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Abstract 

Background Understanding human genetic influences on the gut microbiota helps elucidate the mechanisms 
by which genetics may influence health outcomes. Typical microbiome genome‑wide association studies (GWAS) 
marginally assess the association between individual genetic variants and individual microbial taxa. We propose a 
novel approach, the covariate‑adjusted kernel RV (KRV) framework, to map genetic variants associated with micro‑
biome beta‑diversity, which focuses on overall shifts in the microbiota. The KRV framework evaluates the association 
between genetics and microbes by comparing similarity in genetic profiles, based on groups of variants at the gene 
level, to similarity in microbiome profiles, based on the overall microbiome composition, across all pairs of individuals. 
By reducing the multiple‑testing burden and capturing intrinsic structure within the genetic and microbiome data, 
the KRV framework has the potential of improving statistical power in microbiome GWAS.

Results We apply the covariate‑adjusted KRV to the Hispanic Community Health Study/Study of Latinos (HCHS/
SOL) in a two‑stage (first gene‑level, then variant‑level) genome‑wide association analysis for gut microbiome beta‑
diversity. We have identified an immunity‑related gene, IL23R, reported in a previous microbiome genetic association 
study and discovered 3 other novel genes, 2 of which are involved in immune functions or autoimmune disorders. In 
addition, simulation studies show that the covariate‑adjusted KRV has a greater power than other microbiome GWAS 
methods that rely on univariate microbiome phenotypes across a range of scenarios.

Conclusions Our findings highlight the value of the covariate‑adjusted KRV as a powerful microbiome GWAS 
approach and support an important role of immunity‑related genes in shaping the gut microbiome composition.
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Introduction
The human microbiome plays an important role in host 
health and is involved in fundamental body functions 
such as metabolism and immune response [13, 47]. While 
environmental factors have a large influence on microbi-
ome composition [52], it is still of interest to study the 
effect of human genetic variation on the microbiome: 
such studies not only help us understand the hereditary 
component of the human microbiome, but also provide 
clues as to the biological mechanisms by which genet-
ics may influence health outcomes. As a notable exam-
ple, elevated abundance of Bifidobacterium, a genus of 
beneficial gut bacteria that utilizes lactose as an energy 
source, has been associated with a non-persistence gen-
otype of the human lactase gene (LCT), which typically 
results in lactose intolerance [6, 26, 38]. Such an associa-
tion implies a potential mediating role of the gut micro-
biome in the relationship between host genetics and 
metabolic outcomes, where the presence of Bifidobacte-
ria may provide some level of lactose tolerance to lactase 
non-persistent individuals [26].

Many studies have sought to identify genetic variants 
that influence microbial composition, and most of them 
incorporate microbiome characteristics as phenotypes in 
genome-wide association studies (GWAS). Typical analy-
ses marginally test the association between abundances 
of individual taxa and genotypes of individual genetic 
variants [8, 17, 33, 38]. Such analyses often suffer from a 
low statistical power, due to a large multiple-testing bur-
den and failure to accommodate inherent structure in 
microbiome and genetic data, e.g., phylogenetic relation-
ships among taxa and epistasis among genetic variants.

As the microbiome functions as a community, an 
alternative microbiome phenotype is beta-diversity, the 
dissimilarity in overall microbiome profiles between 
individuals. Beta-diversity analysis represents a stand-
ard mode of analysis in microbiome profiling studies as 
it focuses on discovery of concerted shifts in the com-
munity rather than individual taxa. However, few stud-
ies have considered beta-diversity as a trait of interest 
in microbiome GWAS and there is no standard strategy. 
Some studies [6, 62] have performed principal coor-
dinates analysis (PCoA) on the pairwise beta-diversity 
matrix and evaluated the association between the top 
principal coordinates (PCos) and the genotype of each 
genetic variant. Such a strategy could suffer from power 
loss, as the top PCos may not fully capture the variation 
within the microbiome data. Hua et  al. [32] assumed a 
linear model between the pairwise beta-diversity and 
the pairwise genetic distance at each genetic variant 
and developed a score test called microbiomeGWAS. 
Rühlemann et  al. [53] adopted a distance-based multi-
variate analysis of variance (MANOVA) approach called 

distance-based F test [48] and evaluated the difference 
in beta-diversity among the different genotype groups 
for each genetic variant. These approaches still test one 
variant at a time and are subject to a stringent genome-
wide significance threshold. Studies using the above 
approaches have identified loci within genes involved 
in immunity [6, 53], vitamin metabolism [62] and com-
plex diseases such as type 2 diabetes [43]. In our study, 
we aim to further improve statistical power with a novel 
approach and bring more discoveries from microbiome 
GWAS.

Here, we propose to assess the association between 
groups of variants at the gene level and the overall micro-
biome composition, characterized by beta-diversity, at 
the community level. Community-level analyses and 
multi-variant testing have been shown to be powerful 
in microbiome [51, 70] and genetic studies [63], respec-
tively, due to their ability to capture innate structure and 
correlation within the data, while reducing the multiple-
testing burden. Using the recently developed kernel RV 
(KRV) framework [68, 69], we summarize individuals’ 
microbiome (or genetic) characteristics by a pairwise 
similarity matrix called “kernel” matrix, where each entry 
in the matrix represents similarity in microbiome (or 
genetic) profiles between a pair of individuals. Microbi-
ome similarity can be obtained by transforming known 
beta-diversity measures, while genetic similarity can also 
be characterized in various ways, such as the average 
genotype matching over all genetic variants. The associa-
tion between microbes and genetics is then assessed via 
comparing similarity in microbiome profiles to similarity 
in genetic profiles across all pairs of individuals. Intui-
tively, if the genetics is associated with the microbiome, 
we would expect the pairwise microbial profiles to be 
similar whenever the pairwise genetic profiles are similar. 
In particular, the test statistic is the normalized Frobe-
nius inner product, a measure of correlation, between the 
two kernel matrices.

Although the KRV is a potentially powerful approach 
for microbiome GWAS, the KRV framework lacks a gen-
eral strategy to control for covariates such as population 
structure, which is imperative for any genetic association 
analysis. Here we extend the original KRV framework to 
allow for flexible covariate adjustment.

We apply the covariate-adjusted KRV to the Hispanic 
Community Health Study/Study of Latinos (HCHS/SOL) 
[35, 60] via a two-stage (first gene-level, then variant-
level) genome-wide association analysis for gut microbi-
ome. This is the first study to investigate the genetic effect 
on the overall gut microbiome composition, character-
ized by beta-diversity, in Hispanic/Latino populations. 
We have identified a gene (IL23R) reported in a previous 
microbiome genetic association study and discovered 
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other novel genes related to immune functions. Further-
more, we have identified individual genetic variants and 
specific microbial taxa involved in these gene-micro-
biome associations. In addition, our simulation results 
show that the covariate-adjusted KRV maintains valid 
type I error rates in the presence of confounding and has 
a much greater power than other single-trait-based com-
peting methods across a range of scenarios. Together, our 
proposed approach demonstrates good statistical prop-
erties and provides a powerful way to study the effect of 
human genetic variation on microbiome composition.

Methods
Overview of covariate‑adjusted KRV
We aim to assess the covariate-adjusted association 
between genotypes of multiple genetic variants within a 
gene and abundances of microbial taxa at the community 
level, using the previously developed KRV framework. 
We now give an overview of the original KRV framework 
and extend it to allow for flexible covariate adjustment. 
The overall procedure for covariate-adjusted KRV in the 
context of microbiome GWAS is shown in Fig. 1.

The KRV framework has been proposed by Zhan et al. 
[68, 69] to evaluate the general association between 

a group of genetic variants, G, and a group of traits, Y. 
Suppose we have genotype data of m genetic variants 
and phenotype data of q traits available for n unrelated 
individuals. For the i-th subject, let g i = (gi1, · · · , gim)

T 
be the set of genotypes, where gil ∈ {0, 1, 2} represents 
the number of minor alleles for the l-th variant; let 
yi = (yi1, · · · , yiq)

T be the set of traits. Example pheno-
types in previous studies include expression values of 
multiple genes from a particular pathway [69] and levels 
of multiple amino acids [19]. In the context of microbi-
ome GWAS, we treat the microbiome as the phenotype. 
Specifically, g i represents the genotypes of m genetic var-
iants within a particular gene, and yi represents the abun-
dances of q microbial taxa that form the microbiota.

Let k(g i, g j) be a kernel function that measures the 
similarity in genetic profiles between individuals i and 
j. Let ℓ(yi, yj) be another kernel function that measures 
the similarity in phenotypic profiles between i and j. Spe-
cific choices of kernel functions in the context of micro-
biome GWAS are discussed in Methods: 2.2. We can 
then define a kernel matrix K ∈ R

n×n , where the (i, j)-th 
entry of K  is k(g i, g j) . Similarly, we define another kernel 
matrix L ∈ R

n×n such that Lij := ℓ(yi, yj) . The matrices 
K  and L can be viewed as pairwise similarity matrices 

Fig. 1 Illustration of covariate‑adjusted KRV for microbiome genome‑wide association studies
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for genotypes and phenotypes, respectively. We fur-
ther center the two kernel matrices: let K̃ := HKH and 
L̃ := HLH , where H = I − 11

T /n is a column-centering 
matrix. Then the KRV coefficient that evaluates the rela-
tionship between the genetic variants and the traits is 
defined as

Intuitively, the KRV coefficient compares genotypic 
similarity to phenotypic similarity across all pairs of indi-
viduals. A large KRV coefficient indicates that the pair-
wise similarity pattern in genetic profiles well resembles 
the pairwise similarity pattern in phenotypic profiles, 
which implies that the genetic variants are associated 
with the traits in a certain way. To perform hypothesis 
testing, the permutation distribution of the KRV statis-
tic under the null hypothesis of no association between 
genetics and phenotypes can be approximated by a Pear-
son Type III distribution [69], allowing us to obtain a 
p-value and assess the significance of the association at a 
given significance level.

The above framework does not take into account any 
covariates that might be involved in a typical genetic asso-
ciation study. Now suppose that, for each individual i, we 
have a set of covariates xi = (1, xi1, · · · , xip)

T ∈ R
p+1 ; let 

X ∈ R
n×(p+1) be the sample covariates matrix such that 

the i-th row of X is xTi  . Assume that X has full rank. We 
intend to assess the association between the genetic vari-
ants and the phentoypes, after adjusting for the effects 
of covariates X . Previous studies, including the original 
KRV framework, have suggested using a residual-based 
approach [9, 63, 69], where we first regress out the covar-
iates from each raw phenotype and then construct the 
phenotype kernel matrix using the resulting residuals. 
Such an approach is not universally feasible for all micro-
biome kernels, as certain popular microbiome kernels 
(e.g., the Bray-Curtis kernel and the unweighted UniFrac 
kernel) require the input to be discrete taxa count data 
or taxa presence/absence data, which is not satisfied by 
the covariate-adjusted residuals. Furthermore, adjust-
ment based on linear regression may not account for the 
potentially nonlinear relationships between the genetics/
microbiome and the covariates.

To adjust for covariates in a general way, we propose 
a novel adjustment approach that applies to all possi-
ble kernel types, regardless of the requirement for input 
data. Our approach is based on kernel principal compo-
nent analysis (kernel PCA) [55], a general and nonlinear 
extension of regular PCA, of the kernel matrices. Specifi-
cally, we first perform a kernel PCA on the constructed 

(1)KRV(G,Y ) :=

tr K̃ L̃

tr K̃ K̃ tr L̃L̃

.

phenotype kernel matrix and treat the resulting kernel 
PCs as surrogate phenotypes, which could capture both 
linear and nonlinear features of the original phenotype 
data depending on the kernel function used. We then 
regress out the covariates from all kernel PCs and recon-
struct the phenotype kernel matrix with the adjusted 
PCs. By adjusting the covariates on all kernel PCs, we are 
able to fully account for the variation within the pheno-
type data. The same procedure is performed on the gen-
otype kernel matrix. After algebraic manipulation (see 
Additional File 1: Section S1), the adjusted KRV coeffi-
cient is of the form:

where K ∗ := P⊥
XKP⊥

X , L∗ := P⊥
XLP

⊥
X , P⊥

X := I − PX and 
PX is the projection matrix onto the column space of 
X . We adjust for covariates on both the phenotype ker-
nel and the genotype kernel, due to the symmetry of the 
KRV coefficient. Our proposed approach for covariate 
adjustment is able to capture both linear and nonlinear 
relationships between the genetics/microbiome and the 
covariates, and thus can be viewed as a general extension 
of the previous residual-based approach. When a linear 
kernel is used, our strategy is exactly equivalent to the 
residual-based approach (see Additional File 1: Section 
S1).

The usual hypothesis testing procedure in the KRV 
framework can be applied to the adjusted KRV statistic to 
obtain a p-value. In this case, the null hypothesis is that 
there is no association between the genetics and the phe-
notypes after adjusting for the effects of the covariates.

Choice of kernels
In the KRV framework, kernel functions are used to 
summarize pairwise similarities in genotype and phe-
notype profiles among the subjects. In order to improve 
the statistical power in hypothesis testing, we would like 
to choose kernels that better reflect the actual structure 
within the genetic and phenotype data as well as the pat-
terns of association [22, 70]. For the KRV statistic in (1) 
to be well-defined theoretically, the kernel matrices need 
to be positive semi-definite. We now review some of the 
common kernels used for genetic and microbiome data.

For genotype data, popular kernel functions include 
the linear kernel k(g i, g j) = gTi g j and the identity-by-
state (IBS) kernel k(g i, g j) =

1
2m

∑m
l=1(2− |gil − gjl |) . 

The linear kernel assumes that the genetic variants are 
associated with the traits in a linear fashion. The IBS ker-
nel defines pairwise similarity as the pairwise genotype 
matching averaged over all genetic variants, and is useful 

KRVadj(G,Y |X) :=
tr(K ∗L∗)

√

tr(K ∗K ∗)tr(L∗L∗)
,
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when there are epistatic effects among the variants [63]. 
Depending on analysis interests (e.g. rare-variant analy-
sis), it is also possible to incorporate a weight for each 
variant in the linear and IBS kernels [63].

For microbiome data at the community level, the ker-
nel matrix can be obtained by transforming known 
ecological or phylogenetic dissimilarity measures (i.e., 
beta-diversity measures). For example, Bray-Curtis dis-
similarity quantifies the dissimilarity between two micro-
bial communities based on the difference in counts at 
each taxon between the two communities. The UniFrac 
distances are dissimilarity measures based on the phylo-
genetic structure of the taxa [11, 45, 46]: the unweighted 
UniFrac distance is calculated as the fraction of branch 
lengths within the phylogenetic tree that are not shared 
between the two communities; the weighted UniFrac dis-
tance further incorporates taxa abundance information 
on the basis of the unweighted distance; the generalized 
UniFrac distance is a compromise between weighted and 
unweighted UniFrac distances.

While the Bray-Curtis dissimilarity and UniFrac 
distances take scaled or rarefied microbial counts or 
presence/absence information as input, microbial dis-
similarity can also be calculated from other types of 
transformed abundance data. For example, the centered 
log-ratio (CLR) transformation [2, 24] and phylogenetic 
isometric log-ratio (PhILR) transformation [57] have 
been proposed to address the compositional nature of 
microbiome data, where PhILR further incorporates phy-
logenetic information into the transformed data. As these 
log-ratio-based transformations encourage normality, 
Euclidean distances can then be calculated based on the 
CLR-transformed or PhILR-transformed data as meas-
ures of dissimilarity.

Given a pairwise dissimilarity matrix D , the corre-
sponding kernel matrix can be constructed as:

where D2 is the element-wise square of D . To ensure that 
the kernel matrix L is positive semi-definite, we further 
apply a correction procedure as implemented in the MiR-
KAT R package [70], where we perform an eigendecom-
position of L , convert any negative eigenvalues to zero 
and then reconstruct the kernel matrix.

We note that taking Euclidean distances followed 
by kernel matrix transformation is equivalent to con-
structing a linear kernel matrix based on the same data 
(see Additional File 1: Section S1). Therefore, the ker-
nels derived from Euclidean distances of CLR- and 
PhILR-transformed data can be viewed as linear kernels 
directly applied to these transformed data. We denote the 

L = −
1

2

(

I −
11

T

n

)

D2

(

I −
11

T

n

)

,

resulting kernel matrices as CLR-linear and PhILR-linear 
kernels, respectively.

Description of the HCHS/SOL study
Hispanic Community Health Study/Study of Latinos 
(HCHS/SOL) is a community-based prospective cohort 
study aimed to identify risk factors for health outcomes 
in Hispanic/Latino populations in the USA. The study 
recruited 16,415 Hispanic/Latino adults aged 18–74 
years, representing diverse ethnic background, at four 
US field centers (Bronx, NY, Chicago, IL, Miami, FL, and 
San Diego, CA), using a two-stage probability sampling 
design [60].

12,803 participants consented to genetic studies. Gen-
otyping was performed on an Illumina custom array, 
SOL HCHS Custom 15041502 B3, which consisted of 
the Illumina Omni 2.5M array (HumanOmni2.5-8v1-1) 
and ∼150,000 custom SNPs [15]. Quality control, geno-
type imputation and estimation of pairwise kinship 
coefficients and PCs of genome-wide genetic variability 
were described in detail by Conomos et al. [15]. In addi-
tion to the quality control procedures described in [15], 
prior to the microbiome GWAS analysis, we also filtered 
imputed genetic variants based on an “effective minor 
allele count”: Neff = 2p̂(1− p̂)Nv , where p̂ is the esti-
mated minor allele frequency, N is the sample size and v 
is the ratio of observed variance of imputed dosages to 
the expected binomial variance [41]. We retained vari-
ants with sufficient minor allele counts and excluded any 
variants with Neff < 30.

As an ancillary study, the HCHS/SOL Gut Origins of 
Latino Diabetes (GOLD) study was further conducted 
to investigate the role of gut microbiome composition in 
diabetes and other health outcomes in Hispanic/Latino 
individuals [35]. Gut microbiome profiles were available 
in 1674 participants, a subset of the HCHS/SOL partici-
pants. Based on the collected stool samples, DNA extrac-
tion and 16S rRNA gene sequencing were performed 
according to the Earth Microbiome Project (EMP) stand-
ard protocols [23]. Subsequent bioinformatic process-
ing of the microbiome sequencing data was described in 
detail by Kaplan et al. [35].

The HCHS/SOL study was approved by the Institu-
tional Review Boards of all participating institutions, 
and written informed consent was obtained from all 
participants.

Microbiome GWAS analysis of HCHS/SOL data
To identify genetic variants associated with the overall 
gut microbiome composition in Hispanic/Latino individ-
uals, we applied the covariate-adjusted KRV test to the 
HCHS/SOL study in a genome-wide association analysis 
for gut microbiome beta-diversity.
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We considered genetic variants (including both single-
nucleotide polymorphisms, or SNPs, and insertion/dele-
tion variants, or indels) within ±10 kb of gene regions 
along Chromosomes 1–22 and grouped the variants into 
gene-level variant-sets correspondingly. The microbiome 
operational taxonomic units (OTUs) were collapsed at 
the genus level. We used a linear kernel for the genetic 
data and six different kernels for the microbiome data, 
including Bray-Curtis, unweighted UniFrac, weighted 
UniFrac, generalized UniFrac, CLR-linear and PhILR-
linear, as described in Methods: 2.2. Rarefied microbial 
abundance data were used to construct Bray-Curtis and 
UniFrac kernels, while absolute abundance data were 
used to construct CLR-linear and PhILR-linear kernels, 
where a unit pseudo-count was added to address zero 
entries before CLR and PhILR transformations. The 
weightings used in PhILR transformation were the same 
as those proposed in [57].

For each gene, we assessed the association between 
common variants (with minor allele frequency, or MAF, 
≥ 0.05) within the gene and the community-level micro-
biome profile, using both adjusted and unadjusted KRV 
tests. In the adjusted KRV, we mainly controlled for the 
top 5 PCs of genome-wide genetic variability (denoted 
as the PC-adjusted KRV), as they were shown to well 
capture the population structure of the sample based on 
a previous genetic study of HCHS/SOL data [15]. Indi-
viduals from different populations and ethnic groups 
often have systematic differences in their genetic and 
microbiome profiles [16, 65], so population structure is 
an important confounder in our analysis. We also per-
formed additional analyses that adjusted for other non-
confounding covariates including age, gender and study 
sites.

To avoid confusion, we emphasize the distinction 
between (1) kernel PCs derived from the kernel matri-
ces, as mentioned in Methods: 2.1 and (2) genome-wide 
genetic PCs. In the context of our gene-level micro-
biome GWAS, the kernel PCs of the genotype kernel 
matrix capture information of a particular gene that we 
are interested in testing against the microbiome. On 
the other hand, the genome-wide genetic PCs capture 
genetic information along the entire genome and are 
used as covariates to measure population structure. In 
the PC-adjusted KRV analysis, the top 5 genome-wide 
genetic PCs were regressed out from all kernel PCs of the 
gene-level genotype kernel matrix and all kernel PCs of 
the community-level microbiome kernel matrix.

Our investigation of the genetic effect on the micro-
biome involved two stages. In the first stage, we tested 
the association between the variants in each gene and 
the microbiome profile at the community level. In the 
second stage, for any genes called significant in the first 

stage, we marginally assessed the association between 
each of the individual variants within those genes and 
the community-level microbiome profile to look for 
significant variants, again using the covariate-adjusted 
KRV. Bonferroni correction was applied in both stages. 
Since this was a nested hypothesis testing approach, the 
second-stage test only required correction for the num-
ber of variants in the genes that were called significant in 
the first stage. All analyses were performed on unrelated 
individuals (pairwise kinship coefficient ≤ 0.05 ) where 
genetic data, microbiome data and covariates data were 
available.

As a comparison to our proposed covariate-adjusted 
KRV approach, we applied additional microbiome GWAS 
approaches to the same sample. First, we considered two 
methods that still analyze the association between gene-
level genetic variation and community-level microbi-
ome composition but use univariate approaches. One 
method was linear regression, where we performed ker-
nel PCA on both the gene-level genotype kernel matrix 
and the community-level microbiome kernel matrix and 
regressed the top kernel PC of the microbiome kernel on 
the top kernel PC of the genotype kernel, while adjust-
ing for covariates. The other method was SNP-set kernel 
association test (SKAT) [63], a kernel machine regression 
framework for assessing the general association between 
a univariate trait and multiple genetic variants. Here we 
performed kernel PCA on the community-level microbi-
ome kernel matrix and used the SKAT test to regress the 
top kernel PC of the microbiome kernel on the genetic 
variants within each gene, while adjusting for covariates; 
a linear kernel was used for genetic data in the SKAT test. 
In addition to gene-based community-level competing 
methods, we also conducted a traditional variant-based 
taxon-level microbiome GWAS, where we tested the 
association between individual genetic variants along 
the genome and individual microbial genera present in 
≥ 10% of all participants. A detailed analysis procedure 
for the taxon-level analysis is described in Additional File 
1: Section S2. In all the competing methods, the top 5 
PCs of genome-wide genetic variability were adjusted as 
covariates.

Simulation studies
We conducted simulation studies to further evaluate 
the type I error rate and power of the covariate-adjusted 
KRV test. We simulated genotype data and microbial 
OTU count data under realistic settings, and introduced 
population stratification as a confounder that affected 
both genetic and microbiome data.

The general simulation setting is as following. We con-
sidered a sample size of 1000. SNP genotype data over a 
1-Mb chromosome were simulated for 500 individuals of 
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African ancestry and 500 individuals of European ances-
try. Specifically, we first generated 10,000 haplotypes of 
African ancestry and another 10,000 haplotypes of Euro-
pean ancestry over a 1-Mb chromosome according to 
coalescent theory using the cosi2 program [56]. To form 
a sample, we then generated the genotype of each Afri-
can individual in the sample by randomly selecting and 
pairing 2 haplotypes from the 10,000 founding African 
haplotypes. A similar procedure was used to generate the 
genotypes of European individuals.

We used a Dirichlet-multinomial distribution to gen-
erate microbial OTU counts for each individual in the 
sample, as this distribution well accommodates the over-
dispersion of microbiome count data [12, 70]. To ensure 
a realistic simulation of OTU counts, we estimated the 
parameters of the Dirichlet-multinomial distribution 
from a real upper-respiratory-tract microbiome data set 
[10], which consisted of 856 OTUs. This data set is pub-
licly available as part of the GUniFrac R package. We 
assumed 1000 total OTU counts per individual. Popula-
tion structure was introduced into the OTU count data 
in two ways, as described below.

Both unadjusted and adjusted KRV tests were per-
formed to test the association between the overall 
microbiome composition (composed of 856 OTUs) and 
common SNPs (with MAF ≥ 0.05) within an 8-kb subre-
gion of the 1-Mb chromosome. This 8-kb subregion can 
be considered as a simulated gene region. In the adjusted 
KRV test, the top PC of genetic variability (obtained 
from PCA on SNP data over the entire 1-Mb region) was 
used as the covariate, a surrogate for population struc-
ture. We considered a linear kernel for genetic data and 
six different kernels for microbiome data: Bray-Curtis, 
unweighted UniFrac, weighted UniFrac, generalized Uni-
Frac, CLR-linear and PhILR-linear.

To evaluate type I error rates in the presence of con-
founding, we introduced population structure into the 
OTU count data in two scenarios (denoted as Type I 
Error Scenario 1 and 2). In Type I Error Scenario 1, we 
increased the abundance of the 10 most common OTUs 
by 10% in African individuals and then rarefied the abun-
dance back to 1000 total counts per individual. In Type I 
Error Scenario 2, we increased the abundance of 10 rare 
OTUs (chosen randomly from the top 40 rarest OTUs) 
in African individuals by adding a unit count before rar-
efying the abundance back to 1000 total counts per indi-
vidual. These two scenarios were not meant to reflect 
the microbiome difference between African and Euro-
pean individuals in reality, but they served as hypotheti-
cal situations to introduce confounding effect into the 
genetics-microbiome relationship. Here we used the esti-
mated mean proportion parameters of the Dirichlet-mul-
tinomial distribution as a measure of OTU prevalence. 

10,000 simulations were performed for each type I error 
scenario.

To evaluate the power of the covariate-adjusted KRV, 
we based our simulation setting on Type I Error Sce-
nario 1 and further introduced genetic effect on the 
microbiome in three different power scenarios, where 
a single SNP affected the abundance of multiple micro-
bial OTUs (i.e., a pleiotropy effect). Let gi be the geno-
type (0, 1 or 2) of individual i at a chosen common SNP. 
In Power Scenario 1, for each individual i, we increased 
the counts of the 11th–20th most common OTUs by 
a factor of fi , where fi = 1+ c1gi . In Power Scenario 2, 
utilizing the available phylogenetic tree for the 856 OTUs 
[10], we increased the counts of OTUs from a relatively 
abundant cluster (representing 10.3% abundance of the 
total OTU counts) by a factor of fi for each individual i, 
where fi = 1+ c2gi . In Power Scenario 3, for each indi-
vidual i, we increased the counts of 5 rare OTUs (chosen 
randomly from the top 40 rarest OTUs) by an addition 
of ai , where ai = c3gi . We considered two sets of effect 
sizes: (a) small effect sizes: c1 = c2 = 0.3, c3 = 0.5 and (b) 
large effect sizes: c1 = 0.8, c2 = 0.7, c3 = 1 . After intro-
ducing these genetic effects on the microbiome, we again 
rarefied the OTU counts to 1000 total counts per indi-
vidual. For each power scenario, 1000 simulations were 
performed.

In the power simulation, we also considered two com-
peting methods that analyze the association between a 
group of variants and the overall microbiome composi-
tion but rely on univariate microbiome phenotypes, as 
described in Methods: 2.4. The first method was linear 
regression, where we regressed the top kernel PC of the 
community-level microbiome kernel matrix on the top 
kernel PC of the gene-level genotype kernel matrix, while 
adjusting for covariates. The second method was SKAT, 
where we applied the SKAT test to regress the top ker-
nel PC of the microbiome kernel on the genetic variants 
within the pre-specified gene region, while adjusting for 
covariates; we used a linear kernel for genetic data in the 
SKAT test.

Computation time
We estimated the computation time of the covariate-
adjusted KRV test for different sample sizes. For each 
sample size, we simulated 10 data sets and reported the 
average computation time. Given constructed geno-
type and microbiome kernel matrices and 10 covariates, 
the average computation times are 0.09, 1.23, 12.58, and 
97.57 s on a laptop (2.7 GHz CPU and 16 GB memory) 
for sample sizes of 200, 500, 1000, and 2000, respectively. 
The gene-level analysis of the HCHS/SOL data set (with 
one genotype kernel, 6 microbiome kernels and 19,223 
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variant-sets) took approximately 8 hours on a high-per-
formance computing cluster (each node with 24 cores, 
3.00 GHz CPU and 384 GB memory), with computing 
jobs divided by chromosome.

Results
Application of covariate‑adjusted KRV to HCHS/SOL
We performed our microbiome GWAS analyses on 1219 
unrelated participants from HCHS/SOL where all rele-
vant data were available. Among these individuals, 47.0% 
identified their background as Mexican, 14.8% as Cuban, 
12.7% as Puerto Rican, 10.3% as Central American, 7.7% 
as South American and 7.5% as Dominican. Microbi-
ome count data were obtained on 408 genera, rarefied 
to 10,000 total counts per individual to construct Bray-
Curtis and UniFrac kernels. A total of 19,223 gene-level 
variant-sets that contained at least one common variant 
were available. Figure  2 shows the p-value QQ-plots of 
the first-stage gene-level analysis results. For all micro-
biome kernels, the unadjusted KRV produces highly 
anti-conservative p-values (with large genomic inflation 
factors), while the PC-adjusted KRV has well-controlled 
type I error rates (with genomic inflation factors ≤ 1.05 ), 
confirming that population structure is the major con-
founder in our study. The gene-level Manhattan plots 
based on the PC-adjusted KRV are shown in Fig. S1.

Table  1 shows the genes identified at a genome-wide 
significance in the PC-adjusted first-stage analysis 
( α = 0.05/19, 223 = 2.6× 10−6 ). We have found two 
genes, IL23R and C1orf141, using the Bray-Curtis kernel 
and two genes, MTMR12 and ZFR, using the unweighted 
UniFrac kernel. MTMR12 is also identified by the CLR-
linear kernel. When the analysis is performed on a 
reduced set of individuals (n=1096) where additional 
covariates (age, gender, and study sites) are available and 
adjusted, IL23R and C1orf141 are no longer genome-
widely significant (Table  S1). Similar non-significant 
results are observed for IL23R and C1orf141 when only 
genome-wide genetic PCs are adjusted in the same sub-
sample. To investigate the reason for this power loss, we 
perform PC-adjusted analyses on random subsamples of 
the same size from the original 1219 individuals. Around 
half of the times, at least two out of the four genes no 
longer have genome-wide significance, indicating that the 
non-significant results in the reduced sample are likely 
due to sample size loss, rather than systematic differences 
between the reduced sample and the original sample. 
Nevertheless, the results from the two adjusted analyses 
are similar in both their observed KRV statistics (IL23R: 
0.017 in the original sample vs. 0.016 in the reduced 
sample; C1orf141: 0.018 in the original sample vs. 0.016 
in the reduced sample) and the order of magnitude of 
their p-values ( 10−6 in the original sample vs. 10−5 in 

the reduced sample). Additional analyses to assess the 
robustness of these two signals are reported in Additional 
File 1: Section S3.

Among these genes, IL23R is of considerable interest: 
it encodes one part of the receptor for interleukin-23 
(IL-23), a pro-inflammatory cytokine closely involved 
in autoimmunity [20]. The IL23R gene has been associ-
ated with inflammatory bowel diseases (IBD) including 
Crohn’s disease and ulcerative colitis [18, 58]. In a pre-
vious genetic association study of microbiome com-
position [67], the protective variant of the IL23R gene 
(rs11209026) was associated with a higher microbiome 
diversity and richness and a higher abundance of benefi-
cial gut bacteria in the ileum of healthy individuals, sug-
gesting the influence of host genetics on the microbiome 
prior to onset of IBD. In addition, a mouse-based experi-
mental study [1] showed that mice deficient in intestinal 
IL23R expression had altered gut microbiota and were 
susceptible to colonic inflammation, where increased 
disturbance of gut microbiota exacerbated the disease 
activity. Coupled with these results, our finding further 
supports that the gut microbiome may mediate the host 
genetic effect on the development of inflammatory dis-
eases like IBD. In its normal function, the IL23R gene 
likely helps shape the overall gut microbiota towards a 
healthy composition, which may in turn support normal 
immune activities and prevent gut inflammation.

The other genes are also interesting to further explore. 
The C1orf141 gene, with uncharacterized protein func-
tion, has overlapping regions with IL23R. Variants in the 
IL23R-C1orf141 region have been associated with suscep-
tibility to Vogt-Koyanagi-Harada disease, a multi-system 
autoimmune disorder that affects pigmented tissues, in 
Chinese and Japanese populations [31, 54]. The ZFR gene 
encodes the highly conserved zinc finger RNA-binding 
protein, which is shown to prevent excessive type I inter-
feron activation by regulating alternative pre-mRNA 
splicing [30]. Prevention of excessive type I interferon 
activation is important for the regulation of immune 
responses. The MTMR12 gene encodes an adapter pro-
tein for myotubularin-related phosphatases and is likely 
involved in skeletal muscle functions [29]. Overall, most 
of the significant genes have a role in immunity, indicat-
ing an interaction between the host genetics and the gut 
microbiome in facilitating immune responses or develop-
ing autoimmune disorders.

As MTMR12 is more significant with the unweighted 
UniFrac kernel than with the CLR-linear kernel, we focus 
on unweighted UniFrac for our subsequent analysis of 
MTMR12. Figure 3 shows the Manhattan plots and link-
age disequilibrium (LD) heatmaps from the second-stage 
variant-level analysis of the HCHS/SOL data, using the 
PC-adjusted KRV. The IL23R and C1orf141 genes were 
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Fig. 2 P‑value QQ‑plots from the first‑stage gene‑level analysis of the HCHS/SOL data. Each panel corresponds to a QQ‑plot based on a distinct 
microbiome kernel. In the adjusted KRV, the top 5 PCs of genome‑wide genetic variability were adjusted. �GC ,0.1 represents the genomic inflation 
factor evaluated at the upper 10th percentile
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combined into a single IL23R-C1orf141 region due to 
overlapping variants. Based on the analysis using the 
Bray-Curtis kernel, there are 72 significant variants (out 
of 557 common variants) in the IL23R-C1orf141 region 
( α = 0.05/557 = 8.98× 10−5 ). Based on the analysis 
using the unweighted UniFrac kernel, there are 114 sig-
nificant variants (out of 288 common variants) in ZFR 
and 125 significant variants (out of 174 common variants) 
in MTMR12 ( α = 0.05/(288+ 174) = 1.08× 10−4 ). In 
addition, the Manhattan plot for MTMR12 based on the 
CLR-linear kernel shows similar association patterns to 
the result based on unweighted UniFrac (Fig.  S2). Rele-
vant information including positions, rsID and p-values 
for these variants is reported in Table  S3. From the LD 
heatmaps, in each gene, the significant variants share 
a high level of linkage disequilibrium with one another. 
Future fine mapping of causal variants that affect the 
microbiome composition will be needed.

To confirm the validity of the covariate-adjusted KRV 
approach, we conduct kernel PCA on the Bray-Curtis and 
unweighted UniFrac kernel matrices, and check whether 
individuals’ microbiome profiles, captured by the top two 
kernel PCs, differ by genotypes of the top (most signifi-
cant) variant from each identified gene. This is similar to 
a PCoA analysis. Figure 4 shows that, for each top vari-
ant, the 95% confidence ellipses for different genotypes 
are well separated from one another, corroborating the 
findings by the adjusted KRV. Similar results are found 
for the CLR-linear kernel with respect to the top variant 
from MTMR12 (Fig. S2).

Specific taxa involved in microbiome GWAS associations
To further understand how the discovered genes drive 
differences in gut microbiome composition, we conduct 
an exploratory analysis to identify specific microbial 
taxa involved in the microbiome GWAS associations. 
Our strategy is to perform dimension reduction on 
both genetic and microbiome data and use correlation 

analyses to complement and help interpret our commu-
nity-level analysis results.

The general analysis procedure is summarized in 
Fig.  S3. As each gene-microbiome association signal 
appears to be driven by a single locus (as shown in the 
LD heatmaps from Fig.  3), we focus on the top vari-
ant from each identified gene for our analysis. On the 
other hand, we also use the leading 10 kernel PCs from 
each microbiome kernel to capture the major varia-
tion from the overall microbiome composition. For 
each gene-microbiome association, the specific variant 
and microbiome kernel used in the analysis are con-
sistent with the association results in Table 1. In Step 
1, among the top 10 microbiome kernel PCs, we iden-
tify kernel PCs that are significantly correlated with 
the top variant after adjusting for population struc-
ture (with false discovery rate (FDR) corrected p-value 
< 0.05 from linear regression): these kernel PCs rep-
resent the microbial community profiles that mainly 
drive the gene-microbiome associations. In Step 2, 
we inspect genus-level microbial abundance data and 
identify taxa that contribute the most to the signifi-
cant kernel PCs from Step 1 (with absolute correla-
tion between taxon abundance and kernel PC ≥ 0.5): 
these taxa dominate the microbial profiles captured by 
the kernel PCs and in turn drive the gene-microbiome 
associations.

The microbial taxa identified for each gene-microbi-
ome association signal are listed in Table S4. Due to roles 
in immunity, we focus on findings related to IL23R and 
ZFR for a detailed discussion. We first discuss the taxa 
involved in the association between IL23R and the Bray-
Curtis kernel. Allele A (vs. Allele G) of the top variant, 
rs10789226, from IL23R is positively associated with the 
abundance of Bacteroides and Blautia, while being nega-
tively associated with the abundance of Prevotella. Bac-
teroides and Prevotella are the most abundant genera in 
this study (representing 23.7% and 25.0% abundances of 
all microbial taxa) and dominate the first PC of the Bray-
Curtis kernel. These two genera have been studied exten-
sively as metrics for dietary patterns [4, 27]. Interestingly, 
a higher Prevotella-to-Bacteroides ratio is associated with 
greater obesity in Hispanic/Latino populations based on 
a previous study using HCHS/SOL data [35]. In terms of 
relation to immunity disorders, a meta-analysis [72] sug-
gests that patients with IBD are associated with a lower 
abundance of Bacteroides compared to healthy indi-
viduals, although mixed roles of Bacteroides have been 
reported in other studies [61]. On the other hand, while 
Prevotella species are classically considered as commen-
sal bacteria, increased abundance of certain Prevotella 
strains has been associated with mucosal inflammation 
and linked to chronic inflammatory diseases [40]. Based 

Table 1 Significant genes identified from the first‑stage gene‑
level analysis of the HCHS/SOL data, using the PC‑adjusted KRV 
( α = 2.6× 10−6)

The top 5 PCs of genome-wide genetic variability were adjusted

Microbiome kernel Significant genes Number of 
common 
variants

P‑value

Bray‑Curtis C1orf141 484 1.1× 10−6

IL23R 284 2.4× 10−6

Unweighted UniFrac MTMR12 174 6.5× 10−8

ZFR 288 2.5× 10−9

CLR‑linear MTMR12 174 1.7× 10−6
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on these findings, it appears that Allele A of rs10789226 
might be associated with an overall healthier gut micro-
biome composition in Hispanic/Latino populations.

We next look at the taxa involved in the association 
between ZFR and the unweighted UniFrac kernel. Allele 
T (vs. Allele A) of the top variant, rs2113093, from ZFR is 
positively associated with the abundance of two unidenti-
fied genera from Clostridiales and Ruminococcaceae. As 

Ruminococcaceae is an order that belongs to the Clostrid-
iales family, this result is consistent with the strength 
of the unweighted UniFrac kernel in utilizing phyloge-
netic information. Ruminococcaceae helps maintain the 
gut health by producing short-chain fatty acids (SCFAs) 
[28], and a decreased abundance of Ruminococcaceae has 
been associated with IBD disorders [71] and inflamma-
tion in hepatic encephalopathy [5]. On the other hand, 

Fig. 3 Manhattan plots and linkage disequilibrium (LD; R2 ) heatmaps from the second‑stage variant‑level analysis of the HCHS/SOL data, using 
the PC‑adjusted KRV. Each panel corresponds to a distinct gene or gene region. The Bray‑Curtis kernel was used for analysis of variants in the 
IL23R-C1orf141 region; the unweighted UniFrac kernel was used for analysis of variants in ZFR and MTMR12. The top 5 PCs of genome‑wide 
genetic variability were adjusted. The red lines represent variant‑level significance after Bonferroni correction ( α = 8.98× 10−5 for variants in the 
IL23R-C1orf141 region, and 1.08× 10−4 for variants in ZFR and MTMR12). A large R2 value indicates high LD
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several commensal Clostridiales strains have been shown 
to mediate effective immune response against colorec-
tal cancer in mouse models [49]. These findings support 

the potential roles of Clostridiales and Ruminococcaceae 
bacteria in mediating the effect of ZFR in regulating 
innate immune response, and Allele T of rs2113093 is 

Fig. 4 PC2 vs. PC1 from kernel PCA on the microbiome kernel, colored by genotype of top variants from the significant genes in the HCHS/SOL 
study. For each variant, a 95% confidence ellipse (shown as a filled ellipse with black borders) was constructed for individuals from each genotype. 
The Bray‑Curtis kernel was used for the top variant in the IL23R-C1orf141 region; the unweighted UniFrac kernel was used for the top variants in ZFR 
and MTMR12. The percent of variance captured by each kernel PC was provided in the axis labels. Panels B, D, and F show enlarged versions of the 
confidence ellipses from panels A, C, and E 
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likely associated with a more favorable gut microbiome 
composition.

Overall, the above findings offer us a better under-
standing of the identified community-level associations. 
Nevertheless, due to heterogeneity in functions of indi-
vidual bacterial species and strains, a higher study resolu-
tion will be required to further elucidate the mechanisms 
underlying the association between the identified genes 
and the gut microbiome.

Comparison to competing methods and previous studies
As a comparison to our proposed covariate-adjusted 
KRV approach, we applied additional competing meth-
ods of microbiome GWAS to the same set of HCHS/
SOL data ( n = 1219 ). We first performed two gene-based 
community-level analyses that rely on univariate micro-
biome phenotypes (i.e., only using the top kernel PC of 
the microbiome kernel matrix), denoted as linear regres-
sion and SKAT. Neither of the methods has identified 
any genome-widely significant signals (Manhattan plots 
in Figs.  S4 and S5). Therefore, compared to univariate 
methods that identify the same type of genetic features 
(i.e., genes associated with the overall microbiome com-
position), our proposed KRV framework has a superior 
power in detecting associations.

We also performed a traditional variant-based taxon-
level analysis to identify individual genetic variants asso-
ciated with individual microbial genera. 89 relatively 
common genera (present in ≥ 10% of all individuals) were 
tested in the analysis.

At a study-wide significance level 
( α = 5× 10−8/89 = 5.6× 10−10 ), we have identified 
two associations that involve two genetic loci. The first 
association signal is between a block of ∼ 1 Mb region 
located at Chromosome 2 q21.3–q22.1, including 58 sig-
nificant variants, and the abundance of Bifidobacterium. 
This locus involves the LCT gene and 8 other genes, 
exhibiting high-level LD among the significant variants. 
The top variant from this locus is rs4988235 (p-value = 
4.2× 10−17 ), a functional variant associated with lactase 
persistence [21]. This signal was also reported by Kuril-
shikov et al. [38], who analyzed a sample of 18,340 indi-
viduals which consisted of 24 multi-ancestry cohorts 
including the HCHS/SOL GOLD cohort. In our gene-
level analysis using the PC-adjusted KRV, the LCT gene 
is nominally significant based on the unweighted UniFrac 
kernel (p-value = 0.013), the CLR-linear kernel (p-value 
= 0.027) and the PhILR-linear kernel (p-value = 0.015), 
but not significant at the genome-wide level.

The second association signal is between a locus at 
Chromosome 18 q11.2, including 2 significant vari-
ants, and the presence/absence of Christensenella (top 

variant: rs1607482; p-value = 2.2× 10−10 ). This locus is 
intergenic, located between two RNA genes, LINC01908 
and LOC105372038. As our proposed analysis approach 
focused on gene regions only, these variants were not 
covered in our community-level analysis.

We next investigate the replication of signals found by 
previous gut microbiome GWAS studies in our analy-
sis. We have examined the significance of 63 previously 
reported genes that harbor variants associated with gut 
microbiome beta-diversity [25, 43, 53, 62, 64] (Table S5). 
59 out of 63 genes include at least one common variant 
in the HCHS/SOL data. Five genes are replicated with 
nominal significance (p-value < 0.05) based on vari-
ous microbiome kernels: BANK1 (unweighted UniFrac, 
weighted UniFrac), MAST3 (weighted UniFrac, general-
ized UniFrac), POMC (CLR-linear), C1orf21 (CLR-linear) 
and AHSA2 (PhILR-linear). Among these genes, POMC 
produces peptides involved in anti-inflammatory actions 
[7], BANK1 is associated with systemic lupus erythema-
tosus [37], and MAST3 and AHSA2 are associated with 
IBD [39, 66], corroborating the role of immunity-related 
genes in shaping gut microbiota. However, none of the 
genes are significant at the genome-wide level.

Simulation results
We have conducted simulation studies to further evalu-
ate the performance of our proposed covariate-adjusted 
KRV test in terms of type I error rate and power. Table 2 
shows the empirical type I error rates of both unadjusted 
and adjusted KRV tests at different significance lev-
els under Type I Error Scenario 1. The unadjusted KRV 
has inflated type I error rates for all microbiome kernels 
except unweighted UniFrac. In contrast, the adjusted 
KRV maintains valid type I error rates for all microbiome 

Table 2 Empirical type I error rate of unadjusted and covariate‑
adjusted KRV at nominal level α under Type I Error Scenario 1

Linear kernel was used for genetic data

Method Microbiome kernel α

0.05 0.01 0.001

Unadjusted KRV Bray‑Curtis 0.2403 0.0936 0.0255

Unweighted UniFrac 0.0484 0.0094 0.0011

Weighted UniFrac 0.1371 0.0371 0.0057

Generalized UniFrac 0.1412 0.0416 0.0063

CLR‑linear 0.0811 0.0178 0.0016

PhILR‑linear 0.1389 0.0434 0.0076

Adjusted KRV Bray‑Curtis 0.0473 0.0114 0.0012

Unweighted UniFrac 0.0523 0.0115 0.0009

Weighted UniFrac 0.0507 0.0095 0.0012

Generalized UniFrac 0.0499 0.0097 0.0011

CLR‑linear 0.0450 0.0091 0.0011

PhILR‑linear 0.0482 0.0093 0.0015
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kernels. Note that for Type I Error Scenario 1, popula-
tion structure affected the abundance of common OTUs, 
which was unlikely to change these OTUs’ presence. 
Since the unweighted UniFrac kernel only captures pres-
ence/absence, but not abundance information of a taxon, 
the population stratification of microbiome profiles is not 
reflected in the unweighted UniFrac kernel. This absence 
of confounding effect leads to a valid type I error rate 
for the unweighted UniFrac kernel even when the unad-
justed KRV is used.

Under Type I Error Scenario 2 (Table S2), where popu-
lation structure affected the abundance of rare OTUs, the 
unadjusted KRV has highly inflated type I error rates for 
all microbiome kernels. Again, the adjusted KRV is able 
to maintain valid type I error rates for all microbiome 
kernels.

Figure  5 shows the empirical power of the covariate-
adjusted KRV test and competing methods under small 
effect sizes, at the nominal level α = 0.05 . In general, for 
each power scenario, the adjusted KRV has a much higher 
power than linear regression and SKAT, regardless of the 

microbiome kernel being used (with the exception of 
unweighted UniFrac in Power Scenario 1 and 2). Next we 
focus on the adjusted KRV and compare across microbi-
ome kernels: in Power Scenario 1, the Bray-Curtis kernel 
has the highest power; in Power Scenario 2, the weighted 
UniFrac kernel has the highest power; in Power Scenario 
3, the unweighted UniFrac kernel has the highest power. 
These results are consistent with the ways these micro-
biome similarity measures are constructed and can serve 
as clues as to which microbial features are affected when 
we use these kernels to detect associations in practice. 
The Bray-Curtis kernel is efficient in detecting abundance 
changes in common OTUs. The weighted UniFrac kernel 
has more power to detect abundance changes in com-
mon phylogenetic clusters, and the unweighted UniFrac 
kernel is more efficient in detecting changes in rare line-
ages. Again, due to the nature of unweighted UniFrac, all 
three methods based on this kernel have little power in 
Power Scenario 1 and 2, where the SNP effect on com-
mon OTUs or common phylogenetic clusters is unlikely 
to change their presence.

Fig. 5 Empirical power of covariate‑adjusted KRV and competing methods at nominal level α = 0.05 for different microbiome kernels under small 
effect sizes. A A single SNP affects the abundance of common OTUs. B A single SNP affects the abundance of OTUs from a common phylogenetic 
cluster. C A single SNP affects the abundance of rare OTUs. In each scenario, linear kernel was used for genetic data
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Under large effect sizes (Fig.  S6), while the covariate-
adjusted KRV displays a clear improvement in power, the 
overall patterns are similar to those under small effect 
sizes and again highlight the power gain of our proposed 
approach over univariate-phenotype-based competing 
methods.

Discussion
Given the importance of the microbiome in human health, 
there is an emerging interest in studying the relationship 
between host genetic variation and human microbiome. 
Our methodological contribution in this work is two-
fold. First, we have proposed a novel microbiome GWAS 
approach to evaluate the association between gene-level 
genetic variation and community-level microbiome com-
position. Second, we have proposed a novel multivariate 
statistic, the covariate-adjusted KRV, to implement this 
approach with flexible covariate adjustment. By reduc-
ing the multiple-testing burden and aggregating small 
effect sizes between the genetics and the microbiome, our 
proposed approach improves statistical power and thus 
requires fewer samples to detect associations compared 
to the traditional marginal testing approach. Simulation 
studies show that the covariate-adjusted KRV maintains 
valid type I error rates in the presence of confounders and 
has a much higher power compared to other microbiome 
GWAS methods that rely on univariate microbiome phe-
notypes. In a genome-wide analysis of the HCHS/SOL 
data, we have identified four genes associated with gut 
microbiome beta-diversity. We have also identified indi-
vidual variants within these genes and specific microbial 
taxa involved in the associations, which will be useful for 
future investigation of the mechanisms underlying the 
genetics-microbiome relationships.

Most of the identified genes based on the HCHS/SOL 
data have been previously implicated in immune func-
tions or immunity-related disorders. This is consistent 
with the works by Blekhman et  al. [6] and Rühlemann 
et al. [53], where loci in immunity-related genes and path-
ways have been shown to correlate with gut microbiome 
composition. The IL23R gene is especially interesting for 
future study, due to its recognition in previous microbi-
ome genetic association studies [67] and its role in IBD, a 
chronic inflammatory disease that involves both genetic 
and microbial factors. Many genetic markers associated 
with IBD are involved in the interactions between the 
immune system and the microbiome [14, 34]. Further-
more, IBD is characterized by shift in the gut microbiome 
composition [36, 50], and specific microbes have also 
been shown to predict response to therapy [3] and post-
operative disease recurrence [59] in patients with IBD. 
Therefore, our finding supports previous work and could 
contribute to future investigation of the disease etiology. 

Finally, as HCHS/SOL is one of the most comprehen-
sive studies of Hispanic/Latino populations in the USA, 
the results from our analysis will help inform important 
genetic risk factors for gut-microbiome-related health 
outcomes in Hispanic/Latino individuals.

Although the covariate-adjusted KRV has valid type 
I error rates regardless of the kernels used, selecting 
appropriate kernels that reflect the actual patterns of 
association is important for maintaining a good statisti-
cal power. Different kernels measure different aspects 
of the structure within the data and assume different 
association patterns. For example, as we see from previ-
ous studies [70] and our simulations results, the Bray-
Curtis kernel is more powerful in detecting associations 
where genetic variation affects common microbial taxa, 
whereas the unweighted UniFrac kernel is more powerful 
when genetics affects rarer phylogenetic clusters. In the 
analysis of the HCHS/SOL data, using different micro-
biome kernels, we discovered distinct significant genes. 
This is likely because these genes affect different aspects 
of the microbiome composition. For example, variants in 
the IL23R-C1orf141 region, identified using Bray-Curtis, 
mainly associate with abundances of Bacteroides and 
Prevotella (Table S4), which are the most abundant gen-
era in this data set. Variants in ZFR and MTMR12, iden-
tified using unweighted UniFrac, associate with genera 
from less abundant microbial lineages such as Clostridi-
ales and Ruminococcaceae (Table  S4). Often, we do not 
have prior knowledge on the ways genetics is associated 
with the microbiome. A possible extension would be to 
use an omnibus test that accommodates multiple possible 
kernels. For example, as proposed by Zhan et al. [68], we 
could construct an omnibus kernel matrix via a weighted 
sum of multiple candidate kernel matrices. Another 
approach would be to combine p-values obtained using 
different candidate kernels into a single p-value, such as 
the Cauchy p-value combination method [44].

While we mainly adjusted for population structure, a 
major confounder in the genetics-microbiome relation-
ship, in our analysis of the HCHS/SOL data, adjusting 
for additional covariates (age, gender, and study sites) 
in a reduced sample revealed similar results. However, 
the signal from the IL23R-C1orf141 region based on 
the Bray-Curtis kernel no longer has genome-wide sig-
nificance in the latter analysis, which is a limitation of 
our study. Further analyses (Additional File 1: Section 
S3) suggest that this loss of power is likely due to sam-
ple size loss, rather than additional confounding or sys-
tematic differences from sub-sampling. Previous studies 
have reported that Bray-Curtis dissimilarity is less stable 
to sub-setting and aggregation of data than other types 
of dissimilarity/distance measures [24], which might also 
contribute to this reduced significance.



Page 16 of 19Liu et al. Microbiome           (2023) 11:80 

We have compared our gene-based community-level 
analysis to a traditional variant-based taxon-level micro-
biome GWAS conducted on the same data. While we 
identified an association between the LCT locus and Bifi-
dobacterium abundance at a study-wide significance in 
the taxon-level analysis, the LCT gene was not genome-
widely significant in the community-level analysis. Bifido-
bacterium was a relatively common genus (representing 
1.04% abundance of all microbial genera) in the HCHS/
SOL data. However, when we analyzed the microbiome 
as a whole and used microbiome kernels that are efficient 
in detecting abundance changes in common taxa, such 
as Bray-Curtis and weighted UniFrac, abundance differ-
ences in Bifidobacterium were likely overshadowed by 
those in the most abundant genera such as Bacteroides 
and Prevotella. This discrepancy in results reflects the 
inherent difference between taxon-level and commu-
nity-level analyses. On the other hand, none of the genes 
identified in our community-level analysis was replicated 
in the taxon-level analysis, highlighting the value of our 
proposed approach in discovering gene-microbiome 
associations that involve concerted shifts in the microbial 
community. Nevertheless, our proposed KRV framework 
is not meant to replace the existing taxon-level micro-
biome GWAS approaches, as the two modes of analysis 
focus on distinct types of genetic features. If one is inter-
ested in identifying both loci associated with individual 
taxa and loci associated with the overall microbiome 
composition, our proposed framework can be applied in 
conjunction with existing taxon-level GWAS approaches 
to provide comprehensive results.

We have also investigated the replication of signals 
from previous gut microbiome GWAS studies. Five pre-
viously reported beta-diversity-associated genes [62] 
have been replicated in our analyses at a nominal signifi-
cance, but none of the previous signals [25, 43, 53, 62, 64] 
reaches genome-wide significance. There are several pos-
sible reasons. First, compared to environmental effect, 
most host genetic influences on gut microbiome compo-
sition have relatively small effect sizes [52]. The sample 
sizes of current microbiome GWAS studies, including 
our study, are still too small to achieve enough statisti-
cal power. Second, there is considerable variation across 
studies in the collection and processing of microbiome 
data, leading to difficulties in reproducibility. Lastly, cer-
tain genetics-microbiome associations might be specific 
to ancestry or populations. In addition, since we focused 
on genetic loci within or close to gene regions, we were 
unable to evaluate the significance of previously identi-
fied loci that fell in intergenic regions.

While we have focused on the application of our pro-
posed approach to microbiome GWAS in this work, the 

covariate-adjusted KRV can also be applied to investi-
gate the relationships among other types of multivariate 
omics data. For example, we can investigate microbiome-
metabolome relationships by examining the association 
between microbiome composition and groups of host 
metabolites that belong to distinct metabolic pathways. 
Such an analysis was described in one of our previous 
works [42], where we used a similar multivariate testing 
strategy to identify metabolic pathways associated with 
the vaginal microbiome. The advantages of reduced mul-
tiple testing burden and better captured data structure 
in our proposed approach can be readily carried over to 
other types of omics data.

Conclusions
We have proposed a promising approach, the covariate-
adjusted KRV framework, to study the covariate-adjusted 
association between host genetic variation and commu-
nity-level microbiome composition, which demonstrates 
good performances in both simulations and real data 
analysis. The genes and loci identified using our approach 
will help elucidate the complex interactions among host 
genetics, gut microbiome and host immune systems. 
With the increasing collection of various omics data and 
high-dimensional traits, we expect the covariate-adjusted 
KRV to bring more discoveries by taking advantage of the 
innate structure within the omics and phenotypic data.
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