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Abstract 

Background Activated sludge (AS) of wastewater treatment plants (WWTPs) is one of the world’s largest artificial 
microbial ecosystems and the microbial community of the AS system is closely related to WWTPs’ performance. How‑
ever, how to predict its community structure is still unclear.

Results Here, we used artificial neural networks (ANN) to predict the microbial compositions of AS systems collected 
from WWTPs located worldwide. The predictive accuracy  R2

1:1 of the Shannon–Wiener index reached 60.42%, and the 
average  R2

1:1 of amplicon sequence variants (ASVs) appearing in at least 10% of samples and core taxa were 35.09% 
and 42.99%, respectively. We also found that the predictability of ASVs was significantly positively correlated with their 
relative abundance and occurrence frequency, but significantly negatively correlated with potential migration rate. 
The typical functional groups such as nitrifiers, denitrifiers, polyphosphate‑accumulating organisms (PAOs), glycogen‑
accumulating organisms (GAOs), and filamentous organisms in AS systems could also be well recovered using ANN 
models, with  R2

1:1 ranging from 32.62% to 56.81%. Furthermore, we found that whether industry wastewater source 
contained in inflow (IndConInf ) had good predictive abilities, although its correlation with ASVs in the Mantel test 
analysis was weak, which suggested important factors that cannot be identified using traditional methods may be 
highlighted by the ANN model.

Conclusions We demonstrated that the microbial compositions and major functional groups of AS systems are 
predictable using our approach, and IndConInf has a significant impact on the prediction. Our results provide a better 
understanding of the factors affecting AS communities through the prediction of the microbial community of AS 
systems, which could lead to insights for improved operating parameters and control of community structure.
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Background
With the increasing expansion of urbanization, about 360 
billion  m3 of wastewater is produced every year globally 
[1]. The activated sludge (AS) system in wastewater treat-
ment plants (WWTPs) is at the heart of current sewage 
treatment technology [2]. Microorganisms treat almost 
60% of this wastewater in AS systems before release 
[3]. This process relies on the degradation of organic 
compounds, biotransformation of toxic substances, 
and removal of pathogens by diverse microorganisms 
[4–6]. Thus, the microbial communities present in these 
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systems determine their performance [7]. Predicting the 
microbial communities of AS systems and exploring fac-
tors that influence them will provide reasonable sugges-
tions for the design, optimization, and stable operation 
of sewage treatment systems [8–11]. However, because 
wastewater always contains a multiplicity of resources, 
the AS system exhibits an enormous microbial diversity 
and varies greatly worldwide. The global activated sludge 
community encompasses about 1 billion bacterial phylo-
types, with a small global core bacterial community con-
sisting of only 28 operational taxonomic units (OTUs) 
[3]. The overwhelming taxonomic diversity and variabil-
ity of microbial communities in AS systems pose a sig-
nificant challenge for accurate modeling and predicting 
their structure and function. It is still unclear how we can 
predict the microbial communities in the AS systems of 
WWTPs according to the design parameters and envi-
ronmental data.

The AS system contains high biomass and microbial 
diversity [3, 12], and predicting the microbial commu-
nity is complicated by diverse factors. For example, AS 
systems treating municipal and industrial wastewater 
harbor distinct microbial communities [13, 14], suggest-
ing that the type of wastewater impacts microbial com-
position. The influent biodegradability [biological oxygen 
demand/chemical oxygen demand (B/C ratio)] also plays 
an essential role in shaping the AS microbial community. 
A low or high B/C ratio may lead to low microbial diver-
sity and pollutant removal loading [15], indicating that 
the impact of the B/C ratio on community structure may 
be nonlinear. Recently, the integration of high-through-
put sequencing and multivariate statistical analysis indi-
cated that the microbial communities of AS systems are 
significantly correlated with multiple factors, such as 
location, geographical distance, dissolved oxygen (DO), 
temperature, hydraulic retention time (HRT), sludge 
retention time (SRT), inflow and effluent of chemical 
oxygen demand (COD), total nitrogen (TN), total phos-
phorus (TP) [16, 17]. The combined influence of multi-
ple environmental factors has made it difficult to predict 
the microbial compositions in AS systems and thus has 
become an obstacle to guiding the operation of WWTPs.

Mechanism-based kinetic models, such as the Monod 
equation, Lotka-Volterra model, and individual-based 
dynamic model can predict the structure of microbial 
communities based on specific growth and interaction 
mechanisms under given conditions [18–21]. However, 
these models are limited in their capacity to generalize to 
complex natural communities due to simplified growth 
or interaction assumptions. Multiple linear regression 
models can predict microbial community structure from 
multiple environmental factors. A previous study pre-
dicted bacterial and fungal groups in a soil microbial 

community from typical soil environmental factors [C 
and N concentrations, pH, mean annual temperature 
(MAT), mean annual precipitation (MAP) and net pri-
mary productivity (NPP), etc.] using this method [22]. 
However, since multiple regression models ignore the 
interaction effects of environmental factors and non-
linear relationships, the predictability of the microbial 
taxa in that study was at most no more than 60%. The 
AS system is affected by multiple cross-complex fac-
tors, including geographical factors, design and opera-
tion parameters, and physicochemical parameters, and 
multiple regression analysis is not enough to capture this 
complex relationship. In addition, no attention has been 
paid to the regularity of predictability of microbial taxa 
in previous studies, which is essential for a deeper under-
standing and control of microbial community structure.

Artificial neural network (ANN) is a machine learn-
ing method for the automatic and quantitative learning 
of a suitable relationship without any specific assump-
tions and guiding system optimization [23]. The ANN 
is an ideal alternative to model these complex relation-
ships between microbial communities and environmen-
tal variables as this method is better suited to account 
for the non-linear associations between variables and 
the interactions among predictors [24]. ANNs have 
helped researchers to successfully analyze the relation-
ship between environmental factors and microbial com-
munity structure in many ecosystems [24–26], while the 
relevant applications of activated sludge systems are still 
lacking. Considering the strong ability of the ANN model 
to predict complex systems, we hypothesized that the 
ANN model can predict the microbial community struc-
ture of AS system.

Here, we used ANN models and environment data to 
predict the microbial community structure of AS sys-
tems from global wastewater treatment plants. We ana-
lyzed the predictability of different taxa and the effects of 
environmental factors on the prediction. These analyses 
deepened our understanding of the microbial community 
of AS systems, provided reasonable suggestions for accu-
rately predicting major functional groups, and provided a 
theoretical basis for better design and operating param-
eters, and to control community structure.

Results
Overview of microbial community structure in AS systems
By preprocessing 777 (no data leakage) activated sludge 
samples from 269 wastewater treatment plants located 
in 23 countries across 6 continents using the QIIME2 
pipeline, we obtained the basic information of micro-
bial community structure in AS systems. Specifically, 
the Shannon–Wiener index ranged from 2.90 to 6.41 
(Fig.  1a), Pielou’s evenness index ranged from 0.50 to 
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0.90 (Fig. 1b), species richness ranged from 217 to 2014 
(Fig.  1c), and Faith’s phylogenetic diversity ranged from 
22.58 to 148.33 (Fig.  1d). Detailed information about 
alpha diversity is provided in Table S1.

In addition, we analyzed the distribution features of the 
average relative abundance and occurrence frequency of 
the ASVs. The results showed that ASVs in the AS sys-
tems were dominated by low relative abundance (Fig. 1e), 
which is in line with the general ecological environment 
[27]. In this study, we only predicted 1493 ASVs appeared 
in at least 10% of samples, of which 290 belonged to the 
core ASVs (Fig. 1e), which was defined as overall abun-
dant, ubiquitous, and frequently abundant ASVs.

Alpha‑diversities of AS systems can be predicted by ANN 
models
Predictability of alpha‑diversities
To obtain an overall prediction of AS community 
structure, we first constructed predictive models for 
different alpha diversity indices, including the Shannon–
Wiener index, Pielou’s evenness index, species richness, 
and Faith’s phylogenetic diversity. Here, the predictive 
accuracy is measured relative to the 1:1 observed-pre-
dicted line (rather than a best-fit line), named  R2

1:1, so 
accuracy assessments are both qualitative and quantita-
tive [22]. By comparing the observed and predicted alpha 
diversities in test sets, we found that predictive accura-
cies  R2

1:1 of the Shannon–Wiener index (Fig.  2b), Pie-
lou’s evenness index (Fig. 2c), species richness (Fig. 2d), 
and Faith’s phylogenetic diversity (Fig.  2e) were 60.42%, 
54.11%, 49.92%, and 60.37%, respectively.

Comparing the predictability of different alpha diver-
sity indices, we found that the Shannon–Wiener index 
and Pielou’s evenness index were more predictable than 
species richness, which may be related to the environ-
mental sensitivity of species evenness. Species evenness 
has previously been reported to be more sensitive to 
human activity and environmental changes than rich-
ness because environmental conditions may significantly 
affect ecosystems long before a species is threatened by 
extinction [28]. In addition, the predictive accuracy of 
phylogenetic diversity was also higher than species rich-
ness, reflecting that species’ evolutionary history may 
be influenced by environmental factors surrounding the 
microbial community.

Environmental factors important for predicting 
alpha‑diversities
During the model training process for predicting alpha-
diversities of AS systems, an importance weight value 
was assigned to each environmental factor by Garson’s 
connection weight method [29]. The factors with higher 
importance weights were more informative when the 
model was used to predict alpha diversities.

To assess the importance of different environmental 
factors in predicting alpha-diversities of AS microbial 
communities, we ranked the average importance weights 
of environmental factors in different predictive models 
in descending order (Additional file  2: Figure S1). The 
results showed that DO was most important for predict-
ing the Shannon–Wiener and Pielou’s evenness indi-
ces, but inflow-relatedIndConInf was most important 

Fig. 1 Overview of microbial community structure in AS system. Distribution of Shannon–Wiener index (a), Pielou’s evenness index (b), species 
richness (c), and Faith’s phylogenetic diversity (d). e. Occurrence frequency and average relative abundance distribution of all ASVs in the AS system
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Fig. 2 Prediction of alpha diversity. a. The framework of ANN models: input data (blue), output data (red), and a predictive model trained to 
compute output data from input data (purple). Correlations between observed and predicted values of Shannon–Wiener index (b), Pielou’e 
evenness index (c), species richness (d), and Faith’s phylogenetic diversity (e). The 1:1 relationship is shown as a solid black line, and the best fit 
is shown as the dashed light blue line. The blue‑shaded region represents the 95% confidence interval for the best‑fit line. We reported the  R2 
value of the best‑fit line between predicted and observed and the  R2 observations relative to the 1:1 line. f. Heatmap of importance weights of 
environmental factors in alpha diversity predictive models
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for predicting species richness and Faith’s phylogenetic 
diversity. Climatic condition latitude (Lat), design-related 
N removal process [nitrification (Nitri) and denitrifi-
cation (Denitri)], COD in the inflow of aeration tank 
(AtInfCOD), and the sludge volume index (SVI) were 
also environmental factors with high average importance 
weights for predicting alpha diversities (Fig. 2f ).

Assessment of the predictivity of community structure 
using the ANN model
Predictability of the relative abundances of ASVs
To obtain a deep prediction of AS community structure, 
we predicted the relative abundance of ASVs in AS sys-
tems. We constructed predictive models for the 1493 
ASVs found in more than 10% of samples  (ASVs>10%), 

which accounted for 3.2% of the total ASVs and 
64.97 ± 0.54% (mean ± SEM) of the relative abundance in 
AS samples (Fig. 3a). The results showed that the average 
predictive accuracy  R2

1:1 of  ASVs>10% was 35.09% (Table 
S2). Further, we found that 19.83% of  ASVs>10% could be 
predicted with  R2

1:1 over 50%, 60.82% of  ASVs>10% could 
be predicted with  R2

1:1 over 30%, and 91.96% of  ASVs>10% 
could be predicted with  R2

1:1 over 10% (Fig. 3b).
In addition, we also predicted the structures of the 

microbial communities of the test samples, by recover-
ing the  ASVs>10% subcommunity of each sample in its 
entirety [25]. Here, we refer to the observed values of 
 ASVs>10% subcommunities in different test samples as 
“observed communities”, and the corresponding pre-
dicted values as “predicted communities”. By comparing 

Fig. 3 Prediction of the relative abundance of  ASVs>10%. a. Percentage of ASV number and relative abundance of  ASVs<10% versus  ASVs>10%. b. 
Distribution of the predictive accuracy of  ASVs>10%. The dark green, dark blue, and dark red text represents the proportion of ASVs with prediction 
accuracy exceeding 10%, 30%, and 50%, respectively. c. Principal component analysis (PCA) of environmental factors colored by k‑means clusters. d. 
Ranking of environmental factors in descending order of median importance weights
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the intra-group and inter-group differences between the 
predicted and observed communities, we found that the 
Bray–Curtis similarity between intra-groups was signifi-
cantly higher than that between inter-groups (Additional 
file 2: Figure S2a). This result also proved that the ANN 
model could predict the microbial community structure 
of the AS system from an overall perspective.

Furthermore, we predicted microbial taxa at different 
taxonomic levels and found that microbial community 
structure had high average predictive accuracy ranging 
from 33.32% to 41.6% at all taxonomic levels (Additional 
file  2: Figure S2b). The predictive accuracy  R2

1:1 of the 
three most abundant phyla (Proteobacteria, Bacteroidota, 
and Myxococcota) in the AS system were 64.54%, 55.37%, 
and 59.04%, respectively. The three most abundant orders 
Burkholderiales, Chitinophagales, and Pseudomonadales 
could be predicted with  R2

1:1 of 63.89%, 56.19%, and 
42.81%, respectively (Table S3).

Importance of environmental factors in the prediction 
of ASVs
During the model training process for predicting abun-
dances of ASVs, an importance weight value was also 
assigned to each environmental factor as above (Table 
S4). By displaying the importance weights of environ-
mental factors in different ASVs predictive models, we 
found that environmental factors had different weights in 
predicting different ASVs (Additional file 2: Figure S3a). 
Further, we clustered the environmental factors into three 
clusters according to their importance weights using the 
k-means clustering algorithm and displayed them using 
principal components analysis (PCA) (Fig. 3c). We found 
that these three clusters corresponded to three parts 
divided by the median of importance weights in descend-
ing order (Fig. 3d). This result showed that environmen-
tal factors of cluster1, which included climatic condition 
sampling moment temperature (SMT), design and opera-
tion parameters year of plant build (BY) and Denitri, 
inflow conditions IndConInf and total nitrogen in the 
inflow of aeration tank (AtInfTN), and physicochemical 
properties SVI, etc., contributed the most to the predic-
tion of community structure, cluster2 was second, and 
cluster3 was the least important group of factors in pre-
dicting community structure (Table S5).

We then wondered what influences the importance 
weights of environmental factors in predicting microbial 
taxa. Before constructing the predictive model, we per-
formed a Mantel test analysis on the correlation between 
the  ASVs>10% subcommunity and ecological environment 
factors (Table S5). The correlation analysis showed that 
environmental factors significantly associated with the 
 ASVs>10% subcommunity included climate conditions 
Lat, longitude (Lon), MAT, the annual mean of daily 

maximum temperature (AMMinT), sampling month pre-
cipitation (SMP), and GDP, design and operation param-
eter Nitri, and physicochemical property mixed liquid 
temperature (MIT) (Pearson’s ρ > 0.2, p < 0.01). By com-
paring the importance of environmental factors in pre-
dicting community structure and the correlation between 
environmental factors and community structure, we 
found that some of the environmental factors that had 
high importance weights in many predictive models were 
not strongly correlated with the  ASVs>10% subcommunity 
(Additional file 2: Figure S3). For example, inflow condi-
tions IndConInf and AtInfTN, which were important for 
predicting the relative abundance of ASVs, did not signif-
icantly correlate with the  ASVs>10 sub-community. How-
ever, despite these differences, there was a significant 
positive correlation between the importance weights of 
environmental factors and their correlation coefficients 
with the  ASVs>10% subcommunity (Additional file  2: 
Figure S4a,  R2 = 0.1271, p < 0.05). These results showed 
that in addition to the correlation analysis, importance 
weights analysis in ANN predictive models also helped 
to expand the range of environmental factors that should 
be paid attention to when exploring the performance of 
WWTPs.

In addition, we also analyzed the influence of the dis-
tribution of environmental factors on their weights. The 
result showed that both the skewness (Additional file 2: 
Figure S4b;  R2 = 0.6268, p < 0.001) and kurtosis (Addi-
tional file 2: Figure S4c;  R2 = 0.7106, p < 0.001) of normal-
ized environmental factors were significantly negatively 
correlated with their average importance weights in pre-
dicting ASVs. This suggested that environmental factors 
of low skewness and low kurtosis may be more important 
in predicting community structure.

Characteristics of ASVs with high predictabilities
ASVs with higher relative abundances and occurrence 
frequencies can be better predicted using the ANN model
To investigate the correlation between the predictabil-
ity of ASVs and their distribution features, we compared 
the predictability of ASVs with different relative abun-
dances and frequencies. The correlation analysis between 
the predictive accuracy  R2

1:1 of all 1493  ASVs>10% and 
their relative abundances showed that the  R2

1:1 of an 
ASV was significantly positively correlated with its rela-
tive abundance (Fig. 4a;  R2 = 0.05279, P < 0.001), indicat-
ing that the high predictability of an ASV may be related 
to its high relative abundance. Furthermore, we found 
that the  R2

1:1 of an ASV was slightly positively associ-
ated with its occurrence frequency at significant levels 
(Fig. 4b;  R2 = 0.02602, P < 0.001), indicating that the high 
predictability of abundant  ASV>10% may also be related 
to its high occurrence frequency. Further, we grouped 
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Fig. 4 Distribution features and predictability of  ASV>10%. a. Correlation of test  R2
1:1 with the average relative abundance. b. Correlation of test  R2

1:1 
with the occurrence frequency. c. Fit of the neutral community model (NCM) of AS system community assembly. The solid blue lines indicate the 
best fit to the NCM as in Sloan et al. [31], and the dashed blue lines represent 95% confidence intervals around the model prediction.  R2 indicates 
the fit to this model, and m indicates the estimated migration rate. d. The test  R2

1:1 of above, neutral, and below partitions. e. Correlation of test  R2
1:1 

with the estimated migration rate. The data was provided by the results of different partitions. f. The test  R2
1:1 of core and non‑core taxa. Statistical 

analysis was performed using a two‑sample Student’s t‑test: ***, p < 0.001; n.s, p > 0.05, no significance
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ASVs based on their relative abundances and occurrence 
frequencies as in previous studies (see more details in 
Additional file 1), and the results showed that  ASVs>10% 
with a high relative abundance and high occurrence fre-
quency were significantly more predictable than those 
with low relative abundance (Additional file  2: Figure 
S5a) and low occurrence frequency (Additional file  2: 
Figure S5b), which is consistent with the previous result. 
It is worth mentioning that the occurrence frequency of 
an ASV has a significant positive correlation with its rela-
tive abundance (Additional file 2: Figure S5c,  R2 = 0.2978, 
P < 0.001), supporting that high relative abundance and 
high occurrence frequency can corroborate each other in 
their contribution to predictability.

Previous studies had demonstrated that rare taxa were 
more dynamic than abundant taxa [30], so we wondered 
whether a taxon’s predictability was related to its variabil-
ity across samples. To explore this question, we analyzed 
the relationship between  R2

1:1 of the ASVs and their coef-
ficients of variation and found that the predictive accu-
racy of an ASV was significantly negatively correlated 
with its coefficient of variation (Additional file 2: Figure 
S5d;  R2 = 0.01946, P < 0.001), implying that taxa with 
higher variability were less predictable.

The predictability of an ASV decreases as its potential 
migration rate increases
Previous studies have demonstrated that the process of 
community assembly is closely related to its predictabil-
ity [22, 32, 33], so we explored the association between 
microbial community assembly mechanisms in AS sys-
tems and the predictability of the corresponding taxa. 
By neutral community model (NCM) model fitting, we 
found that stochastic processes explained 63.3% of the 
microbial community variation in AS systems (Fig.  4c). 
The  ASVs>10% were subsequently separated into three 
partitions (above, below, and neutral) depending on their 
occurrence frequencies and relative abundance. By com-
paring the distribution features of the three partitions, 
we found that the relative abundance (Additional file  2: 
Figure S6a) and occurrence frequency (Additional file 2: 
Figure S6b) of  ASVs>10% in the below partition were sig-
nificantly higher than those of the above partition. Fur-
ther, we found that the predictive accuracy  R2

1:1 of the 
below partition was also significantly higher than that 
of the above partition (Fig. 4d). This result again showed 
that ASVs with higher relative abundances and occur-
rence frequencies can be better predicted using ANN 
models.

In addition, the estimated migration rates of the dif-
ferent partitions assessed by NCM were also different. 
Points above the fitting curve represent taxa found more 
frequently than expected, suggesting that they have a 

higher migration ability and can disperse to more loca-
tions. Points below the fitting curve represent taxa found 
less frequently than expected, suggesting their lower dis-
persal ability in WWTPs on a global scale or that they 
have a stronger response to local environmental condi-
tions. The fitting results also confirmed that the taxa in 
the above partition had the highest estimated migration 
rates, and the taxa in the below partition had the lowest 
estimated migration rates (Additional file  2: Figure S7). 
Further analysis of the relationship between the migra-
tion rate and predictability of different partitions, we 
found that a taxon’s predictability had a high negative 
correlation with its estimated migration rate (Fig.  4e, 
 R2 = 0.996, P = 0.0401), indicating that the predictabil-
ity of an ASV decreased as its potential migration rate 
increased.

Core taxa of AS systems can be predicted by ANN models
Due to its highly complex organic environment, activated 
sludge selects a unique core community that does not 
overlap with the core communities of other habitats [3]. 
We evaluated the predictabilities of core taxa that were 
abundant and ubiquitous using ANN models. As defined 
in Methods, we obtained 290 core ASVs and 1203 non-
core ASVs in the  ASVs>10% subcommunity (Additional 
file  2: Figure S8a). Our analyses found that the relative 
abundance (Additional file 2: Figure S8b) and occurrence 
frequency (Additional file 2: Figure S8c) of core taxa were 
significantly higher than those of non-core taxa, and the 
estimated migration rate of core taxa was lower than that 
of non-core taxa (Additional file 2: Figure S8d).

By assessing the predictability of the core taxa, we 
found more than 37.59% of the core ASVs could be well 
predicted with an  R2 of over 50%, more than 78.62% could 
be well predicted with an  R2 of over 30%, and more than 
94.48% could be well predicted with an  R2 of over 10%, 
and the average prediction accuracy was 42.99% (Table 
S2), which was significantly higher than the non-core 
taxa (Fig.  4f ). Because the core taxa are reported to be 
closely related to nitrogen removal, phosphorus removal, 
and even flocculation enhancement of activated sludge 
[12, 34, 35], the results implied that the ANN model 
could be used to assess the performance of WWTPs by 
predicting the dynamics of the core taxa.

Prediction of major functional groups in AS systems
To more directly understand and control the performance 
of WWTPs, we predicted and analyzed major func-
tional groups of microbial communities in the AS system 
using ANN models. Referring to the MiDAS4 database, 
the functional groups in AS systems include nitrogen 
removal groups (nitrifiers and denitrifiers), phosphorus 
removal groups (PAOs), and their competitors (GAOs), 
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and filamentous organisms [36] (Table S6). Then, we 
calculated the total relative abundance of different func-
tional groups in each sample by summarizing the relative 
abundances of ASVs from the same functional groups. 
Finally, we predicted the total relative abundance of 
each functional group using the ANN model. The results 
showed that the predictive accuracy  R2

1:1 for nitrifiers, 
denitrifiers, PAOs, GAOs, and filamentous organisms 
was 32.62%, 62.65%, 53.46%, 53.31%, and 62.86%, respec-
tively (Fig. 5a).

To further understand the prediction results of func-
tional groups, we also analyzed the importance weights 
of environmental factors in their predictive models. By 
performing Ward clustering analysis on the importance 
weights of environmental factors in these predictive 
models of different functional groups, we found that the 
importance of environmental factors in predicting PAOs 
and GAOs was the most similar, followed by nitrifiers and 
denitrifiers (Fig.  5b), which implied a consistent contri-
bution of environmental factors when predicting relevant 
functions. Overall, the design and operation parameters 
BY and Denitri, inflow condition IndConInf, physico-
chemical properties sludge loading (F/M), and nitrate 
nitrogen concentration  (NO3-N) were important for pre-
dicting nitrogen and phosphorus removal function, while 
climatic conditions Lat and SMT, design and operation 
parameter Nitri, and physicochemical properties SVI and 
MIT significantly affected the prediction of filamentous 
organisms. Additionally, SVI also had a crucial impact on 
the prediction of denitrifiers, which may be because some 
filamentous bacteria also function as denitrifiers [37]. 
To demonstrate the importance of these environmental 

factors, we only used the above 10 high-weight environ-
mental factors to predict functional groups. The results 
showed that using only those ten factors allowed us to 
predict the abundance of major functional groups in AS 
systems with a predictive accuracy of  R2

1:1 ranging from 
17.25% to 52.00% (Additional file 2: Figure S9).

In summary, the climatic conditions Lat and SMT, the 
design and operation parameters BY, Denitri, and Nitri, 
the inflow condition IndConInf, as well as some sample 
physicochemical properties (F/M, SVI, MIT, and  NO3-N) 
of AS systems all affect the prediction of functional 
groups. Controlling these critical environmental factors 
can help us regulate the performance of WWTPs, which 
will guide us to design more reasonable operating param-
eters according to environmental changes.

Discussion
In this study, we predicted the diversity and the struc-
tures of the microbial community, as well as the func-
tional groups in AS systems using ANN models. We also 
evaluated the importance of environmental factors in the 
predictions.

The use of artificial neural network (ANN) models in 
this study increased the predictive power of complex 
systems of microbial communities. When ANN models 
were used to predict ASVs appearing in at least 10% of 
the samples, 60.82% of the  ASVs>10% had a prediction 
accuracy  R2

1:1 exceeding 30%. In a previous study, the 
multiple regression model could only explain about 
15% of the variability in the genus-level taxonomy of a 
soil bacterial microbial community [22] and only pre-
dicted the top ten taxa of that community. Compared 

Fig. 5 Prediction of major functional groups. a. The test  R2
1:1 of nitrifiers, denitrifiers, PAOs, GAOs, and filamentous organisms. b. Heatmap of 

importance weights of environmental factors in the predictive models of functional groups. Errors bars in these graphs show the 95% credible 
intervals of the mean values. Statistical analysis was performed using a two‑sample Student’s t‑test: ***, p < 0.001; n.s, p > 0.05, no significance
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with this previous study, our prediction accuracy was 
greatly improved, with the prediction range being 
increased to all ASVs appearing in at least 10% of sam-
ples, which proves the application potential of ANN 
models in predicting the complex systems of microbial 
communities. We recommend using the ANN model as 
a deep learning method in the prediction of complex 
microbial communities.

Using the Neutral Community Model (NCM) pro-
posed by Sloan et al. [31], this study transformed migra-
tion from a vague qualitative concept into a number with 
biological meaning, the potential migration rate (m). 
Higher values of m indicate that a species is less limited 
by dispersal. The low migration rate of high-abundance 
taxa and high migration rate of low-abundance taxa in 
this study (Additional file  2: Figure S10) indicates that 
dispersal limitation has a significant effect on high-
abundance taxa, but not on low-abundance taxa, which 
is consistent with findings for some ecosystems [38, 
39]. High-abundance taxa with a low migration rate will 
appear in some samples due to environmental selection 
[40], and their relative abundance can be well predicted 
using these environmental factors. However, low-abun-
dance taxa with high migration rates usually appear in 
a sample when the migration occurs and the spatial het-
erogeneity of the sample provides them with ecological 
niches. Neither the randomness of migration nor the spa-
tial heterogeneity of samples was reflected in our input 
environmental variables, as such, these environmen-
tal factors were less predictive of low-abundance taxa. 
Nitrosomonas, the main genus of nitrifiers, is a group 
with a low relative abundance and high migration in the 
AS system (Table S2), so the predictability of nitrifiers is 
low (Fig.  5a). In addition, low-abundance taxa has been 
reported to have higher abundance variability than high-
abundance taxa [30], and prediction targets with higher 
variability are not conducive to the stability of the predic-
tive model, further explaining why the predictability of 
the relative abundance of high-abundance taxa was sig-
nificantly higher than that of low-abundance taxa.

The importance of low-abundance rare species in many 
ecosystems has been demonstrated [27, 41]. These spe-
cies play important roles in the community by provid-
ing necessary traits or acting as partners in interspecific 
interactions [42, 43]. To gain a better understanding of 
the importance of rare taxa in the microbial community, 
it is essential to develop a prediction model that accu-
rately identifies low-abundance species. As the microbial 
community is influenced by both abiotic environmen-
tal factors [16] and species interaction [44], a machine-
learning prediction model that considers the mechanism 
of microbial interaction may improve the prediction 
accuracy of rare species.

The weight of environmental factors in the predictive 
model reflects the influence of environmental factors on 
the corresponding prediction targets to a certain extent. 
For example, our results showed that the most important 
environmental factors affecting the prediction of even-
ness and richness were DO and IndConInf, respectively. 
Evenness and richness are two critical indicators to meas-
ure the diversity of ecological communities. The former 
describes species differences, and the latter describes the 
number of species. Previous studies have demonstrated 
that relative abundances of some functional taxa are sen-
sitive to changes in DO [45, 46], and the abundance of 
these functional bacteria reflects the differences in spe-
cies abundance of the community. Therefore, DO has a 
high weight in predicting the evenness of microbial com-
munities in AS systems. Industrial wastewater contains 
many toxic and harmful substances [47, 48], which many 
microorganisms cannot survive. Therefore, industrial 
wastewater directly affects the population of microor-
ganisms [49], and IndConInf plays an important role in 
predicting the richness of microbial communities in AS 
systems.

In addition, the impact of environmental factors on 
microbial taxa may be related to the specific function. 
The environmental factors with top weights in predic-
tive models of nitrogen removal-related taxa ASV6 and 
ASV142 were AtInfTN, Nitri, and  NO3-N (Table S4). The 
SVI is very important for the prediction of filamentous 
organisms (Fig. 5b), which is because filamentous bacte-
ria will cause sludge bulking and foaming [50], and thus 
affect the SVI. The Denitri has the greatest impact on 
PAOs and GAOs, which is consistent with the denitrifi-
cation capacity of the typical PAOs genus Ca_Accumuli-
bacter and GAOs genus Ca_Competibacter [51]. This 
correspondence between functions and environmental 
factors indicates that environmental factors with high 
weights in predicting microbial taxa may play an essential 
role in environmental filtering in the deterministic pro-
cess of community assembly.

Important factors that cannot be identified using tra-
ditional methods may be highlighted by ANN modeling. 
Conventional studies on AS systems have only focused 
on the correlation relationship between environmental 
factors and microbial communities [16, 17, 52], which 
limited the scope of consideration for key environmen-
tal factors. For example, we found that whether industry 
wastewater source contained in inflow (IndConInf) was 
a significant predictor in  ASVs>10% predictive models in 
this study. This finding is consistent with earlier research 
which has demonstrated notable differences in microbial 
communities between industrial and municipal sewage 
[14, 53], suggesting that the IndConInf may influence 
the microbial community structure of AS systems [54]. 
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However, our correlation analysis did not reveal a signifi-
cant association between IndConInf and the microbial 
community structure (Table S5). Actually, the correlation 
analysis of environmental factors correlation analysis is 
limited in its ability to capture more complex relation-
ships and can only reveal simple linear or monotonic 
associations [16, 55]. Therefore, its application in explor-
ing the impact of environmental factors is constrained. 
By analyzing the importance weights of environmental 
factors in predictive models, this study illuminated vari-
ables that require further attention and that can bet-
ter predict and control the microbial community of AS 
systems.

Although our work has made some contributions to the 
prediction and interpretation of the microbial commu-
nity structure in AS systems, we still cannot explain the 
weights of some environmental factors in the predictive 
model due to the black-box characteristics of the ANN 
model. Our results show that environmental factors with 
low skewness and low kurtosis distribution are more 
likely to have higher weights in predicting the relative 
abundance of microbial taxa, which we cannot explain 
using current knowledge. Increasing the interpretability 
of the ANN model will help us better use this powerful 
predictive tool to analyze our concerns, which is also 
the future direction of machine learning-based big data 
analysis.

Conclusions
In this work, we used an ANN model to predict the 
structure of microbial communities in global AS sys-
tem, including alpha diversity, ASVs appearing in at least 
10% of samples, core taxa, and major functional groups. 
We found that taxa with high relative abundance, high 
occurrence frequency, and low estimated migration rate 
were more accurately predicted by the ANN model. Fur-
thermore, the presence of industrial wastewater in the 
inflow significantly impacted the prediction of microbial 
communities, as demonstrated by the weight analysis 
of environmental factors in the ANN models. This find-
ing implies the important role of industrial wastewater 
in shaping microbial communities in AS systems. Over-
all, our findings highlighted the importance of the ANN 
model in predicting the complex microbial communities. 
They also provide new insights into the predictability of 
microbial taxa and the influence of environmental factors 
on microbial communities.

Methods
Datasets
This study used a previously published dataset of 1186 
activated sludge samples taken from 269 WWTPs in 23 
countries across 6 continents. In addition to 16S rRNA 

sequencing data of these sludge samples, associated 
metadata conforming to the Genomic Standards Consor-
tium’s MIxS and Environmental Ontology Standards [56] 
were also provided by plant managers and investigators.

Among the 1186 samples collected in the previous 
study, some were from different sampling points of the 
same WWTP, and some were obtained from the same 
sampling point at different times. As such, the environ-
mental factors and community structure between these 
samples may have high similarities [3] and when evaluat-
ing a model with all 1186 samples, it may overestimate 
the generalization ability of its predictions. Therefore, 
we removed the samples with the same environmental 
information and minimal weighted-UniFrac distance (no 
more than Q1-3*IQR, Q1 is the first quartile, and IQR 
is Inter-Quartile Range) of the microbial community in 
these 1186 original samples and used the remaining 777 
samples (no data leakage) for subsequent construction 
and evaluation of the predictive model.

Data preprocessing
To ensure the accuracy, completeness, and consistency of 
the data, we preprocessed the original data before build-
ing the machine learning predictive model.

Metadata preprocessing
For the metadata obtained from previous studies (refer-
ence [3]), to reduce the redundancy of environmental 
data, we first removed some non-numerical variables 
of multiple categories that are difficult to operate and 
some variables with no practical meanings, such as site 
name, city name, etc. The remaining variables were used 
to train the model and their abbreviations and meanings 
are shown in Table S7. To have a clearer understanding 
of the environmental factors, we classified the differ-
ent types of environmental factors used for prediction 
[3], including climate conditions, design and operation 
parameters, inflow conditions, effluent conditions, and 
physicochemical properties of samples (Table S7). Then, 
the LabelEncoder algorithm was used to numeric binary 
non-numeric variables, and missing values were com-
pleted according to the two-nearest neighbor principle. 
Additionally, all environmental factors were normalized 
to 1–100 to eliminate dimensional influence [24].

The final environment data for input in our machine 
learning predictive models is shown in Table S8.

Sequencing data preprocessing
The original microbial sequencing data were processed 
using Quantitative Insights Into Microbial Ecology 
(QIIME2) software (http:// qiime2. org) [57]. All paired 
reads were merged, quality filtered, then denoised 
through the DADA2 plugin [58] to clustered into 100% 

http://qiime2.org
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amplicon sequence variants (ASVs). Then, ASVs classified 
as fungi, ASVs with unassigned taxonomy at the domain 
level, and ASVs annotated as mitochondria or chloro-
plasts were removed so that only bacterial and archaeal 
sequences were retained. Singletons (ASVs with only 
one sequence) were discarded before further analysis to 
reduce the impact of sequencing errors. Then we rarefied 
each sample to 20,954 sequences, to obtain the maximal 
observation of both samples and features, from which 
46,628 ASVs were obtained. The final feature sequences 
were taxonomically classified using the MiDAS4 refer-
ence database [36], and phylogenetic trees were gener-
ated using phylogeny plugins for further analysis.

Alpha diversity indices such as the Shannon–Wiener 
index, ASV count (species richness), and Pielou’s even-
ness were calculated using the vegan package of R 4.0.3 
software (http:// www.r- proje ct. org) according to the final 
feature table. Faith’s phylogenetic diversity was calculated 
using the Picante package of R 4.0.3 software according 
to the feature table and phylogenetic tree. The relative 
abundance of each ASV was also calculated from this fea-
ture table. Together, these microbial community features 
served as target variables for our AS community predic-
tive models.

Artificial neural network model
We employed the PyTorch (v1.7.1, https:// pytor ch. org/) 
library in python 3.8 to build fully connected artificial 
neural networks (ANNs). After testing, the three-layer 
network (including a hidden layer), with relu and sigmoid 
as activation functions between layers, had an excellent 
prediction effect on the condition that the network topol-
ogy was relatively simple.

The first layer was the input layer, and this study’s input 
data was the sewage treatment plants’ environmental 
data (Table S8). Therefore, there were 48 nodes in the 
first layer. According to previously studied algorithm 
optimization results [59], the internal hidden layer had 
97 nodes (2n + 1, where n is the number of input nodes). 
Meanwhile, the output layer had 1 node, corresponding 
to the index of alpha-diversities, the relative abundance 
of different ASVs, or the abundance of functional groups 
(Fig. 2a). We built predictive models separately for each 
target to minimize prediction errors.

There were many random operations in the model 
training process, which made the results inconsistent 
after repeatedly running the same code. We set a fixed 
global seed for the random number generator to obtain 
repeatable training results. All models were trained 
twenty times by different seeds to avoid the deviation 
caused by each randomization, and the averaged results 
were used for further analysis.

Alpha diversity and microbial taxa abundance predictive 
model
For alpha diversity, we established predictive models for 
the Shannon–Wiener index, Pielou’s evenness index, spe-
cies richness, and Faith’s phylogenetic diversity. For taxa, 
the relative abundance of taxa with low occurrence fre-
quency was zero in many samples, which made it difficult 
for the model to learn useful information on the train-
ing set (underfitting). Therefore, only the relative abun-
dance of ASVs present in at least 10% of samples (named 
 ASVs>10%, corresponding  ASVs<10% represent ASVs that 
appear in no more than 10% samples) were modeled to 
predict.

There were 777 samples to build the alpha diversity or 
 ASVs>10% abundance predictive models. To reduce the 
risk of overfitting during hyperparameter optimization, 
we performed fourfold cross-validation in the train-
ing process. As a result, these models were developed 
by applying fourfold cross-validation to 80% of the total 
samples. Test sets comprising the remaining 20% of the 
whole samples were used to evaluate the performance of 
the models. All models were trained 20 times by different 
seeds to avoid obtaining model bias. Finally, the model 
performance was assessed based on the averaged results.

In the training processes of ANN models, the coeffi-
cient of determination  (R2) and mean square error (MSE) 
were used to evaluate the accuracies and losses. After 
optimization of hyperparameters, we used an Adam opti-
mizer with a batch size of 256, a learning rate of 0.00001, 
a drop-out of 0, and a weight decay of 0.01 to train these 
models. To obtain the number of iterations when the 
model was optimal, we repeatedly tested the variation 
of  R2 and MSE with the number of iterations (Additional 
file 2: Figure S11). The results showed that after reaching 
5000 iterations, the  R2 and MSE of most models started 
to remain stable. The number of iterations for all models 
was set to 10,000, considering the trade-off between the 
time cost of iteration and the lowest losses.

From neutral community model to neutral and non‑neutral 
partitions
To determine the potential importance of stochastic 
processes on WWTP community assembly, we used a 
neutral community model (NCM) to predict the rela-
tionship between an ASVs’ occurrence frequency and 
their relative abundance across the wider metacom-
munity [31]. The model is an adaptation of the neutral 
theory adjusted to large microbial populations. In this 
model, m is an estimate of dispersal between commu-
nities, being the estimated migration rate. Because the 
estimation of migration rate m is affected by the num-
ber of sequences in samples, we flattened the number 

http://www.r-project.org
https://pytorch.org/
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of sequences in each sample to 2000 before fitting the 
neutral community model, allowing us to compare esti-
mated migration rates for different microbial partitions.

In this study, all 46,628 ASVs were separated into 
three partitions depending on whether they occurred 
more frequently than (above partition), less frequently 
than (below partition), or within (neutral partition) the 
95% confidence interval of the NCM predictions [60]. 
To explore the effect of the potential migration rate 
of ASVs on their predictability, we analyzed and com-
pared the predictive accuracy of different (above, neu-
tral, and below) partitions belonging to the common 
 ASVs>10% sub-community.

Definition of core taxa
A global-scale core microbial subcommunity of WWTP 
was determined based on multiple reported measures. 
In this report, we explored the predictability of micro-
bial taxa at the ASV level (100% similarity), as such 
the classification criteria for core ASVs were slightly 
different than those for core OTUs [3]. First, ‘over-
all abundant ASVs’ were filtered out according to the 
mean relative abundance (MRA) across all samples. We 
selected all top 1% ASVs as overall abundant ASVs. Sec-
ond, ‘ubiquitous ASVs’ were defined as ASVs with an 
occurrence frequency in more than 20% of all samples. 
Finally, ‘frequently abundant ASVs’ were selected based 
on their relative abundances within a sample. In each 
sample, the ASVs were defined as abundant when they 
had a higher relative abundance than other ASVs and 
made up the top 80% of the reads in the sample [34]. 
A frequently abundant ASV was defined as abundant 
in at least 10% of the samples. Following the same cri-
teria described above, a core ASV should be one that 
was from the top 1% ASVs, a core ASV also had to be 
detected in more than 20% of the samples and domi-
nant for more than 10% of the samples. Correspond-
ing to the core taxa, ASVs that did not meet the above 
three conditions were called non-core taxa.

Statistical analysis
All alpha diversity measures were conducted using the 
vegan and Picante packages of R (v. 4.0.3). Unless indi-
cated otherwise, an unpaired, two-tailed, two-sample 
Student’s t-test was performed for comparative statis-
tics using the t.test function in the stats package of R 
4.0.3. Linear correlation analyses between different 
parameters were implemented using the lm function in 
the stats package of R 4.0.3. All analysis and graphing 
were done using R4.0.3 or python 3.8.
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