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Abstract 

Background Lactic acid bacteria (LAB) produce various bioactive secondary metabolites (SMs), which endow LAB 
with a protective role for the host. However, the biosynthetic potentials of LAB‑derived SMs remain elusive, particu‑
larly in their diversity, abundance, and distribution in the human microbiome. Thus, it is still unknown to what extent 
LAB‑derived SMs are involved in microbiome homeostasis.

Results Here, we systematically investigate the biosynthetic potential of LAB from 31,977 LAB genomes, identify‑
ing 130,051 secondary metabolite biosynthetic gene clusters (BGCs) of 2,849 gene cluster families (GCFs). Most of 
these GCFs are species‑specific or even strain‑specific and uncharacterized yet. Analyzing 748 human‑associated 
metagenomes, we gain an insight into the profile of LAB BGCs, which are highly diverse and niche‑specific in the 
human microbiome. We discover that most LAB BGCs may encode bacteriocins with pervasive antagonistic activities 
predicted by machine learning models, potentially playing protective roles in the human microbiome. Class II bac‑
teriocins, one of the most abundant and diverse LAB SMs, are particularly enriched and predominant in the vaginal 
microbiome. We utilized metagenomic and metatranscriptomic analyses to guide our discovery of functional class II 
bacteriocins. Our findings suggest that these antibacterial bacteriocins have the potential to regulate microbial com‑
munities in the vagina, thereby contributing to the maintenance of microbiome homeostasis.

Conclusions Our study systematically investigates LAB biosynthetic potential and their profiles in the human micro‑
biome, linking them to the antagonistic contributions to microbiome homeostasis via omics analysis. These discover‑
ies of the diverse and prevalent antagonistic SMs are expected to stimulate the mechanism study of LAB’s protective 
roles for the microbiome and host, highlighting the potential of LAB and their bacteriocins as therapeutic alternatives.
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Introduction
Lactic acid bacteria (LAB) are Gram-positive, micro-
aerophilic bacteria, which have drawn extensive 
attention due to their fundamental roles in different 
biological processes [1]. LAB are known for their ability 
to produce lactic acid during carbohydrate metabolism, 
which is essential in food fermentation and has led to 
their widespread use in the food industry [2]. Due to 
their inherent safety, LAB have been genetically engi-
neered to produce food additives, drugs, and therapeu-
tic molecules [1–4]. More importantly, a growing body 
of evidence reveals that certain LAB strains can con-
fer significant health benefits when consumed, making 
them attractive candidates for probiotics [5]. LAB may 
exert their probiotic effects through multiple mecha-
nisms, including regulating gut microflora, producing 
bioactive metabolites, and modulating the immune 
system, all of which endow LAB with a protective role 
for the host [6]. Despite numerous studies focusing on 
characterizing LAB as probiotics for microflora regu-
lation, how they impact microbiome homeostasis and 
host physiology is still not fully understood.

Metabolic crosstalk plays a fundamental role in how 
microbes, including LAB, interact with the host and 
maintain microbiome homeostasis. One way these 
interactions occur is through the production of a multi-
tude of metabolites by the microbes, including second-
ary metabolites (SMs) such as antibiotics and pigments. 
SM-mediated interactions, such as mutualism and 
antagonism, are crucial in maintaining microbiome 
homeostasis [7, 8]. In particular, many LAB members, 
including Lactobacillus, Streptococcus, and Lactococ-
cus, produce a diverse range of bioactive SMs, ranging 
from bacteriocins like nisin and lactocillin to tetramic 
acid reutericyclin [9–11]. Bacteriocins are ribosomally 
synthesized antimicrobial peptides with antibacterial 
potential and are generally divided into three classes 
[class I, post‐translationally modified peptides (e.g., 
nisin and lactocillin); class II, small unmodified pep-
tides (e.g., amylovorin L and crispacin A); class III, 
large, heat-labile peptides] [12, 13]. Bacteriocins, which 
are the most extensively studied secondary metabo-
lites produced by LAB, have been shown to modulate 
the microbial composition and inhibit pathogens, sug-
gesting their potential role in shaping the microbiota 
[14]. However, previous studies on LAB secondary 
metabolites have mainly focused on structures, biosyn-
thesis, mechanisms of action, or therapeutic potential 
in preventing infection on a case-by-case basis [15]. 
Therefore, the landscape of LAB SMs, particularly their 
diversity, prevalence, and potential roles in the human 
microbiome remains elusive, making it challenging 

to determine their active involvement in microbiome 
homeostasis.

With the development of bioinformatics techniques, 
the recent explosion of sequenced bacterial genomes 
and metagenomes provides fresh opportunities for large-
scale biosynthetic analysis at both single species and 
community levels. Here we harnessed recent advances 
in biosynthetic and metagenomic analysis to investigate 
the untapped biosynthetic potential of LAB SMs system-
atically. Leveraging this comprehensive analysis of 31,977 
LAB genomes and 748 human microbiome metagen-
omes, we gained previously undescribed insights into 
the biosynthetic capacity of LAB SMs and their diversity, 
abundance, and distribution in the human microbiome. 
Our study reveals that most secondary metabolite bio-
synthetic gene clusters (BGCs) may encode antagonis-
tic SMs uncharacterized yet. We discovered a new class 
II bacteriocin, named crispacin 467, which may play a 
protective role in the human microbiome. To our best 
knowledge, this is the first largest survey of LAB biosyn-
thetic potential and their profile in the human microbi-
ome, linking them to the antagonistic contributions to 
microbiome homeostasis via omics analysis. Our omics-
guided findings of the diverse and prevalent antagonistic 
bacteriocins in the human microbiome, particularly the 
vaginal microbiome, provide insight into antagonistic 
interactions linked to microbiome homeostasis and high-
light the probiotic potential of LAB with antagonistic 
SMs.

Results
Genomic analysis reveals the landscape of SM biosynthetic 
potential of LAB
Given that environment or foods are possible LAB 
sources for the gut microbiome, to profile LAB SMs in 
the human microbiome, we first gathered LAB genomes 
from different sources to comprehensively investigate 
the biosynthetic potential of LAB SMs. Publicly avail-
able bacterial single amplified genomes (SAGs) and 
metagenome-assembled genomes (MAGs) of LAB were 
gathered from three databases (RefSeq [16], PATRIC 
[17], and IMG/M [18]) and two previous studies [19, 20], 
resulting in 40,879 SAGs and 4,575 MAGs in total (Sup-
plementary Table 1). Genomes were then de-duplicated, 
and their taxonomical classifications were verified and 
unified using GTDB taxonomy. As a result, 31,977 LAB 
genomes (27,549 SAGs and 4,428 MAGs, Supplemen-
tary Table  2), spanning six families containing 56 gen-
era, were retained for global biosynthetic analysis of 
LAB SMs (Supplementary Fig.  1a). Using a rule-based 
BGC detection tool, antiSMASH 6.0 [21], we identified 
130,051 BGCs from 30,718 genomes (Fig.  1a, Supple-
mentary Fig. 1b, Supplementary Table 3), including 1,333 
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nonribosomal peptide synthetase clusters (NRPS, 1.0%), 
25,278 polyketides synthase clusters (PKS, 19.7%), 98,810 
ribosomally encoded and post-translationally modified 
peptides (RiPPs, 76.0%), 1,629 terpene (1.3%) and 2,984 
BGCs (2.3%) encoding other types of metabolites (Sup-
plementary Fig.  2). The BGCs per genome ranged from 
0 to 14, with an average of 4.07. Among the most abun-
dant RiPPs, RiPP-like (formerly annotated as bacteriocin 
by antiSMASH) topped its list with 72,471 (55.7% of total 
BGCs). Using BiG-SLiCE [22] to extract bacteriocin bio-
synthesis-related domains from 72,471 RiPP-like BGCs 
(Supplementary Fig.  3 and Supplementary Table  4), we 
identified 60,497 class II bacteriocins (RiPP-like BGCs 
that contain class II bacteriocins-related domains identi-
fied by BiG-SLiCE) (46.5%), which are the most abundant 
LAB SMs (Fig. 1a).

To gain insight into the phylogenetic distribution of 
BGC in LAB genera, we examined 26,983 BGC-con-
taining SAGs, excluding MAGs due to their incomplete-
ness. The biosynthetic capacity varied considerably at the 
family, genus, or species level (Fig.  1b, Supplementary 
Fig. 4). The RiPPs and T3PKS BGCs dominated all LAB 
genera except for Tetragenococcus, while terpene BGCs 
and NRPS BGCs were sporadically distributed in those 
genera (Fig. 1, Supplementary Figs. 5 and 6). Among 55 
genera, we found a median of ≥ 1 RiPPs per genome in 
28 genera and one T3PKS in 33 genera. While a high 
proportion of RiPPs has been reported in Firmicutes 
[23], T3PKS dominating in certain LAB genera might 
encode specialized metabolites that have basic biological 
functions. Of note, despite being small in genome size, 
Streptococcaceae generally harbored more abundant 
BGCs than other families (Supplementary Fig. 4a), with 
a median of five BGC per genome, exemplified by genera 
Lactococcus and Streptococcus. Contrastingly, 33 genera 
only harbored a median of ≤ 1 BGC per genome, indicat-
ing the limited biosynthetic capacity of the LAB majority 
(Fig.  1b). By comparing 53 LAB genera and 3,805 non-
LAB genera (164,417 genomes, Supplementary Table 5), 
we found comparatively limited biosynthetic capacity 
in LAB and a significantly strong correlation (Spearman 
rho = 0.712, P < 0.001) between bacterial biosynthetic 
potential and their genome size (Supplementary Fig.  7). 
The small genomes and reduced biosynthetic capacities 

in LAB might correlate with their adaptation to nutri-
tionally-rich niches.

Most LAB BGCs are species‑specific and uncharacterized 
yet
Although BGCs highly vary in gene content, group-
ing them into families (GCFs) or clans (GCCs) based on 
architectural relationships of biosynthetic elements is an 
effective way to uncover the similarity of their encod-
ing products in terms of the chemical features and bio-
logical functions [24]. To gain insight into the novelty 
and diversity of 130,051 LAB BGCs, we extracted BGC 
features (biosynthetic domains) using BiG-SLiCE [22] 
and grouped them based on an all-to-all cosine distance 
among BGCs [25]. The 129,878 BGCs with features were 
classified into 2,849 GCFs and 112 GCCs, with a dis-
tance threshold of 0.2 and 0.8, respectively (Fig. 2, Sup-
plementary Fig. 8). We further compared the 112 GCCs 
to the reference known BGCs described in the ’Mini-
mum Information about a Biosynthetic Gene’ (MIBiG) 
repository [26]. Our analysis revealed that only three 
clans, namely linear azol(in)e-containing peptides (LAP, 
GCC_29), RiPP-like (GCC_84), and class II lanthipep-
tides (GCC_110), were found to be closely similar to 
known BGCs, with an average cosine distance of less 
than 0.2. This finding underscores the significant knowl-
edge gap in LAB secondary metabolites and highlights 
the vast potential for discovering novel chemistry from 
these bacteria. Of note, the majority of NRPS (73.2%), 
terpene (99.3%) and T3PKS (99.3%) were clustered into 
one respective clan. In contrast, RiPP BGCs, contribut-
ing 83 GCCs with 1,818 GCFs (RiPP proportion > 80% in 
GCCs or GCFs), were highly diverse due to the diversity 
of their post-translational modification (PTM) enzyme 
genes and adjacent genes (Fig.  2a). Among them, 621 
GCFs of 23 RiPP-like GCCs encoded class II bacterioc-
ins, representing one of the most diverse LAB SMs. The 
other 60 RiPP GCCs mainly encoded class I bacteriocins, 
including lanthipeptide, LAP, lassopeptide, and rSAM-
modified RiPPs.

In prokaryotic genome evolution, the conserved genes 
across genera are more likely to contribute to essential 
ecological processes, whereas species- or even strain-
specific genes often arise from natural selection, thus 

(See figure on next page.)
Fig. 1 Overview of secondary metabolite biosynthetic capacity in LAB. a Overall BGCs identified from 31,977 LAB genomes. The numbers outside 
the brackets indicate BGC count, and numbers inside represent the corresponding percentage and the count of genera in which BGCs are 
present. The donut chart in the center displays the overall class distribution of BGCs, with corresponding colors matching the fourth layer of (b). 
Meanwhile, the donut chart on the right exhibits the class distribution of RiPP BGCs, with colors corresponding to the fifth layer in (b). b Layers are 
as follows: ①, the maximum likelihood phylogenetic tree based on 120 concatenate marker genes of 56 representative LAB genomes. LAB in this 
study covers 6 families and 56 genera under GTDB taxonomy; ②, the count of genomes included in this study, with being transformed with log2; 
③, log2‑transformed BGC count; ④, average BGC abundance in LAB genera; ⑤, average RiPPs abundance in LAB genera. In RiPPs terms, other 
subtypes of BGCs and hybrid BGCs are clustered into “Others”. rSAM‑Modified RiPPs consist of RaS‑RiPP, ranthipeptide and sactipeptide
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Fig. 1 (See legend on previous page.)
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enhancing niche adaptation or host fitness [27]. In this 
context, we next examined the distribution and diversity 
of genus- or species-specific BGCs. While GCC clus-
tering shows the distribution and novelty of LAB SMs, 
a fine resolution of GCF clustering can offer an insight 
into the diversity of BGCs that are predicted to encode 
similar natural products [28]. We found that the majority 

of GCFs were genus-specific (92.6%, 2,637/2,849) and 
species-specific (75.8%, 2,159/2,849). Remarkably, 1,165 
GCFs (40.9%) contained only one BGC harbored by a 
specific strain (Fig.  2b). In contrast, only 7% (212) were 
cross-genus GCFs, including 142 RiPPs (present in 2–20 
genera), 17 NRPS (in 2–3 genera), 21 T3PKS (in 2–9 
genera), and 9 terpenes (in 2–7 genera) (Supplementary 

Fig. 2 LAB BGCs are diverse and taxa‑specific. a The figure shows the clustering of 129,878 biosynthetic gene clusters (BGCs) into 2,849 gene 
cluster families (GCFs) and 112 gene cluster clans (GCCs). The innermost dendrogram displays the hierarchical clustering of 112 GCCs based on 
their average cosine distance to MIBiG BGCs. The next outer layer illustrates the proportion of different genera, with genera having less than 200 
genomes grouped into "Others". The subsequent layer represents the proportion of BGC classes, with the size of the points being proportionate 
to their representation. The two outer layers refer to log2‑transformed BGC count and average distance to MiBiG BGCs. The triangles denote clans 
dominated by particular class II bacteriocins‑related domains (proportion > 80% in one clan). The predominant bacteriocins‑related domains are 
shown in Supplementary Fig. 10. b The bar plot shows the number of GCFs present in different genera (left), species (medial), and genomes (right)
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Figs.  9 and 10). Among these 142 cross-genus RiPP 
GCFs, 62 were class II bacteriocins. Owing to this high 
GCF diversity between genera, we did not observe a phy-
logenetic relationship in GCF presence/absence (Supple-
mentary Fig. 8). These taxa-specific BGCs usually encode 
specialized SMs and provide a competitive edge to the 
producer for niche adaption. Considering the wide pres-
ence of LAB in different niches [29], a high proportion 
of species- and strain-specific BGCs might result from 
niche selection.

LAB BGCs are diverse and niche‑specific in the human 
microbiome
Numerous studies have revealed the variable prevalence 
of LAB species in the human microbiome [20], raising 
the question of to what extent their SMs vary in differ-
ent body sites for niche adaption. Thus, we next explored 
the profile of LAB BGCs in the healthy human micro-
biome by re-visiting 748 metagenomes of six body sites 
from the Human Microbiome Project (HMP) [30]. These 
sites included aerobic (anterior nares, representing skin 
microbiome), microaerobic (supragingival plaque, buc-
cal mucosa, tongue dorsum, and posterior fornix, rep-
resenting oral and vaginal microbiome), and anaerobic 
(stool, representing gut microbiome) environments (Sup-
plementary Table 6). In line with a previous larger-scale 
study [20], LAB exhibited variable abundance and preva-
lence in different body sites (Fig. 3a). Of note, the genus 
Lactobacillus dominated in the vagina with a median 
abundance of 99.0% [interquartile range (IQR), 91.0%-
99.8%], whereas Streptococcus was moderately abundant 
but highly prevalent in six body sites.

To profile the diversity, abundance, and distribution 
of LAB BGCs in the human microbiome, we de-dupli-
cated 130,051 BGCs to 24,222 representative BGCs and 
mapped metagenomic reads to 24,222 nonredundant 
BGCs. The number of LAB BGCs detected in six body 
sites varied considerably, with the highest in the oral cav-
ity and the lowest in the skin (Supplementary Fig.  11a), 
probably due to the variable abundance of LAB. From 
748 metagenomes, we detected 5,687 BGCs of 610 GCFs, 
including 71 T3PKS and 312 RiPPs with 92 class II bacte-
riocins (Supplementary Fig. 11b). The GCF accumulation 
curve indicated that more GCFs would be detected in 
those body sites as more samples were included, reveal-
ing the huge diversity of LAB SMs in the human micro-
biome (Fig.  3b). The three oral sites were the richest in 
GCFs (averaging 29, 38, and 54). Compared to the oral 
cavity, the vagina harbors a lower diversity of GCFs (aver-
aging 12) but a significantly higher abundance of LAB 
BGCs (Figs.  3c, d). Particularly, the vaginal microbiome 
harbored a high abundance of class II bacteriocins, las-
sopeptide, lanthipeptide, and LAP. Of note, influenced by 

sequencing depth, the diversity and abundance of LAB 
BGCs in the human microbiome may be underestimated. 
Of 610 detected GCFs, ~ 52% were niche-specific in one 
of six sites, which accounted for 18%—38% of GCFs in 
a particular site (Fig.  3e). We also observed that those 
niche-specific GCFs were generally species-specific (Chi-
squared test, P < 0.001), but not genus-specific (P = 0.026) 
nor strain-specific (P = 0.013) (Fig.  3f ). This result indi-
cated that niche-specific GCFs were derived from differ-
ent species residing in distinct niches, which may provide 
a competitive advantage to the niche adaptation of their 
hosts. Our genomic and metagenomic analysis of biosyn-
thetic potential revealed that the LAB SMs are diverse 
and variably prevalent in the human microbiome.

Machine learning models reveal that most BGCs may 
encode antagonistic SMs
Given the abundance and prevalence of LAB BGCs in the 
human microbiome, we next want to study the poten-
tial bioactivities of BGC-encoding SMs. The bioactivity 
of SMs encoded by BGCs was recently predicted using 
machine learning strategies based on chemical finger-
prints of predicted compound structure, protein family 
(PFAM) domains, and other genetic features [31–33]. 
Here, we adapted four common machine learning clas-
sifiers (logistic regression, elastic net regression, ran-
dom forest, and support vector machines) to predict the 
bioactivities of LAB-derived SMs. For the training data 
(950 known BGCs, Supplementary Table 7, Supplemen-
tary Fig.  12), ten-fold cross-validation revealed that the 
random forest classifier outperformed others with an 
average area under the receiver operating characteristic 
curve (AUROC) being 0.76, 0.80, and 0.82, for antibacte-
rial, antifungal, and antitumor or cytotoxic, respectively 
(Fig. 4a, Supplementary Fig. 13). The performance of the 
random forest classifier was comparable with previously 
reported methods [31, 32].

Using the random forest classifier, 129,878 LAB BGCs 
with features were predicted to encode different bioac-
tive SMs, comprising antibacterial (n = 123,587, 95.2%), 
cytotoxic (n = 2,268, 1.8%), antibacterial-antifungal 
(n = 79, 0.1%), antibacterial-cytotoxic (n = 2,548, 2.0%), 
unknown (n = 1,395, 1.1%). Most BGCs, regardless of 
BGC classes, were predicted to be antibacterial (Fig. 4b). 
Of note, 97.8% of RiPPs (96,466/98,637) were predicted 
to exhibit antibacterial activity, implying that bacterioc-
ins were plenteous in LAB. With predicted antibacterial 
activity, most RiPPs with known post-modifications were 
classified as class I bacteriocins, while most RiPPs-like 
(83.4%) were class II bacteriocins. Almost 100% of class 
II bacteriocins (60,494/60,497) were captured as antibac-
terial SMs, contributing to 48.1% of LAB-derived anti-
bacterials. Those antibacterial BGCs dominated almost 
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Fig. 3 LAB BGCs in the human microbiome are variable and niche‑specific. a The prevalence and abundance of LAB genera in the microbial 
communities of six body sites. The point size and color are proportionate to the genus prevalence and median abundance, respectively. b The GCF 
accumulation curve shows how the number of detected GCFs increases as more samples are included. The numbers of metagenomes of six body 
sites are as follows: anterior nares, 66; stool, 100; posterior fornix, 169; supragingival plaque, 281; buccal mucosa, 66; tongue dorsum, 66. c Number of 
GCFs detected in six body sites. Data are mean ± standard deviation, with only the upper error bar being shown. The color is indicated in the legend 
of (b). d Boxplot shows the abundance of different BGCs detected in six body sites. e The pie chart shows the proportion of 610 GCFs detected in 
how many sites and is distinguished using different colors. Corresponding percentages are shown in the brackets. The bar plot on the left refers 
to the number of GCFs in each site. The bar plot on the top depicts the number of GCFs of each intersection. Connecting lines are drawn if an 
intersection is present in more than one site. f Numbers of genus/species/genome‑specific GCFs and cross‑genus/species/genome GCFs that were 
detected in one site (niche‑specific) or more than one sites (cross‑niche). The Chi‑squared test gave P values. *, 0.01 < P < 0.05; ***, P < 0.001
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Fig. 4 Putative compound activity of LAB BGCs. a Performance of four machine learning classifiers [logistic regression, elastic net regression, 
support vector machines (SVM), and random forest] in determining compound activities using tenfold cross‑validation. The receiver operating 
characteristic (ROC) curves were based on aggregated performances of tenfold cross‑validation. Average AUROC was shown. b Chord diagram 
showing the predicted activity of 129,878 BGCs. The scale was the proportion of each BGC class or predicted activity. The number shown in brackets 
refers to the BGC count and percentage relative to overall BGCs. Antibacterial‑antifungal and antibacterial‑cytotoxic represent BGCs encoding 
bifunctional SMs. The connections between BGCs and their predicted activities are highlighted with different colors according to the activity 
types. c Proportion of antibacterial SMs encoded by BGCs from LAB and non‑LAB species. The proportion of antibacterial activity was calculated 
from randomly selected 10,000 BGCs of LAB or non‑LAB, with be resampled 1,000 times. Data are mean ± standard deviation. P value was given 
by Wilcoxon rank‑sum test (two sided), with “***” denoting P < 0.001. d The proportion of putative activities of BGCs detected in six body sites. AN, 
anterior nares; St, stool; PF, posterior fornix; SP, supragingival plaque; BM, buccal mucosa; TD, tongue dorsum
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all LAB genera (Supplementary Fig.  14), possibly con-
ferring a competitive edge in the microbial community. 
Compared to BGCs (n = 1,121,156) identified from non-
LAB genomes, LAB-derived BGCs potentially encoded 
a significantly higher proportion of antibacterial SMs, 
indicating a higher antagonistic potential of LAB SMs 
(Wilcoxon rank-sum test, P < 0.001) (Fig. 4c, Supplemen-
tary Fig. 15a, b). A low percentage of LAB-derived BGCs 
encoding putative cytotoxic or antifungal SMs were 
found in specific species (Supplementary Fig.  15c, d). 
For example, a certain family of LAP (GCF_199) possibly 
conferring cytotoxic activity was distributed in ten Strep-
tococcus species, especially Streptococcus pyogenes, in 
which common pathogenicity feature endowed by con-
served LAP had been reported [34]. In the six body sites, 
most detected BGCs were predicted to encode antimi-
crobials (Fig. 4d), suggesting a potential role in bacterial 
antagonism for maintaining microbiome homeostasis. It 
is plausible that LAB containing such antimicrobial SMs, 
particularly class II bacteriocins, may provide protective 
benefits to the host against pathogen invasion and con-
tribute to microbiome homeostasis through antagonistic 
interactions [7].

Underexplored class II bacteriocins are widely distributed 
in the human microbiome
The findings of the antagonistic potential of class II bac-
teriocins and their variable prevalence and predomi-
nance in the human microbiome raise the question of 
what extent the class II bacteriocins may link to micro-
biome homeostasis. We next attempted to group class II 
bacteriocins into subfamily with similar biological func-
tions based on precursor sequence space and investigate 
their profiling in the human microbiome in detail. To 
fully reveal the chemical diversity of class II bacteriocin, 
we first adapted two approaches for the identification of 
precursor peptides, with hmmsearch [35] to search Pfam 
domains of precursors of class II bacteriocin (Supple-
mentary Table 4) and with BAGEL4 [36] which is a tool 
specifically designed for bacteriocin mining. We com-
bined two approaches to identify 187,649 precursors 
from class II bacteriocin BGCs (Fig.  5a, Supplementary 
Table  8). We then grouped 187,649 putative precursors 
into 2,005 clusters with a threshold of 50% sequence 
identity (Supplementary Fig.  16). The sequence lengths 
of those representative precursors were approximately 
normally distributed, with a center of ~ 55 amino acids 
(Fig.  5b). The accumulation curve showed that the pre-
cursor diversity increased with the number of genomes 
included, indicating more class II bacteriocins will 
be disclosed with more genomes sequenced (Fig.  5c). 
Moreover, we found that only 188 clusters were simi-
lar to 333 known class II bacteriocins (identity > 90%, 

coverage > 95%), leaving the vast majority (1,817/2,005) 
underexplored (Supplementary Table  9). Of note, while 
the rule-based method hmmsearch and BAGEL4 enable 
a high likelihood of positive detection, at the same time, 
they probably underestimate the real biosynthetic poten-
tials of bacteriocins.

In line with the taxa-specificity of the GCFs, most class 
II bacteriocin precursors family were genus-specific 
(n = 1,862, 92.9%) and species-specific (n = 1,327, 66.2%), 
with 33.7% of precursor family being even strain-specific 
(n = 675) (Fig. 5d). We next examined their profile in the 
human microbiome. Of 644 clusters detected in six body 
sites, about 31.8% of clusters were niche-specific in one 
of six sites (Supplementary Fig. 17a). Moreover, the pro-
files of class II bacteriocins in different body sites were 
distinct as revealed by t-SNE plot, further supporting 
the niche-specificity of class II bacteriocin in the human 
microbiome (Fig.  5e). Their profiles in vagina and skin 
showed great individual variations, whereas the class II 
bacteriocins in other body sites were relatively conserved 
with being clustered together. Additionally, those class 
II bacteriocins were sporadically present in the skin and 
gut, whereas some class II bacteriocins were particularly 
enriched in the oral cavity and vagina with a high preva-
lence and abundance (Fig.  5f, Supplementary Fig.  17b). 
Probably due to the individual variations in the vagina, a 
member of subfamilies of class II bacteriocins exhibited a 
relatively smaller prevalence in the vagina than in the oral 
cavity. Both the GCFs profile (Fig.  3d) and precursors 
profile (Figs. 5e, f ) in the human microbiome suggested 
that class II bacteriocins are particularly enriched in the 
vaginal microbiome. Considering the vagina has simple 
communities with the lowest alpha diversity than other 
body sites [37], we reasoned that those enriched and 
predominant class II bacteriocins might play prominent 
roles in regulating microbial community in the vagina.

Multi‑omics analysis reveales class II bacteriocins 
potentially contributing to vaginal microbiome 
homeostasis
To examine the class II bacteriocins that may account for 
the homeostasis of the vaginal microbiome, we first con-
structed the association network between class II bacteri-
ocins and bacterial species at the metagenomic level. We 
found 23 precursor clusters correlated negatively with 
various species, indicating their antagonistic potential in 
regulating the vaginal microbiome (Fig.  6a). In particu-
lar, 21 clusters were negatively correlated with Lactoba-
cillus iners, which is more conducive to the occurrence 
of abnormal vaginal microflora and thus a potential new 
therapeutic target for bacterial vaginosis treatment. Addi-
tionally, 21 of 23 clusters were also found to be inversely 
correlated to the Shannon index (Spearman rho < -0.4, 



Page 10 of 20Zhang et al. Microbiome           (2023) 11:91 

Fig. 5 Class II bacteriocins are structurally diverse and variably prevalent in the human microbiome. a The number of putative precursors of class 
II bacteriocins detected by hmmsearch and BAGEL4. They identified 128,369 and 90,026 putative precursors, respectively, with 30,746 sequences 
in common. b Distribution of the length of 2,005 representative precursors, which cd‑hit designated. c Rarefaction curve of clusters of class II 
bacteriocin precursors (blue line). The Red dashed line shows that 1,775 sequences belonging to 188 clusters were highly similar to known class 
II bacteriocins (identity > 90%, coverage > 95%). d Number of clusters in different genera (left), species (middle), and genomes (right). e, t‑SNE 
plot reveals the distinct profile of class II bacteriocins in different body sites. Each dot represents one metagenome sample. f The prevalence and 
average abundance of 644 precursor clusters detected in six body sites. Each dot denotes one precursor cluster. The abundance in the individual is 
shown in Supplementary Fig. 17. The red numbers are the number of precursor clusters with a log2‑transformed average abundance > ‑5 (shown in 
red dashed line) and the number of precursor clusters detected in each body site
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adjusted P < 0.05) (Fig. 6b). Lower bacteria diversity in the 
microbiome with these detected class II bacteriocins sug-
gested their regulative role in shaping the microbiome. 
To confirm whether these antagonistic bacteriocins are 
biologically functional, we next inspected their expres-
sion profile in the 180 metatranscriptomic datasets (Sup-
plementary Table  6) and found that most of them were 
actively transcribed in the vaginal microbiome of healthy 
individuals (Fig.  6c). Three of the 21 clusters grouped 
with known class II bacteriocins, including Amylovorin 
L (cluster_342 and cluster_346, a two-component class 
IIb bacteriocin) from Lactobacillus amylovorus DCE 
471 [38] and gassericin T (cluster_94) from Lactobacil-
lus gasseri SBT2055 [39]. The findings of known class II 
bacteriocins with protective roles by omics-based asso-
ciation analysis further validated the effectiveness of our 
approach in discovering the regulatory bacteriocins in 
the microbiome. The other 18 clusters of class II bacteri-
ocins were also prevalent and actively transcribed in the 
vaginal microbiome but uncharacterized yet.

We next sought to validate the antagonistic potential 
of those uncharacterized bacteriocins experimentally. 
For a proof of principle, we selected two precursor clus-
ters (cluster_467 and cluster_468) with high abundance 
and a short peptide length that make their chemical syn-
thesis practical. Those two precursors were located on 
BGCs (e.g., bgc120802) identified from 16 genomes of L. 
crispatus (Supplementary Fig.  18). The bgc120802 har-
bors specific class II bacteriocins-related genes, includ-
ing a two-component regulator system (histidine kinase 
and response regulator), ABC transporter, and immunity 
protein. The precursor sequences from 16 BGCs were 
identical and featured a canonical double-glycine leader 
(Fig. 6d, Supplementary Fig. 18). We thus synthesized the 
core peptides (Supplementary Fig.  19), namely crispa-
cin 467 (27 amino acids) and crispacin 468 (30 amino 
acids), respectively, and validated their antagonistic activ-
ity toward bacteria and fungi. The antimicrobial assay 
showed that the crispacin 467 exhibited antibacterial 
activities against three Gram-positive bacterial strains 
(i.e., Bacillus timonensis, Brevibacterium senegalense, 

and L. delbrueckii subsp. bulgaricus) with a minimum 
inhibitory concentration of 3.125, 6.25 and 12.5  μg/mL, 
respectively. However, the inhibitory effects of crispacin 
468 were not observed, nor a synergy of them (Fig. 6e). 
The crispacin 468 might exhibit antimicrobial activity 
against other species beyond the tested strains. Taken 
together, we believe that the bacteriocin producers arm 
the vagina microbiome with diverse antagonistic bac-
teriocins, potentially preventing pathogen invasion and 
stabilizing the microbial community. Though how LAB 
employs SMs to shape their microbiome communities is 
not yet fully understood, our omics-guided discovery of 
new bacteriocins from LAB provides an alternative way 
to the discovery of new antibacterial therapeutics for 
microbiome dysbiosis.

Discussion
Although the health-promoting effects of LAB in the 
human microbiome are increasingly recognized, their 
interplay with other microbes and their influence on 
microbiome homeostasis are still not well understood. 
Previous biosynthetic analysis of LAB in a limited data-
set focuses on particular metabolites, proposing their 
protective roles to host [40, 41]. However, the landscape 
of LAB SMs, particularly their profiles and potential 
roles in the human microbiome, remains elusive. In this 
study, we conducted a comprehensive omic analysis for 
LAB BGCs, significantly enhancing our understanding 
of the diversity and distribution of LAB BGCs. We found 
129,878 BGCs of 2,849 GCFs from 31,977 LAB genomes, 
most of which were species-specific and encoded diverse 
uncharacterized SMs. We further investigated human 
metagenomes of six body sites to disclose the BGCs pro-
file of LAB in the human microbiome, revealing that the 
diverse LAB SMs are variably prevalent in the human 
microbiome. Of note, BGCs of class II bacteriocins were 
particularly enriched and predominant in the vaginal 
microbiome. The niche specificity of GCFs in the human 
microbiome together with their species- or even strain-
specificity, suggested that the LAB SMs may provide a 

Fig. 6 Antagonistic class II bacteriocins potentially play a regulatory role in the vaginal microbiome. a Correlation network between precursor 
clusters of class II bacteriocins and bacterial species in the vaginal microbiome. 23 clusters are negatively correlated with species in the community, 
with spearman’s rho < ‑0.3 and adjusted P < 0.05 shown in the network. The number in the node denotes the precursor cluster number. Av, 
Atopobium vaginae; Dm, Dialister micraerophilus; Lc, Lactobacillus crispatus; Li, Lactobacillus iners; Lp, Lactobacillus paragasseri; Vb, Veillonellaceae 
bacterium DNF00626. b Spearman correlation between precursor clusters and alpha diversity (Shannon index). The dashed line denotes the 
correlation coefficient cutoff < ‑0.4 and adjusted P < 0.05. Points refer to 240 precursor clusters detected in the vaginal metagenomes, 21 of which 
were significantly associated with the alpha diversity of the vaginal microbiome. c Global sequence identity to known class II bacteriocins (upper), 
sequence length (middle), abundance and prevalence of 21 clusters (bottom) in the vaginal metagenome (MG, n = 169) and metatranscriptome 
(MT, n = 180). The point size and color are proportionate to the cluster prevalence and average abundance in the MG and MT datasets, respectively. 
d Gene organization of bgc120802 and precursor sequences of cluster_467 and cluster_468. Putative double‑glycines leader peptides are in grey. 
e The minimum inhibitory concentration (MIC) of chemically synthesized bacteriocins. NA: not available, no inhibitory effect detected with 200 μg/
mL. Gram‑(‑) bacteria, Gram‑negative bacteria; Gram‑( +) bacteria, Gram‑positive bacteria

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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competitive advantage to the niche adaptation of their 
producing hosts.

In this study, we employed a well-established method 
of grouping BGCs into families and clans based on archi-
tectural relationships to profile BGCs in the human 
microbiome, allowing us to prioritize novel BGCs for 
natural product discovery [24, 42]. Although informative, 
the GCF grouping will be affected by the imperfect BGC 
boundary prediction of antiSMASH [21]. Most LAB SMs 
were predicted to be antibacterial using machine learning 
models, indicating their potential regulatory roles in the 
human microbiome and putative protective roles for the 
host. However, due to limited training data, our machine 
learning model can only predict limited bioactivities 
(antibacterial, antifungal, and antitumor), underestimat-
ing other biological potentials of LAB SMs. Although 
such evidence does not exclude the possibility of other 
biological functions, we believe that antagonistic LAB 
SMs, particularly bacteriocins, potentially provide com-
petitive edges to their producers and regulate the micro-
biome community.

Applying metagenomics and metatranscriptomics 
analysis, we underscored 21 class II bacteriocins actively 
expressed in the vaginal microbiome and negatively cor-
related with individual bacteria species. Together with 
their negative association with the α-diversity of the vagi-
nal microbiome, we can envision that these bacteriocins 
play prominent roles in regulating homeostasis. As proof 
of principle, we identified a novel class II bacteriocin pro-
duced by L. crispatus, namely crispacin 467, which exhib-
ited potent antibacterial activities against Gram-positive 
bacterial strains. While previous analyses have disclosed 
the bacteriocin biosynthetic genes and antibacterial 
activity in L. crispatus [43, 44], little is known regard-
ing their antagonistic bacteriocin except for crispacin A 
[45]. Furthermore, the potential roles of bacteriocins in 
shaping the microbiome remain largely unexplored. The 
human microbiome harbors a vast array of class II bac-
teriocins in Lactobacillus and other LAB, providing sig-
nificant potential for discovering new antimicrobials. 
While the precursors of 21 bacteriocins were prevalent 
and transcribed in the vaginal microbiome, whether they 
are produced in situ in the vagina still needs to be exam-
ined by metabolomics. Moreover, how LAB employ SMs 
to shape their microbiome communities requires further 
exploration using in vivo mouse models or in vitro pol-
ymicrobial models. Nonetheless, the findings from our 
study suggest that LAB can utilize bacteriocins to regu-
late bacterial interactions, which plays a critical role in 
maintaining microbial community composition and pro-
moting microbiome homeostasis. It is important to note 
that the health benefits of Lactobacillus spp. are not solely 
attributed to the pH-lowering effect of lactic acid. While 

the acidification of the vagina can inhibit the growth of 
pathogenic and non-Lactobacillus microbes (such as 
Gardnerella, Prevotella, and Mobiluncus), other factors, 
such as the production of bacteriocins and hydrogen per-
oxide  (H2O2) also contribute to promoting vaginal health 
[46, 47]. It is plausible that L. crispatus-produced bacteri-
ocins, along with the low pH and  H2O2 production, fine-
tuned the vaginal microbial community and promoted a 
healthy vaginal ecosystem [47].

LAB, especially the genus Lactobacillus, dominate the 
existing probiotics that confer a health benefit on the host 
when administered adequately [48]. The beneficial effects 
of probiotics result from diverse mechanisms, among 
which is bacteriocin production. Antagonistic bacteri-
ocins that assist the producer colonization and provide 
protective roles for the host are important for probiot-
ics to offer beneficial effects. Our findings reinforced the 
understanding of pervasive bacteriocins of LAB, which 
are also widespread in the human microbiome, particu-
larly in the vagina. Those LAB and their bacteriocins pre-
sent in healthy individuals are promising priorities for 
microbiome-based therapeutics [49]. For example, with 
the potential to modulate the vaginal microbiota, pro-
biotics containing Lactobacillus spp. have been applied 
to treat bacterial vaginosis [47]. Moreover, the diverse 
antagonistic bacteriocins could be borrowed and arm 
genetically engineered beneficial LAB probiotics with a 
therapeutic property [50], preventing the host from the 
pathogen invasion directly or indirectly (via microbiota- 
and/or immune modulation). Continued investigation of 
the biosynthetic capacity and ecological roles will help 
to facilitate the translation of LAB and their antagonistic 
SMs into clinical application.

In summary, our study provides a global insight into 
the biosynthetic potentials of LAB SMs and a starting 
point for the omics-guided discovery of antagonistic SMs 
that potentially regulate microbiome homeostasis. Class 
II bacteriocin predominant in vaginal microbiome but 
negatively associated with its bacterial diversity is experi-
mentally validated to play antagonistic roles in microbial 
communities. To the best of our knowledge, our study 
is the first to systematically unveil LAB SM biosynthetic 
potentials and their profile in the healthy human micro-
biome. However, the analysis presented here cannot be 
considered exhaustive. The machine learning strate-
gies employed to predict the bioactivity of SMs remain 
refined by knowledge accumulation of LAB SMs and 
their biosynthesis and bioactivity. Additionally, how LAB 
employ SMs to shape their microbiome communities in 
the human niche remains to be studied. Nevertheless, our 
systematic investigation of the biosynthetic potential of 
LAB provides a good starting point for the omics-guided 
discovery of SMs with therapeutic potential from the 
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human microbiome. In addition to enhancing our under-
standing of the profile of LAB SMs and their potential 
regulating roles in the human microbiome, the discovery 
of antagonistic bacteriocins opens up exciting opportuni-
ties for future research on various probiotic applications 
of LABs.

Methods
Data acquisition
As defined early, lactic acid bacteria include 14 genera, 
comprising Lactobacillus, Lactococcus, Leuconostoc, 
Pediococcus, Streptococcus, Aerococcus, Alloiococcus, 
Carnobacterium, Dolosigranulum, Enterococcus, Oeno-
coccus, Tetragenococcus, Vagococcus, and Weissella 
[51]. Particularly, the genus Lactobacillus has been 
reclassified recently [52], extending to 25 genera con-
sisting of Lactobacillus, Paralactobacillus, Amylo-
lactobacillus, Acetilactobacillus, Agrilactobacillus, 
Apilactobacillus, Bombilactobacillus, Companilactoba-
cillus, Dellaglioa, Fructilactobacillus, Furfurilactobacil-
lus, Holzapfelia, Lacticaseibacillus, Lactiplantibacillus, 
Lapidilactobacillus, Latilactobacillus, Lentilactobacillus, 
Levilactobacillus, Ligilactobacillus, Limosilactobacillus, 
Liquorilactobacillus, Loigolactobacilus, Paucilactoba-
cillus, Schleiferilactobacillus, and Secundilactobacillus. 
Filtered with taxonomy, genomes from these 38 genera 
were then retrieved from the NCBI reference sequences 
(RefSeq) database [16] (as of Aug. 2021, including SAGs 
only), PATRIC database (including SAGs) [17], IMG/M 
database (including SAGs and MAGs) [18]. Besides 
them, genomes from two previous studies focusing on 
the human gut microbiome (including SAGs and MAGs) 
[19] and food-originated LAB (including MAGs) [20] 
were also included. To avoid reference genome redun-
dancy, genomes from RefSeq were compared to them-
selves and those from other sources using Mash v2.3 
[53]. Genomes with a Mash distance of 0 were considered 
identical. Only the one with a minimal number of contigs 
was retained. As potential misclassification might be pre-
sent, GTDB-Tk v1.7.0 [54] was further used to confirm 
and unify taxonomic annotation against GTDB-Tk refer-
ence data version r202 [55]. There is a slight difference 
between the NCBI taxonomy and GTDB taxonomy [56]. 
Under GTDB taxonomy, five genera are subdivided: Car-
nobacterium, Enterococcus, Lactococcus, Vagococcus, and 
Weissella. Finally, a total of 56 genera belonging to six 
families (Lactobacillaceae, Aerococcaceae, Streptococ-
caceae, Vagococcaceae, Enterococcaceae, and Carnobac-
teriaceae) were considered members of LAB in this study.

Biosynthetic gene cluster analysis
Biosynthetic gene clusters for each genome were anno-
tated by antiSMASH 6.0 [21] with default parameters. 

In total, 31,977 LAB genomes and 164,417 non-LAB 
genomes (the intersection between RefSeq and GTDB 
repository version r202) [56] were included for BGC 
annotation. This resulted in 130,051 BGCs from 30,718 
LAB genomes and 1,122,204 BGCs from 155,540 non-
LAB genomes. No BGCs were annotated in 1,259 LAB 
genomes and 8,877 non-LAB genomes.

Clustering BGCs into families and clans
BiG-SLiCE [22], a tool to cluster sizable BGCs, contains 
two BGC features (biosynthetic-Pfam and sub-Pfam 
domains). Those BGC features are sufficient to distin-
guish distinct BGC classes. As a previous study described 
[25], all features of LAB BGCs and 1910 experimentally 
validated BGCs from the MIBiG 2.0 repository were 
extracted by BiG-SLiCE v1.1.0 and subsequently used to 
compute all-to-all cosine distances between BGCs using 
Python suite SciPy version 1.6.2 [57]. The cosine dis-
tances were next subjected to hierarchical clustering with 
average linkage, grouping BGCs into families (GCFs, dis-
tances < 0.2) and clans (GCCs, distances < 0.8) by Python 
3.8 with Scikit-learn version 0.24.2 [58].

Metagenomics and metatranscriptomics analysis
The raw metagenomic sequencing reads of 748 HMP 
samples [30] and the raw metatranscriptomic data of 
180 vaginal samples [59] were acquired from NCBI SRA 
(Sequence Read Archive) [60] under project accession 
number PRJNA48479 and PRJNA797778, respectively. 
Fastp 0.21.1 [61] with default parameters was adopted for 
detecting and removing low-quality sequencing reads. 
High-quality metagenomic sequencing reads were sub-
jected to kneaddata (https:// github. com/ bioba kery/ 
knead data) for discarding reads belonging to the human 
host, through searching against the human reference 
genome (GRCh38.p13) from GENCODE [62]; high-
quality metatranscriptomic reads were also subjected to 
SortMeRNA v4.3.4 [63] for removing reads derived from 
ribosomal RNAs. Following that, MetaPhlAn v3.0.13 [64] 
was used for taxonomic profiling. Prior to assessing the 
abundance of BGCs in metagenomics and metatranscrip-
tomic data, we used a modified script from BiG-MAP 
[65] to de-duplicate 130,051 BGCs. To reduce the com-
putational load, we de-duplicated them within each GCF, 
at a 0.8 nucleotide identity threshold, leading to 24,222 
non-redundant BGCs, the nucleotide sequences of which 
were used to generate the reference database. Next, the 
non-host metagenomic and metatranscriptomic reads 
were mapped to this BGC reference using Bowtie 2 
v2.3.5.1 [66], with a parameter of “-k 1”. We then utilized 
featureCounts v2.0.3 [67] (with parameters of “-T 30 -f -p 
-B -C -t CDS -g ID -M -O –fracOverlap 0.2”) to assign 
sequencing reads to the BGC genes. When calculating 

https://github.com/biobakery/kneaddata
https://github.com/biobakery/kneaddata
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the abundance of a BGC, we only considered the core 
and additional biosynthetic genes, excluding the other 
genes such as transporters, regulators, transposases, and 
so forth. For each BGC, a corresponding GTF (General 
Transfer Format) annotation file was generated by ant-
iSMASH. We retrieved the biosynthetic-related genes 
(tag “biosynthetic” for the core biosynthetic genes and 
“biosynthetic-additional” for the additional biosynthetic 
genes) according to the “gene_kind” tag in GTF files. A 
BGC was considered present in a metagenomic sample 
when fulfilling the following criteria: (1) the percentage 
of biosynthetic-related genes detected is over 50% of total 
biosynthetic-related genes in a BGC; (2) at least one core 
biosynthetic gene was found in a BGC. The abundance of 
a BGC was computed via the Eq. (1):

Ni represents the number of reads mapped on a bio-
synthetic-related gene;  Li represents the gene length; k 
represents the number of biosynthetic-related genes in a 
BGC; N represents the total number of high-quality non-
host reads in a metagenome/metatranscriptome sample.

Prediction of secondary metabolite activity
To predict the activity of BGC-encoding compounds, 
we used mlr v2.19.0 [68] to perform machine learn-
ing. The training dataset comprising 950 MIBiG BGCs 
with known activities (antibacterial, antifungal, anti-
tumor or cytotoxic, or other activities) was gathered by 
Walker et  al. [32]. BGC features of those known BGCs 
were extracted by BiG-SLiCE [22]. Prior to training mod-
els, we removed BGC features present in < 10 BGCs. 
Rather than multiclass classification, binary classifica-
tion was adopted for each activity class since a molecule 
might have multiple functions. Four two-class classifiers 
(namely, logistic regression, elastic net regression, ran-
dom forest, and support vector machines) were adopted 
for binary classification of the activities of BGC products. 
In order to obtain the honest performance of four clas-
sifiers, we performed a nested resampling for parameter 
tuning with threefold cross-validation in the inner and 
tenfold cross-validation in the outer loop, in which a ran-
dom search with a maximum iteration of 50 was adopted. 
This would generate 30 instances for each classifier. The 
average AUROC was used to evaluate the performance of 
four classifiers. The function generateThreshVsPerfData 
is used to calculate one or several performance meas-
ures, such as the false positive rate (fpr) and true posi-
tive rate (tpr), for a range of decision thresholds from 0 
to 1. The resulting fpr and tpr values for each threshold 
are plotted on a receiver operating characteristic (ROC) 

(1)BGC abundance =

k

i=1
Ni

Li

k × N
× 106

curve, which allows us to estimate the performance of a 
classifier. Using the random forest model, 129,878 LAB-
derived BGCs and 1,121,156 non-LAB-derived BGCs 
containing BGC features were subjected to activity pre-
diction. Chord diagram showing the association between 
BGC classes and predicted activities of their products 
was plotted using R package circlize v0.4.13 [69]. Sankey 
diagram showing the association between species and 
BGC classes was done by package networkD3 v0.4 [70].

Precursor of class II bacteriocins
In order to pinpoint the precursors of class II bacterioc-
ins, we first used Prodigal-short [71] to identify all small 
ORFs. We then used hmmsearch [35] to search class II 
bacteriocins-related domains (provided in Supplemen-
tary Table 4) against ORFs of all RiPP-like BGCs. The hits 
with a threshold of E-value < 0.01 were considered as the 
precursors of class II bacteriocins. Meanwhile, BAGEL4 
[36] was also adopted for searching class II bacteriocins 
from RiPP-like BGCs. They detected 128,599 and 90,101 
putative precursors, respectively, with 30,764 in com-
mon. We discarded 287 sequences that were larger than 
150 amino acids (AAs), retaining 187,649 sequences for 
further analysis. Those sequences were then grouped 
into clusters using Cd-hit [72], with the parameters of 
“-n 2 -p 1 -c 0.5 -d 200 -M 50,000 -l 5 -s 0.95 –aL 0.95 
–g 1”. The sequences with an identity of > 50% will be 
grouped into one cluster, as proteins with > 50% iden-
tity generally share a common function [73]. To collect 
the known class II bacteriocins, we queried NCBI Pub-
Med with the keyword “class II bacteriocin”. Meanwhile, 
we also included the sequences gathered by Yi et al. [15] 
as well as the sequence deposited in the BAGEL4 data-
base [36]. In total, 333 sequences of class II bacteri-
ocins were obtained (Supplementary Table  9). As the 
curated 333 sequences might be the mature peptides, 
a local sequence aligner, DIAMOND v2.0.15 [74], was 
utilized to compare 333 known class II bacteriocins to 
187,649 precursor sequences with the parameter of “–
id 90 –query-cover 95 –masking 0”. The known class II 
bacteriocins showed an alignment of identity > 90% and 
coverage > 95% with 1,775 precursor sequences belong-
ing to 188 clusters that were thus regarded as homolo-
gous. For 21 selected precursor clusters, we identified the 
global identity relative to the known class II bacteriocins 
using the Needleman-Wunsch algorithm in the function 
“needleall” of EMBOSS software package [75]. The align-
ment of precursors was done by MAFFT v7.490 [76] with 
the parameter of “–maxiterate 1000 –localpair”, and then 
was visualized using Jalview software [77]. To conveni-
ently inspect the gene organizations of BGCs harboring 
precursors of cluster_467 and cluster_468, we adopted 
BiG-SCAPE [24] for exploring their architectures.
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Precursor abundance in metagenome/metatranscrip-
tome samples was computed via the Eq. (2):

Here,  Ni represents the number of reads mapped on 
a precursor gene;  Li represents the gene length; N rep-
resents the total number of high-quality non-host reads 
in a metagenome/metatranscriptome sample. The abun-
dance of a precursor cluster is the sum of the abundance 
of precursors in this cluster.

Phylogenetic tree construction
GTDB repository version r202 [56] contains 822 repre-
sentative genomes of 56 LAB genera. The genome with 
the largest N50 length in each genus was selected as a 
proxy for its corresponding genus. Consistent with the 
previous approach to constructing bacterial reference 
trees [56], the multiple sequence alignment of the con-
catenation of 120 phylogenetically informative marker 
genes of 56 representative genomes was used to infer the 
phylogenetic tree. IQ-TREE version 2.1.4-beta [78] was 
adapted for constructing maximum likelihood (ML) phy-
logenetic trees, with 1,000 ultrafast bootstrap replicates. 
In-built ModelFinder [79] identified the best-fit model 
as LG + F + R8. Inferred phylogeny was visualized using 
iTOL [80].

Peptide synthesis
The two deducted core peptides of cluster_467 and clus-
ter_468 were chemically synthesized by Sangon Biotech 
(Shanghai, China). Their molecular weights were con-
firmed by mass spectrometry, and their required purity 
was ≥ 90%, determined by high-performance liquid chro-
matography. The synthesized peptide powder was stored 
at − 80  °C and dissolved in sterilized double-distilled 
water to 5 mg/mL upon use.

Bacterial and fungal strains
A total of 29 bacterial strains and two fungal strains 
were used in this study (Supplementary Table 10). Their 
growth conditions are as follows: two bacterial strains 
(Escherichia coli DH5α, Staphylococcus aureus B04) were 
incubated in Luria–Bertani (LB) culture medium at 37 
℃ under 180 rpm rotation; 13 bacterial strains (Chromo-
bacterium violaceum, Bacillus subtilis 168, Enterococcus 
faecium MCC2763, Enterococcus faecalis OG1RF, Ente-
rococcus caccae DSM 19114, Enterococcus ureasiticus 
DSM 23328, Enterococcus haemoperoxidus DSM 15920, 
Enterococcus silesiacus DSM 22801, Enterococcus termitis 
DSM 22803, Enterococcus wangshanyuanii DSM 104047, 
Enterococcus rivorum DSM 104544, Brevibacterium 
senegalense DSM 25783, Rothia sp. Olga DSM 111809) 

(2)precursor abundance =
Ni

Li × N
× 106

were incubated in tryptic soy broth (TSB) medium at 
30 ℃ with shaking at 180 rpm; Bacillus timonensis DSM 
25372 was grown in trypticase soy agar (TSA) at 30 ℃; 
Lactococcus lactis subsp. cremoris MG1363 was grown 
statically at 30 ℃ in M17 medium; 11 bacterial strains 
(including Streptococcus oralis subsp. tigurinus, Lactoba-
cillus delbrueckii subsp. bulgaricus, Lactobacillus crispa-
tus ATCC 33820, Lactobacillus acidophillus ATCC 9224, 
Lactobacillus casei ATCC 393, Lactobacillus fermentum 
ATCC 14932, Latilactobacillus sakei subsp. sakei DSM 
6333, Lactiplantibacillus plantarum DSM 20174, Lacto-
bacillus gasseri DSM 20243, Limosilactobacillus reuteri 
DSM 20016, Leuconostoc mesenteroides subsp. dextrani-
cum DSM 20484) were incubated statically in deMan, 
Rogosa and Sharpe (MRS) medium at 30 ℃ or 37 ℃; 
Gardnerella vaginalis ATCC 14018 was maintained in 
Colombia blood agar at 37 ℃ in anaerobic conditions, 
and the suspension culture was grown by taking a loop 
full of colonies from the agar plate and incubating in 
Brain heart infusion broth (BHI), at 37 ℃ in anaerobic 
conditions; two fungal strains (Candida albicans SC5314, 
Candida albicans ATCC 10231) were grown in Roswell 
Park Memorial Institute (RPMI) media at 37 ℃ with 
shaking at 150 rpm.

Agar well diffusion assay
Indicator strains were cultivated overnight. Around 40 
μL microbial inoculum was blended with the 20 mL cor-
responding agar medium before solidifying. Following 
solidifying, a hole with a diameter of around 6 mm was 
punched with a sterile tip, and a 10 µL of crispacin 467 
and/or 468 to a final amount of 0.05 mg was introduced 
into the well. All agar plates were incubated at their cor-
responding growth conditions for 1–2 days.

Determination of minimum inhibitory concentrations
The minimum inhibitory concentrations (MICs) of the 
two peptides [individually and in combination (1:1 ratio)] 
against bacterial and fungal strains were performed by 
broth microdilution. Tested bacterial strains were inoc-
ulated overnight in the corresponding culture medium 
(LB, M17, TSB, TSA, BHI, or MRS) and at respective 
growth conditions. The optical density at 600 nm  (OD600) 
of bacterial cultures was determined to estimate the bac-
terial concentration. The bacteria cultures were diluted 
to ~ 5 ×  105  CFU/mL using the respective broth. 100 
μL aliquots of bacterial suspensions were transferred 
into 96-well plates containing two-fold serial dilutions 
of peptides (ranging from 200  μg/mL to 0.19  μg/mL). 
After incubating for 24 h, bacterial growth was assessed 
by determining  OD600. Besides, MIC against the fungal 
strains was determined according to the CLSI M27-A3 
guidelines [81]. Briefly, C. albicans strains were cultured 
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overnight in RPMI medium and grown fungal suspen-
sions were centrifuged at 5,000 rpm for 10 min and the 
pellet was resuspended and washed twice with 1 × PBS to 
remove the dead cells. The fungal inoculum was stand-
ardized to 1 ×  106  CFU/mL using a spectrophotometer 
and added to the well plate containing varying concen-
trations of the peptide (200  μg/mL to 0.19  μg/mL). The 
media without the peptide served as a control. The plates 
were then incubated at 37  °C for 24  h with shaking at 
80  rpm, and the absorbance was measured at 520  nm 
using SpectraMax 340 tunable microplate reader (Molec-
ular Devices, San Jose, CA, USA). The MIC value was 
determined as the lowest concentration of the peptides 
where no bacterial or fungal growth was detected. All 
assays were conducted in triplicate on three independent 
occasions.

Statistical analysis and visualization
The accumulations of GCFs detected in metagenomes 
as well as clusters of class II bacteriocin precursors were 
computed with function specaccum in R package vegan 
v2.5–7 [82]. R package UpSetR v1.4.0 [83] was adopted 
for visualizing the intersection of GCFs or precursor 
clusters detected in different body sites. Chi-squared test 
and wilcoxon rank-sum test (two sided) were done by 
function chisq.test and wilcox.test in R, respectively. The 
alpha diversity (Shannon index) of the vaginal microbi-
ome was calculated with R package vegan v2.5–7 [82]. To 
visualize the distribution of class II bacteriocins detected 
in six body sites, a dimensionality reduction was per-
formed using t-distributed stochastic neighbor embed-
ding (t-SNE), which was done by R package Rtsne v0.15 
[84]. Spearman’s correlations between precursor clus-
ters vs. bacterial species and between clusters vs. Shan-
non index were computed with the function corr.test in 
R package psych v2.1.9 [85], and P values were adjusted 
with the “BH” method [86]. The heat maps in this study 
were plotted using package pheatmap v1.0.12 [87]. 
Cytoscape 3.9.0 [88] was used to visualize the network of 
similarity of class II bacteriocins and the network of spe-
cies-precursor correlation. Without a specific statement, 
other figures were generated using ggplot2 v3.3.5 [89]. All 
statistical analyses were finished in R v4.1.2.
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