis dissimilarity and the unweighted UniFrac distance 
metric groups animals better within a strain than any 
other parameter in the metadata (Fig.  2A, B). To test 
for significance, pairwise PERMANOVA and ANOSIM 
analyses were performed. For Bray–Curtis, both analyses 
showed significant differences between the CC strains 
using the Kruskal–Wallis test. Unweighted UniFrac 
showed similar significance, but lower R and F values 
compared to Bray–Curtis (Table 2). This decrease could 
be explained by the complete absence of several ASV’s 
in some of the CC strains, as unweighted uniFrac takes 
presence/absence data into account.

We also noted increased spread within some of the 
CC strains in the PCOA plot. To determine the effect of 
individual variance within a CC strain, distances within 
a strain and across different strains were calculated 
and plotted (Fig.  2C, D). For both the metrics, within 
strain distances were significantly smaller compared 
with distances across the strains (p < 0.05 for Wilcoxon 

Fig. 1 Diversity across the CC strain starts at the phylum Level (L2). A Bar graph of the relative bacterial abundance of all the phyla present in feces 
of 28 CC strains. Data represent 3 males and 3 females of each strain. B Within sample diversity measured by Shannon index. Bars represent mean 
and standard deviation for each strain. Kruskal–Wallis test was performed to analyze the statistical significance (p < 0.001)

Table 1 Bacteroidota and Firmicutes were the most abundant 
phylum across the CC strains. Average, minimum, and maximum 
abundance of various phyla by strain, arranged in order through 
decreasing overall abundance

Phylum Relative abundance by strain

Average Minimum Maximum

Bacteroidota 60.96% 40.21% 79.55%

Firmicutes 34.52% 16.80% 57.59%

Patescibacteria 1.29% 0.00% 3.19%

Deferribacterota 0.82% 0.00% 9.75%

Campilobacterota 0.70% 0.00% 3.27%

Actinobacteriota 0.66% 0.00% 6.05%

Desulfobacterota 0.52% 0.00% 1.38%

Proteobacteria 0.41% 0.00% 2.39%

Cyanobacteria 0.11% 0.00% 0.89%

Verrucomicrobiota 0.02% 0.00% 0.58%
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signed-rank test). This analysis showed that the individ-
ual variance within a strain had less impact on the signifi-
cant differences observed in the microbial composition 
across different CC strains.

To determine the effect of littermates, we performed 
an analysis using Adonis. Initial litter cages had a small 
effect (6%) on microbiome composition, but this effect 
was negligible compared to the effect attributable to the 
CC strain itself (65%).

Microbiome composition is a heritable trait
Broad-sense heritability was calculated for microbiome 
composition at the genus level. We assumed that the 
observed phenotype, microbial composition, is a result 
of unobserved genetic and environmental factors. The 
within-strain variance was used to calculate the envi-
ronmental component and the variance across the CC 
strains used provided the total variance. The difference 
between the total and environmental variance produced 

Fig. 2 Analysis of beta diversity suggests fecal microbiota are more similar within CC strains than across CC strains. Principal component analysis 
(PCoA) 2D plots of between‑sample dissimilarities measured by Bray–Curtis distance (A) and unweighted UniFrac distance (B). Each color represents 
a CC strain. Box plot of distances between fecal microbial communities obtained when comparing mice within and between strains of CC mice 
using Bray–Curtis distance (C) and Unweighted UniFrac distance (D). P < 0.05(*) for Wilcoxon signed rank test
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the genetic component. Heritability was obtained by 
dividing the genetic variance by the total variance. For 
the genus-level data, the average heritability across the 
CC strain was 0.30 (Table S2). Rikenellaceae, Acetati-
factor, and Prevotellaceae were the most heritable gen-
era with scores more than 0.60 while Turicibacter and 
Escherichia-Shigella were the least heritable group. 
When sex was included as a variable, the average herit-
ability increased to 0.39. Almost all the genera had a posi-
tive increase in scores showing that with a strain animals 
grouped better by sex. The strong heritability scores sug-
gest the presence of genetic control in gut microbiome 
composition.

QTL analysis reveals 17 significant associations
Differential abundance analysis was performed by anal-
ysis of composition of microbiomes (ANCOM). This 
analysis considers the relative abundances and structural 
zeros to greatly reduce false discovery rates. At the genus 
level, ANCOM identified 21 genera that were differen-
tially abundant between the CC strains (Table S3). A heat 
map representing the relative abundance of genera iden-
tified by ANCOM analysis shows the diversity across CC 
strains (Fig. S2).

Genus-level abundance was considered a physical trait 
and QTL analysis was performed using R/qtl2. After 
grouping bacterial abundance by CC strain, any gen-
era that were not present in at least four different strains 
were removed. Sex and kinship between the animals were 
considered covariates for the analysis. Peaks that crossed 
the 85% significant LOD score for individual genera were 
considered significant (Table S4). QTL analysis resulted in 
17 statistically significant QTL peaks on 9 different chro-
mosomes (Table  3). QTL peaks were named “Microbial 
Abundance in Feces” (Micabf) and numbered from 1 to 
17. The heritability scores for these genera were all posi-
tive with an average of 0.31. The 1.8 peak drop confidence 
interval was calculated for each peak. The average length 

of QTL regions was 6.77  Mb, consistent with previous 
studies involving CC population [34, 62]. Genus Pep-
tococcus and Alloprevotella had QTLs on two and three 
different chromosomes respectively. Genera Muribacu-
laceae (Micabf3) and Erysipelotrichaceae (Micabf9) were 
associated with regions adjacent to each other on chro-
mosome 2. Similarly, genus Ruminococcaceae (Micabf14) 
and genus Peptococcus (Micabf16) were associated with 
regions adjacent to each other on chromosome 9.

Genes within the QTL regions are associated 
with important functions
We wanted to utilize the millions of SNPs present in the 
CC genome to further shortlist and correlate the genes 
to bacterial abundance in the microbiome of different 
mouse strains. The Mouse Genome Informatics (MGI) 
database was used to collect all the protein-coding genes 
and other features from each QTL interval (Table S5). We 
picked genus Lachnospiraceae UCG-006, which was dif-
ferentially abundant between the healthy and sick groups 
after infection, for further study. The QTL plot for this 
genus displayed a significant peak on chromosome 12 
(Fig.  3A). This 6  Mb region contains 45 protein-coding 
genes. The founder effect plot (Fig.  3B) suggested that 
CC strains with NOD and 129S1 allele in this region had 
lower abundance of genus Lachnospiraceae UCG-006 
compared to other founder strains. These two alleles 
could act independently, or the same variant could be 
causing this effect in different CC strains.

We shortlisted all variants that matched this founder 
allele pattern and identified 1490 variants representing 
31 of the 45 protein-coding genes. Then, we used the 
variant effect predictor to identify variants that had high 
impact on the protein structure. This analysis identified 
three genes with missense mutations and one gene with 
a 3′ UTR variant (Table 4). Which of these high-impact 
mutations is involved in determining the composition 
of genus Lachnospiraceae in the CC strains requires fur-
ther experimentation. We repeated this process for all the 
other significant peaks and found high-impact variants 
for 11 regions (Table S6).

In order to identify pathways associated with the vari-
ants we identified, we used the Genecards database to 
identify putative functions for high-impact variants. 
Several of these genes, including Ralbp1 [63], Pfas [64], 
Tyro3 [65], Opcml [66, 67], Syne2 [68], Six4 [69], Tll2 
[70], and Slc23a2 [65], were previously implicated in gut 
microbiome abundance, metabolic traits, and several 
intestinal diseases. A comprehensive list of all the gene 
summaries, previous GWAS analysis, and pathways can 
be found in Table S7.

We further analyzed these genes for enrichment using 
enrichr. This database has more than 400,000 terms from 

Table 2 Bacterial composition differs across the CC strains. 
Distance between bacterial communities measured by Bray–
Curtis and unweighted UniFrac metrics was used to analyze 
statistical significance between CC strains. Analysis of similarity 
(ANOSIM) and permutational multivariate analysis of variance 
(PERMANOVA) was performed with 999 permutations and the R 
and Pseudo‑F test statistics are reported along with the P‑values

Metric Size Groups ANOSIM PERMANOVA

R P F P

Bray–Curtis 165 28 0.92 0.001 9.37 0.001

Unweighted 
UniFrac

165 28 0.48 0.001 5.08 0.001
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200 different libraries. Any term with a p value of < 0.05 
was considered significant. These genes were enriched 
for terms associated with BMI, metabolic traits, immune 
response, biochemical pathways, and neurological condi-
tions (Table S8). Association of these variants with sig-
nificant biological processes suggests the importance of 
these genes in determining the composition of the gut 
microbiome.

Differential abundance of genera Parasutterella 
and Lachnospiraceae‑UCG‑006 correlated with STm 
infection outcome
A subset of our CC strains were infected with Salmo-
nella enterica serotype Typhimurium (STm) 2  days 
after the collection of feces for this study. We wanted 
to determine if the abundance of different genera influ-
enced the infection outcome. Forty-eight animals from 
8 different CC strains, 3 males and 3 females per strain, 

were included in this analysis. Four strains with a 
median survival time of less than 7 days were classified 
as “sick” and the other four strains that survived to day 
7 post-STm infection without clinical signs were clas-
sified as “healthy.” ANCOM analysis on pre-infection 
feces between these two groups was performed after 
reducing the counts to the genus level. This analysis 
identified two genera as differentially abundant in the 
pre-infection microbiomes of healthy and sick mice 
(Fig.  4A and Table S3). Increased abundance of genus 
Lachnospiraceae UCG-006 and decreased abundance of 
genus Parasutterella were correlated with healthy out-
come after infection with STm (Fig. 4B, C).

Machine learning accurately predicts the metadata groups
We used bacterial composition to predict the metadata 
groups (CC strain and healthy vs. sick after STm infec-
tion) using a machine learning classifier. The bacterial 

Table 3 Analysis of bacterial abundance identifies numerous QTL. Bacterial abundance in the feces of 28 CC strains was used to 
identify QTL using rQTL2. 17 statistically significant peaks were identified on 9 different chromosomes. Chr, chromosome; Pos, position; 
LOD, logarithm of the odds; H2, broad sense heritability; proximal and distal regions are in Mbp
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composition data at the genus level was randomly split 
into training and test sets, and the training set was used 
to train a random forest classifier. Then, each test sam-
ple was used to predict the metadata group based on 
its fecal microbial composition. Cross-validations were 

performed during parameter optimization and feature 
selection to tune the model.

First, for the CC strain data, the classifier assigned 
blinded test data to the right CC strain group with 90% 
accuracy and a cross-validation average accuracy of 0.89. 

Fig. 3 Genus Lachnospiraceae has a significant peak on chromosome 12. A LOD plot for rank transformed relative abundance values for genus 
Lachnospiraceae. The dotted green line represents 85% significance and blue line represents 90% significance. B Founder effect plot for genus 
Lachnospiraceae on chromosome 12

Table 4 Top SNP’s for genus Lachnospiraceae on chromosome 12. Founder allele pattern was used to filter snp’s within the significant 
interval in chromosome 12. Variant effect predictor was used to calculate the consequence for the variants
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The mislabeled CC strain groups were mostly random 
(Fig S3). This mislabeling may be due to the small sam-
ple size used (n = 5) when training the classifier. The top 
features identified from the model were genera Parabac-
teroides, Rikenellaceae, and Odoribacter (Table S9). The 
importance score of the top 5 features from the model 
added up to only 0.13 again illustrating diversity in the 
microbiome composition across the CC strains. Second, 
for the STm infection outcome data, the classifier mis-
labeled some of the healthy animals into the sick group 
leading to an overall accuracy of 90% and an AUROC of 
0.97 for the model (Fig. 5A, B). Genera Lachnospiraceae 
UCG-006 and Parasutterella, which were also identified 
by ANCOM, along with genus Preveotellaceae_UCG-
001, were the top features for this classifier. The impor-
tance of the top 5 features added up to 0.26. This higher 
value indicates that infection outcome prediction is more 
tightly controlled by fewer genera than the strain classi-
fier (Table S9). The higher accuracy rate of these classifi-
ers shows that machine learning can be successfully used 
in predicting both strain and infection outcome using the 
microbiome data.

Discussion
Growing evidence suggests a complex interaction 
between host genes and the microbiome [26, 29, 71, 72]. 
Furthermore, the combined effects of host genetics and 
microbiome composition on several phenotypes includ-
ing sleep, anxiety, and liver damage have previously been 
identified [34, 36, 37]. The effect of diet, environment, 
early exposure to certain microbes, and the use of anti-
biotics makes it challenging to study these interactions in 
humans.

We analyzed the bacterial composition of the feces col-
lected from 28 genetically diverse strains of CC mice. 
Despite identical housing, food, and husbandry, fecal 
microbial communities differed significantly across CC 
strains, beginning at the phylum level. The most abun-
dant phylum, Bacteroidetes, had a relative abundance 
that varied from 40 to 80% across CC strains. The sec-
ond most abundant phylum, the Firmicutes, had a rela-
tive abundance that varied between 17 and 58% across 
CC strains (Table  1). But Firmicutes were the most 
abundant phylum in the previously published CC cecal 
microbiome data [34, 73]. This difference is likely due to 

Fig. 4 ANCOM identifies genera that are differentially abundant in healthy versus sick strains. Genera (L6) differentially abundant between healthy 
and sick groups were identified by ANCOM. W‑Statistic score above 0.7 was considered significant (A). Genus Lachnospiraceae UCG-006, class 
Clostridia, phylum Firmicutes, is present in higher abundance in CC strains that remained healthy after STm infection (B). Genus Parasutterella, class 
Betaproteobacteria, phylum Proteobacteria, were in lower abundance in animals that remained healthy after STm infection (C). P < 0.05 (*) and 
P < 0.001 (***) for Student’s t‑test

Fig. 5 Machine learning algorithm predicts infection outcome. The area under the random operation curve (AUROC) plot for the trained random 
forest health classifier. AUC (area under the curve) = 0.97 (A). Model accuracy plot for the classifier (B)
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sample collection site differences (feces vs. cecum) [34, 
73]. Comparing all the datasets in the Murine Microbi-
ome Database, Firmicutes were the most abundant phy-
lum in the cecum (70%), while Bacteroidetes were the 
most abundant phylum in the feces (46%) [74]. In our 
study, the other eight observed phyla were absent in as 
few as one strain and as many as 26 of the 28 strains. 
This difference across the CC strains was also noticeable 
in the alpha diversity metric, Shannon’s index (Fig.  1B). 
Diversity starting at such a high level is interesting and 
warrants consideration of the microbiome as an impor-
tant factor when comparing phenotypic outcomes from 
different inbred strains.

Animals within a CC strain tended to have more simi-
lar bacterial composition profiles in the feces than animals 
from different CC strains. The PCOA plots for two of the 
diversity metrics (Bray–Curtis and unweighted UniFrac) 
grouped mice better by strain than by any other observed 
parameter. PERMANOVA and ANSOIM analysis fur-
ther confirmed significant differences across CC strains. 
Next, we tested whether these differences were caused by 
the variations in individual animals within a strain. We 
calculated the distance in individuals within a strain and 
between strains. For both diversity metrics, the between-
strain distances were significantly higher than the indi-
vidual distance within the strains. Similar observation was 
made in the microbiome study involving CC founders [73]. 
This close association of bacteria within a strain and diver-
sity across the strain makes CC mice a great tool for study-
ing the effect of host genetics on the gut microbiome.

Keeping in mind the limitations of 16S rRNA gene 
sequencing in prediction of species-level data, we iden-
tified genetic associations with the abundance of certain 
microbes at the genus level. All genera had positive her-
itability scores with more than half of the genera having 
a score of 0.25 and above. These broad sense heritability 
values do not take the founder genotype into account. 
When sex was included as a variable, heritability scores 
increased suggesting tighter control by sex within CC 
strains. Given the influence of environment and diet on 
gut microbiome, these values suggest that microbiome 
composition has a considerable heritability [75].

We also employed a machine-learning algorithm to 
predict the effect of host genotype on the microbiome. 
The Random Forest classifier had an overall accuracy 
of 90% and cross-validation score of 0.89 in match-
ing microbiome composition to the correct CC strain. 
The accuracy of the classifier to properly predict the CC 
strain based on the genus-level bacterial composition 
data provides further evidence for the influence of host 
genetics on microbial abundance.

For successful genetic association and QTL mapping, a 
phenotype must be diverse across the CC strains. Using 

R/qtl2 analysis, we identified 17 significant peaks on 9 
different chromosomes linked to 14 different genera. 
The 1.8 peak drop confidence interval ranged from 0.3 to 
26 Mb with a median range of 4.36 Mb. These short QTL 
regions, given the size of the population included in this 
study, demonstrate the power of QTL mapping with CC 
strains.

Several similar studies in mice have identified QTL 
linked to the presence of particular members of the 
microbiota. Micabf6, a region on chromosome 10 that 
we identify as linked to the presence of genus Alloprevo-
tella, overlapped with six QTL regions identified in the 
Advanced Intercross population as linked to particular 
members of the microbiota. These QTL regions were 
associated with the presence of Coriobacteriales, Strepto-
coccaceae, and Lactococcus [29]. Micaf8 on chromosome 
9 also overlaps with a QTL identified from the Advanced 
intercross population for genus Barnesiella. Micabf11 on 
chromosome 17 associated with the presence of Lach-
nospiraceae in our study, matches three different QTL 
regions identified in the BXD population study [31]. 
These three regions were associated with the presence of 
Bacillales and Staphylococcus.

The only other QTL study involving CC strains [34], 
examined microbial abundance in the cecum. Three QTL 
associated with microbial matched QTL identified in this 
study. Genetic regions associated with genera Camini-
cella, Turicibacter, and Tannerella overlapped with 
Micabf8 (Chr 9, Erysipelotrichaceae), Micabf7 (Chr 10, 
Mucispirillum), and Micabf1 (Chr 19, Enterorhabdus), 
respectively. Even though the genera associated with each 
of these overlapping regions did not match, these regions 
may be influencing microbial abundance by a common 
mechanism.

For individual QTL identified in this study, we 
looked closely into the genes with structural variants 
in each interval. Many genes in the QTL we identi-
fied had critical roles in important body functions 
including metabolism and immunity (Table S7). KEG 
pathway enrichment analysis for these genes picked 
several important metabolic pathways including pro-
tein absorption, sucrose metabolism, and inositol phos-
phate metabolism. Similarly, mammalian phenotype 
enrichment identified genes that are involved in colon 
morphology, as well as several immune and enzyme 
modulators. We further shortlisted top candidate genes 
based on a previous association with human disease 
(Table  5). Most of these genes were previously associ-
ated with gut microbiota composition. These intervals 
also contained genes associated with body mass index 
(BMI), intestinal bowel disease (IBD), and ulcerative 
colitis (UC), suggesting a function for these genes in 
the intestinal tract [58].
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Given their location in the intestine and their ability 
to produce and modify several metabolites, various bac-
terial species have been proposed or used as probiot-
ics for conditions including obesity, diarrhea, diabetes, 
Clostridium difficile infection, IBD, and neurological 
diseases [76–81]. Many of these probiotics have failed to 
produce the desired results at the population level [82–
86]. The complexity of and interplay between host genet-
ics and microbial composition may explain why simple 

supplementation with a given bacterial species has not 
been particularly successful in genetically diverse popula-
tions such as humans.

A decrease in beneficial microbes, enrichment of 
pathogens, and imbalances of metabolites produced 
by microbes can alter the outcome of diseases [87]. We 
wanted to identify correlations between pre-infection 
bacterial composition and the outcome of STm infec-
tion. Previous murine studies have successfully employed 

Table 5 Top Genes of Interest for all QTL regions. Shortlisted protein‑coding genes based on founder allele pattern, consequence, and 
previous GWAS hits
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machine-learning algorithms to predict the outcome 
of phenotypes including memory, anxiety, and AOM-
induced toxicity [35–37]. We employed a similar random 
forest classifier to predict the CC genotype with respect to 
microbial composition. The algorithm we used also iden-
tified several genera that were important in predicting the 
outcome of infection with STm. Genus Parasutterella was 
the top feature that allowed the algorithm to differenti-
ate between animals that remained healthy versus those 
that became ill after STm infection. To further shortlist 
genera that were differentially abundant between the sick 
and healthy groups, we employed ANCOM. This analysis 
identified Lachnospiraceae UCG-006 in addition to Paras-
utterella as significantly different between the two groups.

Parasutterella is also found in other host species includ-
ing humans, rats, dogs, pigs, chicken, turkeys, and calves 
[88]. Changes in the relative abundance of this genus 
have been reported in several diseases. Parasutterella are 
increased in submucosal tissues of patients with advanced 
Crohn’s disease [89] and are associated with pancreatitis 
in rats [90]. Increased abundance of Parasutterella is also 
associated with depression and major depressive disorder 
[91, 92]. Furthermore, increased abundance of Parasutte-
rella was linked to the genesis and development of irrita-
ble bowel syndrome (IBS) and is associated with chronic 
intestinal inflammation in patients with IBS [93].

Parasutterella produce succinate as a fermentative end 
product and also alter the production of several micro-
bial-derived metabolites involved in bile acid mainte-
nance, tyrosine, tryptophan, and cholesterol metabolism 
[88]. In our experiments, genus Parasutterella was abun-
dant in the pre-infection fecal microbiota of CC strains 
that developed clinical signs after infection with STm. 
Opportunistic pathogens including, Enterohemor-
rhagic Escherichia coli and Clostridium difficile, sense 
succinate produced by the commensal gut microbiota 
through a transcriptional regulator, catabolite repressor/
activator (cra) [94, 95]. STm also utilizes succinate pro-
duced by intestinal commensals [96] and cra gene acti-
vation is important for STm pathogenesis [97]. Sensing 
of succinate results in the activation of STm virulence 
genes, including activating the Salmonella pathogenic-
ity island 2 type III secretion system (SPI2 T3SS), leading 
to increased pathogenicity [98, 99]. Thus, succinate pro-
duced by Parasutterella may be sensed by STm leading 
to increased virulence and development of severe clini-
cal symptoms in CC strains that harbor this organism in 
the intestinal tract. This hypothesis remains to be tested.

The family Lachnospiraceae is a core member of the gut 
microbiota in both mice and humans [74, 100]. Despite 
being one of the main producers of short-chain fatty acids 
(SCFA) in the intestine and helping with metabolism 
[101], the role of family Lachnospiraceae is controversial. 

The relative abundance of multiple genera in this family 
can both positively and negatively influence several dis-
eases, including obesity, diabetes, IBD, and depressive 
syndrome [102]. In our study, the relative abundance of 
genus Lachnospiraceae UCG-006 is associated with a 
positive health outcome after STm infection. Increased 
relative abundance of genus Lachnospiraceae UCG-006 
is correlated with positive outcomes in several diseases 
including colon cancer, IBD, LPS-induced inflammation, 
and colitis ([103–106]. Butyrate, a SCFA, can be utilized 
by intestinal epithelial cells as an energy source [107, 108]. 
Butyrate also reduces the colonization and virulence of 
several Salmonella sp. including Typhimurium [109–113]. 
It is possible that SCFA produced by Lachnospiraceae 
species may reduce the initial intestinal colonization of 
STm, leading to a positive outcome after infection.

Conclusions
Diversity and homeostasis are key to the proper func-
tioning of our gut microbiome. Changes in this delicate 
balance can lead to metabolic abnormalities, intestinal 
inflammation, infection by pathogens, autoimmunity, 
and neurological diseases. By controlling the diet, envi-
ronment, and varying host genetics, we identified multi-
ple regions of the mouse genome that are associated with 
intestinal colonization by specific microbes. Despite the 
small sample size, we successfully used machine learn-
ing tools to predict the metadata columns. With publicly 
available bacterial composition data and advancements 
in the artificial intelligence field, more machine learning 
tools can be employed to develop microbes as biomark-
ers for disease prediction. Future genetic modification 
and gnotobiotic studies in murine models such as the 
CC panel will be useful to convert the correlated genes 
to causal candidates for therapeutic application. A clear 
understanding of the role of environment, diet, and host 
genetics will provide a basis for using microbes as a per-
sonalized therapeutic tool to prevent, diagnose and treat 
various body conditions and diseases.
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