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Abstract 

Background and aims We aimed to identify mucin-microbiome signatures shaping the tumor microenvironment in 
gastric adenocarcinomas and clinical outcomes.

Methods We performed high-throughput profiling of the mucin phenotypes present in 108 gastric adenocarcino-
mas and 20 functional dyspepsia cases using validated mucin-based RT-qPCRs with subsequent immunohistochem-
istry validation and correlated the data with clinical outcome parameters. The gastric microbiota was assessed by 16S 
rRNA gene sequencing, taxonomy, and community composition determined, microbial networks analyzed, and the 
metagenome inferred in association with mucin phenotypes and expression.

Results Gastric adenocarcinomas with an intestinal mucin environment or high-level MUC13 expression are associ-
ated with poor survival. On the contrary, gastric MUC5AC or MUC6 abundance was associated with a more favorable 
outcome. The oral taxa Neisseria, Prevotella, and Veillonella had centralities in tumors with intestinal and mixed pheno-
types and were associated with MUC13 overexpression, highlighting their role as potential drivers in MUC13 signal-
ing in GC. Furthermore, dense bacterial networks were observed in intestinal and mixed mucin phenotype tumors 
whereas the lowest community complexity was shown in null mucin phenotype tumors due to higher Helicobacter 
abundance resulting in a more decreased diversity. Enrichment of oral or intestinal microbes was mucin phenotype 
dependent. More specifically, intestinal mucin phenotype tumors favored the establishment of pro-inflammatory oral 
taxa forming strong co-occurrence networks.

Conclusions Our results emphasize key roles for mucins in gastric cancer prognosis and shaping microbial networks 
in the tumor microenvironment. Specifically, the enriched oral taxa associated with aberrant MUC13 expression can 
be potential biomarkers in predicting disease outcomes.
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Background
Gastric cancer (GC) is the fifth most common cancer 
type and the fourth leading cause of cancer-related deaths 
worldwide [1]. The prognosis of GC remains poor due to 
the lack of symptoms in early disease, leading to a delayed 
diagnosis [2]. It is now widely accepted that GC is a mul-
tifactorial disease involving host genetic susceptibility 
and environmental factors, but the most frequent cause 
is infection by Helicobacter pylori (H. pylori) [3]. This 
class 1 human carcinogen plays a major role in the ini-
tial steps of the carcinogenic process through a hit-and-
run mechanism priming the gastric mucosa for further 
oncogenic changes which are triggered by other micro-
bial species [3, 4]. Studies assessing human gastric micro-
biota profiles have shown that dysbiosis in the stomach 
is a dynamic process correlating with cancer progression 
and that gastric adenocarcinomas are characterized by 
a decrease in Helicobacter abundance and enrichment 
of bacterial genera representing intestinal commensals 
(Citrobacter, Clostridium, Lactobacillus, Achromobacter, 
and Rhodococcus) or the oral microbiome (Peptostrep-
tococcus stomatis, Streptococcus anginosus, Parvimonas 
micra, Slackia exigua, Lactococcus, and Fusobacterium) 
[5–8]. Furthermore, tumor microhabitats are not always 
as uniform as previously thought [8]. Besides changes in 
pH, mucin (MUC) expression, and distribution vary con-
siderably among gastric tumor tissues with both gastric 
and intestinal mucins being widely expressed. Depend-
ing on the presence/absence of mucins, adenocarcino-
mas have been classified as having a gastric (i.e., tumors 
expressing only gastric MUC1, MUC5AC, and/or MUC6 
mucins), intestinal (i.e., tumors expressing only intes-
tinal MUC2, MUC3, MUC4, and/or MUC13 mucins), 
mixed (i.e., tumors expressing both gastric and intestinal 
mucins), or unclassified/null (i.e., tumors expressing nor 
gastric, nor intestinal mucins) mucin phenotype [9–15]. 
Early gastric cancers mainly exhibit a gastric mucin phe-
notype, whereas advanced cancers more frequently have 
an intestinal mucin phenotype. However, the clinical 
importance of mucin expression in gastric tumors is still 
controversial in the context of clinicopathological factors, 
such as disease outcome, as it remains unclear which 
mucin phenotype associates with a better or worse prog-
nosis [9, 10, 12, 15–19]. Mucins are the gatekeepers of 
the mucus barrier covering the gastric epithelium and are 
expressed either as secretory or transmembrane glyco-
proteins [20–24]. Besides having a barrier function, they 
also serve as specialized niches for bacteria by acting as 
binding sites or metabolic substrates and are important 
determinants of site-specific bacterial colonization [20–
24]. It has been suggested that aberrant mucin alterations 
due to neoplastic changes can result in the establishment 
of a new microbiota promoting tumor progression [7]. 

The differences in the abundance of arising new taxa (i.e., 
intestinal or oral) as previously described in GC [5, 25] 
may thus be assigned to the mucin phenotype (gastric, 
intestinal, mixed, or null mucin phenotype) of the tumor, 
but further investigation is required. To investigate the 
above hypothesis, we performed high-throughput pro-
filing of the mucin phenotypes and bacterial commu-
nities present in 108 gastric adenocarcinoma and 20 
functional dyspepsia (FD) (i.e., for comparison) cases 
using validated mucin-based RT-qPCRs with subsequent 
immunohistochemistry (IHC) validation and 16S rRNA 
gene sequencing integrated with clinical data to identify 
mucin-microbiota signatures associated with GC and 
clinical outcome.

Methods
Patients
A total of 108 GC patients undergoing gastrectomy for 
gastric cancer were enrolled in this study. Seventeen 
patients were recruited via the biobank of the Antwerp 
University Hospital (UZA; Belgium), 48 via the Depart-
ment of Digestive Oncology of Ghent University Hospital 
(Belgium), and 43 via the Institute for Digestive Research 
of the Lithuanian University of Health Sciences (Lithu-
ania). Twenty patients with FD undergoing gastroscopy 
for clinical reasons and showing no macroscopic abnor-
malities were included as a comparison cohort via the 
Department of Gastroenterology and Hepatology (UZA; 
Belgium). Tumor (n = 108) and adjacent non-tumor 
(n = 108) tissues from GC patients and biopsy tissues 
from FD patients were stored in RNAlater or snap fro-
zen at − 80  °C or embedded in paraffin for RNA/DNA 
extraction with subsequent downstream approaches or 
IHC analyses, respectively. The recorded data for the GC 
cohorts included: gender, age, tumor localization, Lau-
ren’s classification (intestinal, diffuse, or mixed histologi-
cal subgroups) [26], TNM-G staging, and survival rate 
(Table S1). This study was approved by the Ethical Com-
mittee of the Antwerp University Hospital (EC 19/15/205 
(GC) and B300201733550 (FD)) and the Kaunas Regional 
Ethics Committee (Protocol No—BE-2–10), and writ-
ten informed consent was obtained from the patients 
prior to sample collection. Samples were registered and 
stored until analysis in the Biobank Antwerpen, Antwerp, 
Belgium (BE 71,030,031,000; BBMR-ERIC, Belgian no. 
access: 1, Last: April 10, 2021 [BIORESOURCE]).

Mucin mRNA expression by RT‑qPCR
The total RNA was extracted from tumor and adja-
cent non-tumor tissues and FD biopsies using the 
NucleoSpin RNA plus kit (Macherey–Nagel) follow-
ing the manufacturer’s instructions. RNA concentration 
was evaluated using the nanodrop ND-1000 UV–Vis 
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spectrophotometer (Thermo Fisher Scientific). Two hun-
dred fifty nanograms of RNA was converted to cDNA 
by reverse transcription using the SensiFast cDNA syn-
thesis kit (Bioline). Relative mucin gene expression was 
determined by SYBR Green RT-qPCR using validated 
QuantiTect primers (Qiagen, Table S2) and GoTaq qPCR 
master mix (Promega) using a QuantStudio 3 real-time 
PCR instrument (Thermo Fisher Scientific) [27]. Rela-
tive mRNA expression of mucin genes was normalized 
to the expression of ACTB and GAPDH housekeeping 
genes using qbase + software (Biogazelle), which imple-
ments an adapted ΔCt method and calculates calibrated 
normalized relative quantities (CNRQ) for downstream 
analysis [28]. To define the mucin phenotypes in the 
tumor tissues and to clarify conflicting results previously 
obtained with IHC regarding the clinical importance of 
mucin expression, we designed a new approach based on 
RT-qPCR [9, 10, 12, 15–19]. This quantitative technique 
displays a broader dynamic range with higher sensitiv-
ity and reproducibility and is significantly more specific 
than IHC resulting in more reliable data [29]. More spe-
cifically, the 90% confidence interval (CI) of the relative 
mRNA expression of each mucin was determined for 
the FD cohort. The lower (LL) and upper (UL) limits of 
CIs were used to stratify the relative expression levels 
found in the tumor tissue into three distinct classes: (1) 
low < LL, (2) LL < mid < UL, and (3) UL < high (Table S3). 
Depending on the class of relative mRNA expression of 
mucins, adenocarcinomas were classified as having a gas-
tric (mid or high mRNA levels of MUC5AC, MUC6, and/
or MUC1 and low mRNA levels of MUC2, MUC4, and 
MUC13), intestinal (low mRNA levels of gastric mucins 
and high mRNA levels of at least one intestinal mucin), 
mixed (mid or high mRNA levels of at least one gastric 
mucin and high mRNA levels of at least one intesti-
nal mucin), or null (low mRNA levels for all gastric and 
intestinal mucins) mucin phenotype.

Immunohistochemistry
To evaluate mucin mRNA expression at the protein level, 
tissue segments were fixed for 24 h in 4% formaldehyde 
and subsequently embedded in paraffin. Five-micrometer 
cross-sections were deparaffinized, rehydrated, and used 
for immunohistochemical staining using target-specific 
primary antibodies and visualization with a second-
ary streptavidin–horseradish peroxidase antibody and 
3-amino-9-ethylcarbazole (AEC) substrate to detect the 
expression and localization of MUC1 (AF6298, R&D 
systems, 1:500), MUC2 (NBP1-31231, Novus Biologi-
cals, 1:3000), MUC4 (NBP1-52193, Novus Biologicals, 
1:3000), MUC5AC (ab3649, Abcam, 1:5000), MUC6 
(ab216017, Abcam, 1:50), and MUC13 (MABC209, 
Merck Millipore, 1:1000). The stained sections were 

analyzed by light microscopy (Olympus BX43) [30]. Dis-
tinct staining in more than 10% of the gastric cells was 
recorded as positive immunoreactivity for the relevant 
mucin. Tumors containing epithelial cells expressing 
only gastric or intestinal-type mucins were classified as 
having a gastric or intestinal mucin phenotype, respec-
tively. Those containing cells expressing both gastric and 
intestinal type mucins were classified as having a mixed 
phenotype, whereas tumors with cells expressing neither 
gastric nor intestinal type mucins were classified as hav-
ing a null mucin phenotype. The degree of immunostain-
ing was evaluated by two independent observers.

Survival analysis
Kaplan–Meier curves and Cox proportional-hazards 
models were used for survival analysis. The Kaplan–
Meier curves implementing the log-rank test were per-
formed according to the tumor mucin phenotype and 
stratified mucin mRNA expression levels. The mucin 
phenotype and the six stratified mucin expression levels 
were also included in a Cox proportional-hazards model 
taking gender, age, tumor location, Lauren’s classification, 
and tumor stage into account.

16S rRNA gene sequencing
DNA was extracted from the gastric surgical specimens 
and biopsies using the DNeasy Blood and Tissue kit 
(Qiagen) following the manufacturer’s instructions. A 
negative and positive (ZymoBIOMICS Microbial Com-
munity DNA standard – cat no. D6305) control was also 
included and processed together with the samples. Sub-
sequently, library preparation was performed according 
to the standard Illumina protocol for the V3 chemistry 
for paired-end sequencing (2 × 300 bp) using the univer-
sal forward 27Fmod, 5′AGR GTT HGATYMTGG CTC 
AG and reverse 338R, 5′TGC TGC CTC CCG TAG GAG T 
primers targeting the V1–V2 hypervariable region of the 
16S rRNA gene [31]. All samples were pooled equimo-
larly and sequenced using a MiSeq Illumina platform.

Sequence filtering and annotation
Sequence quality assessment, paired-end read merg-
ing, filtering, sequence denoising, and chimeric read 
filtering were performed using the dada2 R-package 
[32]. The final sequences were aligned to the SILVA ref-
erence database (version 138) and annotated using the 
DECIPHER R-package [33, 34]. Any sequences that were 
annotated as non-bacterial were discarded. Finally, sam-
ple rarefaction curves were determined and all samples 
with curves not attaining a stable plateau were consid-
ered to be undersampled and thus discarded. As a final 
filtering step, the counts from the negative control were 
subtracted from all samples after which the relative 
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abundance was calculated. All genera with a relative 
abundance below 0.5% were pruned, and for the remain-
ing genera, the original counts were used to recalculate 
the relative abundances [35]. Sample metadata, abun-
dance table, taxonomy, phylogenetic tree, and reference 
sequence data were grouped into a Phyloseq object for 
downstream processing [36]. The alpha (chao1, observed 
richness, inverse Simpson, and Shannon) and beta diver-
sity measures (Bray–Curtis and weighted unifrac) were 
calculated using the relative abundances. Differences in 
community composition were tested using analysis of 
similarities (ANOSIM) [37].

Differential abundance analysis
Differential abundance analyses were done using the 
ALDEx2 R-package [38]. This package was selected 
based on its performance and native support for compo-
sitional datasets based on a recent review from Nearing 
et  al. (2022) assessing different methods for differential 
abundance analysis [39]. All reference sequences of the 
amplicon sequence variants (ASV) found were com-
pared against sequences from the Human oral Microbi-
ome (HOM) database (HOMD 16S rRNA RefSeq version 
15.22) and the Human Intestinal 16  s rRNA gene refer-
ence database using BLAST local nucleotide alignment 
[40, 41]. Only matches with at least 99% identity and 
over 250 base pairs were retained. ASVs with a species 
assigned and which were not annotated as having an oral 
or nasal habitat in the HOM database were retained as 
intestinal bacterial taxa. Relative abundances of both oral 
and intestinal species were compared between tumor, 
non-tumor, and FD tissues and among tumor samples 
with different mucin phenotypes to determine whether 
oral or intestinal taxa were enriched or depleted.

Microbial network analysis
For calculating the co-occurrence and co-excluding 
microbial interactions, the co-occur R-package was used 
after the transformation of the count table to a presence/
absence matrix [42]. The output generated is an object 
containing non-random associations with the probability 
of a lower and a higher co-occurrence for a genus pair. 
These probabilities were interpreted as p values for a neg-
ative or positive correlation, respectively [42]. Obtained 
networks were plotted using the ggraph R-package.

Functional metagenome inference
The mucosa-associated functional metagenome was pre-
dicted using the PICRUSt2 algorithm with default set-
tings [43]. PICRUSt2 is able to predict the presence of 
functional genes based on a set of reference genomes 
and a marker gene dataset, allowing for the prediction of 
pathway abundances among the GC cohorts. By default, 

the abundance of the enzyme commission (EC) number 
(= a numerical classification scheme for enzymes based 
on the chemical reactions they catalyze) is inferred based 
on the relative abundance of the genera. Subsequently, 
the EC numbers are transformed into MetaCyc pathways 
and allow for their abundance calculation. These Meta-
Cyc pathway abundances were then used for a differential 
abundance analysis.

Data analysis
Two sample and multiple group comparisons were done 
using the Wilcoxon rank sum test and the Kruskal–Wal-
lis test, respectively. Spearman’s correlations between the 
clinical patient data, mucin mRNA expression levels, and 
bacterial abundancy in gastric adenocarcinoma samples 
were calculated. A correlogram plotting the Spearman’s 
rank correlation coefficient (r) between all parameter 
pairs was created. Differences in proportions were ana-
lyzed by Pearson’s χ2. After differential abundance analy-
sis with ALDEx2, a Wilcoxon rank-sum test was used to 
assess significant differences between conditions. P val-
ues below 0.05 were considered significant. All analyses 
were done using R version 4.2.2 in RStudio.

Results
Phenotypical classification of gastric adenocarcinomas 
based on mucin expression
In the present study, we first analyzed the tumor and 
adjacent non-tumor tissues of the GC patient cohorts 
and the biopsy tissues of the FD patients to measure the 
relative mRNA expression of gastric (MUC1, MUC5AC, 
MUC6) and intestinal (MUC2, MUC4, MUC13) mucins. 
Overall, mRNA expression of MUC1, MUC5AC, and 
MUC6 was significantly higher in the paired adjacent 
non-tumor tissues compared to the tumor and FD tis-
sues (Fig. 1A). Regarding the intestinal mucins, a signifi-
cant increase in MUC13 mRNA expression was seen in 
the paired tumor tissues compared to the adjacent non-
tumor and FD tissues whereas no significant alterations 
in expression were seen for MUC2 and MUC4 mRNA 
among the different sample types (Fig. 1A). The variable 
expression patterns of MUC2 (i.e., marker for intesti-
nal metaplasia) and MUC4 (i.e., marker for spasmolytic 
polypeptide expressing metaplasia (SPEM)) seen in the 
adjacent non-tumor tissues suggest the presence of meta-
plastic changes in these peritumoral sites [44, 45]. The 
gastric adenocarcinomas were then subdivided in gas-
tric, intestinal, mixed, or null mucin phenotype groups 
based on their relative mucin mRNA expression levels. 
Of the 108 tumor samples, 13 (12%) were classified in 
gastric, 19 (17,6%) in intestinal, 17 (15,7%) in null, and 
47 (43,5%) in mixed mucin phenotype groups (Fig.  1B). 
From 12 samples (11.1%), the mucin phenotype could not 
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be determined due to insufficient RNA quality (Fig. 1B). 
Subsequently, to validate the classification of the tumors 
in the different phenotype groups, a principal compo-
nent analysis based on the mucin mRNA expression data 
was undertaken. Strikingly, MUC2 and MUC13 mRNA 
expression were the major determinants for tumors with 
an intestinal mucin phenotype whereas the expression of 
MUC1, MUC5AC, and MUC6 mRNA were the best fac-
tors to identify tumors with a gastric mucin phenotype 
(Fig. 1C). Finally, mucin expression was also evaluated at 
the protein level by IHC further confirming our mRNA 
expression data (Fig. 1D).

The intestinal mucin phenotype and aberrant MUC13 
mRNA expression correlate with worse survival
We then evaluated collinearity between the mucin 
mRNA expression data, age, gender, tumor stage, Lau-
ren’s classification, and survival using Spearman’s cor-
relation tests (Fig. S1). A strong positive correlation 
was seen between MUC13 mRNA expression and the 
Lauren’s intestinal phenotype whereas negative associa-
tions were noted between MUC1 mRNA expression and 
survival and MUC4 mRNA expression and age (Fig. S1). 
Furthermore, significant relationships among the gas-
tric mucin mRNA expression profiles and the expres-
sion levels of the intestinal MUC2 and MUC4 were also 
identified (Fig. S1).

Subsequently, associations between mucin mRNA 
expression, mucin phenotypes, and the 5-year survival 
rate were also investigated using Kaplan–Meier and 
Cox proportional hazards models (Fig. 2). For the latter 
model, clinical patient data (age, gender, tumor stage, 
and location; Table S1) was also taken into account. Both 
methods showed an association between the intestinal 
mucin phenotype and a worse survival rate compared 
to the gastric, mixed, and null mucin phenotypes (log-
rank test, P = 0.01; Wald test, P = 0.016, Fig. 2A). Signifi-
cant associations between individual mucin expression 
levels and survival rate were also identified. Specifi-
cally, Kaplan–Meier curves indicated that low mRNA 

expression of MUC5AC and MUC6 in gastric tumor tis-
sue correlated with worse survival (P ≤ 0.027; Fig. 2B). A 
similar trend was also seen for the expression of MUC1 
mRNA, although not significant (P = 0.069; Fig.  2B). 
On the contrary, mid-level expression of MUC2 mRNA 
(P = 0.038) associated with worse survival, whereas a 
trend for low- and high-level expression of MUC13 
mRNA towards an unfavorable outcome was noted 
(P = 0.068; Fig. 2B). However, only a significant associa-
tion between high-level MUC13 expression and worse 
survival was defined by the Cox-proportional hazards 
model (P = 0.016; Fig. 2B). In addition, the gastric cardia 
(P = 0.02) and stage 3 (P = 0.001) also correlated with a 
worse outcome (Fig. 2B).

Microbiome dysbiosis alters between the different 
mucin phenotype groups
To determine dysbiosis associated with the different 
GC mucin phenotypes, we first evaluated the altera-
tions in microbiome structure at the phylum level using 
the relative bacterial abundance per tissue type (tumor, 
adjacent non-tumor, and FD tissues) and per mucin phe-
notype (Fig. 3A). Overall, significant differences in abun-
dance for Patescibacteria were found between (1) FD 
and adjacent non-tumor tissues (P = 0.024), (2) FD and 
tumor tissues (P = 0.014), and (3) FD tissues and tumors 
with intestinal (P = 0.057), mixed (P = 0.068), and null 
(0.0191) mucin phenotypes (Fig.  3A). Significant differ-
ences in abundance were also noted for Campylobacte-
rota between tumors with a null mucin phenotype and 
gastric (P = 0.0126) or intestinal (P = 0.0295) mucin phe-
notype which can be assigned to the differential abun-
dance of the Helicobacter genus among the phenotypes. 
Additionally, Bacteroidota differed significantly in abun-
dance between tumors with a null mucin phenotype and 
those with a gastric (P = 0.0067), intestinal (P = 0.0032), 
or mixed (P = 0.0249) mucin phenotype (Fig.  3A). This 
latter phylum was also significantly altered between 
the FD cases and tumors with a null mucin phenotype 
(P = 0.0079; Fig. 3A).

(See figure on next page.)
Fig. 1 Aberrant mucin signatures in the stomach of GC patients compared to FD patients. A Relative mRNA expression of gastric (MUC1, MUC5AC, 
and MUC6; n = 100) and intestinal mucins (MUC2, MUC4, and MUC13; n = 100, 99, and 97, respectively) in gastric biopsies from FD patients (n = 20) 
and paired (highlighted by gray dashed lines) tumor and adjacent non-tumor tissues of 3 GC patient cohorts. Significant differences between FD, 
tumor, and adjacent non-tumor tissues are indicated by *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 (Wilcoxon rank-sum test). B The bar 
sizes represent the number of patients per mucine phenotype (null, n = 13; intestinal, n = 19; mixed, n = 47; null, n = 17) or expression level (i.e., 
high, mid, or low expression of MUC1, MUC5AC, MUC6, MUC2, MUC4, and MUC13). For each mucin expression level, the mean CNRQ (SD) is shown 
here: MUC1, high: 3.01 (2.05), mid: 1.07 (0.08), low: 0.46 (0.29); MUC5AC, high: 10.8 (9.04), mid: 1.38 (0.03), low: 0.13 (0.22); MUC6, high: 9.72 (10.82), 
mid: 1.39 (0.2), low: 0.11 (0.2); MUC2, high: 15.94 (25.98), mid:1.35 (0.13), low: 0.33 (0.28); MUC4, high: 14.72 (22.91), mid: 1.29 (0.19), low: 0.35 (0.3); 
and MUC13, high: 5.27 (2.88), mid: 1.56 (0.33), low: 0.47 (0.3). C PCA plot based on mucin mRNA expression in tumor and adjacent non-tumor tissues 
of 3 GC patient cohorts (n = 97–100). PC1 explains 38.5% of the variation; PC2 explains 21.57% of the variation. D Immunohistochemistry was 
assessed to analyze MUC1, MUC2, MUC5AC, MUC4, MUC6, and MUC13 protein expression in the different tissue types (n = 5 per tissue type; i.e., FD, 
adjacent non-tumor, and gastric adenocarcinomas with gastric, intestinal, mixed, or null mucin phenotypes). Representative images were selected. 
Pictures were taken at 20 × magnification and scale bars are 20 µm or 50 µm



Page 6 of 18Oosterlinck et al. Microbiome           (2023) 11:86 

Fig. 1 (See legend on previous page.)
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In support of the above, changes in community com-
position were further investigated using alpha (i.e., within 
samples) and beta (i.e., between samples) diversity meas-
ures at the genus level (Fig. 3B, C). Tumor samples with 
a null mucin phenotype showed a significantly lower 
alpha diversity compared to those with an intestinal 
mucin phenotype based on all four indexes investigated 
and with a mixed mucin phenotype based on the Chao1 
and observed richness only (Fig. 3B). When considering 
the observed richness and Shannon indexes, a significant 
decrease in alpha diversity of tumors with a null mucin 
phenotype compared to those with a gastric mucin 
phenotype was also noted (Fig.  3B). Beta diversity was 
analyzed using the Bray–Curtis and weighted UniFrac 
phylogenetic distance metrics and visualized in Princi-
pal Coordinate Analysis (PCoA) plots (Fig. 3C). The first 
two axes captured 24.1% and 16.5% for the Bray–Curtis 
distances and was similar to the results for the weighted 
UniFrac distances (24.5% and 15%). Interestingly, tumor 
samples with an intestinal mucin phenotype were more 
spread over axis 2 while tumors with a gastric pheno-
type remained strongly clustered around the FD samples. 
Contrary, when testing for differences in community 
composition using ANOSIM, no significant differences 
were found (Fig. 3C).

To identify the bacterial taxa that are differentially pre-
sent in GC compared to FD cases, an ALDEx2 analysis 
was conducted. Overall, the genera Veillonella, Porphy-
romonas, and Prevotella were found to be depleted in 
GC compared to the FD group whereas the abundance of 
Corynebacterium, Fusobacterium, Streptococcus Porphy-
romonas, and Prevotella differed significantly between 
paired tumor and non-tumor tissues (Fig. S2). To further 
investigate the influence of aberrant mucin expression on 
bacterial enrichment or depletion in gastric tumors, dif-
ferential abundance analysis and Spearman’s correlation 
tests were performed assessing the association between 
bacterial genera and individual mucins or mucin pheno-
types. The Helicobacter genus was found to be enriched 
in tumors with a null mucin phenotype compared to the 
other phenotypes (Fig. S3) and in tumor samples with low 
MUC5AC (Fig. 4; Fig. S5) expression. Also, Megasphaera 
was enriched in samples with low MUC5AC expression 
(Fig.  4; Fig. S5). In gastric adenocarcinomas with low 
MUC1 mRNA levels, an abundance of Porphyromonas 
was observed (Fig.  4; Fig. S4). Regarding associations 

between bacterial genera and intestinal mucin expres-
sion, depletion in Streptococcus was identified in gastric 
adenocarcinomas with high MUC2 mRNA levels (Fig. 4; 
Fig. S6) and Lactobacillus was significantly more abun-
dant in tumors with mid-level MUC4 mRNA expression 
(Fig.  4; Fig. S7). Interestingly, Lactobacillus, Neisseria, 
Prevotella, and Veillonella were enriched in gastric tumor 
samples with high MUC13 expression (Fig.  4; Fig. S8). 
These latter genera also significantly correlated with 
MUC13 mRNA levels as was also seen for Helicobacter 
(Fig. S1). Furthermore, Lactobacillus and Neisseria posi-
tively correlated with MUC4 and MUC2 mRNA expres-
sion, respectively (Fig. S1), whereas Porphyromonas and 
Corynebacterium significantly associated with the gastric 
mucin expression levels (Fig. S1).

Distinct community complexity in gastric adenocarcinoma 
with different mucin phenotypes
Co-occurrence and co-excluding interactions were 
analyzed using the probabilistic model of species co-
occurrence to estimate positive and negative associa-
tions among bacterial genera in GC [42]. Figure 5 shows 
the bacterial networks identified in the different mucin 
phenotype groups and gastric tumors with low and 
high MUC13 expression. The overall number of interac-
tions differed significantly between the different mucin 
phenotype groups (Pearson’s χ2, P < 0.0001), with most 
interactions seen in tumors with mixed and intestinal 
mucin phenotypes (Fig. 5B, C; Table S4). The same pat-
tern was also seen for the number of positive and nega-
tive associations (Pearson’s χ2, P < 0.0001). Furthermore, 
the ratio of co-excluding to co-occurring interactions 
differed between the different mucin phenotypes with 
relatively more co-occurring interactions in tumors with 
an intestinal, mixed, and null mucin phenotype (nega-
tive to positive ratio: 0.23, 0.30, and 0.25, respectively; 
Fig.  5B–D) while those with a gastric mucin phenotype 
had more co-excluding than co-occurring interactions 
(1.4; Fig.  5A). In addition, a Pearson’s χ2 test was done 
at genus level to test for differences in contribution to 
the network of different genera between gastric tumors 
assigned to the different mucin phenotypes. The residu-
als (i.e., the difference between the expected value and 
the observed one) were used as a measure of correla-
tion (i.e., a high residual means a bigger contribution of 
the genus to a significant statistical test), and only those 

Fig. 2 Intestinal mucin phenotype and aberrant MUC13 expression correlate with worse survival in GC patients. A Kaplan–Meier curve (left-hand 
side) and Cox-proportional hazards model (right-hand side) for survival analysis between patients with gastric tumors assigned to different mucin 
phenotypes (A) and showing low, mid, or high mRNA levels of a gastric (MUC1, MUC5AC, MUC6) or intestinal (MUC2, MUC4, MUC13) mucin (B). For 
the gastric mucins (MUC5AC, MUC6, and MUC1), the mid-level expression data was excluded due to a small number of observations (n ≤ 4). A forest 
plot of the Cox-proportional hazards model is shown (right). For the Kaplan–Meier curves (left), the P values were calculated using the log-rank test 
whereas the Wald test statistic was performed for the Cox-proportional hazards model (n for each group is shown on the forest plot)

(See figure on next page.)
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greater than two were considered. In adenocarcinomas 
with a gastric mucin phenotype, Lachnoanaerobaculum, 
Gemella, and Reyranella had proportionally more inter-
actions compared to tumors with another mucin phe-
notype (Fig. 5A; Table S5). Selenomonas and Treponema 
had proportionally more influence on the bacterial com-
munity of samples with an intestinal mucin phenotype, 
while Rothia and Prevotella had a higher contribution in 
tumor samples with a null mucin phenotype (Fig. 5; Table 
S5). In gastric adenocarcinoma with an intestinal mucin 
phenotype, most interactions were seen for Parvimonas, 
Sediminibacterium, Helicobacter, Selenomonas, Fusobac-
terium, Reyranella, Treponema, Leptotrichia, Haemophi-
lus, Neisseria, Veillonella, Prevotella, and Streptococcus 
(Fig. 5B; Table S5). Bacterial genera with the most inter-
actions in tumor samples with a mixed mucin phenotype 
were Alloprevotella, Fusobacterium, Sediminibacterium, 
Neisseria, Veillonella, Reyranella, Rothia, Streptococcus, 
Haemophilus, Parvimonas, Prevotella, and Helicobacter 
(Fig. 5C; Table S5), whereas Rothia, Prevotella, and Heli-
cobacter contributed more in samples with a null mucin 
phenotype (Fig. 5D; Table S5).

Finally, Veillonella, Neisseria, and Prevotella were 
found to play a role in shaping the community struc-
ture in tumors with high MUC13 expression (Fig. 5E, F; 
Table S6).

Enrichment of oral and intestinal microbes in GC depends 
on the mucin phenotype
To investigate whether oral and intestinal bacteria have 
a preference for a certain mucin phenotype in gastric 
tumors, we determined the overall distribution of oral 
and intestinal genera by profiling the sequences of all 
samples against the Human Oral Microbiome and the 
Human Intestinal 16S rRNA gene reference databases 
[40, 41]. The microbiome of the FD cohort showed a 
trend of enrichment in oral microbial taxa compared to 
the tumor and tumor-adjacent microbiome (P = 0.10; 
Fig. S9). When comparing the tumor samples with dif-
ferent mucin phenotypes to the FD cohort, a significant 
depletion in oral taxa is seen in the null mucin phenotype 
(P = 0.018) and a trend towards depletion is also seen in 
tumors with a mixed mucin phenotype (P = 0.12; Fig. S9). 
Additionally, when considering the tumor samples only, 

a trend in oral microbial enrichment was seen in sam-
ples with an intestinal mucin phenotype compared to the 
null mucin phenotype (P = 0.1; Fig. S9). Inversely, for the 
intestinal microbial species, a significant enrichment was 
seen in tumor samples with a null mucin phenotype com-
pared to those with a gastric (P = 0.027) and intestinal 
(P = 0.02) mucin phenotype. Of note, a similar trend was 
also seen between the null and mixed mucin phenotype 
tumors (P = 0.064; Fig. S9).

Microbiome functional capacity in GC is defined 
by the mucin phenotype
The functional capacity of the mucosa-associated micro-
biome for each sample type (FD, tumor, and adjacent 
non-tumor tissues) and mucin phenotype or aberrantly 
expressed mucin in gastric tumors was estimated through 
metagenomic inference using PICRUSt2. Differences in 
relative pathway abundance were tested using ALDEx2. 
When considering the FD, tumor, and adjacent non-
tumor samples, three pathways, i.e., purine, guanosine, 
and adenosine nucleotide degradation, were found to be 
differentially abundant and enriched in the GC cohort 
(Fig.  6A). Furthermore, five predicted KEGG pathways 
were found to be differentially represented between the 
tumors assigned to different mucin phenotypes with 
most of the pathways being depleted in tumors with a 
null mucin phenotype except for the fucose degradation 
pathway (Fig. 6B).

This assessment was repeated for each mucin and 
is summarized in Table S7. For the MUC1 and MUC2 
mRNA expression levels, no differentially abundant 
pathways were found. Interestingly, in samples with 
low MUC6 and MUC5AC expression, the purine rib-
onucleosides degradation pathway was depleted. In 
contrast, an enrichment of sugar degrading pathways 
was seen in samples with a high MUC13 expression 
(i.e., sucrose degradation IV (sucrose phosphorylase), 
glycogen degradation I (bacterial), and galactose deg-
radation I (Leloir pathway)). Additionally, heterol-
actic fermentation was also enriched in high MUC13 
expressing samples and pyruvate fermentation to pro-
panoate I was depleted in the samples with a normal 
MUC13 expression compared to the high and low 

(See figure on next page.)
Fig. 3 Differences in microbiota composition between FD, tumor, and adjacent non-tumor tissues and between tumors with gastric, intestinal, 
mixed, and null mucin phenotypes. A Mean relative abundance of phyla in all tissue types (FD, tumor, and adjacent non-tumor samples; n = 8, 83, 
and 80, respectively) and in each mucin phenotype group assigned to the gastric tumor samples (gastric, intestinal, mixed, and null; n = 12, 15, 
41, and 14, respectively). B Boxplots of four common alpha-diversity indices (i.e., chao1, inverse Simpson, observed richness, and Shannon index) 
for FD, tumor, and adjacent non-tumor tissues (n = 8, 83, and 80, respectively) as well as for tumors with gastric, intestinal, mixed, and null mucin 
phenotypes (n = 12, 15, 41, and 14, respectively). C PCoA using the Bray–Curtis (left) and weighted unifrac (right) distance measures for FD, tumor, 
and adjacent non-tumor tissue samples (n = 8, 83, and 80, respectively). The points were colored according to the mucin phenotype assigned to 
each tumor. The percentage of variance captured by the axes and the 95% confidence intervals per mucin phenotype (drawn as ellipses) are also 
shown
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levels. An enrichment of the sucrose degradation IV 
(sucrose phosphorylase) pathway was also seen in sam-
ples with high MUC2 expression. The abovementioned 
changes in the metabolic potential of the gastric can-
cer microbiome suggest a high reliance on mucins as a 
food source.

Discussion
It is generally well-accepted that microbial dysbiosis is 
a dynamic process correlating with the progression to 
gastric cancer [7]. Previous studies always considered 
the whole stomach as one habitat while alterations in 
gastric mucosal microbiota across different stomach 

Fig. 4 Phylogenetic tree of GC-enriched and GC-depleted bacteria associated with aberrant mucin expression. Genera that are significantly 
abundant or underrepresented in gastric tumors (n = 82) with mid, low, or high mRNA expression of a gastric (MUC1, MUC5AC, MUC6) or intestinal 
(MUC2, MUC4, MUC13) mucin are shown by color. The colored branches highlight the mucin mRNA expression levels (low, mid, or high) whereas 
the corresponding-colored genera represent the mucins they associate with. In case of overlapping mucin associations, the color of the underlining 
indicates the second mucin association

(See figure on next page.)
Fig. 5 Correlation of GC-enriched and GC-depleted genera associated with a mucin phenotype or aberrant MUC13 expression. Each sphere 
represents the bacterial network of gastric adenocarcinomas with A gastric mucin phenotype (n = 12), B intestinal mucin phenotype (n = 15), C 
mixed mucin phenotype (n = 41), D null mucin phenotype (n = 14), E low MUC13 mRNA expression (n = 26), and F high MUC13 mRNA expression 
(n = 34). Each genus found to participate in the bacterial community is represented by a point and connected through lines with interacting 
bacterial taxa. The red lines are positive associations between bacterial genera while the blue dotted lines are negative interactions. The point shape 
represents the association between a genus and a specific mucin (i.e., the genus is found to be differentially abundant with different expression 
levels of the mucin). The color of the point (+ genus name) represents the mucin mRNA expression level in which the genus was found to be 
enriched. If the genus was not found to be differentially abundant with different mucin expression levels, the shape is a full circle that is either 
gray (does not directly interact with other genera associated with a specific mucin) or black (the genus interacts directly with a mucin-associated 
bacterial taxa)
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Fig. 6 Relative abundance of metagenomic pathways is defined by the mucin phenotype present in gastric adenocarcinomas. Functional 
classification of the predicted metagenome content of the microbiota of FD, tumor, and adjacent non-tumor samples (n = 8, 83, and 80, 
respectively) (A) and of gastric adenocarcinomas with gastric, intestinal, mixed, or null mucin phenotypes (n = 12, 15, 41, and 14, respectively) (B) 
using PICRUSt2. Significance was considered for P < 0.05 and indicated by *P < 0.05 and **P < 0.01
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microhabitats (i.e., tumoral and peritumoral microhabi-
tats) also occurs [7]. Therefore, adjacent non-tumor tis-
sues should also be taken into account as premalignant 
gastric lesions (i.e., atrophy and intestinal metaplasia) can 
occur revealing cancer-related features such as mucin 
and microbial signatures with predictive potential for 
malignant transformation [46]. Furthermore, changes 
described in microbial composition due to the overrep-
resentation of arising new taxa remain inconsistent in 
gastric adenocarcinomas [7, 47]. This discrepancy may be 
due to tumor microenvironment heterogeneity with vari-
able expression of gastric and intestinal mucins shaping 
the microbiota community and influencing disease out-
come. In this study, we assigned gastric adenocarcinomas 
to four different phenotypes based on mucin expression, 
with the intestinal mucin phenotype being significantly 
associated with a worse survival rate. This finding was 
further substantiated by high-level MUC13 expression 
which also correlated with an unfavorable outcome, high-
lighting a key role for this intestinal mucin in gastric car-
cinogenesis. MUC13 overexpression has previously been 
described in GC and such aberrant MUC13 signaling is 
known to protect colorectal cancer cells from death via 
NF-kB pathway activation thereby impacting on thera-
peutic efficacy and disease outcome [12, 48]. Whether 
the upregulation of MUC13 has similar capacities to 
inhibit gastric tumor cell death requires further investi-
gation. In addition, decreased expression levels of MUC1, 
MUC5AC, and MUC6 also associated with a poorer out-
come, highlighting the importance of gastric mucins in 
GC to increase the chances of survival [19, 49–51].

In terms of the composition of the gastric microbiota, 
distinct dysbiosis in gastric adenocarcinomas compared 
to our FD cohort and along with differences based on 
mucin phenotype groups was observed, with the known 
gastric phyla being widely present, including Campylo-
bacterota [52, 53]. This latter phylum, previously part 
of the Proteobacteria, mainly consisted of Helicobacter 
genus members in both our tumor and FD samples. This 
shows that the FD group was colonized with Helicobac-
ter, despite no gastric lesions being found, further high-
lighting that this genus is a core member of the normal 
gastric microbiota as determined previously [7]. Signifi-
cant differences in Helicobacter abundance was noted 
among the different mucin phenotype groups, with the 
highest presence found in tumors with a null mucin 
phenotype [54]. This can be explained by a decrease in 
gastric mucin expression, a characteristic of these ade-
nocarcinomas. More specifically, MUC5AC provides an 
important adherence site for H. pylori, but its absence 
can facilitate colonization whereas MUC6 has antibiotic 
properties against H. pylori [55].

Reduced microbial diversity is an overall major feature 
in many disease states, including inflammatory bowel dis-
eases and cancer [53, 56]. In our different patient cohorts, 
the lowest alpha diversity was also seen in gastric adeno-
carcinomas compared to FD and adjacent non-tumor tis-
sues, and more specifically in tumors with a null mucin 
phenotype possibly due to a higher Helicobacter abun-
dance. In contrast, no differences in beta diversity were 
found which could in part be due to different confound-
ing factors influencing microbiome composition, such as 
age, gender, diet, and drug use [57, 58]. More specifically, 
microbial diversity changes throughout the human life 
span and is known to be associated with gender whereas 
diet and the usage of drugs induce temporary shifts in gut 
microbiota composition [59–61].

Interestingly, from our genus/species level classifica-
tion, we observed that several taxa, including Corynebac-
terium, Fusobacterium, Streptoccus, Porphyromonas, 
Veillonella, and Prevotella, significantly differed in abun-
dance between tumor and adjacent non-tumor or FD tis-
sues. These abovementioned genera have already been 
linked to gastrointestinal cancers [5, 6, 62–65]. When 
investigating the GC microbiome in more detail, other 
bacterial genera were also found to be associated with 
aberrant mucin expression in the tumor. More specifi-
cally, Lactobacillus was found to be significantly more 
abundant in adenocarcinomas with high MUC4 and 
MUC13 expression. Members of this genus normally 
reside in the intestinal mucosa but are capable of coloniz-
ing and proliferating in the cancerous stomach [5, 20, 66] 
and most probably in the presence of an intestinal mucin 
environment. Furthermore, Prevotella, Veillonella, and 
Neisseria seemed also to have a higher affinity for tumors 
with MUC13 overexpression which are in fact inhabit-
ants of the oral cavity but can be opportunistic pathogens 
[6, 52, 53, 67]. As oral microbiota were also enriched in 
tumors with an intestinal mucin phenotype, a shift from 
predominantly gastric to intestinal mucins could thus 
affect the abundance of pro-inflammatory oral microbes 
in intestinal mucin phenotype tumors, specifically those 
with MUC13 overexpression. Whether these oral bac-
teria play a role in MUC13-driven gastric carcinogen-
esis warrants further investigation. Importantly, we also 
identified the oral taxa Porphyromonas and Megasphaera 
to be enriched in adenocarcinoma with low MUC1 and 
MUC5AC expression, respectively. Both genera have 
been associated with worse survival in GI cancers, fur-
ther underlining the favorable role of gastric mucin abun-
dance in GC outcomes [68].

Not only individual bacterial drivers, but also the 
microbial networks that reside within define the disease-
specific microenvironment [4, 69]. As such, we observed 
the overall highest co-occurring and co-excluding 
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interactions of enriched and depleted bacteria in tumors 
with a mixed and intestinal mucin phenotype. Several 
bacterial genera were identified to play a role in shap-
ing the microbial community. In particular, the potential 
role of oral pathogenic taxa in GC is highlighted by the 
observed centralities of Lachnoanaerobaculum, Gemella, 
and Reyranella in gastric mucin phenotype tumors; 
Rothia and Prevotella in null mucin phenotype tumors; 
and Neisseria, Veillonella, and Prevotella in both intesti-
nal and mixed mucin phenotype tumors and Fusobacte-
rium [70]. Although Fusobacterium is not differentially 
abundant with regard to mucin expression or phenotype, 
this genus is known to be an important player in gastro-
intestinal cancers [71–73].

After having analyzed the diversity and composition 
of the gastric microbiota in relation to aberrant mucin 
expression in GC, we finally addressed the functional 
features of the GC microbiota which can affect host 
metabolism [6]. We demonstrated an overall decrease in 
metabolic activity in tumors with a null mucin pheno-
type which could be explained by a decline in bacterial 
community complexity. When investigating metabolic 
changes between tumors with different mucin expression 
levels, we observed predicted functional shifts in short-
chain fatty acid (SCFA) fermentation, amino acid, and 
sugar degradation that may reflect compositional differ-
ences in mucin expression in the tumor microenviron-
ment. Specifically, the changes in carbohydrate digestion 
are predictive of bacterial production of SCFAs, which 
have been linked to the hyperproliferation of cells in gas-
trointestinal cancers [6]. Furthermore, bacterial SCFAs 
have also been shown to stimulate intestinal mucin 
expression, suggesting their importance in intestinal 
mucin phenotype tumors [20].

Conclusions
Taken together, our study identified distinct mucin-
microbiome signatures shaping the tumor microenvi-
ronment in gastric cancer, with an intestinal or aberrant 
MUC13 mucin environment associated with a poor out-
come. We also showed that members of the oral patho-
genic taxa, such as Neisseria, Prevotella, and Veillonella, 
are potential drivers in MUC13-mediated signaling in 
GC which could be useful biomarkers in predicting dis-
ease outcomes. As not all pre-malignant gastric con-
ditions will eventually evolve into cancer, such oral 
taxa-MUC13 signatures in patients with pre-cancerous 
stadia could also help predict the potential to further 
evolve into cancer. Furthermore, adenocarcinomas with 
an intestinal mucin phenotype do favor the establish-
ment of pro-inflammatory oral bacteria, forming strong 
co-occurrence networks. Ultimately, understanding these 
mucin-microbiome signatures in gastric carcinogenesis 

may impact GC prevention and treatment strategies and 
adequate independent external validation in other GC 
cohorts is therefore recommended. Additionally, future 
research must also consider the inclusion of healthy 
patients as controls, since it currently remains unclear 
how microbiota composition relates to FD [74]. Never-
theless, this is the first study implicating mucins in both 
dysbiosis and disease outcomes in gastric cancer.
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Additional file 1: Figure S1. Associations of mucin mRNA expression 
with bacterial abundance and clinical data of GC patients. Correlogram 
of GC (n=108) patients. Spearman’s rank order correlation values (r) are 
shown from blue (–1.0) to red (1.0); r values are indicated by color. P 
values are indicated by black asterisks (*<0.05; **<0.01; ***<0.001). The 
considered parameters are age, gender (n= 108), tumor stage (n= 101), 
Lauren’s classification (n=106), survival (i.e. deceased or alive after 5 years 
follow-up; n= 67 and 30; respectively), MUC1 (n= 100), MUC5AC (n= 
100), MUC6 (n=100), MUC2 (n= 100), MUC4 (n= 99) and MUC13 (n= 98) 
mRNA expression.

Additional file 2: Figure S2. Relative bacterial abundance of the genera 
found to be differentially abundant between control, tumor adjacent and 
tumor tissue. The relative abundance of each bacterial genus found to be 
differentially abundant between control and paired (highlighted by grey 
dashed lines) tumor and adjacent non-tumor tissues (n= 8, 83 and 80; 
respectively) using ALDEx2 is shown. P-values found to be significant are 
shown on the plots and were calculated using a Wilcoxon rank sum test.

Additional file 3: Figure S3. Relative bacterial abundance of the genera 
found to be differentially abundant between tumor tissues having 
different mucin phenotypes. The relative abundance of each bacterial 
genus found to be differentially abundant between tumor tissues having 
different mucin phenotypes (gastric, intestinal, mixed and null; n= 10, 15, 
41 and 14; respectively) using ALDEx2 are shown. P-values found to be 
significant are shown on the plots and were calculated using a Wilcoxon 
rank sum test.

Additional file 4: Figure S4. Relative bacterial abundance of the genera 
found to be differentially abundant between tumor tissues having a high 
or low MUC1 mRNA expression. The relative abundance of each bacterial 
genus found to be differentially abundant between tumor samples having 
a high or low MUC1 mRNA expression level (n= 38 and 41; respectively) 
using ALDEx2 is shown. P-values found to be significant are shown on the 
plots and calculated using a Wilcoxon rank sum test.
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Additional file 5: Figure S5. Relative bacterial abundance of the genera 
found to be differentially abundant between tumor tissues having a high 
or low MUC5AC mRNA expression. The relative abundance of each bacte-
rial genus found to be differentially abundant between tumor samples 
having a high or low MUC5AC mRNA expression level (n= 38 and 41; 
respectively) using ALDEx2 is shown. P-values found to be significant are 
shown on the plots and calculated using a Wilcoxon rank sum test.

Additional file 6: Figure S6. Relative bacterial abundance of the genera 
found to be differentially abundant between tumor tissues having a high, 
mid or low MUC2 mRNA expression. The relative abundance of each bac-
terial genus found to be differentially abundant between tumor samples 
having a high, mid or low MUC2 mRNA expression level (n= 26, 9, 47; 
respectively) using ALDEx2 is shown. P-values found to be significant are 
shown on the plots and calculated using a Wilcoxon rank sum test.

Additional file 7: Figure S7. Relative bacterial abundance of the genera 
found to be differentially abundant between tumor tissues having a high, 
mid or low MUC4 mRNA expression. The relative abundance of each bac-
terial genus found to be differentially abundant between tumor samples 
having a high, mid or low MUC4 mRNA expression level (n= 28, 7, 47; 
respectively) using ALDEx2 is shown. P-values found to be significant are 
shown on the plots and calculated using a Wilcoxon rank sum test.

Additional file 8: Figure S8. Relative bacterial abundance of the genera 
found to be differentially abundant between tumor tissues having a high, 
mid or low MUC13 mRNA expression. The relative abundance of each bac-
terial genus found to be differentially abundant between tumor samples 
having a high, mid or low MUC13 mRNA expression level (n= 34, 22, 26; 
respectively) using ALDEx2 is shown. P-values found to be significant are 
shown on the plots and calculated using a Wilcoxon rank sum test.

Additional file 9: Figure S9. Pooled relative abundance of oral and 
intestinal bacterial species for the FD, tumor and non-tumor adjacent 
samples and the tumor tissues further divided according to their mucin 
phenotype. The relative abundance of ASV’s classified up to species level 
using the HOM and HIT databases were pooled per sample, according to 
their preferred habitat as detailed in the HOM-database, into either being 
part of the oral or intestinal microbiome. The relative abundances are plot-
ted for the control, tumor and non-tumor adjacent tissues (n= 8, 83 and 
80; respectively). For the tumor tissues, the relative abundance of the oral 
and intestinal species was also shown according to the respective mucin 
phenotype of the tumor tissue (gastric, intestinal, mixed and null; n= 
10, 15, 41 and 14; respectively). Significant differences between control, 
tumor and non-tumor adjacent tissues and gastric adenocarcinomas with 
different mucin phenotypes are shown on the plots and calculated using 
a Wilcoxon rank sum test.

Additional file 10: Table S1. demographic information of the included 
patients. Table S2. overview of the used QuantiTect primers. Table S3. 
90% confidence interval of the relative mucin mRNA expression levels of 
functional dyspepsia patients. Table S4. number of interactions within 
the bacterial communities of samples with different mucin phenotypes. 
Table S5. Analysis of interactions in bacterial communities associated 
with different mucin phenotypes. Table S6. Analysis of interactions 
in bacterial communities associated with different expression level of 
MUC13. Table S7. Differentially abundant metagenomic pathways.
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