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Abstract 

Background and aims The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to 
map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncologi‑
cal outcomes.

Methods A multicentre, prospective observational study was conducted of CRC patients undergoing primary 
surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, 
ultra‑performance liquid chromatography‑mass spectrometry (UPLC‑MS), targeted bacterial qPCR and tumour exome 
sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify 
clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters 
associated with disease‑free survival over median follow‑up of 50 months.

Results Thirteen mucosal microbiota clusters were identified, of which five were significantly different between 
tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella 
adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 indepen‑
dently predicted favourable disease‑free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii 
and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently 
predictive of worse disease‑free survival (adjusted p = 0.0009). UPLC‑MS analysis revealed two major metabolic (Met) 
clusters. Met 1, composed of medium chain (MCFA), long‑chain (LCFA) and very long‑chain (VLCFA) fatty acid spe‑
cies, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 ×  10−11); Met 2, composed of 
phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 ×  10−12), but 
metabolite clusters were not associated with disease‑free survival (p = 0.358). An association was identified between 
Met 1 and DNA mismatch‑repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in 
microbiota cluster 7.
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Conclusions Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and meta‑
bolic subtypes and predict favourable outcome following CRC resection.

Keywords Colorectal cancer, Gut microbiota, Metabolome, Metataxonomics

Introduction
Colorectal cancer (CRC) accounts for 10% of can-
cers diagnosed worldwide each year [1], and in the UK 
between 2015 and 2017, there were over 16,000 deaths 
per year, making CRC the second commonest cause 
of cancer death [2]. Disease-free survival from CRC is 
strongly predicted by stage [3]. Other predictors of CRC 
recurrence after curative resection include lymph node 
involvement, extra-mural vascular invasion, lymphovas-
cular invasion, perineural invasion and tumour differen-
tiation [4]. However, the evidence base supporting the 
clinical use of these histological factors is sub-optimal 
[5], and increasingly molecular markers, such as micros-
atellite instability (MSI) and mutations in KRAS or BRAF 
genes, are used to guide oncological treatment [6–10]. 
There is an unmet need for precision biomarkers that 
predict outcome and stratify therapy in CRC patients.

The gut microbiome in CRC serves as a rich target 
for biomarker discovery, and there is increasing inter-
est in the gut microbiome as a determinant of CRC out-
come. Mechanistic studies have implicated a number of 
mucosal bacteria, including Fusobacterium nucleatum 
(F. nucleatum) [11], specific strains of Escherichia coli, 
[12, 13] Bacteroides fragilis [14] and Peptostreptococcus 
anaerobius, [15] collectively referred to as pathobionts, 
in CRC development and propagation. High abundance 
of F. nucleatum in CRC tissue has been linked to lower 
levels of T-cell infiltration [16] and worse CRC-specific 
mortality [17]. However, the cancer mucosal microbiota 
is highly individualised, dynamic and subject to geo-
graphical variation; F. nucleatum, for example, is only 
found at high levels in a small minority of patients with 
CRC [17], and not all commensal microbiota, e.g. Bifi-
dobacterium, appear to have prognostic value [18]. The 
wide inter-patient variability and enormous redundancy 
of the gut microbiome argue in favour of a functional 
understanding of community ecology in CRC [19].

Due to a paucity of longitudinal prospective human 
studies, there is currently insufficient evidence to draw a 
direct link between the microbiome and carcinogenesis 
[19]. Existing cohort studies suffer from two main limi-
tations. Firstly, the retrospective design raises concerns 
about the effects of unappreciated confounding factors 
which have been shown to influence the communities 
in the colonic mucosal and cancer microbiota [20]. Sec-
ondly, the focus on a single member of the gut microbial 
community limits the conclusions that can be drawn on 

the functional and metabolic contributions of networks 
of amensalistic and symbiotic microbiota. The driver-
passenger model of CRC proposes a dynamic interplay 
in a genetically susceptible host between evolving com-
munities of microbiota and the developing tumour, 
orchestrated by a co-metabolite milieu in the tumour 
microenvironment [21] .

In this prospective study, we perform comprehensive 
metataxonomic, metabolomic and genomic profiling of 
the CRC mucosa, taking into account covariates known 
to influence the gut microbiota and CRC outcome. In 
contrast to previously published work, we show that the 
presence of pathobiont bacteria in the tumour microbi-
ota is associated with more favourable outcomes follow-
ing CRC resection, and that these bacteria are associated 
with discrete metabolic functions and cancer genotypes.

Methods
Patient recruitment
A prospective observational study was conducted in 
patients undergoing CRC resection at two UK cancer 
centres (Imperial College Healthcare NHS Trust and 
The Royal Marsden NHS Trust) between November 
2014 and January 2017. Ethical approval for this study 
was provided by the Research Ethics Committee and 
Health Research Authority (REC reference: 14/EE/0024). 
Patients’ electronic records were screened for suitability 
prior to attendance at the hospital.

The inclusion criteria were adult patients (18 years or 
over) undergoing curative resection for CRC and were 
able to give informed consent. Exclusion criteria were use 
of antibiotics within 4 weeks prior to surgery, a personal 
history of being diagnosed with inflammatory bowel dis-
ease or a familial CRC syndrome, previous bariatric sur-
gery and current treatment with enteral or parenteral 
nutrition.

Patients were recruited prior to undergoing colorec-
tal surgery. Clinical data were collected prospectively, 
including patient demographics, presenting symptoms, 
medical and drug history, dietary information, smoking 
and alcohol intake and neo-adjuvant and adjuvant onco-
logical treatment. Outcomes including disease recur-
rence and survival were also collected prospectively.

An independently recruited validation sample set was 
acquired from a cohort of patients recruited between 
January 2008 and November 2011 at the University 
Hospital and Faculty of Medicine in Pilsen, Charles 
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University, Czech Republic, under ethical and regula-
tory approval from the Ministry of Health in the Czech 
Republic (approval number: 10230–3).

Tissue sampling and processing
The technique for sampling of tissue was equivalent in 
both cohorts, and the size of specimens used for analysis 
was similar. Immediately after resection, the fresh surgi-
cal specimen was opened by a histopathologist. Sterile 
water was washed gently over the mucosal surface to 
remove adherent faecal matter. Tissue samples were cut 
from the tumour and normal mucosa at least 10 cm from 
the tumour site using a sterile blade. Tissue samples were 
divided into sub-aliquots between 50 and 100  mg, and 
the individual aliquots were stored in cryovials at − 80 °C.

DNA extraction from tissue samples
Total genomic DNA was extracted from the samples 
using the PowerLyzer PowerSoil DNA extraction kit 
(Qiagen, Hilden, Germany; previously by MOBIO) fol-
lowing manufacturer’s instructions with the following 
modifications. A single tissue sub-aliquot for each sam-
ple was used for DNA extraction. Briefly, beads were 
added to each sample tube with a bead beating buffer 
solution and sodium dodecyl sulphate solution and gen-
tly vortexed. The samples were placed in a Bullet Blender 
Storm bead beater for 3 min at power setting 8 to cause 
homogenisation and cell lysis. The tubes were centri-
fuged at 10,000 × g for 3  min at room temperature, and 
500  µl of supernatant was obtained. Subsequent steps 
were according to the manufacturer’s protocol. The 
resulting DNA solution was divided into 20-µl aliquots 
of extracted DNA suspended in TE buffer, which were 
stored at − 80  °C pending downstream analysis. Total 
DNA yield per sample was measured using the Qubit 2.0 
Fluorometer (Life Technologies).

Metataxonomic analysis of tissue microbiota
16S rRNA gene sequencing was performed at Research 
and Testing Laboratory, Texas, USA. Samples were 
amplified for sequencing in a two-step process, using  
a primer set previously described [22]. The forward  
primer was constructed with (5′-3′) the Illumina i5 sequenc-
ing primer (TCG TCG GCA GCG TCA GAT GTG TAT AAG 
AGA CAG) and the gene-specific primer combination  
(28F-YM: GAG TTT GATYMTGG CTC AG + 28F-Borrelia:  
GAG TTT GAT CCT GGC TTA G +  28F-Chloroflex:  
GAA TTT GAT CTT GGT TCA G + 28F-Bifido: GGG TTC  
GAT TCT GGC TCA G) in a 4:1:1:1 ratio. The reverse  
primer was constructed with (5′-3′) the Illumina i7  
sequencing primer (GTC TCG TGG GCT CGG AGA TGT 
GTA TAA GAG ACAG) and the gene-specific reverse 
primer (388R: TGC TGC CTC CCG TAG GAG T) [22].  

Amplifications were performed in 25-µl reactions with 
Qiagen HotStarTaq Master Mix (Qiagen Inc., Valencia, 
CA, USA), 1  µl of each 5-µM primer and 1  µl of tem-
plate. Reactions were performed on ABI Veriti thermo-
cyclers (Applied Biosytems, Carlsbad, CA, USA) under 
the following thermal profile: 95  °C for 5 min, 35 cycles 
of 94 °C for 30 s, 54 °C for 40 s, 72 °C for 1 min, followed 
by one cycle of 72 °C for 10 min and 4 °C hold. Products 
from the first stage amplification were added to a second 
PCR based on qualitatively determined concentrations. 
The second PCR was performed using the Illumina Nex-
tera XT Index Kits. Primers for the second PCR were 
designed based on the Illumina Nextera PCR primers as 
follows: forward-AAT GAT ACG GCG ACC ACC GAG ATC 
TACAC[i5index]TCG TCG GCA GCG TC and reverse-
CAA GCA GAA GAC GGC ATA CGA GAT [i7index]GTC 
TCG TGG GCT CGG. The second stage amplification was 
run under the following thermal profile: 95 °C for 5 min, 
10 cycles of 94 °C for 30 s, 54 °C for 40 s, 72 °C for 1 min, 
followed by one cycle of 72 °C for 10 min and 4 °C hold.

Amplification products were visualised with eGels (Life 
Technologies, Grand Island, NY, USA). Products were 
pooled in equimolar concentrations, and each pool was 
size selected in two rounds using Agencourt AMPure 
XP (Beckman Coulter, Indianapolis, IN, USA) in a 0.75 
ratio for both rounds. Size-selected pools were quantified 
using the Qubit 2.0 Fluorometer (Life Technologies) and 
loaded on an Illumina MiSeq (Illumina, Inc. San Diego, 
CA, USA) 2 × 300 flow cell at 10 pM. Fastq files were gen-
erated for the forward and reverse reads for each sample.

Analysis of 16S rRNA gene amplicon sequencing data
Data analysis was initially performed in mothur v.1.39.5 
[23, 24] (http:// www. mothur. org/ wiki/ MiSeq_ SOP# OTU- 
 based_ analy sis). The forward and reverse reads  
were paired using make.contigs. Ambiguous bases, 
excessively long homopolymers and those sequences 
that were longer than 365 base pairs (97.5% tile) or 
shorter than 335 base pairs (2.5% tile) were removed. 
Duplicate sequences were removed using unique.seqs. 
The sequences were aligned to a customised refer-
ence (SILVA www. arb- silva. de/), and poorly aligned 
sequences were removed. Filter.seqs was used to 
remove empty columns from alignments, and pre.
cluster was implemented to remove chimaeras and 
sequences due to pyrosequencing errors. Split.abund 
command was used to split the sequences into rare 
and abundant groups, and the sequences were assigned 
to taxonomy against the 16S rRNA gene reference of 
RDP v10. Average neighbour clustering was used. Spe-
cies other than bacteria (mitochondria, archaea, etc.) 
were removed using remove.lineage. The sub.sam-
ple command was used to normalise reads to 7500, 

http://www.mothur.org/wiki/MiSeq_SOP#OTU-based_analysis
http://www.mothur.org/wiki/MiSeq_SOP#OTU-based_analysis
http://www.arb-silva.de/
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ensuring identical sequencing depth per sample. This 
resulted in the elimination of 24 samples (7%) from 
the UK cohort and 15 samples (10%) from the Czech 
cohort with read counts less than 7500. A minimum 
coverage threshold of 99.5% was set, which was satis-
fied by all remaining samples. Data for total number 
of reads per sample, before and after QC filtering, and 
coverage are presented in the supplementary informa-
tion (Table S1). Alpha (Shannon and Chao1), and beta 
diversity (weighted UniFrac) indices were calculated in 
mothur. Sequences were assigned to taxonomy against 
the 16S rRNA gene reference of RDP v10. As a second-
ary assignment method, where possible, species assign-
ment was performed using NCBI BLAST for microbial 
genomes [25], with a minimum sequence similarity 
threshold of 97%. Target bacteria culture and bacte-
rium-specific qPCR were subsequently performed to 
confirm the identity of key bacteria (see supplementary 
information).

Metabolomics of tissue extracts
Aqueous and organic phase tissue extractions were 
performed for hydrophilic interaction liquid chroma-
tography (HILIC) and reversed-phase chromatography 
(RPC) ultra-performance liquid chromatography-mass 
spectrometry (UPLC-MS) analyses respectively. Full 
details of the methods for aqueous and organic phase 
extractions can be found in the supplementary infor-
mation. The protocol herein was adapted from those 
previously published [26, 27].

UPLC‑MS analysis
Lipid profiling of the organic phase tissue extract and 
HILIC-LC–MS of the aqueous phase tissue extract 
were performed using the same experimental UPLC-
MS conditions as described previously [28]. For HILIC-
based chromatographic retention and separation of 
polar molecules, a 2.1 × 150  mm Acquity BEH HILIC 
column (Waters Corp., Milford, MA, USA) was used 
at 40  °C operational temperature. The solvent system 
was acetonitrile with 0.1% v/v formic acid and 20-mM 
ammonium formate in water with 0.1% v/v formic acid. 
A flow rate of 0.6 ml/min was used for sample loading 
and gradient elution. Sample handling was performed 
with a Waters 2777C sample manager (Waters Corp., 
Milford, MA, USA). Chromatography was done on an 
ACQUITY UPLC (Waters Corp., Milford, MA, USA) 
which was coupled via a Zspray electrospray ionisa-
tion (ESI) source to a high-resolution orthogonal accel-
eration time‐of‐flight mass spectrometry Xevo G2-S 

oaTOF MS (Waters Corp., Manchester, UK) and oper-
ated in positive and negative ion modes.

Quality control (QC) samples
For quality control and quality assurance, two types of 
QC samples (long-term reference, LTR, and study refer-
ence, SR) were injected at regular intervals throughout 
the run and used to support the analytical quality assess-
ment of the data as described previously [28]. In addi-
tion, a mixture of authentic reference materials acting as 
internal standards (IS) and method reference (MR) were 
added to SR and LTR samples to monitor data quality 
during acquisition.

LC–MS data extraction
Vendor MS data files in the Waters.RAW data files were 
converted to the open mzML [29] format using Prote-
owizard’s msconvert [30]. A denoising step was applied 
during conversion, which consists of removal of all cen-
troid signals with intensity below 100 counts. Untar-
geted peak detection, alignment, grouping, integration 
and deisotoping were performed using Progenesis QI 
2.1 software (Waters Corp., Manchester, UK). Run order 
and batch correction of intensity drifts and feature filter-
ing were performed using the nPYc-Toolbox [31, 32]. The 
SR dilution series and repeated SR injections were used 
to filter features with a Pearson correlation with dilution 
below 0.7 and with a relative standard deviation on the 
SR injections above 30%, as described in Lewis et al. [33].

Chemical identity was assigned by matching accurate 
mass and tandem mass spectrometry (MS/MS) frag-
mentation (of the protonated molecule) measurements 
to reference spectra using an in‐house database con-
structed from analysis of authentic reference materials. 
Where authentic reference materials were commercially 
available, they were used to generate definitive molecu-
lar identification by direct matching of chromatographic 
and spectral qualities (including accurate mass, MS/
MS spectra and isotopic distribution) to those observed 
in the profiling data and subsequent targeted MS/MS 
experiments. Targeted extraction and integration of pre-
annotated features were performed using the R package 
peakPantheR [34] .

Cancer hotspot panel
Genes of interest in CRC (PIK3CA, APC, HRAS, TP53, 
BRAF and KRAS) were sequenced in 30 tumour sam-
ples at the NHS molecular pathology laboratory, Ham-
mersmith Hospital, London UK, using the Ion AmpliSeq 
Cancer Hotspot Panel v2 (ThermoFisher) according 
to manufacturer specifications (https:// www. therm 
ofish er. com/ docum ent- conne ct/ docum ent- conne ct. 
html? url= https% 3A% 2F% 2Fass ets. therm ofish er. com% 

https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0006735_AmpliSeq_DNA_RNA_LibPrep_UG.pdf&title=VXNlciBHdWlkZTogSW9uIEFtcGxpU2VxIExpYnJhcnkgS2l0IDIuMA
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0006735_AmpliSeq_DNA_RNA_LibPrep_UG.pdf&title=VXNlciBHdWlkZTogSW9uIEFtcGxpU2VxIExpYnJhcnkgS2l0IDIuMA
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0006735_AmpliSeq_DNA_RNA_LibPrep_UG.pdf&title=VXNlciBHdWlkZTogSW9uIEFtcGxpU2VxIExpYnJhcnkgS2l0IDIuMA
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2FTFS- Assets% 2FLSG% 2Fman uals% 2FMAN 00067 35_ 
Ampli Seq_ DNA_ RNA_ LibPr ep_ UG. pdf& title= VXNlc 
iBHdW lkZTo gSW9u IEFtc GxpU2 VxIEx pYnJh cnkgS 2l0ID 
IuMA = =).

Tumour exome sequencing
Full exome sequencing was performed on tumour sam-
ples (mean depth of 142–162 ×) and paired normal 
mucosa samples (mean depth 87–105 ×) from nine 
patients. An Agilent human exome sequencing kit was 
used. Full methods are described in the supplementary 
methods.

Data integration and statistical analysis
Microbiota alpha diversity was analysed in GraphPad 
Prism v8 using Wilcoxon matched-pairs signed-rank 
tests. Beta diversity was analysed using PERMANOVA 
(R-vegan function adonis). Individual operational taxo-
nomic units (OTUs) were combined at the species level 
if names were identical, unclassified OTUs (not allocated 
to specific species) were combined at the genus level and 
any unclassified bacteria were removed. Last, any OTUs 
with less than 25% of non-zero values were removed; the 
final data contains 94.05% of the total variance of the raw 
data. Following these curation steps, a median of 97.4% 
of reads remained per sample (IQR: 93.2–99.1). Fatty acid 
(FA) metabolites and metabolites with FA chains from 
the targeted metabolomics data were also combined 
based on FA classes as short-chain FA (2–6 carbons), 
medium-chain FA (7–12 carbons), long-chain FA (13–21 
carbons) and very-long-chain FA (22 + carbons).

Partial correlations, using Spearman-rank-based cor-
relation, were calculated for the 16S rRNA gene and 
metabolomics data individually (tumour samples only); 
these were corrected for potential confounding factors 
(population factors: age, sex, ethnicity; lifestyle factors: 
body mass index, smoking (current), smoking (ever), 
alcohol, red meat eater; clinical: Charlson score, protein-
pump-inhibitor use, tumour location, neoadjuvant treat-
ment, mucinous tumour type, tumour differentiation, 
extra-mural vascular invasion (EMVI) status, American 
Joint Committee on Cancer (AJCC) stage). Significance 
of each partial correlation was determined based on a 
permutation strategy where the data of each variable 
was scrambled independently from other variables, and 
partial correlations were recalculated. This process was 
repeated 1000 times, and a partial correlation of two 
variables was considered significant if less than 5% of the 
random permutations had higher (in the case of r > 0) 
or lower (for r < 0) correlations. The partial correlations 
reported are those that were significant after the permu-
tation adjustment to control for multiple testing.

The clustering was obtained using hierarchical cluster 
analysis (correlation distance, average linkage), and the 
optimal number of clusters was determined by calculat-
ing the modularity of the splitting and comparing this 
with 1000 permutations of the correlation data [35]. The 
optimal modularity is the splitting where the modularity 
is a local maximum and the most significantly different 
from the random permutations (adjusted for multiple 
testing using the Benjamini–Hochberg FDR). If this does 
not yield a single optimum, the splitting is chosen as the 
one that is most different from the random alternatives 
(and FDR < 5%).

Throughout the  analysis, the included variables and 
obtained clustering are given for the UK cohort and 
applied to the validation (Czech) cohort. The modularity 
(and 1000 random permutations) is recalculated for the 
validation cohort and significance assessed at the split-
ting level obtained from the training (UK) data.

The variables within each cluster were combined by 
calculating the first left singular vector (first principal 
component score) of the data of those variables. These 
latent representations of each cluster were used to test 
the difference between tumour samples and (paired) nor-
mal tissue (paired t-test). 16S rRNA gene clusters were 
correlated with the metabolites (controlled for the sam-
ple confounders), and significance was determined based 
on the same permutation strategy as used for the initial 
analysis. All calculations were performed in MATLAB 
v8.3 (the MathWorks, Natick, USA). The codes are avail-
able from GitHub (https:// github. com/ jmp111/ CRC) 
and the processed data from Zenodo (https:// doi. org/ 10. 
5281/ zenodo. 73266 74).

To test associations between microbiota and metabo-
lite clusters and target gene mutations, Mann–Whitney 
tests were performed.

A partial least squares discriminant analysis model was 
calculated using Monte Carlo cross-validation with 1000 
iterations [36] for the metabolomics data accounting for 
the repeated measures design (tumour vs paired normal 
tissue), to avoid samples from the same individual being 
split between training and test sets. Moreover, these 
data are centred for each individual to allow the model 
to focus on within-person differences that reflect the dif-
ferences between the tumour and paired normal tissue. 
The targeted data (training sets) were auto-scaled (mean 
centering followed by unit-variance scaling) in each itera-
tion, and scaling factors (mean, standard deviation) were 
applied to each independent test set. Results are repre-
sented as scores from the model for samples and as a sky-
line plot (− log10(FDR) × sign(β)) for variables. A p-value 
is calculated for each variable across the 1000 models 
(mean) using 25 bootstrap models each to evaluate the 

https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0006735_AmpliSeq_DNA_RNA_LibPrep_UG.pdf&title=VXNlciBHdWlkZTogSW9uIEFtcGxpU2VxIExpYnJhcnkgS2l0IDIuMA
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0006735_AmpliSeq_DNA_RNA_LibPrep_UG.pdf&title=VXNlciBHdWlkZTogSW9uIEFtcGxpU2VxIExpYnJhcnkgS2l0IDIuMA
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0006735_AmpliSeq_DNA_RNA_LibPrep_UG.pdf&title=VXNlciBHdWlkZTogSW9uIEFtcGxpU2VxIExpYnJhcnkgS2l0IDIuMA
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0006735_AmpliSeq_DNA_RNA_LibPrep_UG.pdf&title=VXNlciBHdWlkZTogSW9uIEFtcGxpU2VxIExpYnJhcnkgS2l0IDIuMA
https://github.com/jmp111/CRC
https://doi.org/10.5281/zenodo.7326674
https://doi.org/10.5281/zenodo.7326674


Page 6 of 14Alexander et al. Microbiome          (2023) 11:100 

regression coefficient (β) variance (25,000 models). These 
were then adjusted using the FDR.

Finally, we conducted survival analysis with disease-
free survival used as the outcome of interest. Tumour 
samples for each patient were assigned to ‘high’ or ‘low’ 
for microbiota clusters 1 and 7 and metabolome clus-
ters 1 and 2 by dichotamising at the median for the rela-
tive abundance of the summed data from each cluster. 
Kaplan–Meier curves and differences in survival were 
calculated with the log-rank test. Cox proportional haz-
ard models were used to investigate the associations, 
controlling for confounders including age, sex, body mass 
index (BMI), tumour anatomical location (right colon, 
left colon and rectum), AJCC stage, extra-mural vascu-
lar invasion and chemotherapy. Analysis was performed 
using the ‘survival’ (v3.2.10) and ‘survminer’ (v0.4.9) 
packages in R. All statistical tests were two-sided, and 
statistical significance was determined as a p-value < 0.05.

Results
Patient demographics and histological findings
Seventy-four CRC patients were included in the analysis 
of the UK cohort. Demographic, clinical and histopatho-
logical characteristics are shown in Table 1. Demographic 
and histological information for 61 CRC patients in the 
Czech validation cohort is presented in Table S2.

Microbiota clustering identifies distinct bacterial 
communities linked to CRC outcome
To determine differences in the mucosal microbiota 
associated with CRC primary tumours, we undertook a 
paired analysis of diversity metrics comparing tumour 
samples with normal adjacent mucosa. There was no sig-
nificant difference in Chao richness or Shannon diver-
sity between tumour and paired normal mucosa (Fig.  1 
a and b; p = 0.41 & 0.99, respectively). Weighted UniFrac 
distances were used to perform nonmetric multidimen-
sional scaling (NMDS) of samples (Fig.  1d). Applying a 
PERMANOVA test demonstrated significant difference 
in beta diversity between tumour and paired normal 
mucosa (R2 = 0.027; p = 0.014).

Clustering analysis was performed on tumour samples 
to determine the optimal splitting of bacterial clusters. 
This analysis defined thirteen bacterial clusters (Fig. 1c). 
The largest cluster was cluster 1 (21 OTUs). The most 
abundant OTUs in cluster 1 were Ruminococcus gnavus 
(proportion of cluster = 0.39), Faecalibacterium praus-
nitzii (0.23) and Blautia species (0.05). Other notable 
clusters were cluster 2 (six OTUs) including Bacteroides 
vulgatus (proportion of cluster = 0.80) and Parabac-
teroides distasonis (0.13) and cluster 7 (four OTUs) 
including Fusobacterium nucleatum (0.48), Gemella 
haemolysans (0.07) and Granulicatella adiacens (0.05). 

Table 1 Demographic, clinical and histological data of UK 
cohort

N 74

Male:female 41:33

Median BMI (range) 26.5 (15.1–36.0)

Median age (range) 70 (36–91)

Ethnicity

 White 56

 Asian/Asian British 11

 Black/Black British 6

 Other 1

Smoking

 Never smoker 33

 Current smoking 9

 Previous smoking 32

Alcohol

 Non-drinker 29

 1–10 units per week 25

 10–20 units per week 13

 > 20 units per week 7

Vegetarian 3

Red meat

 < 2 portions/week 40

 2 or more portions/week 34

Family history of CRC 16

Charlson score (median) 5

Proton‑pump Inhibitor use 17

Tumour site

 Rectum 23

 Sigmoid & recto-sigmoid 15

 Descending 2

 Splenic flexure 3

 Transverse 8

 Hepatic flexure 2

 Caecum & ascending colon 21

Neo‑adjuvant treatment

 None 68

 Long-course chemoradiotherapy 5

 Chemotherapy alone 1

T stage

 T1/2 18

 T3 42

 T4 14

N stage

 N0 51

 N1 18

 N2 5

M stage

 M0 71

 M1 3

AJCC stage

 I 14
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Comparison of tumour samples against their paired 
normal mucosal samples revealed five of the thirteen 
clusters to be significantly different (Fig.  1e). Cluster 
7 and cluster 8 were strongly associated with tumour 
(PFDR = 2.80 ×  10−4 & PFDR = 5.07 ×  10−3, respectively), and 
clusters 1 and 2 had strong negative associations with 
tumour (PFDR = 9.25 ×  10−4 and PFDR = 2.80 ×  10−4, respec-
tively). Cluster 13 (containing Intestinibacter bartlettii 

and unclassified Clostridium sensu stricto) was also neg-
atively associated with cancer (PFDR = 0.008). To validate 
the UK clustering results, an identical approach was 
applied to the 61 Czech CRC samples (Fig. S1). Again, 
thirteen clusters were identified using this algorithm. 
Bacteria-specific qPCR confirmed the identity at species 
level of key bacteria in cluster 1: Ruminococcus gnavus 
and Faecalibacterium prausnitzii and in cluster 7: Fuso-
bacterium nucleatum and Granulicatella adiacens (Fig. 
S2).

Harnessing the statistically significant clusters of 
microbiota identified herein, we tested the hypothesis 
that the mucosa-associated bacterial ecological niche of 
CRCs would be predictive of disease outcome following 
primary resection. A total of 127 patients (all UK based) 
were included in the analysis of microbiota clusters and 
outcome. This cohort included the 74 patients from the 
aforementioned UK cohort, and an additional 53 patients 
in whom tumour microbiota data, but not tumour metab-
olome data, were available. Characteristics of the 127 
patients analysed are shown in Table 2. Five patients had 
stage 4 disease. Two of the five had peritoneal metastatic 
disease which was excised at primary surgery. Another 
two had peritoneal metastasis that was not resected, 
and the patients received adjuvant chemotherapy. One 

Table 1 (continued)

 II 37

 III 20

 IV 3

Differentiation

 Well 3

 Moderate 54

 Moderate–poor 4

 Poor 13

DNA mismatch repair deficiency$ 14/46

Extra‑mural venous invasion 27

Lymphovascular invasion 28

Tumour budding 47

$MMR classification available on 46 of 74 tumour samples

Fig. 1 Microbiota analysis of the colorectal cancer mucosa a Chao richness paired comparison between tumour and paired normal mucosa 
(Wilcoxon matched‑pairs signed‑rank test p = 0.41). b Shannon diversity paired comparison between tumour and paired normal mucosa (Wilcoxon 
matched‑pairs signed‑rank test p = 0.99). c Hierarchical clustering of microbiota. Y‑axis labels are species or higher taxonomic rank if species data is 
not known; x‑axis labels show the order. d Beta diversity displayed as a nonmetric dimensional scaling (NMDS) plot of weighted UniFrac distances 
for normal mucosa (blue) and tumour (red). Ellipses drawn to indicate 95% confidence intervals. R2 = 0.027; p = 0.014 (adonis PERMANOVA). e Paired 
comparison between tumour and tumour‑paired normal samples for each identified microbiota cluster
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patient had lung metastases which were not amenable to 
metastasectomy. In total, forty patients (31.5%) received 
adjuvant chemotherapy. Anatomical distribution of can-
cers, AJCC stage, tumour differentiation and EMVI sta-
tus were represented in proportional numbers to the 
74-patient UK cohort. The median period of follow-up 
was 50  months (interquartile range 34–60). Over the 
course of follow-up, 90 patients (70.9%) remained alive 
and had no recurrence of CRC, and 37 patients (29.1%) 
suffered recurrence of CRC and/or died.

In univariate Cox regression analysis, treating cluster 
proportional abundance as a continuous variable, lower 
abundance of cluster 1 and higher abundance of cluster 
7 microbiota in tumour samples were significantly asso-
ciated with better disease-free survival (p < 0.0001 and 
p = 0.040, respectively). The associations between micro-
biota clusters 1 and 7 with disease-free survival were 
tested in multivariable analysis. Confounding variables 
were first subjected to separate univariate Cox regres-
sion, revealing that AJCC stage (treated as a categorical 
variable: stages 1–4) and tumour differentiation (cate-
gorical variable: poor, moderate-poor, moderate and well 
differentiated) were associated with outcome (p = 0.005 
& p = 0.036, respectively). Other variables including age, 
sex, BMI, use of adjuvant therapy, anatomical location 
of primary tumour and EMVI status were not signifi-
cantly associated with outcome (Table S3). In multivari-
able analysis, accounting for the significant covariates, 

microbiota cluster 1 (hazard ratio (HR) 1.26; 95% CI 
1.10–1.45; = 0.0009) and cluster 7 (HR 0.60; 95% CI 0.38–
0.96; p = 0.031) remained significantly associated with 
outcome (Fig. 2 a and b).

Metabolomic and tumour genomic analyses deliver 
insights into relationship between the microbiota and CRC 
outcome
To gain a deeper understanding of the factors driving 
our observed association between the tumoral micro-
biota and disease-free survival, we performed multi-
omic analysis of the CRC mucosal microbiota. First, 
multivariate principal components analysis (PCA) and 
partial least squares discriminant analysis (PLS-DA) 
were undertaken comparing metabolomic data from 
tumour (T) samples and paired normal (TPN) samples 
from the 74 UK CRC patients (Fig. 3 a and b). In unsu-
pervised PCA, separation between T and TPN samples 
is evident in the first principal component (Fig. 3a), and 
PLS-DA modelling (Fig.  3b) performed highly robustly 
in separating T and TPN (R2Y = 0.95; Q2Y = 0.89). A sky-
line plot was derived to demonstrate metabolites which 
were significantly distinct between T and TPN (Fig. 3c). 
Tumour-associated metabolites included phospholipids 
(phosphatidylcholines (PC), phosphatidylethanolamines 
(PE) and lysophosphatidylinositol (LPI)), sphingolipids 
(ceramides, hexosylceramides and lactosylceramides), 
amino acids (alanine, taurine and proline) and purine 
derivatives (hypoxanthine and 7-methylguanine). Metab-
olites enriched in paired normal mucosa included triglyc-
erides, creatinine, N1-methyl-4-pyridone-3-carboxamide 
and cytosine.

Using the same bioinformatic approach as was used to 
cluster the microbiota, clustering analysis was performed 
on the tumour (T) metabolite data, which defined the 
optimal number of clusters as two (Fig.  3d). Notable 
components of cluster Met 1 included FAs, medium-
chain (MCFA), long-chain (LCFA) and very-long-chain 
(VLCFA) species, ceramides and lysophospholipids. 
Cluster Met 2 included a large number of PC species, 
nucleosides, amino acids and carnitines. Paired com-
parison of the two metabolite clusters between tumour 
and paired normal mucosa revealed a highly signifi-
cant paradoxical association (Fig.  3e). Metabolite clus-
ter 1 was strongly negatively associated with tumour 
(p = 2.61 ×  10−11), and metabolite cluster 2 was strongly 
positively associated with tumour (p = 1.30 ×  10−12). The 
dichotomous clustering into two groups of metabolites 
seen in the UK data was mirrored in the Czech data (Fig. 
S5). Unlike the microbiota, in Cox proportional hazard 
analysis, tumoral metabolite cluster abundance was not 
associated with disease-free survival (p = 0.358).

Table 2 Characteristics of 127 CRC patients in Cox proportional 
hazards outcome analysis

Median follow‑up in months (IQR) 50 (34–60)

CRC recurrence or death 37 (29.1%)

Median age at CRC resection 70 (36–91)

Male:female 68:59

Tumour location

 Right colon 52

 Left colon 23

 Rectum/recto-sigmoid 52

Adjuvant chemotherapy 40 (31.5%)

AJCC stage

 I 23

 II 56

 III 43

 IV 5

Differentiation

 Well 4

 Moderate 96

 Moderate–poor 5

 Poor 22

EMVI 47 (37.0%)
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Next, an integration of paired (metataxonomic-based) 
microbiota and metabolome data was performed to iden-
tify bacteria–metabolite associations in the CRC mucosa 
(Fig. 4a). Additionally, a network analysis linking bacteria 
with genes encoding enzymatic functions involving the 
identified metabolites was derived from searching the 
KEGG database (Fig. S4). Several notable associations 
were found. Gamma-butyrobetaine was correlated with 
cluster 7 microbiota that includes Fusobacterium nuclea-
tum and negatively correlated with cluster 1 microbiota 
including Ruminococcus gnavus, Blautia, Faecalibacte-
rium prausnitzii and Bifidobacterium longum. Gamma-
butyrobetaine is the metabolic precursor of carnitine 
biosynthesis and is also known as a potential source of 
carbon and nitrogen for bacteria [37]. The related com-
pound 3-methyl-4-(trimethylammonio)butanoate is 
bacterially derived from anaerobic commensals in the 

gut and thought to be metabolically active in the central 
nervous system through inhibition of FA oxidation [38]. 
Lactosylceramide (LacCer) was positively correlated with 
Fusobacterium nucleatum and unclassified Leptotrichia 
and negatively correlated with Ruminococcus gnavus, 
Blautia spp., Faecalibacterium prausnitzii and Para-
bacteroides distasonis. Intestinal epithelial cells express 
LacCer which binds both commensal and pathogenic 
bacteria [39, 40]. In a murine context, the accumula-
tion of LacCer has been implicated in the development 
of colitis-associated CRCs [41]. Lysophosphatidic acid 
(LPA) was positively correlated with Collinsella aero-
faciens, Blautia spp. and Faecalibacterium prausnitzii. 
Aberrant LPA production and signalling have been 
linked to neoplasia and cancer progression [42]. Pheny-
lalanine was positively correlated with Fusobacterium 
nucleatum and Bacteroides vulgatus. There is evidence 

Fig. 2 Survival analysis demonstrates prognostic utility of colorectal cancer mucosal microbiota clustering. Kaplan–Meier curves illustrating the 
difference in disease‑free survival in groups stratified by CRC mucosal abundance of microbiota (a cluster 1 microbiota; b cluster 7 microbiota) 
and by established prognostic factors (c AJCC stage; d tumour differentiation). Time is measured in months since primary tumour resection. For 
microbiota clusters, individuals were split at the proportional median and classified as “low” (red) and “high” (blue) expressors of each cluster of 
microbiota. Log‑rank test used to generate p‑values
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that phenylalanine is required for the growth of anaer-
obes including F. nucleatum and Porphyromonas gingi-
valis [43].

Associations were tested between the microbiota and 
metabolome clusters with DNA mismatch repair (MMR) 
status (analysed routinely by immunohistochemistry dur-
ing histopathological analysis) and tumour driver muta-
tions from tumour hotspot analysis (Fig. 4b). A positive 
association was found between Met cluster 1 and MMR-
deficient tumours (p = 0.005). No associations were 
found with other mutations including APC, PIK3CA, 
KRAS and TP53, and we did not identify mutations 

found exclusively to be associated with individual micro-
biota. Recognising that MMR deficiency is an important 
determinant of CRC outcome, we further validated our 
finding of an association between microbiota cluster 7 
and disease-free survival in 79 patients with recorded 
MMR status (n = 17 MMR-deficient tumours). Account-
ing for all covariates in the prior Cox proportional haz-
ard’s analysis and including MMR status, microbiota 
cluster 7 remained associated with disease-free survival 
(p = 0.042).

Finally, in an exploratory analysis of the tumours 
which were analysed by whole exome sequencing 

Fig. 3 Metabolomic analysis of the colorectal cancer mucosa. a Principal components analysis of metabolomic data for tumour (blue) and paired 
normal tissue (red). b Cross‑validated scores plot of the repeated measures partial least squares discriminant analysis model (goodness‑of‑fit 
R2Y = 0.95, goodness of prediction Q2Y = 0.89). Tumour represented in blue and paired normal tissue in red. c Skyline plot indicating metabolites 
which are significantly higher in tumour (upward blue arrows) or higher in paired normal mucosa (downward red arrows). The dotted horizontal 
lines indicate the cut‑off for the PFDR at 5%. d Hierarchical clustering of metabolites. Fatty acids are grouped in SCFA, MCFA, LCFA and VLCFAs. e 
Paired comparison between tumour and paired normal mucosa samples for each identified metabolite cluster
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(demographics Table S4), FBXW7 gene mutations (n = 3) 
were exclusively found in tumoural samples in which 
microbiota cluster 7 was dominant (Fig. S5). Tumour 
samples with high mutation burden and with mutations 
in mismatch repair genes were dominated by various 
microbiota and metabolome clusters, although MSH6 
gene mutations were present only in tumour samples in 
which metabolome cluster 1 was dominant.

Discussion
This multi-omic prospective study is the first compre-
hensive combined analysis of the CRC mucosal micro-
biota and tumour metabolome. In patients undergoing 
surgical resection, we show that the bacterial commu-
nity composition of the CRC mucosal microbiota, but 
not the CRC metabolome, is predictive of disease-free 
survival, independent of variables including AJCC 
stage, tumour location, adjuvant oncological treatment 
and tumour MSI status. Our significant finding is that 
higher tumour abundance of a cluster of microbiota 
(cluster 7), including pathobiont genera Fusobacterium, 
Granulicatella and Gemella, is independently associ-
ated with better outcomes following primary resection 
questions orthodox thinking on the involvement of the 
gut microbiota in CRC prognosis. Previous studies have 
associated high Fusobacterium nucleatum abundance, 
measured individually, with unfavourable outcomes 
[17]. Interestingly, however, a small retrospective 

study with short follow-up identified a non-significant 
association between a bacterial co-abundance group 
containing Fusobacterium and longer survival [44]. A 
plausible interpretation of our results is that the higher 
abundance of cluster 7 pathobiont microbiota may pre-
cipitate a more active immune response to CRC. Thus, 
in the aftermath of primary CRC resection, immune 
memory against such cancers may persist and remain 
vigilant against local or distant recurrence. In contrast, 
tumours abundant in cluster 1 microbiota might fail to 
induce immune memory, and thus, recurrence in such 
cases goes un-checked by host immunity. It has been 
shown that higher density of intratumoral infiltrates 
of  CD8+ cytotoxic T lymphocytes is associated with 
reduced CRC recurrence and better prognosis, inde-
pendent of cancer stage [45]. The subsequent valida-
tion of the Immunoscore [46] as a reliable estimate of 
risk of CRC recurrence raises the question of whether 
exogenous factors, such as the gut microbiota, might be 
contributing to instigation of post-resection immune 
surveillance. Existing data suggest that F. nucleatum is 
inversely associated with intratumoural  CD3+ T-cell 
density, but not associated with density of  CD8+ T cells 
[16], although the contribution of the wider gut micro-
biota ecosystem has yet to be explored. For example, 
Bacteroides fragilis, another pathobiont, can trigger an 
inflammatory pro-carcinogenic cascade via its epony-
mous toxin [47].

Fig. 4 Integration of the colorectal cancer mucosal microbiota, metabolome and tumour driver mutations. a Correlation between individual 
microbiota and metabolites. Positive correlations shown in shades of red; negative correlations in shades of blue. Only statistically significant 
correlations are shown. Microbiota and metabolites are ordered by the clustering from the individual dataset‑specific analyses. Microbiota clusters 
are labelled along the right side of the figure and metabolite clusters along the top with dotted lines indicating division of clusters. b Box and 
whisker plots showing median and 95% confidence intervals for cluster proportions in patients with ( +) and without ( −) target mutations of 
interest. **p‑value < 0.01
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A recent large study of the faecal metabolome demon-
strated the potential utility of metabolites as biomarkers 
in diagnosing CRC [48], but concomitant studies on the 
CRC mucosal metabolome, and its relevance to progno-
sis, are lacking; existing knowledge is restricted to studies 
derived from small and/or retrospective patient cohorts 
[49–51]. The analysis of the tumour mucosal metabo-
lome in the current study has revealed 14 classes (a total 
of 85 metabolites) of CRC-associated lipids, amino acids, 
purine derivatives and other small molecules. We have 
also identified several microbiota–metabolite associa-
tions which may be of mechanistic importance in CRC 
development and propagation. Surprisingly, in contrast 
to the association seen between microbiota clusters 
and prognosis, no such association was found between 
metabolite clusters and disease-free survival. A possi-
ble explanation is that the unbiased hierarchical cluster-
ing approach used splits the metabolite data into only 
two groups; it may be that prognostically important 
sub-groups of metabolites are not highlighted with this 
method.

Our study has some key strengths. Samples and clini-
cal data were collected prospectively, and our state-of-
the-art bioinformatic approach ensures that the full 
complexity of the CRC ecological niche is captured while 
extensively accounting for a multitude of potential con-
founding factors in the analysis. Cancer driver mutation 
and exome sequencing data have also been incorpo-
rated in the analysis, and clinical follow-up extending 
to a median duration of 50 months allows for meaning-
ful analysis of patient outcomes following CRC primary 
resection. We also acknowledge limitations of our study. 
Although we have validated the results of UK CRC 
patient microbiota and metabolite clustering analyses in 
an independently recruited sample set from the Czech 
Republic, clinical follow-up in the Czech cohort was not 
sufficient to corroborate the links made between micro-
biota clusters and disease-free survival in the UK cohort. 
Owing to our interest in microbiota–host interactions in 
the tumour microenvironment, we focussed modelling 
on the CRC mucosal microbiota rather than the faecal 
stream, and paired normal mucosa (rather than normal 
mucosa from healthy control patients) was used as the 
control sample. It has been suggested that repeated rare-
fication of microbiota sequencing data without replace-
ment may lead to more robust representation of observed 
sequences [52], and this was not performed in our study. 
Although our rich metabolomic dataset represents the 
ultimate functional readout of host–microbiota interac-
tions, we do not have shotgun metagenomic data in this 
study, which somewhat limits the information we can 
garner on microbiota functional predictions. Finally, our 
tumour genetic data are not complete for all samples, and 

we do not have immune data, which might have allowed 
further interpretation of our results in the context of host 
responses.

Conclusions
In conclusion, our prospective study supports a role 
for the gut microbiota in clinical outcomes in patients 
undergoing primary resection for CRC, independent of 
variables such as AJCC stage, tumour location and adju-
vant therapy. We have also identified tumour–microbiota 
co-metabolites, which warrant further investigation as 
potential mediators of disease outcome. Future stud-
ies should focus on establishing mechanisms through 
which communities of CRC mucosa-associated com-
mensals, and their metabolic output, might influence 
determinants of disease-free survival, including immune 
surveillance.
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