
Gu et al. Microbiome           (2023) 11:87  
https://doi.org/10.1186/s40168-023-01535-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Microbiome

The hindgut microbiome contributes to host 
oxidative stress in postpartum dairy cows 
by affecting glutathione synthesis process
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Abstract 

Background Dairy cows are susceptible to postpartum systemic oxidative stress (OS), which leads to significant pro‑
duction loss and metabolic disorders. The gut microbiota has been linked to host health and stress levels. However, 
to what extent the gut microbiota is associated with postpartum OS remains unknown. In this study, the contribution 
of the fecal microbiota to postpartum systemic OS and its underlying mechanisms were investigated by integrating 
16S rRNA gene sequencing, metagenomics, and metabolomics in postpartum dairy cattle and by transplanting fecal 
microbiota from cattle to mice.

Results A strong link was found between fecal microbial composition and postpartum OS, with an explainability of 
43.1%. A total of 17 significantly differential bacterial genera and 19 species were identified between cows with high 
(HOS) and low OS (LOS). Among them, 9 genera and 16 species showed significant negative correlations with OS, 
and Marasmitruncus and Ruminococcus_sp._CAG:724 had the strongest correlations. The microbial functional analysis 
showed that the fecal microbial metabolism of glutamine, glutamate, glycine, and cysteine involved in glutathione 
synthesis was lower in HOS cows. Moreover, 58 significantly different metabolites were identified between HOS and 
LOS cows, and of these metabolites, 19 were produced from microbiota or cometabolism of microbiota and host. 
Furthermore, these microbial metabolites were enriched in the metabolism of glutamine, glutamate, glycine, and 
cysteine. The mice gavaged with HOS fecal microbiota had significantly higher OS and lower plasma glutathione 
peroxidase and glutathione content than those orally administered saline or LOS fecal microbiota.

Conclusions Integrated results suggest that the fecal microbiota is responsible for OS and that lower glutathione 
production plays a causative role in HOS. These findings provide novel insights into the mechanisms of postpartum 
OS and potential regulatory strategies to alleviate OS in dairy cows.
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Background
The transition period (3 weeks before and after partu-
rition) is a critical stage of dairy cows; this is a period 
in which a majority of cows easily suffer from various 
diseases [1]. Oxidative stress (OS) is the most com-
monly observed phenomenon in the postpartum stage 
and contributes to multiple postpartum diseases or dis-
orders, such as ketosis, fatty liver, and mastitis, in dairy 
cattle [2]. Thus, it is very important to alleviate post-
partum OS for dairy cattle health and lactation per-
formances. Postpartum OS in dairy cows is a complex 
interplay of multiple biological processes in different 
tissues, including uterine involution, onset of copious 
milk synthesis and secretion, adipose mobilization, 
and liver hypermetabolism [3]. Therefore, systemic OS 
should be reflected and evaluated by holistic param-
eters. The blood OS index (OSI), calculated based on 
total oxidative status and antioxidant capacity, can be 
used to assess the degree of OS [4, 5] and is regarded 
as a new tool to evaluate the redox status in perinatal 
dairy cows [6].

As the “second genome,” the gut microbiota has a 
substantial impact on various physiological functions, 
including metabolism and health of the host [7–9]. OS 
is one of the most vital mechanisms for diseases and is 
strongly associated with a dysfunctional gut microbiome 
[8–10]. Furthermore, increasing evidence has shown that 
gut microbial dysbiosis can cause minor to severe nui-
sances in local organs, such as the liver [11], gut [12], and 
brain [13], which in turn lead to systemic OS. In addi-
tion, the composition and richness of the gut microbiome 
change dramatically during the perinatal period [14]. 
Thus, we speculated that the gut microbiome may be 
related to postpartum systemic OS. However, the extent 
to which the gut microbiota contributes to systemic OS 
and the underlying mechanisms remain unclear. Previ-
ous studies suggest that gut microbial metabolites or gut 
microbial metabolic pattern variations may influence 
host physiology and behavior via multiple direct or indi-
rect pathways [15–17]. Different omics approaches, espe-
cially 16S rRNA gene sequencing, metagenomics, and 
metabolomics, provide powerful tools to identify poten-
tial players in a high-throughput manner and to further 
elucidate microbial mechanisms. Integrating omics tech-
niques yields a better understanding and clearer picture 
than single omics analysis [18, 19].

Thus, in this study, we aimed to answer two ques-
tions. Does the gut microbiome (composition and func-
tions) contribute to OS (characterized by OSI) during 
the postpartum period in dairy cows? If so, what are the 
potential mechanisms? We integrated 16S rRNA gene 
sequencing, metagenomics, and metabolomics of cattle 
fecal samples at 7 days postpartum and fecal microbiota 

transplantation in mice to reveal the relationship between 
the gut microbiota and host systemic OS.

Methods
Animals and experimental design
Sixty-three healthy Chinese Holstein dairy cows (milk 
yield, 36.9 ± 8.04; parity, 2.75 ± 0.94; body condition 
score, 2.75 ± 0.35) without antibiotics or drug treatment 
were selected from a large cohort of 2000 dairy cows. 
These cows were raised in the same environment, for 
example, the same diet, water, and management. The diet 
composition is presented in Table S1.

Sample collection
A total of 63 blood samples were collected into tubes 
containing an anticoagulant (EDTA vacutainer) from the 
coccygeal vein of cows 7  days after calving at 6:00 am. 
The samples were centrifuged at 3000 × g for 15  min at 
4  °C to collect plasma. The plasma was frozen in liquid 
nitrogen and stored at − 80  °C for subsequent analy-
sis. Feces were collected manually from the rectum of 
cows by using sterilized gloves before morning feeding. 
The feces were transferred to sterile 50  mL frozen stor-
age tubes, quenched in liquid nitrogen immediately, and 
stored at − 80 °C for subsequent analysis.

Plasma parameter measurement
The concentrations of glucose (#ZH2079T), total protein 
(#ZH2012G), blood urea nitrogen (#ZH2017S), non-
esterified fatty acids (#ZH2045Z), β-hydroxybutyrate 
(#ZH2029T), cholesterol (#ZH2040Z), triglycerides 
(#ZH2039Z), albumin (#ZH2013G), superoxide dis-
mutase (SOD, #ZH2058F), creatinine (#ZH2020S2), 
alanine aminotransferase (#ZH2001G), and aspartate 
aminotransferase (#ZH2002G) in plasma were measured 
using an AutoAnalyzer 7020 instrument (Hitachi High-
Technologies Corporation, Tokyo, Japan) with commer-
cial kits (Ningbo Medical System Biotechnology Co., 
Ltd., Ningbo, China). The concentrations of plasma cata-
lase (CAT, #A007-1–1), glutathione (GSH, #A006-2–1), 
glutathione peroxidase (GSH-px, #A005-1–2), malondi-
aldehyde (MDA, #A003-1–2), haptoglobin (HPT, #H136), 
amyloid (SAA, #H134), and total antioxidant capacity 
(T-AOC, #A015-2–1) were measured using commercial 
assay kits from Nanjing Jiancheng Bioengineering Insti-
tute (Nanjing, China) according to the manufacturer’s 
instructions. In addition, the plasma total oxidative status 
(TOS; #KC5100, Bensheim, Germany) was determined 
using commercial assay kits according to the manufac-
turer’s instructions. The OSI was calculated as the ratio of 
TOS to T-AOC. Each sample was replicated three times 
for the detection of the aforementioned parameters. The 
cows with lower (LOS, n = 9) and higher (HOS, n = 9) 
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values but similar phenotypic characteristics, including 
milk yield, parity, and body scores were selected from 
the aforementioned 63 cows for subsequent exploration 
of the mechanisms of OS related to the fecal microbi-
ome. LOS cows were regarded as the control reference 
in the current study. Body condition was scored follow-
ing the method described by Edmonson et al. [20] using 
a 5-point scale (1 = thin, 5 = fat) at 3 time points (06:00, 
14:00, and 20:00).

Statistical analysis of plasma parameters
Statistical analysis and graphs of plasma parameters were 
generated using Prism (GraphPad Software Inc. 8.0, La 
Jolla, CA, USA). Student’s t test was used for compari-
sons between two groups, and ANOVA was used for 
comparisons among multiple groups. Significance was 
declared at P ≤ 0.05, and 0.05 < P ≤ 0.10 was considered a 
significant trend.

DNA extraction and sequencing
The total fecal microbial DNA was extracted using the 
E.Z.N.A. ®Stool DNA Kit (#D4015, Omega, Inc., USA) 
for 16S rRNA gene and metagenome sequencing. A 1% 
agarose gel and NanoDrop 2000 spectrophotometer 
(Thermo Scientific, Wilmington, USA) were used for 
quality assessment and concentration measurement, 
respectively. The common primer pair (341F: 5′-CCT 
ACG GGNGGC WGC AG-3′; 805R: 5′-GAC TAC HVGGG 
TAT CTA ATC C-3′) was used to amplify the V3–V4 
region of the bacterial 16S rRNA gene. The PCR product 
was purified using AMPure XT Beads (Beckman Coul-
ter Genomics, Danvers, MA, USA) and quantified using 
Qubit (Invitrogen, USA). Qualified PCR products were 
evaluated using an Agilent 2100 Bioanalyzer (Agilent, 
USA) and Illumina library quantitative kits (Kapa Bio-
sciences, Woburn, MA, USA), which were further pooled 
together and sequenced on an Illumina NovaSeq PE250, 
provided by LC-Bio Technology Co., Ltd., Hangzhou, 
China.

Data processing and 16S rRNA gene sequencing analysis
The raw sequence data were demultiplexed into sample 
paired-end fastq files using FLASH. Quality filtering was 
performed to obtain high-quality clean tags according to 
fqtrim (v0.94) [21]. Chimeric sequences were filtered using 
Vsearch software (v2.3.4) [22]. DADA2 [23] was applied 
for denoising and generating amplicon sequence variants 
(ASVs) of quality reads that were dereplicated at 100% 
sequence identity and clustered at 99% sequence identity. 
BLAST was used for sequence alignment, and taxonomic 
annotation was based on the SILVA (138 database) (https:// 
www. arbsi lva. de) [24]. Feature abundance was normalized 
using the relative abundance of each sample. Microbial taxa 

with relative abundances > 0.01% in more than 50% of the 
samples were used for downstream analysis. Alpha and 
beta diversities were calculated using QIIME2 [25]. Linear 
discriminant analysis effect size (LEfSe) was applied to ana-
lyze the significantly different bacteria between the HOS 
and LOS cows by using the Kruskal–Wallis test [26]. Sig-
nificance was declared at P < 0.05 and a linear discriminant 
analysis (LDA) score > 2. For the reasons of failure of col-
lecting enough amount/number of fecal samples or failed 
the quality control of DNA, there are 12 fecal samples of 
cows were missed. Therefore, we only sequenced for 51 
fecal samples in current study. Furthermore, part of the 
microbiome data (n = 10) was same as the one used in our 
previous study [27].

Co‑occurrence network analysis
To understand microbial interactions in the gut, we con-
structed co-occurrence networks based on the relative 
abundance of genera in each group [28]. The genera cor-
relation network within the HOS and LOS cows was ana-
lyzed separately by Spearman’s correlation coefficient in 
the R package Hmisc (v4.6.0). The significant correlation 
(p.adjust < 0.05, |rho|> 0.70) among different genera was 
visualized using Cytoscape v3.8.2 (http:// www. cytos cape. 
org) [29]. Next, a comparison between the two network 
structures was conducted based on node closeness and 
shared correlations.

Microbiability calculations
The linear mixed model (LMM) was performed using the R 
package Ime4qtl (v0.2.2) [30] and was used to estimate the 
OS variance explained by the gut microbiota:

where y is the phenotype OSI, and c is the vector of the 
fixed covariates, consisting of parity and milk yield. Fecal 
microbes in each animal are considered random effects, 
which follow the distribution ms ~ N (0, Mσ2

m), where M 
is the relationship matrix constructed using the relative 
abundances of microbial genera based on the following 
formula:

where Aia and Aja represent the relative abundance of 
the ath genus of individuals i and j, respectively; u is the 
intercept; and e is the residual effect. The phenotypic var-
iance explained by the fecal microbial variance in dairy 
cows was estimated as the ratio of fecal microbial vari-
ance and phenotype variance ( σ

2
m

σ
2
p
 ), where σ2p represents 

the OSI variance, and σ2m represents the variance from 

Y = Kc+ms+ u + e,
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gut microbiota calculated as a random effect. In the ani-
mal gut microbiome field, this part of variance is defined 
as “microbiability,” which is considered the extent to 
which fecal microbes contribute to the phenotype [17].

Library construction, sequencing, and data processing 
of metagenomics analysis
Fecal samples of HOS and LOS cows (n = 18) were sub-
jected to metagenome sequencing, and 10 microbi-
ome datasets were used in our previous study [27]. The 
metagenomic DNA library was costructed using the 
TruSeq Nano DNA Library Preparation Kit-Set (#FC-
121–4001, Illumina, USA). Metagenome libraries were 
sequenced on an Illumina NovaSeq6000 platform in a 
PE150 pattern. The quality control of each dataset was 
performed using cutadapt (v1.9) to remove sequencing 
adapters, low-quality reads (quality scores < 20), short 
reads (< 100 bp), and reads containing more than 5% “N” 
records by using the sliding-window algorithm method 
with fqtrim (v 0.94) [21]. The reads were aligned to the 
bovine genome (bosTau8 3.7, https:// doi. org/ 10. 18129/ 
B9. bioc. BSgen ome. Btaur us. UCSC. bosTa u8) by using 
bowtie (V2.2) to filter the host DNA [31]. The filter reads 
were assembled de novo for each sample using IDBA-UD 
(v1.1.1) [32]. MetaGeneMark (v3.26) [33] was used to 
predict the coding regions (CDS) of the assembled con-
tigs. The CDSs of all samples were clustered using CD-
HIT (V4.6.1) to obtain unigenes.

Taxonomy and function analysis
DIAMOND (v0.9.14) was applied to perform a taxo-
nomic assessment of the gut microbiota based on the 
RefSeq database [34]. Microbial taxa with a relative abun-
dance > 0.01% in more than 50% of the samples were 
used for downstream analysis. The abundance of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) Orthology 
(KO) and pathways were normalized to transcripts per 
million (TPM) [35].

Fecal sample preparation, metabolite extraction, 
and identification of metabolomics analysis
Frozen feces (100 mg) were thoroughly ground with liq-
uid nitrogen, mixed with 1 mL 50% methanol buffer, and 
incubated for 10 min. The mixture was stored at − 20 °C 
overnight to precipitate proteins and then centrifuged at 
4000 × g for 20 min. The supernatants were used for liq-
uid chromatography‒mass spectrometry (LC‒MS) analy-
sis to detect metabolites. An ultra-performance liquid 
chromatography (UPLC) system (SCIEX, UK) equipped 
with an ACQUITY UPLC T3 column (100 mm × 2.1 mm, 
1.8  μm, Waters, UK) was used for chromatographic 
reversed-phase separation. The TripleTOF 5600 Plus 
high-resolution tandem mass spectrometer (SCIEX, 

Warrington, UK) was operated in both positive and nega-
tive ion modes to detect metabolites eluted from the col-
umn. The TOF mass ranged from 60 to 1200 Da. XCMS 
software was used for the acquired MS data pretreat-
ments and exported into the mzXML format [36].

Metabolomics data processing
The LC‒MS raw data files were processed by XCMS, 
CAMERA [37], and MetaX toolbox in R for peak detec-
tion and the CAMERA package for peak annotation 
[38]. Each ion was identified by its retention time and 
m/z. The information with the matrix was mapped to 
public databases, including KEGG and BMDB (https:// 
www. mdpi. com/ 2218- 1989/ 10/6/ 23), with a threshold of 
10 ppm [39]. MetaX was applied to filter peak intensity 
data with a standard that features should not be detected 
in less than 50% of QC samples. In addition, the rela-
tive standard deviations of the metabolic features were 
calculated across all QC samples, and standard devia-
tions > 30% across all QC samples were removed. After 
quality control, the group datasets were normalized using 
the probabilistic quotient normalization algorithm and 
log transformed before analysis. The analysis of metabo-
lite sources was performed in MetOrigin (2022–01 ver-
sion; http:// metor igin. met- bioin forma tics. cn/ app/ metor 
igin) [40]. The metabolites were divided into four groups 
in MetOrigin, including the host group (metabolites only 
produced by the host), microbiota group (metabolites 
only produced by the microbiota), co-metabolism group 
(metabolites produced by both the host and microbiota), 
and others group, which consisted of drug-related, food-
related, environmental, and unknown metabolites. And 
the significantly different metabolites were determined 
based on the variable P < 0.05 of Wilcoxon rank-sum 
test. The enrichment analysis included in MetOrigin was 
applied to each metabolite from each cluster to identify 
metabolic pathways (P < 0.05) [41].

Fecal microbiota transplantation (FMT) in mice
For microbiota suspension preparation, we first defrosted 
the fecal samples of LOS and HOS cows that were stored 
at − 80  °C. Then, 5 g feces from donor cows in the LOS 
and HOS groups were dissolved in 50  mL physiologi-
cal saline and mixed well. The fecal suspension was then 
passed through two gauze filters, the first with two lay-
ers and the second with four. This step was followed by 
a counting test on a blood cell counting plate to ensure 
that the concentration of microbes in the suspension 
was more than  108  CFU/mL. Finally, the microbial sus-
pensions from the LOS and HOS cows were mixed sep-
arately, 10% glycerin was added, and the samples were 
frozen at − 80 °C.

https://doi.org/10.18129/B9.bioc.BSgenome.Btaurus.UCSC.bosTau8
https://doi.org/10.18129/B9.bioc.BSgenome.Btaurus.UCSC.bosTau8
https://www.mdpi.com/2218-1989/10/6/23
https://www.mdpi.com/2218-1989/10/6/23
http://metorigin.met-bioinformatics.cn/app/metorigin
http://metorigin.met-bioinformatics.cn/app/metorigin


Page 5 of 16Gu et al. Microbiome           (2023) 11:87  

Forty-five female mice (C57BL/6 J) underwent a 7-day 
adaptation stage before treatment. Next, the mice were 
gavaged with a mixture of antibiotics (1  g/L ampicil-
lin [#A7490, Solarbio], 0.5  g/L vancomycin [#Y25829, 
Yuanye], 0.5 g/L neomycin [#631307, Takara], and 1 g/L 
metronidazole) in 200 μL nuclease-free saline for 7 
consecutive days to deplete the gut bacteria [42]. Sub-
sequently, the mice were randomly divided into groups—
CON, FLOS, and FHOS—which were orally gavaged 
with saline, fecal microbial suspension from LOS cows, 
or fecal microbial suspension from HOS cows, and the 
oral volume was 200 μL/d.

Fourteen days later, the mice were euthanized, and 
blood samples were collected by eyeball extirpating using 
blood collection tubes containing EDTA. Then, the blood 
samples were centrifuged at 1600 g/min at 4 °C for 12 min 
to obtain plasma for the determination of the parameters 
of OS, including T-AOC, TOS, OSI, MDA, SOD, CAT, 
GSH, and GSH-px. The methods used to determine these 
parameters were the same as those used for cows.

Results
The associations between fecal microbiota 
and postpartum oxidative stress
A total of 63 healthy Chinese Holstein dairy cows at 
7 days postpartum were selected for the collection of the 
blood and fecal samples (Fig.  1A). The plasma T-AOC 
and TOS of postpartum dairy cows ranged from 0.431 to 
0.589 mM and from 0.000205 to 1.054 mM, respectively 
(Fig. S1A and B). The plasma OSI values ranged from 
0.0008 to 2.3, with a mean value of 0.66 (Fig. 1B).

The retained reads of 16S sequencing ranged from 
64,057 to 76,618 with high sampling coverage (> 95%) 
in all samples (Tables S2 and S3). At the phylum level, 
nine phyla were identified, and the dominant bacterial 
phyla included Firmicutes (37.7% ± 5.23%), Bacteroi-
detes (15.6% ± 3.14%), and Spirochaetes (1.73 ± 2.52%). 
The dominant bacterial genera were unclassified Rumi-
nococcaceae (17.2 ± 3.33%), unclassified Bacteroidetes 
(10.9 ± 2.50%), Firmicutes (9.60 ± 1.74%), Bifidobac-
terium (1.90 ± 3.39%), and Treponema (1.70 ± 2.52%) 
(Fig. 1C and Table S4). The results of the LMM analysis 
of the data of 51 cows showed that 43.1% of the OSI vari-
ations could be explained by the gut microbial composi-
tion at the genus level.

To further investigate the direct effect of the gut micro-
biota on the host postpartum systemic OS, HOS, and 
LOS cows were selected. The OSI values were signifi-
cantly higher (P < 0.01) in the HOS cows than in the LOS 
cows (1.02 ± 0.16 vs. 0.34 ± 0.07; Table 1). Plasma param-
eters were not significantly different between the two 
groups, except for GSH-px (P = 0.04) (Table 1). Addition-
ally, the fecal microbiota from the HOS and LOS cows 
was transplanted into antibiotic-treated mice by oral 
gavage (Fig.  1D). The pseudosterile mouse model was 
successfully constructed based on the results of cecum 
morphology and fecal bacterial culture (Fig. S2A and B). 
No significant differences were observed in body weight 
among treatments (Fig. S2C). The results showed that 
the concentration of TOS in the FHOS group was sig-
nificantly higher than that in CON (P = 0.01) and tended 
to be higher than that in the FLOS group (P = 0.06, 
Fig. 1E). The TAOC values were not significantly different 
between the FLOS and FHOS groups, but these values 
in the FLOS and FHOS groups were significantly higher 
than those in the CON group (P < 0.01). Notably, the OSI 
of the FHOS group was significantly higher than that of 
the CON (P = 0.02) and FLOS (P < 0.01) groups. Moreo-
ver, consistent with the cattle experiment, the GSH-px 
of the FHOS group was significantly lower than that of 
the CON group (P < 0.01). The GSH-px in the FLOS 
group tended to be lower than that in the CON group 
(P = 0.08). We also determined the plasma GSH concen-
tration. We found that the GSH concentration was lowest 
in the FHOS group, and this concentration significantly 
differed from that of the FLOS group (P = 0.03). The SOD 
concentration in the FHOS group was higher than that 
in the CON and FLOS groups (P < 0.01); in contrast, the 
CAT content was significantly lower in the FHOS group 
(P < 0.01). Additionally, the mice in the FHOS group 
showed the highest concentration of MDA and that of 
the FHOS group was significantly higher than that of the 
FLOS group (P = 0.047) (Fig. 1E).

Distinct microbial compositions between the HOS and LOS 
cows
No significant differences in the Chao1 and Shannon 
indices of the fecal microbiome between the two groups 
were observed (Fig.  2A). However, principal coordi-
nate analysis based on Bray‒Curtis showed distinct dis-
crimination of microbial composition between the two 

(See figure on next page.)
Fig. 1 The overview of the oxidative stress and fecal microbial composition of postpartum dairy cows. A Study and sampling design of the 
cow trial. B The oxidative stress index profile of dairy cows at 7 days postpartum. C Taxonomic and phylogenetic trees of the gut microbiome 
by 16S rRNA gene sequencing. D Study design diagram of the fecal transplantation experiment. E Plasma oxidative stress parameters of mice in 
the four groups. LOS, cows with lower oxidative stress; HOS, cows with higher oxidative stress; CON, mice orally gavaged with saline; FLOS, mice 
orally gavaged with fecal microbial suspension from LOS cows; FHOS, mice orally gavaged with fecal microbial suspension from HOS cows. The P 
value < 0.10 were presented
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Fig. 1 (See legend on previous page.)
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groups at the genus level (ANOSIM P = 0.005; Fig.  2B). 
The bacterial taxa composition was similar at the phy-
lum and genus levels between the LOS and HOS cows, 
but differences were observed in the relative abundance 
of the major phyla and genera between the two groups 
(Fig.  2C, D). The HOS and LOS cows mainly featured 
two co-occurrence networks with scattered genera from 
8 phyla (Firmicutes, Bacteroidetes, Proteobacteria, Act-
inobacteria, Tenericutes, Verrucomicrobia, Spirochaetes, 

and Candiatus_Saccharibacteria) (Fig.  2E). The number 
of correlation edges (|rho|> 0.7) among the microbes in 
the HOS group was markedly lower than that in the LOS 
group, in which 147 and 125 of the edges were specific 
to the HOS and LOS cows, respectively. Four overlapping 
edges were shared between the two groups (Fig. S3A). 
The heatmap of closeness and the eigenvector of shared 
genera also presented the difference between the two 
groups (Fig. S3B).

Metagenome sequencing generated 827,196,450 reads, 
with 45,955,358 ± 1,891,941 reads (mean ± SEM) per 
sample (Table S5). A total of 811,987,410 reads were 
retained, with 45,110,412 ± 1,887,842 reads per sample 
after quality control and removal of host genes. After 
de novo assembly, 4,207,139 contigs were generated 
(N50 length of 905 ± 56 bp), with 233,730 ± 54,483 con-
tigs per sample. The gut fecal metagenome consisted of 
90.0% bacteria, 0.679% archaea, 0.367% viruses, 0.0236% 
eukaryotes, and 8.9304% unclassified bacteria (Fig. S4A). 
A total of 1596 species were identified: 891 bacteria, 120 
archaea, 231 viruses, 178 eukaryotes, and 176 unclassi-
fied species (Fig. S4B). LEfSe analysis identified 17 and 
19 significantly different (P < 0.05, LDA > 2) bacterial gen-
era and species between the two groups (Fig. 3A and B). 
The abundances of all the above taxa were significantly 
lower in the HOS cows, except for the genera Prevotel-
lamassilia, Cellulosilyticum, and Alloprevotella (Fig. 3A). 
The correlation analysis results showed that most of 
these genera and species were significantly negatively 
correlated with the plasma OSI (Fig. 3A, Table S6), and 
among these the genus Marasmitruncus (Rho =  − 0.76, 
P = 0.0004) and species Ruminococcus_sp._CAG:724 
(Rho = -0.70, P = 0.002) showed the highest correlation 
with the OSI.

Functional analysis of the metagenome and metabolome 
revealed lower GSH synthesis in the gut of HOS cows
To explore the functional differences in fecal micro-
biota between HOS and LOS cows, KEGG enrich-
ment analysis was performed with metagenome data. 
A total of 133 pathways were identified (Table S7). The 
significantly differential KEGG pathways are shown in 
Fig.  4A. There were 26 functional pathways enriched 
in HOS cows. Additionally, 35 functional pathways 
were enriched in LOS cows. Most of the differential 

Table 1 Plasma physiological parameters, inflammation, 
oxidative stress, and phenotypic characteristics in dairy cows 
with low (LOS) and high oxidative stress (HOS)

a Oxidative stress index = total oxidative status/total antioxidant capacity

Items LOS HOS SEM P value

Physiological parameters
 Alanine aminotransferase, U/L 17.8 17.6 1.46 0.92

 Aspartate aminotransferase, U/L 109 110 12.0 0.93

 Total protein, g/L 68.7 71.1 2.45 0.34

 Albumin, g/L 31.9 34.0 1.07 0.07

 Glucose, mM 3.31 3.64 0.21 0.13

 Blood urea nitrogen, mM 4.48 3.95 0.50 0.31

 Creatinine, μM 87.3 98.2 8.63 0.23

 Cholesterol, mM 2.50 2.40 0.27 0.71

 Triglyceride, mM 0.10 0.10 0.007 0.96

 β‑hydroxybutyrate, μM 862 1,020 162 0.33

 Nonesterified fatty acid, μM 641 823 171 0.30

Inflammation biomarkers
 Haptoglobin, U/L 338 378 38.2 0.31

 Serum amyloid A, μg/mL 36.7 39.6 3.08 0.36

Oxidative stress biomarkers
 Superoxide dismutase, U/mL 175 192 8.62 0.07

 Total antioxidant capacity, mM 0.53 0.51 0.02 0.30

 Catalase, U/mL 1.07 1.07 0.07 0.98

 Glutathione peroxidase, U/mL 38.4 27.8 4.73 0.04

 Malondialdehyde, nmol/mL 3.94 2.81 0.85 0.20

 Total oxidative status, μM 183 517 80.8  < 0.01

 Oxidative stress  indexa 0.34 1.02 0.18  < 0.01

Phenotypic characteristics
 Milk yield, kg/d 36.8 35.3 3.73 0.70

 Parity 2.13 2.22 0.54 0.86

 Body condition scores 2.67 2.96 0.25 0.26

Fig. 2 The difference in the fecal microbiome between cows with how (HOS) and low oxidative stress (LOS) according to the 16S rRNA gene 
sequencing data. A Changes in alpha diversity at the genus level. B Changes in beta diversity at the genus level. The p value was tested with 
ANOSIM. C Community biplot analysis at the family level. D Community biplot analysis at the genus level. E Genus co‑occurrence network between 
LOS and HOS based on Spearman correlation analysis. Each node represents a bacterial genus; node size shows the relative abundance of each 
genus per group. The line refers to the Spearman coefficient. Red and green lines represent positive and negative interactions between nodes, 
respectively. Correlations with |rho|> 0.7 are presented

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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pathways are associated with nitrogen metabolism, 
especially amino acid metabolism. Specifically, nitrogen 
metabolism (P = 0.05); D-glutamine and D-glutamate 
metabolism (P = 0.07); arginine and proline metabolism 
(P < 0.01); glycine, serine, and threonine metabolism 
(P < 0.03); and cysteine and methionine metabolism 
(P = 0.04) were all decreased in HOS cows.

Additionally, we performed fecal metabolome anal-
ysis for the HOS and LOS cows. The results of the 
partial least squares-discriminant analysis showed 
distinct clusters of metabolomes between the HOS 
and LOS cows (Fig.  4B). In total, 1182 compounds in 
feces were detected and quantified (Table S8), and 58 
differential metabolites were identified (Fig.  4C and 
Table S9). Specifically, in the HOS group, the abun-
dances of 39 metabolites were significantly lower, and 
the abundances of 19 metabolites were significantly 
higher than that in the LOS group (Fig.  4D). Further-
more, we identified the sources of the metabolites and 
found 23 metabolites from the host, 85 metabolites 
from the microbiota, 198 metabolites from host-micro-
biota cometabolism, and 876 metabolites from others, 
which consisted of drug (128), food (348), environment 
(9), and unknown (391) (Fig. 4D, Table S9). The abun-
dances of 7 microbial metabolites, such as D-alanine 
(P = 0.0007, FC = 1.44), pyroglutamic acid (P = 0.007, 
FC = 1.42), and 1-aminocyclopropanecarboxylic acid 
(P = 0.01, FC = 1.28), were significantly higher in HOS 
cows (Table S9). In addition, a total of 12 metabolites 
from cometabolism showed significant differences 
between HOS and LOS cows; these metabolite include 
pyruvate (P = 0.003, FC = 2.29), succinic acid (P = 0.03, 
FC = 2.04) and oxoglutaric acid (P = 0.01, FC = 1.19). 
Next, we performed metabolic pathway enrichment 
analysis according to different categories of metabo-
lites belonging to the host, bacteria, and both. A total 
of 55 pathways were identified, including 43 pathways 
from cometabolism, 11 from microbiota, and 1 from 
the host (Fig.  4E, Table S10). Additionally, the results 
showed that pathways, such as D-alanine metabo-
lism (P = 0.009) and D-glutamine and D-glutamate 
metabolism (P = 0.0189), were enriched in microbiota 
or cometabolism and showed significant differences 
between the HOS and LOS cows. Additionally, cysteine 
and methionine metabolism (P = 0.10) and glycine, 

serine, and threonine metabolism (P = 0.10) tended to 
be different.

Consistent with these results, the correlation analysis 
showed that the significantly differential genera and species 
were significantly correlated with these pathways (Fig.  5A, 
Table S11), especially for D-glutamine and D-glutamate 
metabolism, cysteine and methionine metabolism, and gly-
cine, serine, and threonine metabolism. Notably, all these 
pathways were involved in GSH synthesis (Fig. 5B). Moreo-
ver, the major enzymes and KO entries involved in the afore-
mentioned KEGG pathways were also significantly different 
between the HOS and LOS cows (Fig.  5B and Table S12). 
For example, glutamate synthase (NADPH) small chain 
(K00266, P = 0.04) and glycine hydroxymethyltransferase 
(K00600, P = 0.04) were significantly lower, and glutamate-
cysteine ligase (K01919, P = 0.10), glutathione synthase 
(K01920, P = 0.07), aspartate aminotransferase (K11358, 
P = 0.10), and nitrogenase molybdenum-iron protein beta 
chain (K02591, P = 0.09) tended to be lower in HOS cows. 
In contrast, glutamate racemase (K01776, P = 0.01), 4-amin-
obutyrate aminotransferase/(S)-3-amino-2-methylpropion-
ate transaminase/5-aminovalerate transaminase (K07250, 
P = 0.03) and aspartate aminotransferase (K00812, P = 0.01) 
were significantly higher, and D-alanine transaminase 
(K00824, P = 0.09), proline racemase (K01777, P = 0.07), and 
threonine aldolase (K01620, P = 0.09) tended to be higher 
in the gut of HOS cows (Fig. 5B and Table S9). By integrat-
ing the changes between the two groups, including those in 
microbial metabolite abundance and the involved metabolic 
pathways, the results showed that fecal microbial GSH syn-
thesis was lower in the gut of HOS cows than in that of LOS 
cows (Fig. 5B).

Discussion
The alleviation of postpartum systemic OS in dairy cows 
is one of the biggest challenges to improving their health 
and welfare. The gut microbiota has attracted increas-
ing attention owing to its underinvestigated effects on the 
physiological functions of the host [7]. Notably, in some 
diseases caused by a disturbed gut microbiome, the host 
OS increase is a possible pathogenic mechanism [8–10]. 
Here, we provided evidence that the fecal microbiota can 
contribute to host postpartum systemic OS by affect-
ing GSH synthesis using multiomics approaches. This is 
the first study to reveal OS status-dependent changes in 

(See figure on next page.)
Fig. 3 Gut microbiota divergence between cows with high (HOS) and low oxidative stress (LOS) at the species level based on metagenome 
sequencing data. A Abundance of significantly different bacterial genera between HOS and LOS. Significant differences were tested by linear 
discriminant analysis effect size analysis, with linear discriminant analysis (LDA) scores > 2 and a P value < 0.05. B Abundance of significantly 
different bacterial genera between HOS and LOS. Significant differences were tested by linear discriminant analysis effect size analysis, with linear 
discriminant analysis (LDA) scores > 2 and a P value < 0.05. C The network of the Spearman correlations between significantly different genera and 
species and plasma OSI between HOS and LOS cows. Interactions with a P value < 0.05 are presented
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Fig. 3 (See legend on previous page.)
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Fig. 4 Differential KEGG functions of fecal microbiota between cows with high (HOS) and low oxidative stress (LOS). A Significantly different KEGG 
pathways of fecal microbiota between HOS and LOS; average transcripts per million of each pathway in HOS and LOS are presented. B Partial 
least squares‑discriminant analysis of the fecal metabolome between HOS and LOS cows. C Volcano map of metabolites identified by the fecal 
metabolome. D Number of metabolites from different sources. E Metabolic pathway enrichment analysis according to different categories of 
metabolites belonging to the host, bacteria, or both
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the fecal microbiota community of transition cows, and 
the results suggested that postpartum OS could also be a 
microbiome-linked pathology. This is attributed to the dif-
ferent microbial amino acid metabolism patterns involved 
in GSH synthesis.

Oxidative stress in transition cows is affected by vari-
ous factors, such as different inflammation statuses, fat 
mobilization, and host genetics [43]. To estimate the pro-
portions of variations in OSI caused by fecal microbial 
composition, we applied “microbiability,” which was first 
proposed by Difford et  al. in dairy cows and calculated 
by quantifying the cumulative effects of microbial abun-
dance on phenotypes [44]. This concept was inspired by 
the concept of biome-explainability, which is defined as 
the variance in host phenotype explained by the microbi-
ome in a human study [45]. This method to date has been 
widely applied in animal studies [17, 46, 47]. The effect 
of the fecal microbiota on postpartum OS has not yet 
been reported in dairy cows. Compared with the effect of 
rumen microbiota on other traits, such as methane pro-
duction (explainability is 13%) [44] and milk protein yield 
(explainability is 21.56%) [17], the explainability (43.1%) 
of the fecal microbiota to host OS is much higher. This 
result suggests that the fecal microbiota is strongly linked 
to host OS. The mice (FHOS) administered the microbi-
ota of HOS cows showed a significantly higher OSI value, 
further confirming this hypothesis.

A number of significantly different genera and spe-
cies between HOS and LOS cows were revealed in this 
study. The abundances of most of these genera and spe-
cies were significantly lower in the HOS cows and nega-
tively significantly correlated with OS. Moreover, the 
differential microbiota with larger abundance changes or 
greater correlations with OSI all belong to the members 
of Ruminococcaceae family bacterial taxa, such as Nega-
tivibacillus (with the greatest fold change), Marasmitrun-
cus, and Butyricicoccus (with higher correlations with 
OSI). Previous studies have shown that the abundance of 
Ruminococcaceae serving as gut-beneficial bacteria was 
inversely correlated with some diseases accompanied by 

elevated OS [48–50]. Yang et al. reported that increased 
abundance of Ruminococcaceae could reduce hepatic 
OS in mice [51]. Consistent with these studies, Rumi-
nococcaceae family bacterial taxa, such as Ruminococ-
cus and R. CAG:724, R. flavefaciens, and R. bacterium, 
showed higher abundance in the LOS cows in this study. 
Additionally, Negativibacillus and N. massiliensis were 
reported to have a positive correlation with improved 
memory, which is accompanied by reduced OS of the 
host [52]. The increased abundance of Butyricicoccus was 
reported to alleviate oxidative status in mice [53]. Such 
results imply that changes in those microbiota may play 
important roles in host OS. Previous studies reported 
that the Ruminococcaceae family microbiota are mainly 
involved in nitrogen and amino acid metabolism [54, 55]. 
Therefore, the changes in the abundance of these micro-
biota may affect microbial amino acid metabolism and 
may be associated with the host OS level. In addition, 
the loss of gut microbial homeostasis can cause minor to 
severe nuisances at the local or systemic level, in turn, to 
OS [56]. Vernocchi et al. revealed that the reduced abun-
dance of Clostridiaceae was associated with an imbalance 
in the gut microbiome [57]. Consistent with this, the 
lower abundance of Clostridiaceae bacteria, such as C. 
bacterium, C. bacterium, and C. sp. CAG:448, indicated 
that the HOS cows may had dysbiosis in gut microecol-
ogy, which was supported by the results of the interacted 
correlation analysis among the microbes in the current 
study.

Despite the extensive attention given to the effects of 
the gut microbiota on host OS, there is a lack of under-
standing of the mechanisms underlying these outcomes. 
Here, we found that the different microbial metabolic 
patterns of amino acids, especially those involved in glu-
tamine and glutamate metabolism, glycine metabolism, 
and cysteine metabolism, may contribute to host OS. 
Specifically, the fecal microbiota in LOS cows is more 
inclined to use glutamate, glycine, and cysteine to syn-
thesize GSH, which plays a major role in the removal 
of many reactive species [58]. The higher abundance of 

(See figure on next page.)
Fig. 5 The integration analysis of the significantly differential microbes, microbial function, and metabolites. A The Spearman correlations between 
the significantly differential microbiota and the enriched metabolic pathways. The genera and species were selected from the significantly 
differential microbiota that were significantly correlated with oxidative stress status, and the pathways were enriched in the gut microbial functional 
analysis. *Represents the correlation P value < 0.05, **P value < 0.01, and ***P value < 0.001. B Integration of significantly different metabolic 
pathways involved in glutathione synthesis between HOS and LOS cows. KEGG Orthology (KO) entries with red and green words represent what 
was significantly increased and decreased in HOS compared with LOS, respectively, and black words indicate no significant difference observed 
between the two groups. The metabolites with red words represent the identified metabolites from microbiota or cometabolism by metabolome 
analysis and increased in the HOS cows. The names of the significant KO entries are as follows: K02591: nitrogenase molybdenum‑iron protein 
beta chain [EC:1.18.6.1], K00266: glutamate synthase (NADPH) small chain [EC:1.4.1.13], K01776: glutamate racemase [EC:5.1.1.3], K01777: proline 
racemase [EC:5.1.1.4], K07250: 4‑aminobutyrate aminotransferase/(S)‑3‑amino‑2‑methylpropionate transaminase/5‑aminovalerate transaminase 
[EC:2.6.1.19 2.6.1.22 2.6.1.48], K01620: threonine aldolase [EC:4.1.2.48], K00600: glycine hydroxymethyltransferase [EC:2.1.2.1], K00812: aspartate 
aminotransferase [EC:2.6.1.1], and K00824: D‑alanine transaminase [EC:2.6.1.21], K01919: glutamate–cysteine ligase [EC:6.3.2.2], K01920: glutathione 
synthase [EC:6.3.2.3], and K11358: aspartate aminotransferase [EC:2.6.1.1]



Page 13 of 16Gu et al. Microbiome           (2023) 11:87  

enzymes, such as glutamate-cysteine ligase (K01919) and 
glutathione synthase (K01920), in LOS cows supported 
this finding. In addition, the results of metabolite source 
analysis further confirmed that the microbial amino acid 
metabolism pattern in HOS cows was different from 
that in LOS cows. In specific, glutamate was preferen-
tially metabolized into pyroglutamic acid by glutamate 

racemase. However, cysteine was preferentially converted 
into pyruvate and alanine via transamination of aspartate 
aminotransferase and D-alanine transaminase in the fecal 
microbiota of HOS cows rather than synthesis to gamma-
l-glutamyl-l-cysteine, which is the precursor of GSH. 
Consistent with this, GSH and GSH-px were significantly 
lower in FHOS mice than in CON and FLOS mice. Thus, 

Fig. 5 (See legend on previous page.)
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these integrated results support the contribution of the 
fecal microbiota to host postpartum OS, which may be 
attributed to changes in microbial-mediated GSH syn-
thesis. The regulatory molecular mechanisms require 
further research.

Conclusions
The fecal microbiota is strongly associated with host 
postpartum OS, as changes in microbial composition, 
functions, and metabolites were different in OS dairy 
cows. The key microbial taxa included Ruminococcaceae 
family bacteria, such as Negativibacillus, Marasmitrun-
cus, and Butyricicoccus. The lower GSH induced by fecal 
microbiota exerted essential roles in higher postpartum 
OS in transition dairy cows, and this can be attributed to 
the altered microbial amino acid metabolic patterns (e.g., 
glutamine, glutamate, glycine, and cysteine metabolism) 
involved in GSH synthesis. In light of our findings, tar-
geted fecal microbiota and GSH synthesis-related amino 
acid metabolism regulatory strategies promise to pro-
vide unique insights into alleviating postpartum OS and 
improving the welfare and health of cows during the 
transition period.
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