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Abstract 

Background During the course of history, various important lifestyle changes have caused profound transitions of 
the gut microbiome. These include the introduction of agriculture and animal husbandry, a shift from a nomadic to 
a more sedentary lifestyle, and recently increased levels of urbanization and a transition towards a more Western life‑
style. The latter is linked with shifts in the gut microbiome that have a reduced fermentative capability and which are 
commonly associated with diseases of affluence. In this study, in which 5193 subjects are included, we investigated 
the direction of microbiome shifts that occur in various ethnicities living in Amsterdam by comparing 1st and 2nd 
generation participants. We furthermore validated part of these findings with a cohort of subjects that moved from 
rural Thailand to the USA.

Results The abundance of the Prevotella cluster, which includes P. copri and the P. stercorea trophic network, dimin‑
ished in the 2nd generation Moroccans and Turks but also in younger Dutch, whilst the Western‑associated Bacte-
roides/Blautia/Bifidobacterium (BBB) cluster, which has an inverse correlation with α‑diversity, increased. At the same 
time, the Christensenellaceae/Methanobrevibacter/Oscillibacter trophic network, which is positively associated with 
α‑diversity and a healthy BMI, decreased in younger Turks and Dutch. Large compositional shifts were not observed in 
South‑Asian and African Surinamese, in whom the BBB cluster is already dominant in the 1st generation, but ASV‑level 
shifts towards certain species, associated amongst others with obesity, were observed.

Conclusion The Moroccan and Turkish populations, but also the Dutch population are transitioning towards a less 
complex and fermentative less capable configuration of the gut microbiota, which includes a higher abundance 
of the Western‑associated BBB cluster. The Surinamese, whom have the highest prevalence of diabetes and other 
diseases of affluence, are already dominated by the BBB cluster. Given the continuous increase in diseases of afflu‑
ence, this devolution towards low‑diversity and fermentatively less capable gut microbiome compositions in urban 
environments is a worrying development.
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Graphical Abstract

Background
The advent of agriculture and animal husbandry [1, 2], 
the shift from a nomadic to a sedentary lifestyle [3], 
urbanization [4, 5], and the (concomitant) shift towards 
a more Western lifestyle has dramatically affected the 
microbiome composition in humans [6–8]. The accom-
panying (d)evolution of the human microbiome has 
been associated with the rise of diseases of affluence, 
both inside and outside the gut, immune-mediated, and 
otherwise [6, 7, 9]. The more Western lifestyle-associ-
ated gut microbiome, in particular ones dominated by 
Bacteroides, have been shown both in  vitro [10] and 
in vivo [11] to be fermentatively inferior to (non-West-
ern) Prevotella dominated gut microbiomes as short 
chain fatty acid (SCFA) production levels of acetate, 
butyrate, and propionate are halved or even less. This 
difference in fermentative capability is not associated 
with ethnicity as Americans of African descent typi-
cally have the same gut microbiome compositions as 

Americans of European descent and have similarly 
“low” SCFA production levels [12]. Studies on the gut 
microbiota of people, and their descendants, migrat-
ing from non-Western societies into Western socie-
ties like the US or Europe often show the incremental 
replacement of Prevotella with Bacteroides [9, 13]. 
Interestingly, similar shifts were seen in Irish Travel-
lers forced into a more sedentary urbanized lifestyle [3]. 
Bacterial composition and functionality are however 
not just determined by the abundance of a few impor-
tant genera but by many (phylogenetically) different 
species, many of whom form collaborative complexes 
of microbes that interchange metabolites via cross-
feeding and syntrophic interactions [14] here called 
“trophic networks.”

The Healthy Life in an Urban Setting (HELIUS) 
study is a prospective cohort study that includes nearly 
25,000 participants of various ethnicities living in the 
same geographical location (Amsterdam). In over 5196 
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participants, V4-16S ribosomal data has been generated. 
Though the H in HELIUS stands for “healthy,” obesity, 
diabetes, and depression rates are high but also une-
venly distributed amongst the different ethnicities [15]. 
The continued westernization of the gut microbiome is 
thought to contribute to these rates as functional fermen-
tative diversity decreases. These shifts can be visualized 
by comparing the microbiota of the 1st and 2nd genera-
tion of ethnic minorities found with the HELIUS cohort, 
which include Moroccans, Turks, African Surinamese, 
and South-Asian Surinamese. The 1st generation consists 
out of immigrants (born outside the Netherlands) and 
the 2nd generation participants were born in the Nether-
lands but whose parents were born abroad. In this high-
powered study cohort, we tested our hypothesis that a 
convergence of the microbiota occurs in ethnic minori-
ties, both at a strain- as well as on a trophic-network 
level, towards a composition more similar to the Dutch 
origin group. Specific findings were validated using the 
multi-ethnic, multi-generational cohort of Vangay et  al. 
(USI cohort) [9].

Methods
Clinical study inclusion/exclusion criteria and study design
This study was conducted on a subset from the prospec-
tive HELIUS study [15]. The aim of the HELIUS study 
is to investigate the causes of the unequal burden of 
disease across ethnic groups living in Amsterdam, the 
Netherlands. Between 2011 and 2015, participants aged 
18–70  years were randomly sampled, stratified by eth-
nic origin, through the municipal registry of Amster-
dam, and were sent an invitation letter (and a reminder 
after 2  weeks) by mail. 55% of those invited were con-
tacted (55% among Dutch, 62% among Surinamese, 57% 
among Ghanaians, 46% among Turks, and 48% among 
Moroccans), either by response card or after a home 
visit by an ethnically matched interviewer. Of those, 
50% agreed to participate (60% among Dutch, 51% 
among Surinamese, 61% among Ghanaians, 41% among 
Turks, and 43% among Moroccans). Therefore, the over-
all response rate was 28% with some variations across 
ethnic groups, resulting in a total of nearly 25,000 par-
ticipants included at baseline. Subjects from five of the 
largest ethnic groups included in HELIUS were used in 
this investigation, including those of Dutch (Northwest-
ern European ancestry), Moroccan (Northern African, 
Mediterranean, and Middle Eastern ancestries), African 
Surinamese (“Creoles” descending from former slaves, 
mixed Western African and Dutch ancestries), South-
Asian Surinamese (“Hindustanis” descending from work-
ers arriving to the Suriname post-slavery, South-Asian/
Indian ancestry) and Turkish origin (Mediterranean, 
Caucasian, and Middle Eastern ancestries) [15]. Those 

of Ghanaian origin were excluded in this study due to 
the low number of the 2nd generation participants. A 
person from a non-Dutch ethnic group was considered 
to be the 1st generation when the person was born out-
side of the Netherlands and had at least one parent who 
was born outside the Netherlands. A person from a non-
Dutch ethnic group born in the Netherlands of whom 
both parents were born outside of the Netherlands was 
considered to be the 2nd generation [16]. A person was 
considered Dutch and considered for inclusion when he/
she was born in the Netherlands and had two parents 
that were also born in the Netherlands. Participants of 
the Surinamese ethnic group were further sub-classified 
according to their self-reported ethnic origin.

Data collection
Participants filled out a questionnaire on migration-
related variables, sociodemographic characteristics, life-
style, and general quality of life. Information on smoking 
behavior and alcohol consumption was obtained by ques-
tionnaire. Participants also underwent a physical exami-
nation at the research location. Weight and height were 
measured in duplicate in barefoot subjects wearing light 
clothes only. Body mass index (BMI) was calculated as 
weight (kg) divided by height squared  (m2). They were 
furthermore asked to collect a morning stool sample in 
the pre-labeled tube and to bring this to the research 
location within 6 h after collection. The fecal sample was 
temporarily stored at -20  °C until transportation to the 
Amsterdam University Medical Center, location AMC. 
Here, the samples were checked by a study nurse and 
stored at -80  °C before the analysis of the microbiota 
composition. In total, 6032 fecal samples were collected 
and sequenced. After only including the ethnicities with 
sufficient 2nd generation participants (excluding Ghana-
ian, Javanese Surinamese, and other Surinamese), 5193 
samples remained for analyses.

Intestinal microbiota—extraction of fecal genomic DNA
Processing of the fecal samples was previously described 
in Deschasaux et  al. [17]. In short, stool samples were 
shipped to the Wallenberg Laboratory (Gothenburg, 
Sweden). DNA was extracted from a 150-mg aliquot 
using the repeated bead beating method, previously 
described by Salonen et al. [18]. Here, fecal samples were 
placed in Lysing Matrix E tubes (MP Biomedicals) and 
extracted twice in lysis buffer (4% w/v SDS; 500 mmol/L 
NaCl; 50  mmol/L EDTA; 50  mmol/L Tris·HCL; pH 8) 
with bead beating at 5.5 m/s for 45 s in a FastPrep®-24 
Instrument (MP Biomedicals). After each cycle of bead 
beating, samples were heated at 95  °C for 5  min and 
then centrifuged at full speed for 5  min at 4  °C. The 
supernatants from the two extractions were pooled. Six 
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hundred microliters of aliquot from each sample was 
purified using the QIAamp DNA Mini kit (QIAGEN) 
in the QIAcube (QIAGEN) instrument using the proce-
dure for human DNA analysis. The samples were eluted 
in 200 µL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L 
EDTA; pH 9.0). After the DNA extraction, the 16S rRNA 
gene was amplified using PCR with the following condi-
tions: initial denaturation for 3  min at 94  °C, followed 
by 25 cycles of denaturation for 45  s at 94  °C, anneal-
ing for 60 s at 52 °C, elongation for 90 s at 72 °C, and a 
final elongation step for 10 min at 72 °C. Duplicates were 
combined, purified with the NucleoSpin Gel and PCR 
Clean-Up kit (Macherey–Nagel), and quantified using 
the Quant-iT PicoGreen dsDNA kit (Invitrogen). Nega-
tive controls were included, and the absence of DNA in 
these controls was confirmed with gel electrophoresis. 
Positive controls were not included as the protocol was 
optimized on mock samples. After PCR, the V4 region 
of the 16  s rRNA gene was sequenced on a MiSeq sys-
tem (RTA version 1.17.28, bundled with MCS version 
2.5; Illumina) with 515F and 806R primers designed 
for dual-index sequencing [19] and the MiSeq reagent 
kit V2 (2 ×   250 bp paired-end reads; Illumina). All ana-
lytical procedures were blinded for ethnicity (but not 
randomized).

Bioinformatic pipeline for gut microbiota profiling
The USEARCH pipeline (v11.0.667) was used to merge, 
filter, and dereplicate reads. In more detail, paired-end 
reads were merged (option “fastq_mergepairs”) with a 
maximum of 100 mismatches (“fastq_maxdiffs”) and 
at least 70% identity (“fastq_pctid”). Reads were filtered 
(“fastq_filter”) if the total expected errors based on the 
Phred (Q) score are larger than 1 (“fastq_maxee”), and 
hereafter, dereplication was done (“fastx_uniques”) [20]. 
Next, the UNOISE3 pipeline (“unoise3”) was applied 
for ASV-level denoising to find the correct biologi-
cal sequences from the reads [21]. Here, true biological 
sequence variants were identified, and technical noise 
and chimeras were removed. Unoise3 denoising was 
executed at default settings [21]. The final ASV reference 
database was constructed from ASVs that were inferred 
in at least one in a thousand samples. ASV abundance 
was determined per sample (“otutab”). ASV reads with a 
length lower than 100 bp were omitted. ASV taxonomy 
was assigned using the RDP classifier and database (v18) 
[22]. The 300 most abundant ASVs were also individu-
ally blasted (Blastn) to confirm their identity and were 
triple checked by creating a phylogenetic tree to prune 
out misclassifications. Furthermore, the standard data-
base Nucleotide collection (nr/nt) was applied, excluding 
uncultured/environmental sample sequences (https:// 
blast. ncbi. nlm. nih. gov/ Blast. cgi, Nucleotide Blast). The 

blast names attached to the ASVs are merely indica-
tive. Many blast results will in time get better matches 
as the reference library gets expanded or will have their 
taxonomic designation updated whilst the ASV repre-
sentative sequence is library and taxonomy independ-
ent and should thus be considered leading in regards to 
all taxonomic designations used in this manuscript and 
can be used for comparisons with other studies similarly 
studying the V4 16S region. In order to create a phylo-
genetic tree, MAFFT (v7.453) [23] was used for multiple 
sequence alignment using automatically the appropriate 
setting (“auto”) and FastTreeDbl (v2.1.11) was used to 
make the phylogenetic tree using the generalized time-
reversible model (“GTR”) [24]. To compare subjects to 
each other, rarefaction was performed at a read depth 
of 15,221 (using the function “rarefy_even_depth” from 
R-package “phyloseq” v1.40.1).

Machine learning analysis
The extreme gradient Boosting (XGBoost) algorithm was 
utilized to identify a panel of ASVs that best predicted 
allocation of the migrant generation group within each 
ethnicity. Thus, for each ethnicity, (Moroccan, Turkish, 
African and South-Asian Surinamese origin), a model 
was deployed. Dutch participants were stratified into a 
young and old age group (≥ 42 years) and  were analyzed 
likewise. Similarly, an age model was also built includ-
ing all ethnicities with the same age cut-off.  ASVs were 
filtered prior to each simulation to reduce dimensional-
ity. Per model, the top 1000 most abundant ASVs were 
selected and hereafter, a univariate feature selection was 
applied based on the ANOVA F value to select 100 ASVs 
used in each simulation. The same stability selection pro-
cedure was used in all simulations and all ethnicities to 
ensure robustness of the results and prevent overfitting 
[25]. In total, per ethnicity, 20 different subsets were 
made of the complete dataset. Within each random sub-
set, random under sampling was performed for the 1st 
generation to have equal group sizes as the 1st generation 
consisted of more subjects than the 2nd generation. After 
under sampling, a fractional subset of the under sampled 
dataset was selected. The fraction was 0.5. Next, within 
each random subset, LeaveOneOut cross-validation was 
applied where the training set included all samples except 
for one, in which this one sample left out was included 
in the test set. Within the training set, the hyperparam-
eters of XGBoost model were found by performing a ran-
domized search with a three-fold cross-validation, based 
on 90% of the training set and validated on the remain-
ing 10%. The parameter grid on which the randomized 
search was applied is given in Table S1, and the number 
of parameter settings tried was 10. The performance of 
the different models was estimated via an area under the 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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curve (AUC) of the test dataset to distinguish the 1st 
from the 2nd generation. The importance of each ASV 
in the models was extracted and was based on the mean 
decrease in impurity. This machine learning pipeline was 
implemented in python (v3.7.7), using the scikit-learn 
(v0.23.1) package.

Bacteroides to Prevotella ratio
To assess the Bacteroides to Prevotella ratio, all Prevo-
tella, Bacteroides, and Phocaeicola (formerly classified 
as Bacteroides) ASVs were identified for this analysis by 
blasting all Bacteriodales ASVs and verifying their iden-
tities by checking their position in a phylogenetic tree 
(Table S2, Fig. S1).

Trophic networks
Different (phylogenetically distinct) species represented 
by various ASVs can be found to cluster together as 
they might be derived from a particular niche (small 
intestinal species) or because they represent a network 
of microbes that thrive together in the same environ-
ment (potentially excluding other bacteria) and which 
together achieve higher rates of growth by means of 
cross-feeding [14]. This syntrophy between microbes 
is achieved via chains of conversions of metabolites 
available in the food web [26]. These trophic networks 
can often be visualized using the Spearman ρ correla-
tion coefficient between ASVs and plotting these in a 
heatmap, as previously described [27]. Heatmaps were 
generated by hierarchically clustering using the Euclid-
ean distance of the Spearman ρ coefficients. ASVs that 
are strongly positively correlated with one another form 
blocks in which all the ASVs tend to be negatively/posi-
tively correlated in a similar manner with other compet-
ing/synergistic “blocks” of ASVs. These blocks of ASVs 
(also referred to as clusters) can be considered to rep-
resent a trophic network with a degree of confidence 
if there is either evidence of syntropy (for example the 
Christensenellaceae minuta producing  H2 which is con-
sumed by Methanobrevibacter smithii [28]) or evidence 
of a co-dependent development over time as can be 
observed in cohorts of infants during the first 3 years of 
life (as observed in The Gambia cohort in the case of the 
Prevotella stercorea trophic network which importantly 
does not include P. copri [27]). Furthermore, ASVs 
within a trophic network should correlate positively 
with one another and must be found to do so consist-
ently in multiple cohorts/studies. Within this study, we 
considered ASVs as a core part of a cluster if the ASV 
was found to be part of a cluster in 6 out of the 10 heat-
maps. Here, each heatmap was generated per ethnicity 
and generation (Tables S3, S4 and S5).

Statistical analyses
Bray–Curtis dissimilarity between subjects (function 
“vegdist” of the vegan R-package v2.5.7 [29]) was used 
to asses interindividual dissimilarity in gut microbiota 
composition (β-diversity) and was plotted using princi-
pal coordinate analysis (PCoA, function “cmdscale” of 
the stats R-package v4.1.1). Additionally, we applied the 
generalized UniFrac distance (function “GUniFrac” of 
the GUnifrac R-package v1.6) [30]. For optimal resolu-
tion, ASVs were clustered based on the phylogeny of the 
sequence. Clustering was done by the agglomeration of 
tips in the phylogenetic tree at a height of 0.10 (Table 
S6). This threshold for agglomeration was specifically 
chosen to represent a genus-like level. A higher height 
(> 0.10) would for example cluster ASVs of Faecalibac-
terium and Fournierella together, which are not only 
taxonomically but also functionally clearly different. Dif-
ferences in β-diversity between the different ethnicities 
and migration generations were assessed using the Per-
mutational Analysis of Variance (PERMANOVA [31]; 
function “adonis2” from the vegan R-package [29]). The 
PERMANOVA was applied on the dissimilarity between 
subjects based on Bray–Curtis dissimilarity of the non-
clustered ASVs and the number of permutations was 999.

Comparisons between generations for the log10 
(Bacteroides/Prevotella) ratio, Faecalibacterium, and 
α-diversity of the various ethnicities were assessed using 
the Mann–Whitney U test. The Benjamini–Hochberg 
method was applied for multiple comparisons [32]. P val-
ues ≤ 0.05 were considered statistically significant.

The gut microbiota diversity was assessed per indi-
vidual. Three different metrics were applied, namely 
the Shannon index, Richness (functions “diversity” and 
“specnumber” of the vegan R-package v2.5.7 [29], respec-
tively), and Faith’s Phylogenetic Diversity (function “pd” 
of R-package picante v1.8.2 [33]).

Validation of our findings using a separate cohort
To validate patterns observed within the HELIUS cohort, 
we used the publicly available data of Vangay et  al. [9]. 
This cohort consists of subjects living in the rural parts 
of Thailand, a 1st generation of subjects who moved 
from Thailand to the USA and a 2nd generation, simi-
larly defined as within our cohort, and European Ameri-
cans born and living in the USA. The 16s rRNA gene 
data of the different subjects were obtained from the 
European Nucleotide Archive under accession num-
ber PRJEB28687. This data includes the same V4 region 
as the HELIUS cohort. Processing of the data from this 
cohort was done together with the HELIUS cohort using 
the same pipeline, described above in “Bioinformatic 
pipeline for gut microbiota profiling.”
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Enterotypes classification
Discretization of subjects in the classical three ente-
rotypes was done as previously described [34]. In short, 
samples were clustered based on relative genus abun-
dance using the Jensen-Shannon Distance and the parti-
tioning around medoids cluster algorithm. The optimal 
number for clustering was 3. Stratification of subjects 
based on their microbiota composition in the form of 
four enterotypes was established using the Dirichlet Mul-
tinomial Mixture approach as previously described [35]. 
For optimal resolution, ASVs were clustered based on the 
phylogeny of the sequence (described previously in “Sta-
tistical analyses”). Clusters of ASVs were filtered in which 
the detection limit of a cluster was 0.1%, and the prev-
alence was at least 50%. The matrix was fed to the Dir-
ichlet Multinomial Mixture Model in which we set the 
number of components in to 4.

Results
A total of 5193 participants from the HELIUS cohort, 
including 1611 Dutch, 827 Moroccans, 581 Turks, 1421 
African Surinamese, and 753 South-Asian Surinamese 
(Table S7) were analyzed to visualize and understand 
shifts in the fecal microbiota composition as a result of 
living in an urban environment by comparing 1st and 
2nd generation migrants. Dutch participants were strati-
fied into a young and old age group (≥ 42 years) to mimic 
the 1st and 2nd generation age difference for comparison 
purposes to better account for age mediated effects. The 
USA immigration cohort (USI) by Vangay et  al. [9] was 
used for comparison (see the “Methods” section). The 
principal coordinate analysis (PCoA) combined with a 
ridgeline density plot visualizes that each ethnicity and 
each generation per ethnicity has a different composi-
tion distribution (Fig.  1A; PERMANOVA, R2 = 0.00292; 
p value ≤ 0.001, Fig. S2 per ethnicity and Fig. S3. Per-
manova per ethnicity; Moroccan, migration generation, 
R2 = 0.00561; p ≤ 0.001, age, R2 = 0.00332, p = 0.007; Turk-
ish, migration generation, R2 = 0.00964; p ≤ 0.001, age, 
R2 = 0.00332, p = 0.046; Dutch artificial migration gen-
eration, R2 = 0.006; p ≤ 0.001, age, R2 = 0.00245, p ≤ 0.001; 
African Surinamese, migration generation, R2 = 0.00221; 
p = 0.003, age, R2 = 0.00269, p ≤ 0.001; South-Asian Suri-
namese, migration generation, R2 = 0.00352; p ≤ 0.010, 
age, R2 = 0.00743, p ≤ 0.001). Next, we looked at the dis-
tance, based on the Bray–Curtis dissimilarity, between 
the 1st and 2nd generation per ethnicity and the older 

(≥ 42  years) and younger Dutch, respectively (Fig. S4). 
The dissimilarity with Dutch became significantly smaller 
for the 2nd generation in all ethnic minorities when com-
pared to the 1st generation dissimilarity. These results 
suggest that the gut microbiota composition is chang-
ing in the direction of a more Dutch-like gut microbiota 
composition.

Bacteroides shift
Enterotyping is commonly employed to stratify subjects 
based on their microbial composition [34, 36] which 
reduces the complexity of gut microbiota compositions 
frequently allowing larger trends to be visualized more 
easily [36] whilst at the same time circumventing multi-
ple test correction problems. From a birds-eye point of 
view (enterotypes) of Fig. 1A, it can be said that the Turk-
ish and especially the Moroccan ethnicities are associ-
ated with the enterotype driven by Prevotella (left side), 
both Surinamese ethnicities are associated with the ente-
rotype driven by Bacteroides (right side), whilst Dutch 
are associated with the Firmicutes enriched enterotype 
(top) [36]. A similar analysis including the USI cohort 
data (Fig. 1C, Fig. S1, Fig. S3B, and Table S2) shows that 
American controls are Bacteroides dominated (Fig. S3B, 
right side) whilst people in Thailand are Prevotella domi-
nated (left side) and that 1st and especially 2nd genera-
tion Thai migrants become more similar to Americans 
(Bacteroides dominated). In the HELIUS cohort, a similar 
shift is observed by looking at the Bacteroides/Prevotella 
(B/P) ratio in the Prevotella-rich Turkish and Moroccan 
ethnicities when comparing the 1st with the 2nd genera-
tion (Fig. 1B and C, FDR-corrected p values of 8.27·10–3 
and 1.33·10–2, respectively). Interestingly, a similar shift 
towards Bacteroides is also seen in the Dutch population 
(FDR-corrected p value of 8.27·10–3) but is not observed 
in the already Bacteroides-rich Surinamese populations.

ASV‑level machine learning approach
A machine learning approach, the extreme gradient 
boosting (XGBoost) classification model with LeaveOne-
Out (see the “Methods” section), was used to distinguish 
the 1st generation from the 2nd generation per ethnicity 
on the ASV level (Fig.  2, Table S8). This approach gen-
erates a list of features which, according to the model, 
represent the most predictive ASVs (Fig. S5). Faecalibac-
terium ASV2 (100% identity with strain A2-165) is one 
of the top machine learning hits in all ethnicities, except 

Fig. 1 Overview of the gut microbiota of different ethnicities and generations. A PCoA plot representing the interindividual differences in the gut 
microbiota. A ridgeline density plot is positioned on the top and right sides of the PCoA plot, depicting the sample distribution of the different 
ethnicities and migration generations for each principal coordinate. Scaled loadings of important species are depicted in the different directions. 
B, C Log‑transformed ratio of Bacteroides to Prevotella (B/P) abundances per generation and ethnicity for the HELIUS cohort and USI cohort. 
Significance is based on the Mann–Whitney U test (*p value ≤ 0.05; **p value ≤ 0.01; ***p value ≤ 0.001)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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in the Dutch. ASV2 is found to be more prevalent in 
the 2nd generation but also in younger Dutch (Fig. 3A). 
However, the prevalence of ASV2 rises more rapidly in 
the 2nd generation in the Turkish and Moroccan popula-
tion as the significant difference between the Turkish and 
Moroccan 1st generation with older Dutch disappears 
when comparing the 2nd generation with the younger 
Dutch population. This difference was found not to be 
dependent on the differences in sample size between 1st 
and 2nd generation. In the USI cohort, the prevalence 
of ASV2 also rapidly rises towards American-like levels 
(Fig. 3B). The increase of ASV2 in Surinamese is however 
similar to the increase seen in Dutch. The area under the 
curve (AUC; Fig. S6), a measure for the machine learning 
model to distinguish between the 1st and 2nd generation 
is indeed larger for the Prevotella-rich Turks and Moroc-
cans (0.7 and 0.72, respectively) than it is for African and 
Asian Surinamese (0.68 and 0.69, respectively). As Fae-
calibacterium is one of the major butyrate producers and 
is ubiquitous in all humans with an abundance between 
5 and 15% [37], we also investigated other Faecalibacte-
rium ASVs, and ASVs of species phylogenetically closely 
related to Faecalibacterium such as Subdoligranulum 
variabile and Gemmiger formicilis, many of whom were 

also found to be predictive features (Fig. 2, Table S8). By 
looking whether the median abundance was higher in the 
Dutch or in any of the 4 other ethnicities and whether 
the ASV increased in abundance when comparing the 
1st with the 2nd generation a pattern of convergence 
emerges (Fig. 4). ASVs that overall had a higher median 
abundance in the Dutch (ASVs 2, 14, 18, 38, & 82) almost 
universally had a higher median abundance in the 2nd 
generation whilst the reverse was true for ASVs that were 
less prevalent in Dutch (ASVs 168, 200, 247, 333, & 387).

Cluster level shifts
Several other predictive features derived from machine 
learning are also representative of larger patterns of dis-
placement which are however more easily visualized 
within the context of clusters or trophic networks. Visu-
alizing such clusters using heatmaps in which the corre-
lations of the top 200 most abundant ASVs per ethnicity 
per generation are sorted using hierarchical clustering 
allows one to define the most reproducible core set of 
ASVs which together are representative of each cluster or 
trophic network (Fig. 5, Fig. S9, and Table S9). Moreover, 
clustering and heatmap visualization allows us to seam-
lessly integrate the results of a state-of-the-art machine 

Fig. 2 Most discriminative ASVs in each machine learning model distinguishing between the 1st and the 2nd generation. The y‑axis represents the 
top 20 most predictive microbial markers. The x‑axis shows the relative importance of these microbial ASVs normalized between 0 to 100%. Color 
represents directionality, with blue being higher in the 1st generation and brown/red being higher in the 2nd generation
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learning model which was applied to identify a panel 
of ASVs for each ethnicity to find leads that distinguish 
the 1st from the 2nd generation. The first cluster is cen-
tered around but not limited to Bacteroides, Blautia, and 
Bifidobacterium (BBB). The second cluster is centered 
around, but not limited to, the Prevotella genus (P) and 
is accompanied by a list of phylogenetically diverse spe-
cies. The third cluster is centered around Christensenel-
laceae, Methanobrevibacter, and Oscillibacter (CMO). 
Whilst large differences exist between the 5 different 
ethnicities and between generations these three clusters 
can be recognized reproducibly. ASVs that were found to 
be present within a cluster in the majority of heatmaps 
generated (6/10) were flagged as core ASVs and used for 
further statistical analyses (Tables S3, S4 and S5). These 
clusters are coherent with the classical three enterotype 

division [34] and to a lesser extent to the four enterotype 
division (Figs. S7C and S8C, respectively). Other ASVs 
often form their own small clusters such as small intesti-
nal bacteria, metformin sensitive bacteria (diabetes medi-
cation), or bacteria commonly associated with dysbiosis 
such as Enterobacteriaceae and Enterococcus.

Heatmaps in the Turkish, Moroccan, and Dutch groups 
show that nearly all ASVs of the Prevotella cluster go 
down in the 2nd generation and that the same is largely 
true for CMO. Most ASVs of the BBB cluster on the 
other hand, with which the Prevotella and many ASVs 
of the CMO cluster are both negatively correlated with, 
increase. Many of the top machine learning features are 
concentrated in the BBB cluster. Analyses of the sum of 
all core ASVs of each cluster, as defined above, show that 
significant shifts occur within the Turkish, Moroccan, 

Fig. 3 Abundance of the Faecalibacterium strain A2‑165 (ASV2) in the HELIUS cohort and the USI cohort. Comparison between the 1st and 2nd 
generation and between the Dutch in the HELIUS cohort (A) and comparison between the HmongThai, 1st generation Hmong, 2.nd generation 
Hmong, and the United States Control group of the USI cohort (B). Asterisks denote an FDR‑corrected p value based on the Mann–Whitney U test 
(*p value ≤ 0.05; **p value ≤ 0.01; ***p value ≤ 0.001)
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and Dutch populations but not in the Surinamese 
(Table 1).

Trophic networks, α‑diversity, and health
Higher α-diversity values are often used as a proxy for 
good health. A high α-diversity is typically an indication 
of the presence of extended and well-developed trophic 
networks with high fermentative capacity (Fig.  6). The 
CMO cluster is representative one of the most visually 
distinct and coherent yet still underappreciated trophic 
networks in regards to health [39]. This trophic net-
work is most abundant in the Dutch population yet is 
not found to increase in abundance in any of the eth-
nicities in the 2nd generation as compared to the 1st 
generation; it even decreases significantly in the Turk-
ish 2nd generation and younger Dutch as compared to 
older Dutch. In the Dutch population (and others), age 
is strongly associated with BMI (ρ = 0.31, p = 2.2·10–16) 
and while age is positively correlated with the CMO 
network (ρ = 0.066, p = 7.56·10–3), the abundance of 
CMO is more strongly negatively associated with BMI 
(ρ =  − 0.16, p = 1.00·10–10). Similarly, all ASVs from the 
Prevotella cluster, except the ones of Prevotella copri, 

represent a complex trophic previously found to be 
centered around P. stercorea [27] and are similarly posi-
tively associated with α-diversity in most ethnicities, 
unlike the BBB cluster or P. copri for which the reverse 
is true (Fig.  6 and Table  1). As a logical consequence, 
α-diversity analyses show a slight decrease in the 2nd 
generation Moroccans compared to the 1st generation, 
but a significant decrease in the Turkish and Dutch 
population (Fig. S10). This is concomitant with the sig-
nificant decrease and increase of the CMO and BBB 
clusters, respectively, in these two populations. Both 
of the 2nd generation Surinamese populations do not 
show a decrease in α-diversity.

The HELIUS cohort unfortunately lacks data on 
transit times and stool consistency. Nonetheless, in 
accordance with Vandeputte et  al. (2016) and Falony 
et  al. (2016), who observed an association between 
looser stool samples and the Prevotella enterotype, 
and with the fact that women more commonly suffer 
from constipation, have longer transit times and score 
slightly lower on the Bristol stool scale score (harder 
stool) [40, 41], we observe that the BBB cluster and 
CMO trophic networks tend to on average have higher 

Fig. 4 Investigation of different Faecalibacterium ASVs and closely related ASVs. Three colored sidebar sections correspond to the tips of the 
phylogenetic tree. The first sidebar section indicates the different species the ASVs belong to according to a Blastn search. The second indicates 
whether the ASV has a higher median abundance in the Dutch ethnicity or the other ethnicity and the third indicates whether the ASV has a higher 
median abundance in the 1st or the 2nd generation per ethnicity
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abundances in females and that abundances of P. copri 
and the P. stercorea trophic network are higher in 
males (Fig. S11).

Discussion
The gut microbiome shift associated with a transition 
from a hunter-gatherer lifestyle towards one associ-
ated with agriculture has occurred in most populations 
around the world. Yet, a (continued) loss of functional 
microbial diversity and a convergence towards an atro-
phied composition associated with diseases of affluence 
is an ongoing process worldwide as people undergo 

additional physical and/or cultural shifts towards a more 
industrialized and urbanized settled setting [1, 3, 9]. We 
investigated this process making use of the large multi-
ethnic HELIUS cohort comparing gut microbiota shifts 
between 1st and 2nd generation migrants from different 
ethnic minorities recently settled in Amsterdam whilst at 
the same time comparing these shifts with developments 
observed in the Dutch of similar age. Our initial hypoth-
esis of a simple convergence within these ethnic minori-
ties towards a more Dutch-like composition was found to 
be only mostly valid on a strain/ASV-based level yet was 
partially flawed on a higher more compositional level as 

Fig. 5 Example heatmap depicting different clusters and/or trophic networks present. Here, the Turkish ethnicity and its machine learning 
results are included. The colors of the dendrogram include ASVs that were found in the machine learning model distinguishing the 1st from the 
2nd migration generation. The colors of the sidebars depict whether the median abundance of the ASV is higher in the 1st or 2.nd generation. 
The heatmap itself consists of the spearman ρ correlation values of the ASVs, which are due to hierarchical clustering split up in different blocks 
consisting of clusters of ASVs. Based on previous analyses, the central Prevotella cluster can be divided into the P. copri and P. stercorea trophic 
network [27]. The Christensenellaceae, Methanobrevibacter, and Oscillibacter cluster is also considered a trophic network based on cross‑feeding 
interaction knowledge [28, 38]
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the Dutch themselves as a whole are found to still be in 
transition.

On an ASV-level, both β-diversity analyses and 
machine learning showed a convergence towards a 
more Dutch-like composition. Different ASVs of Fae-
calibacterium, a ubiquitous hominid commensal [37, 
42], were found to be important discriminative features 

in our machine learning approach and similarly shows 
a preference for strains in the 2nd generation that are 
more common in the Dutch population (Fig.  4, Table 
S8A). The B/P ratio, a common metric for looking at 
the gut microbiota at a more compositional level in 
regards to westernization of the gut microbiome [9, 
43], however gives a mixed yet logical result. The B/P 

Table 1 Mean abundance of different clusters and trophic networks per ethnicity and their Spearman ρ correlations with BMI, 
triglycerides, and α‑diversity (Shannon index)

Asterisks denote the following significant p values: (.) ≤ 0.1; (*) ≤ 0.05; (**) ≤ 0.01; (***) ≤ 0.001

Cluster/tropic network Ethnicity Mean abundance (%) BMI Triglycerides Shannon index

1st gen/
old Dutch

2nd gen/
young Dutch

P. copri Moroccan 14 12.2 0.14(***) 0.067(.)  − 0.4(***)

Sub‑cluster Turkish 14.6 13 0.13(**) 0.1(*)  − 0.39(***)

Dutch 5.7 5.7 0.019 0.045(.)  − 0.045(.)

African Surinamese 7.2 5.7 0.022 0.013  − 0.053(*)

South‑Asian Surinamese 7.7 11.1  − 0.022 0.0054  − 0.016

P. stercorea Moroccan 11.2(.) 9.6(.) 0.11(**) 0.092(**)  − 0.025

Trophic network Turkish 8.6(**) 6.6(**) 0.12(**) 0.13(**) 0.011

Dutch 4.4(***) 3.2(***) 0.12(***) 0.028 0.16(***)

African Surinamese 5.8 4.6 0.05(.) 0.0013 0.14(***)

South‑Asian Surinamese 5.9 5.5  − 0.00031 0.00079 0.26(***)

CMO Moroccan 7.3 7.3  − 0.067(.)  − 0.12(***) 0.72(***)

Trophic network Turkish 6.0(*) 5.0(*)  − 0.13(**)  − 0.087(*) 0.72(***)

Dutch 8.7(*) 7.8(*)  − 0.16(***)  − 0.11(***) 0.7(***)

African Surinamese 5.9 6.5  − 0.028  − 0.11(***) 0.75(***)

South‑Asian Surinamese 3.2 3.2  − 0.033  − 0.11(**) 0.75(***)

BBB Moroccan 10.5(***) 12.8(***)  − 0.14(***)  − 0.012  − 0.091(**)

Cluster Turkish 13.4(***) 18.0(***)  − 0.11(**)  − 0.081(.)  − 0.075(.)

Dutch 14.9(***) 17.5(***) 0.067(**) 0.03  − 0.37(***)

African Surinamese 19 19.8  − 0.021 0.017  − 0.31(***)

South‑Asian Surinamese 22.5 21.4  − 0.022 0.024  − 0.28(***)

Fig. 6 Analysis of Spearman ρ correlations between the abundance of different clusters and α‑diversity (Shannon effective number). The Prevotella 
cluster is split up into the P. copri cluster and the P. stercorea trophic network (*p value ≤ 0.05, **p value ≤ 0.01, ***p value ≤ 0.001)
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ratio increases strongly in both 2nd generation Turks 
and Moroccans who both start off with a low B/P ratio 
(1st generation), similarly to the Thai immigrants in 
the USI cohort. A smaller yet still significant increase 
of this ratio is similarly seen when comparing younger 
(< 42  years) with older Dutch yet no shift is seen in 
this ratio in both Surinamese groups. Older Dutch but 
especially the Surinamese have high B/P ratios to begin 
with. This could perhaps partially be explained by the 
traditional Surinamese diet, as Surinamese individu-
als tend to adhere to a dietary pattern that is charac-
terized by traditional Surinamese foods, importantly 
including sugar-sweetened beverages [44]. Saccharolysis 
is strongly linked with the Bacteroides (2) enterotype 
[45]. Bacteroides and Prevotella compete for the same 
niche in the gastrointestinal tract [46] and are some 
of the most discriminating genera for describing the 
gut microbiota composition, as the enterotype discus-
sion attests to [36]. Higher Bacteroides abundances are 
commonly associated with diabetes while the inverse 
is true for Prevotella [47–49] which is found to have a 
protective function against Bacteroides-induced glucose 
intolerance [46]. In the HELIUS cohort, diabetes and 
metabolic syndrome prevalence are indeed by far the 
highest in Surinamese, particularly South-Asian Suri-
namese (Table S7) [50]. This is highlighted even further 
using a 4-enterotype gut microbiota constellation based 
on the Dirichlet Multinomial Mixture model, as a large 
part of the South-Asian Surinamese are of the Bacte-
roides2 enterotype composition, which is commonly 
associated with a low-cell count, low α-diversity, dys-
biosis, and the aforementioned diseases [51–53].

In this study, the large number of subjects however ena-
bled us to employ the concept of clustering ASVs in order 
to visualize complex trophic networks as an alternative to 
showing large ecological shifts in the microbial compo-
sition [27, 54]. Heatmaps readily visualize the shift from 
Prevotella towards Bacteroides in Moroccans, Turks, and 
Dutch as most ASVs in the BBB cluster increase in the 
2nd generation whilst most ASVs which are part of the 
Prevotella cluster decrease. In addition to this, a signifi-
cant shift away from the CMO network in the younger 
groups is similarly observed in Turks and Dutch and to a 
limited degree in Moroccans.

In contrast, no significant directional shifts are 
observed in the Surinamese ethnicities, whose microbi-
ota are already BBB rich in the 1st generation. Machine 
learning results do however suggest that some of these 
rearrangements could be associated with an increase of 
species associated with increased obesity. ASVs from the 
Dorea genus for example, which has been associated with 
obesity [55–58], increased in the 2nd generation Suri-
namese (Fig. 2).

A common observation when distinguishing healthy 
from unhealthy subjects within cohorts is a higher 
α-diversity [9, 59–62]. The CMO network is strongly 
positively correlated with α-diversity and leanness (Fig. 6 
and Table 1). The syntrophic relationship between Chris-
tensenellaceae and Methanobrevibacter, indicator species 
of this cluster, is well described as the Archaea Metha-
nobrevibacter consumes the hydrogen produced by the 
Christensenellaceae bacteria converting it into methane 
[28]. Both species have been reported to be associated 
with reduced obesity and BMI [39, 63], and the positive 
association between both is a robust feature of micro-
biome studies worldwide [39]. Other ASVs however, 
of often poorly characterized species, show a similarly 
strong correlation with one another in this network as 
the correlation between Christensenellaceae and Metha-
nobrevibacter, suggesting that they are of equal biological 
importance and are part of a larger coherent cross-feed-
ing network. Age is often found to be associated with this 
trophic network [39], but this could also indicate a slowly 
(partially) replacement by the BBB cluster in an industri-
alized urban setting. The study by Keohane et al. in Ire-
land with Traveler communities who were forced to end 
their nomadic lifestyle seems to indicate that the decline 
of the CMO network is not due to age but due to lifestyle 
factors [3]. Given the robust association of this network 
as a whole with BMI (and other diseases of affluence), 
investigation of the less well characterized members 
of the CMO network is of prime importance to human 
health.

Contrary to the CMO network, the BBB cluster has a 
strong inverse correlation with α-diversity. Most sub-
jects who have a high abundance of this cluster are 
positioned in the Bacteroides enterotype; CMO rich 
subjects are typically classified as having a Firmicutes-
enriched enterotype. The Bacteroides enterotype is 
considered a risk factor for diabetes [52, 53], one of the 
many diseases of affluence in the Western population. 
Interestingly, the BBB cluster is negatively associated 
with BMI in the Moroccan and Turkish ethnicities, 
whereas the Prevotella network is positively corre-
lated with BMI in these ethnicities. A similar observa-
tion was also made by Kaplan et  al. investigating the 
Hispanic community living in the USA [43]. Here, a 
higher B/P ratio was inversely correlated to obesity. 
Whilst Kaplan et  al. found a negative association of 
the Prevotella enterotype with diversity, we observed 
a partial positive correlation between the Prevotella 
cluster and α-diversity; the Prevotella cluster at low 
abundances is positively correlated with α-diversity 
whilst this association becomes negative at high abun-
dance (Fig. 6). The reason for this is that the Prevotella 
cluster, or the Prevotella enterotype for that matter, 
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should not be seen as a monolithic entity but as a 
combination of (1) a complex trophic network of vari-
ous species (P. stercorea, Catenibacterium mitsuokai, 
Holdemanella biformis, Phascolarctobacterium succi-
natutens, Mitsuokella, and various others) that builds 
up relatively slowly over time; as shown in a cohort of 
children aged ½–3½ from The Gambia [27] and (2) P. 
copri which becomes dominant rapidly after weaning 
within the first year of life, independent of any other 
strains. P. copri, a bacterium which does not appear 
to rely on others, is strongly inversely correlated with 
α-diversity in Prevotella-rich populations such as the 
Moroccans and Turks (Fig. 6). In the study by Kaplan 
et  al., Hispanics mainly had high P. copri numbers 
explaining the negative correlation with α-diversity 
[43]. In the South-Asian Surinamese population, we 
saw a decrease of all ASVs of the Prevotella cluster in 
the 2nd generation except for an enrichment of P. copri 
(ASV46) which was also observed to be an impor-
tant discriminatory feature in the machine learning 
model. As P. copri is independent of other strains, it is 
relatively straightforward to obtain and maintain this 
bacterium in the gastrointestinal tract. Typically, the 
acquisition of Prevotella is linked with an increased 
intake of dietary fibers and complex carbohydrates and 
is hence more frequently found dominant in vegans 
[64]. Interestingly, whether P. copri should be consid-
ered beneficial or disadvantageous remains unclear or 
is situational. There is an association with improved 
glucose tolerance [46], but also with obesity [43, 65]. 
The complex Prevotella trophic network compo-
nent described above is however likely more difficult 
to obtain and maintain. It was shown for example in 
mice that the progressive loss of microbial species over 
several generations due to lack of such complex car-
bohydrates in their diet was not recoverable by rein-
troducing these carbohydrates, but required fecal 
microbial transplantation [66].

Limitations of this study include that accounting for 
the effects of diet remains a challenge as some shifts 
are affected by diet but also by age, sex, and/or the 
overall dominant microbiota composition, such as the 
Bifidobacterium genus, or are indirectly affected due 
to higher medication use (metformin especially) in the 
1st generation such as Romboutsia ilealis, other Pep-
tostreptococcaceae and Clostridium celatum. There 
is furthermore undoubtedly a tendency in part of 
the younger generation to eat a rather unhealthy and 
unbalanced diet; this is an ongoing socioeconomic/cul-
tural shift that is however not linked with age directly. 
Furthermore, HELIUS is multi-generational multieth-
nic cohort with the aim to represent the typical popu-
lation of Amsterdam, which entails that a multitude of 

subjects have various ailments. No HELIUS subjects 
were however excluded in this analysis for medical 
reasons instead relying on the power of large numbers 
of subjects to visualize overarching population-wide 
transitions within each of the different ethnicities.

Conclusions
The main transition observed within the Moroccan and 
Turkish but also in the Dutch population is one towards a 
composition with a higher abundance of the more West-
ern-associated BBB cluster. The non-Western Prevotella 
cluster declines in the 2nd generation, and the same is 
largely true for the CMO network. Surinamese, in whom 
rates of diseases of affluence are highest and whose gut 
microbiota composition generally have a low α-diversity 
and are already dominated by BBB, similar to Ameri-
cans, mainly show ASV-level shifts. It is also known that 
α-diversity decreases at old age but this decline is not 
observed in elderly reaching extremely high ages where 
Christensenellaceae and Methanobrevibacter are found 
to be enriched compared to all other groups [67–69]. 
The disappearance of complex trophic networks associ-
ated with the Prevotella and the CMO network, which 
can be directly linked to a reduction in α-diversity in the 
younger generation, does not bode well from a health 
perspective for both immigrants and locals living in an 
urbanized environment.
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importance (A), an age‑only model with the overlap to the ethnicities (B) 
and the train‑, cross‑validation‑, and test ROC‑AUC scores with standard 
deviation for each model (C). Table S9. ASVs that were presented in the 
heatmap of the Turkish ethnicity (Fig. 5; Fig. S9). The ASV names were 
based on a BLAST search.

Additional file 2: Fig. S1. Bacteroides, Phocaeicola (formerly also classified 
as Bacteroides) and Prevotella ASV selection based on phylogeny.

Additional file 3: Fig. S2. PCoA plot representing the interindividual 
differences in the gut microbiota of the different ethnicities. PERMANOVA 
is based on the Bray‑Curtis distance on each ethnicity. Formula used: 
Bray‑curtis ~ Migration generation + age. The results for (A) Moroccan, 
migration generation R2 = 0.00561; p≤0.001, age R2 = 0.00332, p=0.007; 
(B) Turkish, migration generation R2 = 0. 00964; p≤0.001, age R2 = 
0.00332, p=0.046; (C) Dutch artificial migration generation R2 = 0. 006; 
p≤0.001, age R2 = 0.00245, p≤0.001; (D) African Surinamese, migration 
generation R2 = 0. 00221; p=0.003, age R2 = 0.00269, p≤0.001; (E) South‑
Asian Surinamese, migration generation R2 = 0.00352; p≤0.010, age R2 = 
0.00743, p≤0.001.

Additional file 4: Fig. S3. PcoA based on the Generalized UniFrac for the 
HELIUS (A) and USI (B) cohorts.

Additional file 5: Fig. S4. Mean Bray‑Curtis dissimilarity compared to 
the Dutch. Here, the  1st generation of each ethnicity was compared to 
the older aged Dutch (mean age of 57.2) and the  2nd generation to the 
younger aged Dutch (mean age of 32.4) to correct for age confound‑
ing effects. Significance is based on the Mann‑Whitney U test (asterisks 
*p‑value ≤0.05; **pvalue ≤0.01; ***p‑value ≤0.001).

Additional file 6: Fig. S5. Boxplots of the top 20 ASVs found in the dif‑
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(C), African Surinamese (D), South‑Asian Surinamese (E), and an age 
model with all ethnicities (F). Significance is based on the FDR‑corrected 
Mann‑Whitney U test (asterisks * p‑value ≤0.05; **pvalue ≤0.01; ***p‑value 
≤0.001).

Additional file 7: Fig. S6. ROC‑AUC scores of the different machine 
learning simulations. The different ethnicities are Moroccan (A), Turkish 
(B), Dutch (C) African Surinamese (D), South‑Asian Surinamese (E). Lastly, 
an age‑only model based on all ethnicities at a cut‑off of 42 years old was 
applied (F).

Additional file 8: Fig. S7. Classical three enterotype division described by 
Arumugam et al. [34] of the HELIUS cohort including a PCoA plot based 
on the Bray‑Curtis dissimilarity (A), a stacked bar chart stratified by ethnic‑
ity and migration generation (B), and the relative abundance of the differ‑
ent clusters stratified by the classical three enterotyping (C). P = Prevotella, 
CMO = Christensenellaceae/Methanobrevibacter/Oscillibacter and BBB = 
Bacteroides/Blautia/Bifidobacterium.

Additional file 9: Fig. S8. Four enterotype division based on the Dirichlet 
Multinomial Mixture model described by Holmes et al. [35] of the HELIUS 
cohort including a PCoA plot based on the Bray‑Curtis dissimilarity (A), a 
stacked bar chart stratified by ethnicity and migration generation (B), and 
the relative abundance of the different clusters stratified by the four ente‑
rotypes (C). P = Prevotella, CMO = Christensenellaceae/Methanobrevibacter/
Oscillibacter and BBB = Bacteroides/Blautia/ Bifidobacterium.

Additional file 10: Fig. S9. Heatmaps depicting different clusters / 
trophic networks present. The colors of the dendrogram include ASVs that 
were found in the machine learning model distinguishing the  1st from 
the  2nd migration generation. The color sidebars depict if the median 
abundance of the ASV is larger in the  1st or  2nd generation. The heatmap 
itself consist of Spearman ρ correlation coefficients of ASVs, which are 
hierarchically clustered and visually split up in different clusters of ASVs, 
of which the reproducibility is summarized in Tables S6, S7 and S8. The 
first heatmap is a replica of Fig. 5 which now includes ASV names (A). The 
other ten heatmaps (B‑K) include the  1st and the  2nd generation of each of 
the five ethnicities.

Additional file 11: Fig. S10. Overview of α‑diversity measures of the  1st 
and the  2nd generation of each of the different ethnicities. (A) Shannon 
effective number, (B) richness, and (C) Faith’s phylogenetic diversity (PD). 

Asterisks denote an FDR‑corrected p‑value based on the Mann‑Whitney U 
test (*pvalue ≤0.05; **pvalue ≤0.01; ***p‑value ≤0.001).

Additional file 12: Fig. S11. Comparison of the different clusters 
observed in all ethnicities between males and females. Asterisks 
denote an FDR‑corrected p‑value based on the Mann‑Whitney U test 
(*pvalue ≤0.05; **pvalue ≤0.01; ***p‑value ≤0.001).

Additional file 13. Example form of the microbiota data access agree‑
ment of the HELIUS board.

Additional file 14: Code describing the visualizations with statistical 
analyses performed in this work.
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