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Abstract 

Background Fermented foods are considered to be beneficial for human health. Secondary metabolites determined 
by biosynthetic gene clusters (BGCs) are precious bioactive compounds with various biological activities. However, 
the diversity and distribution of the biosynthetic potential of secondary metabolites in global food fermentations 
remain largely unknown. In this study, we performed a large-scale and comprehensive investigation for the BGCs in 
global food fermentations by metagenomics analysis.

Results We recovered 653 bacterial metagenome-assembled genomes (MAGs) from 367 metagenomic sequencing 
datasets covering 15 general food fermentation types worldwide. In total, 2334 secondary metabolite BGCs, including 
1003 novel BGCs, were identified in these MAGs. Bacillaceae, Streptococcaceae, Streptomycetaceae, Brevibacteriaceae 
and Lactobacillaceae contained high abundances of novel BGCs (≥ 60 novel BGCs). Among 2334 BGCs, 1655 were 
habitat-specific, originating from habitat-specific species (80.54%) and habitat-specific genotypes within multi-habitat 
species (19.46%) in different food fermentation types. Biological activity analysis suggested that 183 BGC-producing 
secondary metabolites exhibited high probabilities of antibacterial activity (> 80%). These 183 BGCs were distributed 
across all 15 food fermentation types, and cheese fermentation contained the most BGC number.

Conclusions This study demonstrates that food fermentation systems are an untapped reservoir of BGCs and bioac-
tive secondary metabolites, and it provides novel insights into the potential human health benefits of fermented 
foods.

Keywords Food fermentation, Biosynthetic gene clusters, Metagenome-assembled genomes, Human health, 
Metagenomic sequencing, Biological activity

Background
Fermented foods, important part of the human diet, 
have been produced and consumed since the develop-
ment of human civilizations [1]. There are more than 
200 fermented foods worldwide, for example cheese, 
kefir, kimchi, bean paste and soy sauce [1]. The con-
sumption of fermented foods is increasing [2], and it 
has been recommended that fermented foods should 
be included in national dietary guidelines/recommen-
dations because of their health benefits [3]. Fermented 
foods are closely associated with human health via 
contributing not only the essential nutrients but also 

*Correspondence:
Qun Wu
wuq@jiangnan.edu.cn
1 Lab of Brewing Microbiology and Applied Enzymology, The Key 
Laboratory of Industrial Biotechnology, Ministry of Education, State Key 
Laboratory of Food Science and Technology, School of Biotechnology, 
Jiangnan University, Wuxi 214122, Jiangsu, People’s Republic of China
2 Laboratory of Bio-Interactions and Crop Health, Jiangsu Provincial Key 
Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation 
Center of Solid Organic Wastes, Educational Ministry Engineering 
Center of Resource-Saving Fertilizers, Nanjing Agricultural University, 
Nanjing 210095, Jiangsu, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-023-01536-8&domain=pdf


Page 2 of 17Du et al. Microbiome          (2023) 11:115 

the bioactive metabolites produced by microorgan-
isms in fermented foods [4, 5]. Many fermented foods 
are produced in stressful environments, such as high 
salinity [6, 7], high temperature [8], high acidity [9] 
and high ethanol content [10]. These unique environ-
ments result in a variety of specific microorganisms 
[11], which are the main producers of these bioactive 
metabolites [4]. Thus, revealing the microorganisms 
and biosynthetic potential of bioactive metabolites 
would be important to elucidate the health benefits of 
fermented foods.

Secondary metabolites include ribosomally syn-
thesised and post-translationally modified peptide 
(RiPP), nonribosomal peptide, polyketide and terpene 
[12]. Although not required for normal cell growth, 
they have multiple physiological functions, including 
nutrient acquisition, communication and inhibition, 
allowing their producers to thrive in specific habitats 
[13, 14]. They also have various bioactivities, such as 
antibacterial, antiviral and anti-inflammatory activi-
ties [15, 16]. Therefore, it would be beneficial to unveil 
the biosynthetic potential of secondary metabolites in 
food fermentations.

The biosynthetic potential of secondary metabolites 
can be revealed by mining biosynthetic gene clusters 
(BGCs) related to secondary metabolites [17]. In sil-
ico genome analysis facilitates large-scale mining of 
BGCs [18], and a lot of BGCs have been identified in 
some microbial ecosystems, such as the human gut 
[19], ocean [20] and soil [13] ecosystems. Recently, 210 
bacteriocin-producing gene clusters were assigned in 
cheese fermentation [21], and 55 putative bacteriocin-
producing gene clusters were assigned in different fer-
mented food samples [22], indicating the biosynthetic 
potential of secondary metabolites in food fermenta-
tions. However, the extent and distribution of the bio-
synthetic potential of secondary metabolites in global 
food fermentations are unclear.

In this study, we collected metagenomic sequencing 
data from 367 samples involving 15 food fermentation 
types from 4 continents. We performed metagenomic 
binning analysis to recover metagenome-assembled 
genomes (MAGs) from these samples and compre-
hensively characterise the distribution of BGCs in dif-
ferent food fermentation types. We also assessed the 
novelty and uniqueness of BGCs by comparing them 
with those in the BiG-FAM database and with those 
in the human gut, ocean and soil ecosystems. These 
findings greatly improve our understanding of the bio-
synthetic potential of secondary metabolites in global 
food fermentations and facilitate elucidating the health 
benefits of fermented foods.

Methods
Metagenomic data collection
The metagenomic sequencing data were collected by 
searching the keyword ‘food’ in the NCBI SRA data-
base in July 2020. Meanwhile, we also searched studies 
using keywords such as ‘food’, ‘cheese’, ‘kefir’, ‘Chinese 
liquor’, ‘nunu’, ‘kombucha’, ‘koumiss’, ‘wine’, paste’, ‘cocoa’, 
‘yoghurt’, ‘kimchi’, ‘sauce’, ‘fermented meat’ and ‘sour-
dough’ in Web of Science and Google Scholar in July 
2020. The metagenomic sequencing data mentioned in 
these papers were collected. A total of 367 metagenomic 
sequencing data were obtained. There were 2 library lay-
outs (pair-end sequencing, n = 314; single-end sequenc-
ing, n = 53) and 10 sequencing platforms (454 GS FLX 
Titanium, n = 12; BGISEQ-500, n = 10; HiSeq X Ten, 
n = 20; Illumina HiSeq 1500, n = 10; Illumina HiSeq 2000, 
n = 7; Illumina HiSeq 2500, n = 11; Illumina HiSeq 4000, 
n = 66; Illumina MiSeq, n = 64; Ion Torrent Proton, n = 6; 
NextSeq 500, n = 161). All metagenomic sequencing data 
were obtained using SRA-tools fastq-dump (https:// 
github. com/ ncbi/ sra- tools). The detailed information of 
each sample was described in Supplementary Data 1.

Metagenomic sequencing data assembly and binning
Assembly
Raw reads of each metagenomic sequencing data were 
filtered to remove adapter sequences and low-quality 
reads (quality score < 20) using Trim Galore (v. 0.5.0) 
(http:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
trim_ galore/) with default parameters. The read quality 
was checked using FastQC (v. 0.11.8) (https:// www. bioin 
forma tics. babra ham. ac. uk/ proje cts/ fastqc/). A total of 
1.4 Tb of clean reads were retained. The different assem-
blers (MEGAHIT and metaSPAdes) and different pro-
cesses (single-sample and co-assembly) could affect the 
quantity and quality of MAGs [23] in subsequent bin-
ning analysis. Therefore, the clean reads of each sample 
were used for assembly using MEGAHIT (v. 1.1.3) [24] 
and metaSPAdes (v. 3.13.0) [25] with default param-
eters. Then, the clean reads from the same study were 
mixed into one fastq file (for pair-end sequencing data, 
upstream and downstream sequencing data files were 
mixed separately). The mixed clean reads were co-assem-
bled using MEGAHIT (v. 1.1.3) [24].

Metagenomic binning
The contigs from both co-assembly and single-sam-
ple assembly were filtered based on the sequence 
length. The contigs with sequence length > 1500  bp 
were retained by seqtk (https:// github. com/ lh3/ seqtk) 
and used for metagenomic binning. For metagen-
omic binning analysis, the clean reads were mapped 

https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/lh3/seqtk


Page 3 of 17Du et al. Microbiome          (2023) 11:115  

to corresponding contigs using Bowtie2 (v. 2.4.4) [26]. 
Samtools (v. 1.7.0) was used to convert mapped results 
into BAM format [27]. Then, the BAM files were sorted 
and indexed using SAMtools (v. 1.7.0) [27]. The result-
ing sorted BAM files were used for metagenomic 
binning based on the sequence characteristics and cov-
erage depth using MaxBin2 (v. 2.2.7) [28], MetaBAT2 
(v. 2:2.15) [29] and CONCOCT (v. 1.1.0) [30]. DAS Tool 
(v. 1.1.2) [31] was then applied to integrate MAGs gen-
erated from different methods.

The completeness and contamination of all MAGs 
were estimated using CheckM (v. 1.0.12) [32] based 
on the lineage_wf workflow. The MAGs with medium 
and high qualities (completeness ≥ 50% and contami-
nation ≤ 10%) were retained. The retained MAGs were 
classified into 15 datasets based on food fermentation 
types. Then, MAGs from each food fermentation type 
were dereplicated using fastANI algorithm in dRep (v. 
3.2.2) [33] at the threshold of 99% average nucleotide 
identity (ANI) (strains level) with at least 25% overlap 
between genomes. Meanwhile, to enhance the diver-
sity of the dataset, the publicly available 328 MAGs 
in cheese fermentation [21] and 29 MAGs in cocoa 
fermentation [34] were compared with the MAGs in 
cheese and cocoa fermentations in this study, respec-
tively. We removed the repeated MAGs between pub-
licly available and our MAGs based on 99% ANI using 
dRep (v. 3.2.2) [33]. There were 27 and 18 different 
bacterial MAGs in cheese fermentation [21] and cocoa 
fermentation [34], respectively. These different MAGs 
were added in the corresponding food fermentation 
types in this study. A total of 653 bacterial MAGs were 
obtained from 15 food fermentation types. These 653 
MAGs were nonredundant MAGs recovered after com-
bination with public data and dereplication. All MAGs 
were taxonomically annotated using GTDB-Tk (v. 0.1.6) 
[35] based on the Genome Taxonomy Database (http:// 
gtdb. ecoge nomic. org/), and the standardised taxo-
nomic labels were obtained. The detailed commands in 
metagenomic assembly and binning analysis are availa-
ble at https:// github. com/ durub ing- jn/ food- ferme ntati 
on- mateg enome.

Phylogenetic analysis
The phylogenetic tree was built based on the sequences 
of 653 MAGs. The aligned protein sequences were pro-
duced using GTDB-Tk (v. 0.1.6) [35] and edited using 
BMGE (v. 1.12) [36] to select phylogenetically informa-
tive regions. FastTree 2 (v. 2.1.10) [37] was used to infer 
phylogenetic trees based on the default parameters. The 
phylogenetic tree was edited and visualised using the 
interactive Tree Of Life (iTOL) (v. 5) [38].

Analysis of habitat‑specific species and habitat‑specific 
genotypes
A total of 653 nonredundant bacterial MAGs, which 
were defined based on 99% ANI, were used to analyse 
habitat-specific species. Species were classified based 
on species-level thresholds (95% ANI) using dRep (v. 
3.2.2) [33]. Species present in only one food fermenta-
tion type were considered as habitat-specific species. 
MAGs present in only one food fermentation type were 
considered as habitat-specific genotypes.

Biosynthetic gene cluster analysis
The BGCs in the MAGs were identified using ant-
iSMASH (v. 6.0) [39]. Parameters were as follows: 
–taxon bacteria, –genefinding-tool prodigal, –cb-
knownclusters, –cc-mibig and –fullhmmer.

Distribution of biosynthetic gene clusters in food 
fermentations
Clustering analysis was performed using BiG-SCAPE 
(v. 1.1.0) with the PFAM database (v. 31.0) [40]. The 
gbk files of BGCs, which were outputted by ant-
iSMASH, were used as input. Analysis was performed 
using default settings with ‘ − mibig’. The BGCs from 
antiSMASH analysis, as well as 1923 previously char-
acterised BGCs from the MiBiG database (v. 2.0), were 
subjected to clustering analysis. The BGCs were clus-
tered into gene cluster families (GCFs) based on the 
similarity network of BGC sequences with a default 
score cutoff (c = 0.3). The GCFs consisting of BGCs 
from the antiSMASH analysis and MiBiG database 
were considered as known GCFs. The type of infor-
mation of each BGC and GCF was obtained from the 
results file that was outputted by BiG-SCAPE. The 
GCFs consisting of BGCs from the same food fermen-
tation were defined as habitat-specific, and the cor-
responding BGCs were habitat-specific. The GCFs 
consisting of BGCs from different food fermentations 
were defined as multi-habitat, and the corresponding 
BGCs were multi-habitat.

Assessment of novelty for biosynthetic gene clusters 
in food fermentations
To calculate the novelty of BGCs in food fermentations, 
BiG-SLiCE (v. 1.1.0) [41] was run in query mode with 
the BiG-FAM database and t = 900 as the threshold. The 
resulting BiG-SLiCE distance indicated how closely a 
given BGC was related to previously computed GCFs, 
with a greater BiG-SLiCE distance indicating greater nov-
elty. For this analysis, we highlighted values of BiG-SLiCE 
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distance > t because it was previously suggested as the 
cutoff for novel BGCs [41].

Comparison of biosynthetic gene clusters between food 
fermentations and other ecosystems
The BGCs from the human gut, ocean and soil ecosys-
tems were collected from available resources from pub-
lished studies [13, 19, 20]. In total, 8901 BGCs from the 
human gut ecosystem were downloaded from the HRGM 
web server (https:// www. mbiom enet. org/ HRGM/) [19], 
39,055 BGCs from the ocean ecosystem were obtained 
from the Ocean Microbiomics Database (https:// micro 
biomi cs. io/ ocean/) [20], and 7529 BGCs from the soil 
ecosystem were obtained from 1334 geneome stored in 
https:// doi. org/ 10. 6084/ m9. Fig. share. 10045 988[13]. All 
BGCs were saved in gbk format.

To calculate the difference in BGCs between food fer-
mentations and other ecosystems, we performed a BiG-
SLiCE clustering analysis using the human gut, ocean 
and soil ecosystem BGCs as input. Then, we performed 
a query of BGCs from food fermentations against three 
preprocessed sets (the outputs of BiG-SLiCE clustering 
analysis), respectively, using t = 900 as the threshold. The 
BiG-SLiCE distance matrix of BGCs from food fermen-
tations to the closest GCF from the three ecosystems 
was used for PCA analysis. PCA analysis was performed 
using SPSS Statistics 26 (IBM, Armonk, NY, USA).

Network of biosynthetic gene clusters
To construct a network of BGCs, a sequence similar-
ity matrix of BGCs was obtained from the BiG-SCAPE 
analysis with a default similarity score cutoff (c = 0.3). 
The network of BGCs was visualised and edited using 
Cytoscape (v. 3.8.2).

Biological activity prediction of the product of biosynthetic 
gene clusters
The nucleotide sequence of each BGC was extracted 
from the output file of antiSMASH. The antibiotic resist-
ance gene in a BGC was identified using Resistance 
Gene Identifier (v. 5.1.1) with the extracted nucleotide 
sequence as input [42]. The Comprehensive Antibiotic 
Resistance Database (v. 3.2.3) was used as reference data. 

The command line tool (cluster_function_prediction.py) 
was run using default parameters. The output files from 
antiSMASH (gbk format) and Resistance Gene Identi-
fier (txt format) were used to predict biological activities 
of corresponding secondary metabolites by a developed 
machine learning model as described previously [43].

Statistical analysis
The associations between phylogenetic distribution of 
MAGs and food fermentation groups were analysed 
using chi-squared test. The statistical difference for the 
number of BCGs per MAG between different habitats 
was analysed based on one-way ANOVA and Tukey HSD 
post hoc test. Wilcoxon rank-sum test was used to ana-
lyse BiG-SLiCE distances of BGCs from food fermenta-
tions compared with those from different ecosystems. 
P-value was used to evaluate statistical significance. 
One-way ANOVA and Tukey HSD post hoc test were 
performed using SPSS Statistics 26 (IBM, Armonk, NY, 
USA). Wilcoxon rank-sum test was performed using wil-
cox.test() function in R (v. 3.6.1). Chi-squared test was 
done using chisq.test() function in R (v. 3.6.1).

Results
Habitat specificity of microorganisms in food 
fermentations
We collected metagenomic sequencing data from 367 
samples involving 15 food fermentation types from 
4 continents (Supplementary Data 1). These samples 
included a milk-based fermentation group (cheese, milk 
kefir, nunu, yoghurt and koumiss) and a plant-based 
fermentation group (kimchi, kombucha, wine, Chinese 
liquor, chilli paste, coffee, soy sauce, bean paste, cocoa 
and sourdough) (Fig.  1A). The origin of 243 samples 
was obtained from the National Center for Biotechnol-
ogy Information (NCBI) database (Fig. 1B). Ninety-eight 
samples were from Europe, of which 87.76% belonged 
to the milk-based fermentation group, and 118 sam-
ples were from Asia, of which 94.92% belonged to the 
plant-based fermentation group (Fig.  1B). These results 
revealed the geographical difference in food fermentation 
groups between Europe and Asia.

Fig. 1 Distribution of metagenome-assembled genomes (MAGs) among different food fermentation types from 4 continents. A The abundance 
of food fermentation samples in different food fermentation types. B The number of food fermentation samples with known origins in four 
continents. C The number of all MAGs and unknown MAGs in different food fermentation types. MAGs, which could not be annotated by GTDB-tk 
(ANI < 95%), were defined as unknown MAGs. D Taxonomic annotation (assigned to species level) and phylogenetic tree of 653 bacterial MAGs. 
The clusters were classified based on the taxonomic classification of each MAG. FC1, Lactobacillaceae; FC2, Streptococcaceae; FC3, Bacillaceae, 
Bacillaceae_C, Bacillaceae_D, Bacillaceae_G, Anoxybacillaceae, Amphibacillaceae and Thermoactinomycetaceae; PC1, Gammaproteobacteria; 
PC2, Alphaproteobacteria; and AC1, Actinobacteriota. E Distribution of the habitat-specific species in different food fermentation types. The bars 
represent the numbers of habitat-specific species in each food fermentation type. The triangles represent the ratios of habitat-specific species 
number to the total species number in different food fermentation types. The pie chart represents the ratio of habitat-specific species in all food 
fermentation samples

(See figure on next page.)
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In total, 1.43  Tb of raw data was obtained from all 
food fermentation samples with an average sequencing 
depth of 9.59  log10 base/sample (Supplementary Fig.  1). 
A total of 17,524 MAGs were recovered from metagen-
omic sequencing data by metagenomic binning analy-
sis. A total of 5557 MAGs met or exceeded medium 
quality (≥ 50% completeness and ≤ 10% contamination) 
according to MIMAG standards for MAGs [44] (Sup-
plementary Fig.  2), and they were dereplicated into 608 
nonredundant MAGs at 99% ANI. Compared with these 
608 MAGs using 99% ANI, there were 27 and 18 differ-
ent bacterial MAGs in publicly available 328 MAGs from 
cheese fermentation [21] and 29 MAGs from cocoa fer-
mentation [34], respectively. These different bacterial 
MAGs were then added to the MAG dataset in the corre-
sponding food fermentation type to enhance the diversity 
of the dataset in this study. A total of 653 nonredundant 
bacterial MAGs were finally obtained (Supplemen-
tary Data 2). These MAGs were assigned to 10 bacterial 
phyla (Supplementary Data 2). Most MAGs belonged 
to Firmicutes (382 MAGs, 58.50%), followed by Proteo-
bacteria (169 MAGs, 25.88%) and Actinobacteriota (89 
MAGs, 13.63%). In addition, 122 MAGs did not match 
any reference genomes (ANI < 95%) and were identified as 
unknown genomes at the species level (unknown MAGs), 
of which 4 MAGs could not be classified as known gen-
era, and they were defined as novel genera. These 122 
unknown MAGs came from 12 types of food fermenta-
tions (Fig. 1C), indicating the universality and richness of 
new species in food fermentations.

The distribution profile of 653 MAGs in food fermenta-
tion groups was analysed. We performed the association 
analysis between phylogenetic distribution of MAGs and 
food fermentation groups (Supplementary Data 3). At the 
phylum level, all Firmicutes_A, Firmicutes_F, Cyanobac-
teria, Acidobacteriota and Armatimonadota MAGs were 
specific to the plant-based fermentation group (Fig. 1D). 
Most Actinobacteriota MAGs (86.52%; P < 0.001) were 
from the milk-based fermentation group. Firmicutes 
and Proteobacteria MAGs were present in both fermen-
tation groups. These two phyla were divided into five 
clusters [Firmicutes cluster (FC), FC1–FC3; Proteobac-
teria cluster (PC), PC1-PC2)] based on taxonomic clas-
sification. MAGs in FC1 (Lactobacillaceae) (62.94% in 

this cluster; P < 0.001); FC3 (Bacillaceae, Bacillaceae_C, 
Bacillaceae_D, Bacillaceae_G, Anoxybacillaceae, Amphi-
bacillaceae, Thermoactinomycetaceae) (82.05%); and PC2 
(Alphaproteobacteria) (93.18%; P < 0.001) were mainly 
from the plant-based fermentation group; MAGs in FC2 
(Streptococcaceae) (86.15%; P < 0.001) and PC1 (Gam-
maproteobacteria) (71.2%; P < 0.001) were mainly from 
the milk-based fermentation group (Fig.  1D). These 
results revealed the phylogenetic distribution of MAGs 
between food fermentation groups.

To further analyse the distribution profile of MAGs at 
the species level among food fermentation types, we clus-
tered MAGs using species-level thresholds (95% ANI), 
and all MAGs were assigned to 297 bacterial species. In 
total, 52 species (17.51%), present in more than one type 
of food fermentation, were multi-habitat species. More-
over, 245 species (82.49%), present in only one type of 
fermentation, were habitat-specific species. Cheese fer-
mentation contained the most habitat-specific species 
(92 species), followed by Chinese liquor (38 species) and 
bean paste (22 species) fermentations (Fig. 1E). The ratio 
of habitat-specific species in kombucha fermentation was 
94.12%, indicating that a large proportion of species in 
this food fermentation were different from those in other 
food fermentation types. These results revealed the habi-
tat specificity of MAGs in food fermentation types.

Habitat specificity of biosynthetic gene clusters in food 
fermentations
To determine the biosynthetic potential of secondary 
metabolites in food fermentations, we annotated BGCs 
of secondary metabolites within 653 bacterial MAGs. 
In total, 2334 BGCs were detected in 84.69% of MAGs 
(Supplementary Data 4). The number of BGCs ranged 
from 1 to 62 in different MAGs (Fig. 2A). Although the 
BGC numbers were discrepant among food fermenta-
tion types, only the number of BGC per MAG in bean 
paste fermentation was statistically different with that 
in cheese (P = 0.028), Chinese liquor (P = 0.015), kimchi 
(P = 0.013) and milk kefir (P = 0.002) fermentations (Sup-
plementary Fig.  3). The highest BGC number in cheese 
fermentation was resulted from the largest number of 
available metagenomic data in cheese fermentation.

(See figure on next page.)
Fig. 2 Distribution of biosynthetic gene clusters (BGCs) in different food fermentation types. A BGC overview among 15 food fermentation 
types. The central tree of the interface represents a hierarchical clustering dendrogram based on BGCs in a gene cluster family (GCF) among 15 
food fermentation types. In the circle heat map, each layer represents the distribution of BGCs in different food fermentation types. The barplots 
represent the numbers of habitat-specific BGCs in different food fermentation types. The triangles represent the ratios of habitat-specific BGCs from 
habitat-specific species. The stacked columns represent the relative abundances of BGCs from different BGC types in different food fermentation 
types. The numbers above the stacked columns represent BGC amounts in different food fermentation types. B Sankey diagram showing the 
taxonomic origin (family level) of BGCs in different food fermentations and the composition of BGC type in different families. Species that are not 
included in the 13 BGC-rich families are combined and shown in Others. BGCs that are not included in the 8 dominant BGC types are combined 
and shown in Others
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These BGCs were classified into 8 dominant types 
(BGC number per type > 50). RiPP, nonribosomal peptide 
synthetase (NRPS), polyketide synthase (PKS) and ter-
pene were the four most dominant types of BGCs, con-
taining 602, 488, 369 and 273 BGCs, respectively. Among 
all BGCs, 478 (20.48%) were identified from unknown 
MAGs, indicating the strong biosynthetic potential of 
secondary metabolites in unknown MAGs (Supplemen-
tary Fig. 4).

To reveal whether the distribution of BGCs was related 
to food fermentation type, we analysed the distribution 
of BGCs in 15 food fermentation types using clustering 
analysis based on the similarity of BGC sequences. All 
2334 BGCs were clustered into 1415 GCFs using BiG-
SCAPE (Supplementary Data 4). Among all BGCs, 1655 
(70.91%) were present in only one type of food fermenta-
tion and were identified as habitat-specific BGCs. These 
habitat-specific BGCs were distributed in different food 
fermentation types with the number ranging from 3 to 
672 (Fig.  2A). Cheese, bean paste and coffee fermenta-
tions each contained more than 200 habitat-specific 
BGCs, together accounting for 68.04% of the total habi-
tat-specific BGCs.

We further analysed the taxonomic origin of BGCs. All 
BGCs were from 56 families. Among them, 13 families 
were identified as BGC-rich families (≥ 50 BGCs), and 
together, they contained 73.69% of the BGCs (Fig.  2B). 
Bacillaceae and Lactobacillaceae contained the most 
number of BGCs, with 346 and 227 BGCs, respectively. 
In addition, BGC composition differed in different fami-
lies. Lactobacillaceae mainly contained RiPP and PKS 
(together 85.02% in this family), and Bacillaceae mainly 
contained NRPS and PKS (together 67.92%). Bacillaceae 
contained an average of 20 BGCs per MAG, and Bacil-
lus velezensis MAG 282 contained the highest number 
of BGCs (45 BGCs). Although there were only 17 MAGs 
from Bacillaceae in these food fermentations, this family 
contributed the most amount of BGCs due to the strong 
contribution of BGCs in each MAG. Lactobacillaceae 
contributed the second most BGCs in food fermenta-
tions. Lactobacillaceae was the family with the highest 
number of species (73 species) and MAGs (197 MAGs) 
in these food fermentations, and 69.04% of MAGs in the 
Lactobacillaceae family contained BGCs (1.67 BGCs per 
MAG) (Supplementary Fig. 5). It suggested that although 
Lactobacillaceae MAG contained a low number of BGCs, 
Lactobacillaceae contributed a large amount of BGCs 
due to the largest number of MAGs in this family from 
these food fermentations.

Among the 1655 habitat-specific BGCs, 1333 BGCs 
(80.54%) originated from habitat-specific species (Sup-
plementary Figs. 6 and 7). For example, the habitat-spe-
cific species Brevibacterium aurantiacum contributed 

111 habitat-specific BGCs in cheese fermentation. The 
habitat-specific species Bacillus glycinifermentans con-
tributed 13 habitat-specific BGCs in bean paste fermen-
tation. In addition, 322 BGCs (19.46%) originated from 
habitat-specific genotypes within multi-habitat species 
(Supplementary Fig.  7). For example, Lactococcus lac-
tis MAG 381 contributed 6 BGCs specifically in cheese 
fermentation, and Bacillus velezensis MAG 615 contrib-
uted 30 BGCs specifically in bean paste fermentation. 
These results indicated that the habitat specificity of 
BGCs might be driven by both habitat-specific species 
and habitat-specific genotypes within multi-habitat spe-
cies in different food fermentation types. The effects of 
these driving factors were different in different food fer-
mentation types. For instance, the habitat-specific BGCs 
in kombucha and wine fermentations all originated from 
habitat-specific species, and a large proportion of habi-
tat-specific BGCs originated from habitat-specific spe-
cies (> 70%) in cheese, kimchi, Chinese liquor, coffee, soy 
sauce and cocoa fermentations. However, the proportions 
of habitat-specific BGCs from habitat-specific species 
only reached 68.42%, 57.14%, 52.63%, 52.38%, 50.40% and 
8.70% in nunu, milk kefir, yoghurt, koumiss, bean paste 
and chilli paste fermentations, respectively (Fig. 2A). This 
differentiation can be related to the divergent composi-
tions of microbiota in different food fermentation types.

The novelty of biosynthetic gene clusters in food 
fermentations
To evaluate the novelty of BGCs in food fermentations, 
we compared BGCs in food fermentations with those in 
the BiG-FAM database comprising 1.2 million known 
BGCs [45]. We calculated their BiG-SLiCE distances 
using BiG-SLiCE’s query mode. Notably, 1003 of 2334 
BGCs (42.97%) in food fermentations had BiG-SLiCE dis-
tances of ≥ 900, indicating that they were distantly related 
to this reference dataset and were novel BGCs. Twelve 
BGCs had BiG-SLiCE distances of ≥ 1800, indicating that 
they were extremely divergent BGCs (Fig. 3A).

We analysed the distribution of these 1003 novel BGCs 
in food fermentation types (Fig.  3B). These novel BGCs 
were present in 14 types of food fermentation with the 
ratio of novel BGCs ranging from 16.44 to 56.25% (Sup-
plementary Fig.  8), indicating a widespread distribution 
of novel BGCs in food fermentations. Cheese fermenta-
tion contained the most novel BGCs (425 BGCs) (Sup-
plementary Fig.  8). These results suggested that the 
constitution of novel BGCs was divergent in different 
food fermentation types. However, there was no statis-
tical difference for the number of novel BGC per MAG 
between different food fermentation types (P > 0.05). 
The highest novel BGC number in cheese fermentation 
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might be resulted from the largest number of available 
metagenomic data in cheese fermentation.

The taxonomic origin of these 1003 novel BGCs was 
analysed (Fig. 3C). These novel BGCs were from 236 spe-
cies, of which 19.24% were unknown species. This ratio 
was consistent with the ratio (20.61%) of unknown spe-
cies to species associated with all BGCs, indicating that 
novel BGCs might not be specifically contributed by 
unknown species in food fermentations (Supplementary 
Fig.  4). These novel BGCs were present in all 13 BGC-
rich families. Besides 3 well-known BGC-rich families 
(Bacillaceae, Streptococcaceae and Streptomycetaceae) 
that had high abundances of novel BGCs (≥ 60 novel 
BGCs), Brevibacteriaceae and Lactobacillaceae also had 
high abundances of novel BGCs (75 and 72, respec-
tively). The proportions of novel BGCs in Bacillaceae, 
Streptococcaceae, Brevibacteriaceae, Lactobacillaceae 

and Streptomycetaceae reached 46.24%, 38.21%, 41.90%, 
31.72% and 65.96%, respectively (Supplementary Fig. 9). 
In Brevibacteriaceae, all species contained novel BGCs, 
and B. aurantiacum contained the most novel BGCs (45 
BGCs). In Lactobacillaceae, 40 of 73 species contained 
novel BGCs. Lactiplantibacillus plantarum, Leuconostoc 
mesenteroides, Lactiplantibacillus paraplantarum, Lati-
lactobacillus curvatus, Levilactobacillus brevis and Weis-
sella paramesenteroides_A contained more than 2 novel 
BGCs. Among these 40 Lactobacillaceae species, sev-
eral, such as L. plantarum, Leuconostoc pseudomesenter-
oides and Lacticaseibacillus rhamnosus, were previously 
found to contain BGCs [45], suggesting unique charac-
teristic associated with BGCs in intraspectic genotypes 
from food fermentations, which might be related with 
niche difference between food fermentations and other 
ecosystems.

Fig. 3 Novel biosynthetic gene clusters (BGCs) and their distributions in food fermentations. A BiG-SLiCE distance of BGCs in different BGC types 
compared with BGCs from FAM database. The red and blue dotted lines represent the BiG-SLiCE distances of 900 and 1800, respectively. The black 
lines in the boxplots are the average BiG-SLiCE distances of different BGC types. B The amount of novel BGCs from different BGC types in different 
food fermentation types. The numbers in the heat map represent the novel BGC counts. C Taxonomic origin of novel BGCs. The triangles and circles 
represent BGCs and bacterial species, respectively. The size of the circle represents the BGC number in the respective species. BGCs that are not 
included in the 8 dominant BGC types are combined and shown in Others. Species that are not included in the 13 BGC-rich families are combined 
and shown in Others
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High divergent biosynthetic gene clusters in food 
fermentations compared with other ecosystems
The human gut, ocean and soil ecosystems are consid-
ered important resources of BGCs for the development 
of bioactive compounds [13, 19, 20]. Considering the dif-
ference in niches, we systematically analysed the diver-
gence of BGCs in food fermentations compared with 

these three ecosystems. We calculated the BiG-SLiCE 
distance of BGCs from food fermentations compared 
with those from the human gut, ocean and soil ecosys-
tems (Fig. 4A), and a wide range distance was observed. 
The highest BiG-SLiCE distances of BGCs in food fer-
mentations compared with those in the human gut, 
ocean and soil ecosystems were 2482, 2109 and 2312, 

Fig. 4 Divergence of biosynthetic gene clusters (BGCs) in food fermentations and three other ecosystems. A BiG-SLiCE distance of 2334 BGCs in 
food fermentations compared with BGCs from the human gut, ocean and soil ecosystems, respectively. The middle black lines in the violin plots are 
the average BiG-SLiCE distances. ***Represents P < 0.001. B The number of unique BGCs from species present in both food fermentations and other 
ecosystems and from species specifically present in food fermentations. C Principal component analysis (PCA) based on the BiG-SLiCE distance 
matrix of BGCs. Shared BGC represents the BGC present in food fermentations and all three ecosystems. Unique BGC represents the BGC present 
only in food fermentations. Other BGC represents the BGC present in food fermentations and one (or two) other ecosystems. D Distribution of 
unique BGCs from different BGC types in different food fermentation types. BGCs that are not included in the 8 dominant BGC types are combined 
and shown in Others
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respectively. This suggested that BGCs in food fermenta-
tions were distantly associated with those in three other 
ecosystems. Meanwhile, BiG-SLiCE distances were also 
significantly different between these three ecosystems 
(P < 0.001) using Wilcoxon rank-sum test. The BGCs in 
food fermentations showed a closer distance with those 
in human gut than the other two ecosystems. In addi-
tion, we analysed the taxonomic origins of 436 BGCs in 
food fermentations that had close distances (BiG-SLiCE 
distances < 300) with those from human gut. There were 
a total of 231 BGCs from 40 species in both food fer-
mentations and human gut. Among these 231 BGCs, 164 
BGCs (71.00%) were from 26 species that were previously 
reported as members of a healthy human gut microbi-
ome (Supplementary Data 5).

Compared with BGCs from the human gut, the unique 
BGCs (BiG-SLiCE distance ≥ 900) included 43 RiPP, 100 
NRPS, 118 PKS, 74 terpene, 5 siderophore, 47 arypoly-
ene, 52 betalactone, 7 ectoine and 111 other BGCs in 
food fermentations. Among these BGCs, 460 (82.59%) 
unique BGCs were found in 145 species (Fig.  4B, Sup-
plementary Fig.  10A) which were specifically found in 
food fermentations. A total of 97 (17.41%) unique BGCs 
were found in 25 species, e.g. B. velezensis, L. lactis and 
Bacillus licheniformis, which were present in both food 
fermentations and human gut (Supplementary Fig. 10A). 
This indicated that both the interspecific and intraspe-
cies differentiation were associated with the divergence 
of BGCs, which might be resulted from the niche adap-
tation of MAGs. Compared with BGCs from the ocean, 
there were 682 unique BGCs in food fermentations. A 
total of 592 (86.80%) of these unique BGCs were found 
in 175 species specially in food fermentations, and 90 
BGCs were found in 10 intraspecies genotypes within 
species present in both food fermentations and ocean 
(Supplementary Fig.  10B). Compared with BGCs from 
the soil, there were 830 unique BGCs in food fermenta-
tions. These BGCs were all found in 211 species specific 
to food fermentations (Supplementary Fig.  10C). These 
results indicated unique species played a vital role, and 
intraspecies differentiation played a secondary role in 
driving unique BGCs in food fermentations.

Compared with BGCs from all 3 other ecosystems, 
419 BGCs (17.95%) were unique in food fermentations 
(Fig.  4C). These unique BGCs consisted of 8 dominant 

BGC types, including 40 RiPP, 84 NPKS, 83 PKS, 59 
terpene, 2 siderophore, 32 arypolyene, 21 betalactone, 
1 ectoine and 97 other BGCs. These 419 unique BGCs 
existed in 14 types of food fermentations (Fig.  4D). 
Cheese, bean paste and Chinese liquor fermentations all 
contained more than 50 unique BGCs, which accounted 
for 66.59% of the unique BGCs. There were 174 unique 
BGCs in cheese fermentation, and these unique BGCs 
were found in 56 species, of which 49 species were hab-
itat-specific species in cheese fermentation. A total of 51 
unique BGCs were found in bean paste fermentation, and 
these unique BGCs were found in 22 species, of which 13 
species were habitat-specific species in bean paste fer-
mentation. These results showed the unique BGCs widely 
distributed in different food fermentations, and the hab-
itat-specific species mainly contributed to these unique 
BGCs in food fermentations.

Prediction of secondary metabolites in food fermentations 
and their biological activities
Exploring the composition of secondary metabolites 
in food fermentations would facilitate elucidating the 
health-beneficial effect of fermented foods. Minimum 
Information about a Biosynthetic Gene Cluster (MIBiG) 
database, containing BGCs with known secondary 
metabolites [46], helped reveal the secondary metabolites 
based on BGCs. The GCF approach, based on the simi-
larity analysis of unstudied BGCs with reference BGCs in 
the MIBiG database [47], can be used to identify known 
secondary metabolites and their derivatives (named sec-
ondary metabolite families) produced by correspond-
ing BGCs. We performed the GCF analysis to reveal the 
known secondary metabolites in food fermentations. 
Among 1415 GCFs in food fermentations, 33 GCFs con-
tained known BGCs from the MIBiG database (Fig. 5A). 
These 33 GCFs consisted of 73 BGCs that belonged to 9 
BGC types. The products annotated by these 73 BGCs 
were classified into 33 known secondary metabolite fami-
lies (Supplementary Data 6).

To further analyse the biological activity of these 
known secondary metabolites in food fermentations, we 
performed a predicted analysis of the biological activ-
ity by a machine learning bioinformatics tool using 
BGC sequences [43]. The predicted probabilities of bio-
logical activities, including antibacterial, antifungal and 

Fig. 5 Prediction of secondary metabolites and their biological activities. A Gene cluster family (GCF) network of the 2334 identified biosynthetic 
gene clusters (BGCs). Each node represents one BGC. Only GCFs that contained more than one BGC are shown. BGCs that are not included in the 
8 dominant BGC types are combined and shown in Others. Each cluster represents one GCF. The IDs of 33 GCFs that contain known BGCs from the 
MIBiG database are shown in the GCF network. B Prediction of biological activities for corresponding metabolite families of 33 known GCFs. The 
stacked columns represent the amounts and origins of BGCs in 33 GCFs. The heat map indicates the probabilities of different biological activities 
of 33 metabolite families. The metabolite families with high probabilities of antibacterial activity (> 80%) are shown on the stacked columns. The 
corresponding GCFs are highlighted in red

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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antitumor activities, of 33 metabolite families were repre-
sented by the average value of their metabolite members. 
As shown in Fig.  5B, nine metabolite families, namely 
lichenicidin, amylocyclicin, cerecidin, nisin, entianin, 
thurincin, subtilosin, bacilysin and glycocin (produced 
by 20 BGCs), showed high probabilities of antibacterial 
activity (> 80%) (Supplementary Data 6). The lichenicidin 
family, showing the highest probability of antibacterial 
activity (98.00%), was found in both bean paste and Chi-
nese liquor fermentations. Amylocyclicin was found in 
bean paste and chilli paste fermentations. Subtilosin was 
found in bean paste and cocoa fermentations. Bacilysin 
was found in bean paste, chilli paste and cocoa fermenta-
tions. The other 5 metabolite families were habitat-spe-
cific. Nisin was specific in coffee fermentation. Cerecidin, 
entianin and thurincin were specific in bean paste fer-
mentation. Glycocin was specific in Chinese liquor fer-
mentations, respectively. These results will contribute 
to revealing the health-beneficial potential of fermented 
foods.

The probability of biological activity was also observed 
for the products of unknown BGCs, ranging from 0.60 
to 100% for antibacterial activity, from 2.84 to 52.26% 
for antifungal activity and from 0.11 to 49.30% for anti-
tumor activity. The highest range of probability for anti-
bacterial activity might be resulted from the most studies 
about the antibacterial activity of secondary metabolite 
among these different biological activities [43]. A total 
of 163 BGCs, containing 138 RiPP, 7 NRPS, 6 PKS, 6 
terpene, 1 betalactone and 5 other BGCs, produced sec-
ondary metabolites with high probabilities of antibac-
terial activity (> 80%) (Supplementary Fig.  11A). These 
163 BGCs were distributed across all 15 food fermen-
tation types. Cheese fermentation contained the most 
BGCs (46 BGCs) producing secondary metabolites with 
high antibacterial activity probability, in which 31 BGCs 
were habitat-specific. Bean paste fermentation contained 
the second most BGCs (33 BGCs) producing secondary 
metabolites with high antibacterial activity probability, 
in which 21 BGCs were habitat-specific (Supplementary 
Fig.  11B). These results indicated a strong potential for 
antibacterial activity in these food fermentations.

Discussion
Genome-resolved metagenomics of food fermenta-
tion samples allows the discovery of secondary metabo-
lite BGCs and their taxonomic origins. Up to now, the 
biosynthetic potential of secondary metabolites was 
revealed in different representative ecosystems, such as 
human gut [19], oral [48], ocean [20], soil [13] and rumen 
[49] ecosystems. For food fermentation ecosystem, the 
biosynthetic potential of secondary metabolites was pre-
viously assessed by Walsh et al. [21] and Leech et al. [22], 

but these two studies only focused on the BGC-produc-
ing bacteriocins using BAGEL3 [50]. AntiSMASH uses a 
rule-based cluster detection approach and could identify 
71 different types of secondary metabolite BGCs [39]. In 
this study, we used antiSMASH to provide a systematic 
and comprehensive analysis of the secondary metabolite 
BGCs in food fermentations. A total of 2334 BGCs were 
identified in these food fermentations. To the best of our 
knowledge, this study represents the largest investigation 
of BGCs in global food fermentations to date. Of note, 
the true biosynthetic potential of secondary metabolites 
might be underestimated in food fermentations because 
of the limitation of reference database. Collins et al. [51] 
noted that the profile of antibiotic-resistance genes in the 
intestinal microbiome of deep-sea fish was related with 
the novelty of antibiotic-resistance genes and the refer-
ence database used. AntiSMASH was rule based and 
might fail to detect unknown BGC types because of the 
lack of available library for unknown BGC types [14].

For the BGC distances between food fermentations and 
other ecosystems, we observed a closer distance between 
food fermentations and human gut. A lot of BGCs, which 
had close distances between these two ecosystems, were 
originated from the species reported as members of a 
healthy human gut microbiome. These species from food 
fermentations might be transferred to the human gut 
once the fermented foods were consumed. This study 
supported the links between food fermentations and 
human gut microbiome [52, 53].

There were discrepancies between MAGs reported 
in cheese and cocoa fermentations [21, 34] and MAGs 
recovered in this study. Besides the metagenomic data-
set differences, the assembly and binning methods 
might also be main resaons for these discrepancies. 
IDBA-UD and MetaBAT2 were used for assembly and 
binning, respectively, in reported cheese fermenta-
tion samples [21], which were different with those in 
this study (MEGAHIT and metaSPAdes for assembly; 
Maxbin2, MetaBAT2 and CONCOCT for binning). 
Although the binning method in reported cocoa fer-
mentation samples [34] was same with that in this 
study, it only used one assembler (MEGAHIT). Mean-
while, MAG quality cutoff would also be responsible 
for the MAGs discrepancies. The MAG quality cutoff 
was ≥ 50% completeness and ≤ 10% contamination in 
this study, which was in line with previous studies [54, 
55]. In reported cocoa and cheese fermentation sam-
ples, the MAG quality cutoff were ≥ 50% completeness 
and < 10% contamination [34] and ≥ 80% completeness 
and ≤ 10% contamination [21], respectively. Here, we 
used the uniform quality cutoffs (≥ 50% completeness 
and ≤ 10% contamination) to filter these MAGs. Over-
all, the metagenomic dataset, assembly and binning 
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methods and MAG quality cutoff value should all be 
considered for MAG recovery in different studies.

Identification of BCGs in food fermentations can not 
only provide novel insights into the potential human 
health benefits of fermented foods but also discover valu-
able secondary metabolites. The metabolites produced by 
BGCs have been one of most important sources of antibi-
otic drugs [56]. Culture-based techniques are usually dif-
ficult to discover novel secondary metabolites with novel 
chemical structures because many BGCs are silenced in 
laboratory conditions [17] or have variable expression 
patterns [57]. Identification of BCGs in food fermenta-
tions can serve to discover novel secondary metabolites 
using heterologous expression [58]. Meanwhile, predic-
tion of biological activities of BGC-producing secondary 
metabolites could substantially aid in overcoming one of 
the primary barriers of secondary metabolite discovery: 
the prioritisation of BGCs for research.

Habitat-specific microbiota can be driven by environ-
mental factors [59–61]. Raw material and processing 
method were considered as important factors driving the 
microbiota in food fermentations [22]. In this study, all 
the food fermentation samples were classified as milk- 
and plant-based fermentation groups. For the milk-based 
fermentation group, raw material is mainly milk, but the 
processing method is different. For instance, cheese fer-
mentation consists of the removal of whey, which is not 
done in yoghurt fermentation [1]. Therefore, the process-
ing method can be a key factor driving the differentia-
tion of BGC-contained microbial taxon in the milk-based 
fermentation group. For the plant-based fermentation 
group, raw material and processing method are both 
different. For instance, bean paste is produced by semi-
solid-state fermentation with soybean as raw material 
[62], coffee is produced by solid-state fermentation with 
coffee bean as raw material [63] and Chinese liquor is 
produced by solid-state fermentation with grains, such as 
sorghum, as raw material [64]. Therefore, both raw mate-
rial and processing method can be key factors driving the 
differentiation of BGC-contained microbial taxon in the 
plant-based fermentation group.

Biological activities for secondary metabolites based on 
their BGC sequences were predicted by a machine-learn-
ing bioinformatics tool [43]. In this study, nine metabolite 
families were predicted to have high probability of anti-
bacterial activity (> 80%), and the predicted antibacterial 
activity was consistent with a previous study (subtilosin 
[65], amylocyclicin [66], lichenicidin [67], glycocin [68], 
nisin [69], cerecidin [70], entianin [71], bacilysin [72] 
and thurincin [73]). Certain secondary metabolites, such 
as lichenysin [74], difficidin [75] and bacillibactin [76], 
were previously reported to have antibacterial activities. 
However, their probabilities of antibacterial activity were 

only predicted to be 60.00%, 36.21% and 27.57%, respec-
tively, in this study. Therefore, we should isolate strains 
containing these BGCs, or heterogeneously express 
these BGCs to obtain metabolites, to confirm or charac-
terise the activities of these BGC-producing secondary 
metabolites in  vitro. Meanwhile, the present prediction 
method can only predict three types of biological activ-
ity. Other biological activities, such as antioxidant, anti-
viral and antiprotozoal activities, should also be analysed 
by in vitro experiments in the future. In addition to the 
known secondary metabolites, there were many sec-
ondary metabolites produced by unknown BGCs. For 
instance, 871 unknown BGCs were identified in cheese 
fermentations, but only 15 BGC-producing second-
ary metabolites belonged to known metabolite families. 
It would be beneficial to elucidate the potential health 
benefits of fermented foods by investigating the chemi-
cal structures and biological activities of these unknown 
secondary metabolites produced by unknown BGCs. 
Moreover, the concentrations of these metabolites in fer-
mented foods should also be determined, which would 
facilitate formulating proper intake of these fermented 
foods. Meanwhile, establishing the metabolic pathways of 
the secondary metabolites would serve to regulate these 
compounds in food fermentations, consequently accel-
erating the development of a variety of new healthy fer-
mented foods.

In this study, we relied on 653 MAGs recovered from 
metagenomic sequencing data to predict BGCs. The 
MAG approach is proved to be an efficient tool to explore 
secondary biosynthetic potential in different food fer-
mentations. However, compared with the whole genome 
analysis for BGCs, the MAG approach could generate 
more incomplete BGCs and was unfriendly to low-abun-
dance species [77]. This issue would be resolved to some 
extent by increasing the sequencing depth and improving 
the sequencing method, such as using a third-generation 
sequencing method [77]. In addition, this study analysed 
metagenomic sequencing data from 367 fermented sam-
ples belonging to 15 food fermentation types. Although 
the metagenomic sequencing data we analysed here 
spanned fermentations of general fermented foods, there 
are currently more than 200 types of fermented foods 
with different origins and processing ways worldwide [1]. 
As a result, we will further collect metagenomic sequenc-
ing data from more food fermentation types to reveal 
BGCs in global food fermentations.

Conclusion
To conclude, this study revealed that food fermenta-
tion was an untapped reservoir of secondary metabolite 
BGCs, including a lot of BGCs corresponding second-
ary metabolites with high probabilities of antibacterial 
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activity. Secondary metabolite BGCs widespreadly and 
habitat-specifically distributed in different food fermen-
tation types driven by both habitat-specific species and 
intraspecies genotypes. This study would serve to eluci-
date the health-beneficial potential of fermented foods 
and develop novel bioactive compounds from food 
fermentations.
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