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Abstract 

Background  Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial 
input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are com‑
plex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit 
niche-based or neutral assembly theories.

Methods  We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow 
accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These 
snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. 
Using a Bayesian fitting strategy to evaluate Hubbell’s Unified Neutral Theory of Biodiversity at multiple sites, we 
tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity 
were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition 
(anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring 
snowpack were also characterized. We used these data in addition to geographical information to assess possible 
niche-based effects on snow microbial communities using multivariate and variable partitioning analysis.

Results  While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based 
selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify 
predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic 
acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow micro‑
bial structure represented the seeding community closely, and evolved away from it at higher organic acid concentra‑
tions, with concomitant increases in bacterial numbers.

Conclusions  These results indicate that environmental selection plays a significant role in structuring snow microbial 
communities and that future studies should focus on activity and growth.
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Background
Microbial diversity is critical for ecosystem functioning; 
therefore, the underlying mechanisms that drive com-
munity structure across space and time are important 
outstanding puzzles in microbial ecology. Given their 
size, microorganisms can disperse globally and are found 
in every ecosystem ever sampled, including snowpacks 
that can cover over 60 million km2 during the north-
ern hemisphere winter [1]. Snow provides a specific 
physio-chemical environment with nutrients for bacte-
rial and fungal growth and, thus, acts as a habitat for a 
diverse community of microorganisms [2]. A large body 
of work has focused on aged perennial snowpacks that 
have been shown to develop autochthonous snow algal 
communities (reviewed in [3, 4]), but the study of micro-
bial communities in newly developing seasonal snow-
packs outside of the melting period is relatively more 
recent [5, 6]. Although biological activity in dry seasonal 
snow remains poorly understood, it is a critical cata-
lyst of organic matter (OM) cycling [7–9]. More recent 
results have also shown that these snow microorganisms 
are metabolically active and interact with OM [10–12]. 
Snowpacks constitute complex ecosystems with diverse 
microbial inhabitants that interact with their surround-
ing environment and each other [13–15]. In addition, 
recent studies have highlighted the continuously ongoing 
microbial activity, metabolism, and ecological succession 
in snowpacks [10, 16]. Seasonal terrestrial snowpacks, 
ones that form over surfaces every year and melt out 
completely in the autumn, are ideal systems to study the 
distribution, abundance, and interaction of microorgan-
isms, since they constitute newly formed habitats that are 
colonized by microorganisms from other sources. These 
snowpacks can form on bare soil, tundra, frozen lakes, 
and glaciers and the surfaces upon which they develop 
likely influence some of the seeding processes. The main 
seeding sources into freshly developing snow habitats are 
aerosolized microorganisms that enter the snowpack via 
wet and dry deposition or colonization from the terres-
trial surface upon which the snowpack develops [17].

Since snowflakes form in clouds before traveling 
through the atmosphere and depositing on terrestrial 
surfaces, snow is tightly coupled to the atmosphere [18–
20]. Therefore, the snowpack provides an opportunity to 
investigate the involvement of atmospheric microorgan-
isms that have been linked to cloud development, atmos-
pheric chemistry, and microbial biogeography [21, 22] 
in snow formation and their subsequent persistence in 
terrestrial snowpack communities. Microorganisms can 
serve as ice nucleation particles (INPs) that are required 
for snow crystal growth in clouds and are found in freshly 
fallen snow and other precipitation forms [23–26]. They 
are among the most active INPs [27], with bacteria such 

as Pseudomonas syringae able to initiate snow crystal 
growth at temperatures as high as −3°C [28]. Snow is an 
effective scavenger of atmospheric particles, including 
microorganisms. While previous research has suggested 
that snow might be used to investigate microbial commu-
nities in the atmosphere [29], their respective commu-
nity structure and diversity are different [30]. Selective 
processes occur as snow falls in the atmosphere [17, 23]. 
Once on the ground, snowpacks at our study site are con-
tinually seeded by the atmospheric deposition of nutri-
ents, contaminants, and other organisms that create a 
dynamic habitat that evolves over time [31–33].

Several theories developed in macroecology to explain 
local community structure, including niche-based theo-
ries [34] and neutral assembly theories [35], are now 
being applied to microbial communities (e.g., [36–38]). 
Niche-based theories state that deterministic responses 
to variation in environmental conditions and interspecific 
interactions drive community assembly [39], while neu-
tral theories are based upon the functional equivalence of 
species [40] that implicates dispersal and stochasticity for 
community assembly during colonization and extinction 
events [41]. The current general consensus is that the 
structuring of microbial communities in a given environ-
ment is a result of both mechanisms [42, 43]. However, 
the relative contributions of neutral and niche-based 
mechanisms to community assembly in snowpacks have 
not been determined.

A variety of computational tools have been devel-
oped to study the structuring of microbial commu-
nities in environmental samples such as the neutral 
model approach developed by Harris et  al. [44] based 
on Hubbell’s Unified Neutral Theory of Biodiversity 
(UNTB). In this model, a regional pool of trophically 
similar species, or metacommunity, is defined as the 
pool from which a local community, defined as a group 
of species that compete for resources in the local area, 
is hypothetically colonized [44]. The UNTB assumes 
that local communities are assembled/reassembled by 
the birth/death of individuals and immigration from 
the metacommunity and that deterministic competi-
tive interactions between species are insignificant [45]. 
Immigration to local communities is assumed to be 
highest for abundant species in the metacommunity 
[44]; therefore, differences in environmental factors at 
the local scale should not influence community struc-
ture. The Harris model calculates this metacommunity 
from the taxonomy of all of the samples, an approach 
that is useful when the microbial seeding source is dif-
ficult to sample, but is tightly linked to the individual 
local communities. This may be the case for the exam-
ples used to test the method such as for microbiomes of 
tropical trees and the human gut [44]. The advantage of 
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the seasonal snowpack ecosystem is that freshly fallen 
snow is the main seeding source, because it consists 
of both microorganisms in clouds (where snowflakes 
form) and those scavenged from the underlying air dur-
ing snowfall [30]. The surface upon which the seasonal 
snow develops might also constitute a seeding source, 
in seasonal snow found on glaciers; this would either be 
ice or previously fallen snow or firn (aged snow older 
than a year). Once the glacier ice or firn surface is cov-
ered with the first snowfalls, it is spatially segregated 
from the over-lying snow layers; therefore, we consider 
that thereafter, the atmosphere is the main source of 
microorganisms. An important question is whether this 
snow constitutes a good proxy of the metacommunity 
or whether the above-defined metacommunity by the 
UNTB model is a good approximation of the seeding 
source.

In this study, the winter-spring snowpack was sampled 
in April 2016 across the Norwegian Arctic archipelago of 
Svalbard as part of the Community Coordinated Snow 
Study in Svalbard (C2S3). This survey mapped variations 
in the biological and chemical composition and impu-
rity load of the snowpack across glaciers of Svalbard and 
related the observed differences to meteorological and 
other environmental factors [46, 47]. Here, we applied 
the UNTB model to snow from a range of different sites 
to evaluate the possible contribution of neutral assem-
bly to the winter-spring snowpack microbial communi-
ties, and test whether this model is appropriate to predict 
them. Additionally, we assess possible niche-based effects 
by evaluating the effects of chemical and geographical 
variation on snow independent of the ecology model 
application. Specifically, the aims of this study were (1) 
to identify underlying patterns in community structure 
in seasonal glacial snowpacks across the scale of Sval-
bard, collected prior to the onset of melt, (2) to evaluate 
the extent to which niche based and neutral processes 

contributed to biodiversity, and (3) to identify the drivers 
for microbial selection in snowpacks.

Methods
Sampling location and strategy
The data presented here were obtained as part of a com-
prehensive survey of the physical, chemical, and micro-
biological properties of the seasonal snowpack carried 
out in April of 2016 at 22 sites distributed across seven 
glaciers on Spitsbergen and Nordauslandet, in the Nor-
wegian Arctic Archipelago of Svalbard (Fig. 1, left panel). 
On each glacier, a total of 3 snowpits were sampled, one 
in the net accumulation area (highest elevations), one 
near the equilibrium line (where net annual snow accu-
mulation equals summer melt, Fig.  1, right panel), and 
one in the net ablation area (lowest elevations) [48]. 
The sampled glaciers cover a wide range of elevations 
and geographic regions of the Svalbard Archipelago and 
share enough glaciological similarities for intercompari-
son: Austfonna on Nordaustlandet (Eastern Svalbard); 
Lomonosovfonna on central Spitsbergen; Hansbreen 
and Werenskiöldbreen in the Hornsund area of southern 
Spitsbergen; and Austre Lovénbreen, Kongsvegen, and 
Holtedahlfonna in the vicinity of Ny-Ålesund on north-
western Spitsbergen (Fig. 1, Table 1). Snowpits were sam-
pled down to the hard previous summer surface (in the 
accumulation zone of glaciers), or to the underlying bare 
ice surface (in the ablation zone) using a common pro-
tocol [49] with pre-cleaned equipment (i.e., tubes, plas-
tic scrapers, and plastic shovels cleaned with ultrapure 
water) and protective clothing (powder-free nitrile 
gloves, clean coverall suits, and face masks). There-
fore, only the snow that accumulated over the past year 
(annual) was sampled. All snow pits were located away 
from point sources of contamination (e.g., field camps, 
snow scooter tracks) and were accessed by foot only in 
the upwind direction. After recording the snowpack 

Fig. 1  Map of glaciers and sites sampled, spanning 102–1193 m above sea level (a.s.l.)
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stratigraphy, parallel samples were collected from the 
top 5 cm, and at 50-cm-depth intervals beneath for inor-
ganic elemental carbon (EC) and WIOC (water-insoluble 
organic carbon) and microbial analyses. Snow samples 
were double-bagged in sterile LDPE bags (Whirlpak®) 
and packed in styrofoam boxes during transport. All sam-
ples were kept frozen until processed in the lab and fur-
ther analyzed. A total of 89 samples were obtained from 
all sites. Samples for ionic chemistry (major and minor 
ions) and organic carboxylic acids were also collected 
from each discrete snow pit layer, according to the visible 
stratigraphy, and pooled to similar depths for compari-
son with microbiology and EC and WIOC. Organic acids 
were analyzed for all samples, with the exception of those 
collected in the Hornsund area. The chemical samples 
from Hornsund were analyzed on site and the instrument 
was not calibrated for organic acid analyses, whereas all 
other samples were analyzed in Venice (see below). Two 
companion papers that detail both the analytical proce-
dures and results of the EC and WIOC loading and dis-
tribution [46] and ionic chemistry [47] of these glaciers 
have recently been published as part of this project.

Chemical analyses
Detailed methods and results for EC, WIOC, and 
ionic chemistry analyses of the C2S3 snow samples are 
reported in companion papers [45, 46]. Only a brief sum-
mary is provided here. The mass concentration of EC 
and WIOC filtered from snow was determined by the 
thermo-optical method at the Department of Environ-
mental Science of Stockholm University [45]. Inorganic 
ion analyses were jointly performed by ion chroma-
tography at the Polish Polar Station Hornsund (Insti-
tute of Geophysics, Polish Academy of Sciences), the 

Department of Earth Sciences at Uppsala University 
(Sweden), and at the Institute of Polar Sciences (ISP-
CNR) in Venice [46]. The species measured were sodium 
(Na2+), ammonium (NH4

+), calcium (Ca2+), magnesium 
(Mg2+), potassium (K+), bromide (Br−), chloride (Cl−), 
sulfate (SO4

−), nitrate (NO3
−), and methanesulfonic acid 

(MSA; as CH3SO3
−) [46]. The organic acids were meas-

ured at ISP-CNR in Venice and included C1-formic, 
C2-oxalic, C2-acetic, C2-glycolic, C3-malonic, C4-suc-
cinic, C5-glutaric, and C6-adipic acids. Briefly, the chro-
matographic separation of these species was conducted 
using an anion exchange column (Dionex Ion Pac AS 11 
2 × 250 mm) and a guard column (Dionex Ion Pac AG11 
2 × 50 mm). The gradient of sodium hydroxide (NaOH), 
produced by an eluent generator (Dionex ICS 5000EG, 
Thermo Scientific), with a 0.25 mL min−1 flow rate was 
as follows: 0 min, 0.5 mM; 0–3.5 min gradient from 0.5 
to 5 mM; 3.5–5 min gradient from 5 to 10 mM; 5–25 min 
gradient from 10 to 38 mM; 25–30 min, column clean-
ing with 38 mM; 30–35 min; equilibration at 0.5mM. The 
injection volume was 100 μL. A suppressor (ASRS 500, 
2 mm, Thermo Scientific) removed NaOH before enter-
ing the (−)-ESI source of a single quadrupole mass spec-
trometer (MSQ Plus™, Thermo Scientific™) that operated 
in Single Ion Monitoring (SIM) mode [50].

Snow is a porous media [51], with density gener-
ally varying from 50 to 400 kg/m3 in pre-melt seasonal 
Arctic snowpacks. Therefore, to ensure comparability 
across snow samples of different densities, the meas-
ured concentrations of chemicals were expressed as 
mass loadings (mg m−2). The mass loading is calculated 
as the chemical concentration multiplied by the snow 
water equivalent (SWE, in mm of equivalent water) of 
each discrete layer where the SWE is calculated using 

Table 1  Location of each glacier sampled with corresponding estimated diversity and abundances of bacterial communities. Values 
present averages (bold) as well as ranges (in brackets). Letters show significance levels comparing diversity estimates by pairwise 
comparisons using the Wilcoxon rank-sum test

Glacier GPS coordinates Shannon index Abundance SWE-corrected abundance

[16S rRNA gene copies L−1 
melted snow]

[16S rRNA gene copies m−2
snow]

AF 79.7669° N 1.68 1.5e+5 2.6e+6
22.8475° E (1.33–3.35)a (3.3e+4–1.2e+6) (6.1e+4–2.2e+7)

ALB 78.8719° N 3.17 8.4e+5 1.1e+7
12.15916° E (1.29–4.20)b (3.3e+4–6.7e+6) (7.1e+4–9.3e+7)

HDF 79.02936° N 2.92 5.0e+5 6.91e+6
13.53098° E (1.25–3.89)b (2.0e+4–4.3e+6) (1.4e+4–6.0e+7)

KVG 78.78049° N 3.61 4.3e+5 4.0e+6
13.15344° E (1.65–4.34)b (3.0e+4–3.6e+6) (6.4e+4–1.9e+7)

LF 78.69132° N 2.36 1.2e+5 1.0e+6
17.14985° E (1.12–4.00)b (4.2e+4–2.6e+5) (1.5e+4–3.2e+6)
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the layer thickness and the density. This flux is repre-
sentative of the mass accumulation for each studied 
layer/sample increment. The chemical and metadata for 
the whole data set used for comparisons are presented 
in SI Table 2.

DNA extraction and 16S rRNA sequencing
Snow samples (n=89) were melted at room tempera-
ture at the laboratories at the University Centre in 
Svalbard (UNIS) and filtered immediately after melt-
ing. Procedural blanks (n=6) were carried out using 
the UNIS laboratory facility’s Milli-Q water system. 
All samples were filtered using sterile 0.2-μm filters 
(Merck Millipore) and a filtration unit connected to a 
vacuum pump. Filters were then stored at −20°C and 
shipped to the laboratory at the University of Lyon 
for further processing. DNA was extracted using the 
Power Water DNA isolation kit (Qiagen), following the 
manufacturer’s instructions. The V3–V4 region of the 
16S rRNA genes from snow samples was amplified by 
a PCR of 35 cycles at 92 °C for 30 s, 55 °C for 30 s, and 
72 °C for 60 s with the primer pair S-D-Bact-0341-b-
S-17/S-D-Bact-0785-a-A-21 from [52], using the Plati-
num PCR SuperMix (Invitrogen™). Libraries for 16S 
rRNA sequencing were prepared using the “16S rRNA 
gene Library Preparation Workflow” recommended 
by Illumina. The purified (AMPure XP beads, Beck-
man Coulter) libraries of single samples were meas-
ured spectrophotometrically and subsequently pooled 
equimolar. This pool was checked for correct library 
construction and absence of primer dimers on the Bio-
analyzer 2100 system (Agilent, DNA 1000 assay) and 
quantified by qPCR using primers annealing to the P5 
and P7 flanking regions of the library. The final pool 
was loaded on a V2 flow cell for 2×250 bp paired-end 
sequencing on a MiSeq platform (Illumina) at the labo-
ratory in Lyon. Evenly distributed base quality scores 
of forward and reverse reads throughout all samples 
were controlled using the functions fastx_quality_stats 
and fastq_quality_boxplot_graph of the FASTX-Toolkit 
(http://​hanno​nlab.​cshl.​edu/​fastx_​toolk​it/). PANDAseq 
[53] was used to merge forward and reverse read using 
the rdp_mle flag as merging algorithm. Each resulting 
sequence was stripped of its primers and annotated 
using the RDP Classifier [54] (cutoff = 0.6). Taxonomic 
strings only found one time were removed. Samples 
were blank corrected for the procedural blanks (n=6) 
using the decontam package in R [55]. Briefly, proce-
dural blanks prepared during sample treatment were 
used to define a set of “negative control” samples. The 
frequency and prevalence methods were then used to 

identify potential contaminants and remove these from 
the snow samples.

Quantitative PCR
Microbial abundance was estimated by quantitative PCR 
(qPCR) of the 16S rRNA gene, which was performed on 
a Corbett Rotor-Gene 6000 real-time PCR cycler and 
QuantiTect SYBR® Green PCR Kit (Qiagen). Amplicon 
quantitative PCR is often used to estimate total microbial 
abundance based on 16S rRNA gene copy number [56]. 
This approach is inherently biased, since there is over an 
order of magnitude 16S rRNA gene copy number varia-
tion in bacteria [57] and estimates should be considered 
as semi-quantitative and not absolute. Primer sequences 
used were 341F (CCT​ACG​GGA​GGC​AGCAG) and 534R 
(ATT​ACC​GCG​GCT​GCT​GGC​A) from [58]. Standard 
curves of all reactions were derived from serial dilutions 
of linearized pGEM-T plasmids (Promega) with the tar-
get sequences inserted. All standard curves were linear 
and showed comparable efficiency values (R2 = 0.96 to 
0.99; E = 0.85 to 1.05). Each reaction (25 μL) contained 
12.5 μL 2× QuantiTect SYBR® Green Mix; 0.3 to 1.8 
μL of each primer (10 μM); 100 ng of T4 gene protein 
32 (Thermo Fisher Scientific Inc.); 2 to 5 ng of template 
DNA and PCR grade water. Two-step cycling conditions 
were 3 min at 95°C followed by 30 cycles of 5 s at 95°C 
and 30 s at 60°C. Results from runs with no amplification 
in non-template controls (n=3 per run), showing only 
one melting peak, and overlapping peaks from standards 
were considered for further analysis.

Neutral community modeling and identification 
of potential ice nucleation active (pINA) organisms
Using a Bayesian fitting strategy to evaluate Hubbell’s 
UNTB at multiple sites, we tested for neutrality and 
defined immigration rates at different taxonomic lev-
els using the software described in Harris et  al. [44]. 
The model was only fit to a taxon (with at least 150 rep-
resentatives) if it was detected in at least 50 samples. 
Individual samples (local communities) from each snow 
layer and each glacier (n=89) were assessed for their fit 
to a neutral model and all samples taken together were 
defined as the metacommunity and analyzed. The neutral 
assembly model parameters were estimated by modeling 
the data as a hierarchical Dirichlet process (HDP, [44]). 
Genera that were potentially INA were identified in each 
sample by blasting (blast version 2.7.1) against a nucleo-
tide database of organisms containing the ice nuclea-
tion protein gene as outlined in [59], with a threshold 
of 97% similarity. Briefly, the 16S rRNA gene sequences 
of total sequenced bacterial genomes containing genes 
that encode ice-nucleating proteins were downloaded 

http://hannonlab.cshl.edu/fastx_toolkit/
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from the NCBI database and used to identify potential 
ice nucleators. This approach can only be used to identify 
potential ice nucleators, since carrying the ice-nucleating 
genes does not equate ice nucleation activity. The per-
centage of potential ice nucleators per bacterial class was 
calculated for the entire dataset.

Community analysis
All community analysis was carried out using Phyloseq 
package [60] in R [61]. Diversity indices were calcu-
lated for each sample to describe richness and evenness 
(SI Table  3). Cell counts were corrected for snow den-
sity prior to analysis (as described for chemistry). PER-
MANOVA on a Bray-Curtis dissimilarity matrix of 
sample counts was performed using the adonis function 
of the vegan-package in R (1000 iterations) to test for 
significant differences between sample clusters, sam-
pling zones, and sampling layers [62]. Pairwise compari-
sons and the Wilcoxon rank-sum test were carried out to 
compare diversity, zone, glacier, layer, and clusters. These 
analyses were applied to the subset of data for which 
organic chemical data was available (59 samples from 
all glaciers with the exception of those from the Horn-
sund area). Clustering of samples based on community 
structure was carried out in Phyloseq using the gap sta-
tistic and validated using hclust on the subsampled data 
(SI Figure  1). Adonis and Deseq2 were used to identify 
significantly different genera among sample clusters in R 
and pairwise tests were also used to compare diversity.

Variance partitioning analysis
Variance partitioning analysis (VPA) was used to test for 
significance of chemical and geographical variables in 
determining community structure (n=59). All statistical 
analyses were performed using the statistical software R 
with packages VEGAN [62] and Phyloseq [60]. Redun-
dancy analysis (RDA) was performed on Z-transformed 
log-transformed chemical data and Hellinger trans-
formed microbiological data as described by [63]. Geo-
graphical data, including site coordinates, snow layer, 
and sampling zone (ablation, equilibrium, and accumu-
lation) were also used as explanatory variables. Forward 
selection was carried out using the ordistep function in 
VEGAN for variable reduction [63]. Variation partition-
ing [64, 65] was used to test the significance of the contri-
bution of geographical and chemical data.

Multivariate analysis, correlations, and predictive 
modeling
Different types of statistical analyzes, as outlined below, 
were carried out in R to link the microbial data to the chem-
ical data set using the ade4 package [66]. Co-inertia (CIA) 
[67] was carried out on the combined log-transformed 

chemical and microbial data, following Z- and Hellinger 
transformation respectively [68], to study the relationships 
between chemistry (inorganic and organic chemistry) and 
microbial community structure as well as spatial and tem-
poral variations simultaneously [69]. The initial analysis was 
carried out on the entire data set for which both chemical 
and microbiological data was available (n=89); however, no 
significant co-structures were observed. The analyses were 
subsequently carried out on the subset of data (excluding 
the Hornsund area) for which organic chemistry was also 
available (n=59). A randomization test of 1000 permuta-
tions was carried out to verify the significance of the co-
structure (Monte Carlo test) [70]. Spearman correlations 
were calculated to test correlations in the whole data set 
using the Hmisc R package with p-values adjusted using 
the false discovery method [71].

Results
Neutral modeling
When applying the UNTB model from Harris et al. [44] 
to test for neutral community assembly, both the meta-
community and the local community at the genera level 
did not meet the criteria for neutral assembly (pseudo-p 
= 0 and 0.0004, respectively; Table 2). This was also the 
case for local communities at the class and family level 
(pseudo-p = 0.0012 and 0.0004, respectively). How-
ever, when subsets of the taxa data from a single class 
were considered (e.g., genera in Actinobacteria, Bacilli, 
Betaproteobacteria, Cyanobacteria, Cytophagia, Gam-
maproteobacteria), neutral assembly processes were 
likely at both the metacommunity and local levels in all 
cases (pseudo-p > 0.2) except for Gammaproteobacte-
ria that did not meet the criteria for neutral assembly 
at the metacommunity level (pseudo-p = 0.0024). Pseu-
domonas, the most dominant genus in the Gammapro-
teobacteria, appeared to be neutrally assembled at both 
the metacommunity and local community levels.

pINA bacteria
To estimate the contribution of INA to the snowpack 
microbial community structure, we compared the reads 
of pINA bacteria to the total reads in each sample (List 
available in SI). The highest amount of pINA bacteria was 
related to Gammaproteobacteria, which comprised 25% 
of the overall reads, followed by Bacilli (5%) and Flavo-
bacteria (1%). Within the Gammaproteobacteria, pINA 
genera represented almost 75% of the reads and were 
dominated by Pseudomonas (Table  3). When compar-
ing abundance-corrected values for pINA bacteria (SI 
Table  1), the quantity did not change significantly from 
sample to sample, yet the relative abundance did. In other 
words, absolute numbers of pINA bacteria remained 
fairly constant even though many samples had an overall 
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increase in bacterial numbers. There was no correlation 
between relative abundance and estimated amount of 
pINAs across the dataset (SI Figure 2).

Community structure, diversity, and bacterial abundance
No clear sample grouping based on glacier sampled or 
snow layer was apparent, although both were shown to 
have a significant correlation with community structure. 
Instead, samples were clustered into seven clusters based 
on their community structure (Fig. 2 panel C, SI Table 2): 
cluster a was dominated by Bacilli (51%), Gammapro-
teobacteria (23%), and Betaproteobacteria (5%). Cluster 
b was dominated by Gammaproteobacteria, represented 

on average over 75% of the relative abundance of taxa, 
and mainly clustered samples collected in Austfonna 
and Lomonosovfonna. A total of 53 genera were found 
to be significantly more abundant in cluster b relative to 
the rest of the data set (SI Table 4). Furthermore, cluster 
b had a significantly lower Shannon diversity index (see 
Table SI 3 for all richness estimates) as compared to all 
other clusters and community structure was also signifi-
cantly different (SI Table 5). Cluster c was dominated by 
Bacilli (33%), Chloroplast (17%), Gammaproteobacteria 
(7%), and Cyanobacteria (6%) and represented samples 
collected in the mid to basal layers of Austre Lovén-
breen, Holtedahlfonna, and Kongsvegen (Fig.  2). All 

Table 2  HDP modeling outputs to test for neutrality in the meta and local communities (n = 89). Tests were carried out at different 
taxonomic resolutions. Theta: rate at which new individuals appear in the metacommunity through speciation; immigration: 
calculated by the HDP model; pN: probability of neutrality in the metacommunity; pL: probability of neutrality in the local community; 
lc: lower quartile; med: median; uc: upper quartile

Theta Immigration pN
meta community

pL
local community

lc med uc lc med uc

Taxonomic level
  Phylum 2.5 3.9 5.7 4.7 10.7 21.9 0.49 0.0784

  Class 9.2 11.9 15.1 9.4 15.8 25.5 0.38 0.0012

  Family 47.7 54.4 62.1 20.5 28.3 38.5 0.21 0.0004

  Genera 158.5 172.5 187.7 28.9 37.8 48.9 0.0000 0.0004

Class
  Actinobacteria 27.4 32.6 38.4 13.3 21.6 34.2 0.16 0.6

  Bacilli 14.9 19.0 23.9 3.7 7.7 14.9 0.16 0.8

  Betaproteobacteria 14.1 17.9 22.5 5.1 10.4 20.3 0.20 0.8

  Chloroplast 0.2 0.5 1.4 0.4 2.6 11.8 0.86 1.0

  Cyanobacteria 0.3 0.8 1.8 0.4 4.0 25.6 0.50 1.0

  Cytophagia 2.7 4.3 6.5 1.9 5.8 16.3 0.20 0.9

  Gammaproteobacteria 16.4 20.5 25.5 3.9 7.9 14.9 0.0024 0.3

  Genus: Pseudomonas 0.5 1.1 2.1 0.6 6.2 45.6 0.31 1.0

Table 3  Abundance of potential ice nucleators (pIN) in the various bacterial classes identified based on the total sequenced 4,177,068 
reads

Class pIN reads pIN in dataset [%] Total reads in Class pIN in Class [%]

Actinobacteria 570 0.01 605,648 0.09

Alphaproteobacteria 1696 0.04 16,963 10

Bacilli 215,598 5.16 632,001 34.11

Betaproteobacteria 6213 0.15 239,389 2.6

Clostridia 186 0 17,608 1.06

Cyanobacteria 0 0 0 0

Deinococci 240 0.01 9732 2.47

Deltaproteobacteria 2 0 36,900 0.01

Flavobacteriia 42,496 1.02 46,955 90.5

Gammaproteobacteria 1,056,951 25.3 1,420,310 74.42

Planctomycetia 1220 0.03 16,304 7.48
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20 genera that were significantly more abundant in this 
cluster belonged to the Firmicutes phylum (SI Table  4). 
Cluster d, consisting of samples from Holtedahlfonna, 
Lomonosovfonna, and Kongsvegen, was dominated by 
Betaproteobacteria (53%, Fig. 2) and 3 significantly more 
abundant genera belonged to this class: Janthinobacte-
rium, Massilia and unclassified Oxalobacteraceae (SI 
Table 4). Cluster e consisted of a single sample collected 
from Austre Lovénbreen that was characterized by a 

high relative abundance of Cyanobacteria (68%). Cluster 
f was characterized by Chloroplast (45%), Actinobacte-
ria (27%), and Cyanobacteria (17%). A total of 44 signifi-
cantly more abundant genera were found, representing 
Actinobacteria, Sphingobacteria, Alphabacteria, and 
Chloroplasts, among others (SI Table  4). Cluster g was 
dominated by reads associated to Actinobacteria (31%) 
followed by Bacilli (29%), Cyanobacteria (21%), Gam-
maproteobacteria (19%), and Deinococci (10%). Genera 

Fig. 2  Relative abundances of dominant classes from bacterial communities analyzed in single samples grouped by altitudinal height (m 
a.s.l = meters above sea level) (A), glacier (B), and cluster analysis (C). Samples are named as follows: Glacier abbreviation (AF=Austfonna, 
LF=Lomosofonna, HDF=Holtedahlfonna, KV= Kongsvegen, ALB= Austre Lovénbreen), followed by 1, 2, and 3, which represent either the ablation, 
equilibrium, or accumulation zone of the glaciers, respectively. The numbers following the M represent the individual snow layers, with M1 
representing the top 5 cm of the snowpack and M2, M3, etc. representing the underlying layers in increments of 50 cm



Page 9 of 17Keuschnig et al. Microbiome           (2023) 11:35 	

from the Lactobacillales, Moraxellaceae, and Actinomyc-
etales orders represented the 11 significantly more abun-
dant genera in this cluster. SIMPER analysis identified 
taxa with the most significant impact on overall com-
munity structure (SI Table 4), these included taxa such as 
Pseudomonas, Acinetobacter, Shigella and Rhodanobacter 
(Gammaproteobacteria), Polaromonas and Oxalobacte-
raceae (Betaproteobacteria), Chloroplasts and Cyanobac-
teria, Actinobacteria and Bacilli.

Differences in community structure (PERMANOVA 
using Bray-Curtis dissimilarity matrix) and diversity 
(Shannon index, Wilcoxon rank-sum test, Holm adjust-
ment method) among zone (ablation, equilibrium and 
accumulation), layers (surface, middle, basal), and gla-
ciers were also explored (SI Table 5). No significant dif-
ferences in community structure and diversity were 
observed among zones, while significant differences in 
community structure were only found between surface 
and basal samples (r2 = 0.07, p=0.04). Significant dif-
ferences in community structure and diversity were 
found between Austfonna and Austre Lovénbreen (r2 = 
0.26, p = 0.01 and p = 0.026, respectively), Austfonna 
and Holtedahlfonna (r2 = 0.23, p = 0.01 and p = 0.025, 
respectively), Austfonna and Kongsvegen (r2 = 0.33, p 
= 0.01 and p = 1.8e−05, respectively), and Kongsvegen 
and Lomonosovfonna (r2 = 0.13, p = 0.03 and p = 0.026, 
respectively). Diversity was also significantly different 
between Holtedahlfonna and Kongsvegen (p = 0.023). 
Diversity was lower in Austfonna and Lomonosovfonna, 
and no differences were observed among the other gla-
ciers. There was no significant effect of altitude on diver-
sity. Changes in microbial abundance were not related to 
glaciers sampled or altitude, but we did see a significant 
effect of sample depth (p < 0.001), with surface samples 
having on average 1–2 log10-fold copy numbers of 16S 
rRNA genes less than middle and basal layers. There was 
a significant relationship between diversity, represented 
by the Shannon Index, and abundance (Table  5, r2=0.4, 
p=0.002).

Variable partitioning analysis (VPA)
To determine the relative contribution between niche-
based processes, VPA was performed. Following vari-
able inflation analysis (VIF), five chemical variables 
(acetic acid, glutaric acid, malonic acid, EC, and NH4

+) 
and three geographical variables (longitude, elevation, 
and snow layer depth) were selected for variation parti-
tioning. Geochemical variables explained a total vari-
ance of 31.5% (p = 0.001), with chemistry accounting for 
12.7% (p = 0.001), geography for 4.1% (p = 0.001), and a 
shared contribution of 14.7% (p = 0.003) (Table 4). The 
residual variance was 68.4.

Taxonomic links to chemistry
Based on multivariate analysis, we were unable to find a 
clear correlation between microbial taxonomy and snow-
pack chemistry when taking into account only the inor-
ganic parameters measured (measured on all samples). 
When subsampling the data to include only samples for 
which organic chemistry data was available (n=59), a 
significant co-structure was observed using co-inertia 
analysis (CIA) (p = 0.001, RV = 0.35). The RV-coeffi-
cient represents the correlation between both datasets 
and varies between 0 and 1; the closer the coefficient is 
to 1, the stronger the correlation between the data-
sets [69]. The chemical parameters and their associated 
genera formed five major axes: (1) acetic and malonic 
acid, associated genera included Solirubrobacter, Ana-
baena, unclassified Bacilli, Oxalophagus; (2) NO3

− and 
WIOC deposited, associated taxa included Bacilli (e.g., 
Ammoniphilus, Allobacillus, Bacillus) and Actinobac-
teria (Iamia, Dactylosporangium, Virgisporangium); (3) 
NH4

+ and Br−, associated taxa included Nitrososphaera, 
Fictibacillus, Methylophaga, Marinobacterium, and 
Acholeplasma; (4) methane sulfonic acid (MSA) and glu-
taric acid, associated taxa included Escherichia/Shigella, 
Enhydrobacter, unclassified Porphyromonadaceae, Aero-
coccus, Brachybacterium, Burkholderia, and Acinetobac-
ter; and (5) EC deposited, associated with taxa Azospira 
and Parachlamydia. Several taxa corresponding to clus-
ter b were negatively correlated to organic acid loading, 
including Pseudomonas, Desulfomicrobium, Pelobac-
ter, Desulfocurvus, and Glaciecola, Neptunomonas, and 
Oceanospirillaceae.

Linking abundance, diversity, and immigration 
to geochemical data
Correlation analysis was carried out to determine the main 
drivers of bacterial abundance, diversity, and immigration 
(Table  5, SI Figure  3). Bacterial abundance was positively 

Table 4  Variable partitioning analysis (VPA) to determine relative 
contribution to niche-based and neutral processes. Five chemical 
variables (acetic acid, glutaric acid, malonic acid, EC, and NH4

+) 
and 3 geographical variables (gradient from east to west, 
elevation, and snow layer) were selected from the output of a 
variable inflation analysis (VIF)

Variable group % variance in community 
structure explained

p-value

Chemistry 12.7 0.001

Geography 4.1 0.001

Chemistry + geography 14.7 0.003

Residuals 68.4 0.001
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correlated to Cl− (r2 = 0.63), Na+ (r2 = 0.51), Ca2+ (r2 = 
0.60), K+ (r2 = 0.26), EC and WIOC (r2 = 0.27 and r2 = 
0.85, respectively), acetic, formic, malonic, and oxalic and 
succinic acid (r2 = 0.5, r2 = 0.51, r2 = 0.45, r2 = 0.46, r2 
= 0.26, respectively), NO3

− (r2 = 0.59), and snow tem-
perature (r2 = 0.36). Diversity, represented by the Shannon 
index, was positively correlated with abundance (r2 = 0.40), 
MSA (r2 = 0.45), organic acids: acetic (r2 = 0.57), formic (r2 
= 0.58), glutaric (r2 = 0.35), glycolic (r2 = 0.28), succinic 
(r2 = 0.46), and malonic acid (r2 = 0.46). Immigration was 
correlated to acetic (r2 = 0.46), formic (r2 = 0.48), oxalic (r2 
= 0.45), succinic (r2 = 0.45), malonic acid (r2 = 0.33) and to 
abundance (r2 = 0.41). Both the Shannon index and immi-
gration were negatively correlated to the percentage of 
pINA bacteria (r2 = -0.83, r2 = −0.65, respectively).

Discussion
Snow supports a high diversity of organisms, whose abun-
dance and composition vary spatially and temporally 
[32, 72–78]. In our study on seven glaciers in Svalbard 

(Fig.  1), Gammaproteobacteria was the most dominant 
class of organisms and was found in all 89 samples. Other 
classes of organisms, such as Betaproteobacteria, Alp-
haproteobacteria, Actinobacteria, Bacilli, Sphingomonas, 
Flavobacteria, and Cyanobacteria, were present in most 
samples. This is consistent with observations from many 
different snow studies [5, 15, 33, 79, 80]. In our samples, 
microbial diversity, as calculated by the Shannon index, 
ranged from to 1.12 to 4.34, and cell counts, estimated by 
quantifying the amount of 16S rRNA gene copy numbers 
in each sample, ranged from 103 to 106 copies/L of melted 
snow. Although these values are similar to those previ-
ously reported [32, 72, 81, 82], their broad range reflects 
the heterogeneity of communities sampled in this study. 
In general, abundance and diversity were higher in snow 
samples collected at depth relative to the surface of snow-
packs. The relative abundance of Gammaproteobacteria, 
which was highest in samples found in cluster b (Fig. 2C), 
decreased in samples with high bacterial abundance and 
diversity. Cluster b samples were found mostly in the 
surface layers of snowpacks, had the lowest estimated 

Table 5  Correlations of measured parameters with diversity (Shannon), immigration and abundance (n = 59). Values in bold are 
significant at p < 0.05

Shannon Immigration Abundance

corr. p-value corr. p-value corr. p-value

Abundance 0.400 0.002 0.411 0.001 - -

Acetic acid 0.572* <0.001 0.464 <0.001 0.503 <0.001

Adipic acid 0.235 0.073 0.192 0.145 0.178 0.180

Br− −0.313 0.016 −0.206 0.117 0.247 0.062

Ca2+ 0.144 0.274 0.136 0.304 0.602 <0.001

Cl− 0.147 0.266 0.083 0.532 0.628 <0.001

EC 0.076 0.568 −0.065 0.627 0.268 0.041

Formic acid 0.580* <0.001 0.474* <0.001 0.512 <0.001

Glutaric acid 0.349 0.006 0.069 0.601 −0.117 0.381

Glycolic acid 0.276 0.034 0.147 0.267 0.310 0.018

Potential IN −0.832* <0.001 −0.649* <0.001 −0.472 <0.001

K+ −0.235 0.073 −0.177 0.179 0.263 0.046

Malonic acid 0.463 <0.001 0.329 0.01 0.448 <0.001

Mg2+ 0.008 0.949 −0.010 0.938 0.373 0.004

MSA 0.447 <0.001 0.209 0.111 −0.058 0.661

Na+ 0.070 0.595 0.004 0.976 0.514 <0.001

NH4
+ −0.235 0.074 −0.267 0.041 0.224 0.091

NO3
− 0.267 0.041 0.227 0.084 0.585 <0.001

WIOC 0.262 0.045 0.175 0.185 0.847* <0.001

Oxalic acid 0.462 <0.001 0.453 <0.001 0.459 <0.001

SO4
2− 0.064 0.630 0.041 0.759 0.535* <0.001

Succinic acid 0.456 <0.001 0.341 0.008 0.262 0.046

Temperature 0.203 0.112 0.207 0.116 0.364 0.005

Immigration 0.825 <0.001 - - 0.411 0.001

Shannon - - 0.825 <0.001 0.400 0.002
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abundance, and likely most closely represented the seed-
ing community, which we posit is the atmosphere, since 
they were dominated by pINA-associated bacteria. 
The possible processes responsible for the differences 
in microbial communities (Fig.  2) could be associated 
with random sampling (neutral assembly) of the seeding 
source (pool of organisms found in clouds, snow, rain, and 
aerosols), post-depositional selection (niche-based assem-
bly), or a combination of the two. Here, we applied several 
approaches to answer this question based upon the two 
proposed assembly theories and multivariate analyses.

Neutral processes in structuring snowpack microbial 
communities
To address whether neutral assembly processes were sig-
nificant in snowpack communities, we applied the neutral 
model approach developed by Harris et  al. [44]. In this 
model, the microbial communities in samples collected 
at different snow depths and glaciers across Svalbard 
constitute the local communities. Local communities are 
assembled from the metacommunity, defined as the aver-
age of the local microbial communities by the model. The 
metacommunity is itself considered to be an approxima-
tion of the unknown seeding community. Using the Har-
ris et  al. [44] approach [44], neutrality at both the local 
and metacommunity was tested using hierarchical Bayes-
ian modeling. We found that at class level resolution and 
above, neutrality was generally observed at the metacom-
munity scale. However, at finer taxonomic resolutions 
(genera), neutrality was not observed, suggesting envi-
ronmental factors at the local scale influence community 
structure. At the class level, neutrality was observed for 
the metacommunity (p = 0.4), while at the local commu-
nity level, niche-based processes dominated (p = 0.0012). 
Given that when one subset of a taxon is non-neutral, the 
whole guild appears non-neutral, we subsampled the data 
to the dominant classes and re-ran the analysis. Only 
Gammaproteobacteria exhibited non-neutral behavior 
at the metacommunity level, suggesting active selection, 
possibly due to its improved dispersal ability related to ice 
nucleation processes [83]. Conversely, Gammaproteobac-
teria exhibited neutrality at the local scale, suggesting the 
taxa found within this class share the same potential to 
colonize individual snow samples. As mentioned previ-
ously, cluster b in Fig. 2C is the most similar to the seed-
ing source, yet it had the smallest immigration rates from 
the metacommunity. Communities from samples that 
had undergone adaptation to the snowpack environment 
had the largest immigration values. Therefore, the Harris 
approach calculated a metacommunity that was distant 
from the actual seeding source community (which con-
ceptually could be considered the metacommunity, also).

Importance of ice nucleation
Snowflake formation requires the presence of ice-nucleating 
particles, such as dust, pollen, or other aerosols. Recently, 
biological ice nucleation has garnered scientific attention, 
with ice nucleation active (INA) bacteria being among the 
few INPs that are active between −10 and 0°C, and there-
fore have the potential to be key ice nucleators under 
warmer temperatures in mixed-phase clouds [84]. In our 
study, Gammaproteobacteria were the most dominant class 
of bacteria and were found in all 89 samples. Specifically, 
Pseudomonas, which represented up to 90% of the taxa in 
some samples, are known ice nucleators, having been pre-
viously observed in snow and cloud water [25, 85–89]. We 
hypothesize that the active selection of Gammaproteobac-
teria into the metacommunity and the seeding community 
is in part due to the large proportion of ice nucleators in 
this class. Once formed, snow transits through the atmos-
phere and colonization likely occurs stochastically, depend-
ing on atmospheric residence time, the specific surface area 
of the snowflakes, relative humidity, and the sources of the 
underlying air masses. As such, we suggest that the neutral 
behavior exhibited by all other classes might be due to their 
random incorporation during snowfall.

Although ice nucleation potential may explain the 
selection of Gammaproteobacteria in the seeding com-
munity (falling snow), the capacity to nucleate does 
not guarantee post-depositional success. Based on our 
results, the relative abundance of potential ice nucleators 
decreased in the active snowpack. Only one site (Aust-
fonna) appeared to lack a significant natural snowpack 
community development and had a relatively elevated 
proportion of (putative INAs) Pseudomonas. In all cases, 
Gammaproteobacteria estimated abundance did not 
decrease significantly with depth. On the other hand, 
the abundance of other genera in the samples increased 
either through the growth/selection of non-Gammapro-
teobacteria organisms or increased immigration into 
the sample if physically possible. Immigration is a key 
stochastic process in the UNTB [44] and based in part 
on the similarity of a local community to the metacom-
munity (roughly similar to the average of the local com-
munities). A local community closely resembling the 
metacommunity would, therefore, have an apparent high 
immigration rate. The proportion of ice nucleators was 
negatively correlated to the calculated immigration rates, 
further supporting our hypothesis that they are indica-
tive of the seeding source but not of the average snow-
pack community (model calculated metacommunity).

Impact of geography and chemistry on microbial 
community structure, diversity, and abundance
To evaluate the importance of niche-based selection on 
snow communities and identify possible drivers, we used 
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VPA to correlate chemical and geographical variables 
with microbial community structure. Both sets of param-
eters were shown to correlate significantly with snowpack 
microbial community structure, and together explained 
slightly over 30% of the total community variance. The 
residual variance may be explained by neutral assembly 
processes or variables not measured in our study—such 
as irradiance and other organic/inorganic compounds [2, 
10, 31, 90].

Significant geographical drivers of snow community 
structure in our dataset included longitude, elevation, 
and sample depth within the snowpack. The glaciers 
included in the VPA generally exhibited an east to west 
increase in community diversity as estimated by the 
Shannon index (Table 1). This gradient in diversity might 
be due, in part, to the influence of the West Spitsber-
gen Current (WSC), a branch of the Atlantic Meridional 
Overturning Circulation that flows northwards along 
western Spitsbergen, bringing milder temperatures and 
higher precipitation to this sector of Svalbard compared 
to the central and eastern parts [91]. Based on deuterium 
excess values, Barbaro et al. [47] found that snow on Aus-
tfonna is likely partly precipitated from more northerly 
moisture sources than that deposited elsewhere in the 
archipelago. This different seeding source and hypotheti-
cal metacommunity would need to be treated separately.

The influence of geographical features on snow com-
position is further supported by the detection of specific 
taxa. For example, samples collected from glaciers geo-
graphically close to areas with first-year sea-ice cover 
(FYI; Austfonna and Lomonosovfonna) [47], were mostly 
in cluster b. The genera that were significantly more 
abundant in this cluster compared to the remainder of 
the dataset included archetypical sea-ice organisms such 
as Glacieocola [92], Neptunomonas [93], Oceanospiril-
laceae, found in snow over sea-ice [17], and Rhizobiales, 
identified in frost flowers [94]. Anaerobic microorgan-
isms involved in sulfur cycling and mercury methylation 
were also significantly more abundant in cluster b, such 
as members of the Deltaproteobacteria (including Desul-
fovibrio) recently identified in winter sea-ice [95–97], fur-
ther supporting the hypothesis of a close sea-ice source.

Changes in community structure were also shown 
to depend on elevation and snowpack sampling depth. 
Samples collected in the accumulation area of Holte-
dahlfonna and Lomonosovfonna (cluster a), both 
located >1000 m a.s.l., showed a high relative abun-
dance (up to 77%) in Bacilli, especially in the lower 
snow layers that correspond to winter accumulation. 
The dominant genera in these samples included Pae-
nibacillus and Domibacillus, both identified as poten-
tial ice nucleators, as well as Bacillus. These have 
commonly been found in free troposphere samples 

[98–102] and are hypothesized to survive by traveling 
as environmentally resistant endospores. This is sup-
ported by Barbaro et al. [47] who found that the glacier 
snowpit sites above 600–700 m a.s.l. were proportion-
ally more influenced by ions from long-range transport 
and less by ions emitted from proximal marine sources.

The ionic composition of snow deposited on Sval-
bard glacier sites below ~600 m a.s.l. is known to be 
strongly affected by local sea-spray emissions [46, 
100, 101]. Therefore, we hypothesized that events that 
can alter marine microbial composition, such as algal 
blooms, should be detected in snow samples. MSA is 
a commonly used marker of marine primary produc-
tion [103], because it is a photo-oxidation product of 
dimethylsulfide (DMS) released in the waning stages 
of phytoplanktonic blooms [104, 105]. In our samples, 
MSA correlated to glutaric acid, with the highest con-
centrations generally found in surface snow (cluster 
d and g in Fig.  2C) or basal snowpack samples of low 
altitude glaciers. The samples at the base of the snow-
pack were likely influenced by the late season, i.e., 
autumnal algal blooms may occur. Surface samples 
with high MSA and glutaric acid concentrations likely 
reflected springtime bloom events that generally occur 
in April–May in Svalbard [106, 107]. Algal blooms are 
associated with dynamic shifts in microbial communi-
ties during different stages, with Flavobacteriia domi-
nating during the peak, stationary, and decline phases 
[108–110]. Betaproteobacteria appear in the waning 
stages of blooms [110] and colonize the sinking parti-
cles of algal detritus [111]. The community structure 
in cluster d was dominated by Betaproteobacteria, 
specifically Oxalobacteraceae, such as Janthinobacte-
rium and Massilia, that are able to break down com-
plex organic matter [112]. Janthinobacterium are rarely 
detected in oceans, but blooms have been shown to 
occur in polar waters [113] and were recently observed 
to dominate May post bloom air samples in Svalbard 
[22]. The Flavobacterium genus was also significantly 
more abundant in cluster d relative to other samples 
and is reported to catalyze the degradation of algal pol-
ysaccharides [114, 115]. Genera such as Acinetobacter, 
Shigella, Brachybacterium, and Bulkholderia were sig-
nificantly correlated to MSA and all significantly more 
abundant in cluster g. Members of the Burkholderia 
and Acinetobacter genera have been shown to degrade 
dimethylsulfoniopropionate (DMSP) [116], while spe-
cies of the Shigella genera have been shown experimen-
tally to produce DMS [117].

Potential seeding sources
Inorganic ion loading of Cl−, Na+, abundant in sea 
spray, were significantly correlated to estimated bacterial 
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abundance. This would suggest that marine environ-
ments constitute a bacterial colonization source for 
snowpacks. Correlations with microbial abundance can 
provide information on alternative sources, for example, 
16S rRNA gene abundance was linked to Br− and K+ con-
centrations, suggesting a sea-ice and terrestrial source, 
respectively, and the strong correlation with WIOC 
(r2 = 0.85) suggests co-transport or binding of bacte-
rial cells to organic-rich particles. Several snow samples 
were dominated by genera corresponding to halotolerant 
freshwater Cyanobacteria (e.g., Anabaena) and Chloro-
plast sequences from snow algae, Chlorophyta (sample 
clusters e and f ). These samples were mainly collected in 
the bottom layers of snowpacks that were closest to the 
glacier firn or ice surface in the equilibrium and accu-
mulation zones. The basal snow samples corresponded 
to winter snowfall events (December–January) [46]. The 
autotrophs might have been redistributed to the base of 
the snowpack due to meltwater percolation during sur-
face thaws (or rain-on-snow events) as is the case for EC 
and WIOC and other impurities [46, 118, 119]. How-
ever, no measured chemical parameters, including EC 
and WIOC, were linearly correlated to autotroph relative 
abundance. Alternatively, snow algae might overwinter 
on glacier surfaces prior to recolonizing the snow [120, 
121]. However, the increased abundance in autotrophs 
in these layers might be a result of their activity within 
specialized niches, although activity measurements were 
outside the scope of this study.

Post‑depositional selection and potential activity
Previous time series studies on the evolution of micro-
bial communities in Arctic terrestrial snowpacks sug-
gest that post-depositional selection can occur, and this 
is linked to changes in the chemical environment [31–33, 
87]. Recently, organic acids were shown to drive micro-
bial activity and interactions in terrestrial snowpacks [10, 
16]. When attempting to correlate community structure 
with chemistry in this study, the only significant param-
eters were organic acids. Organic acids, specifically acetic 
acid, were correlated to diversity (Shannon index), and VIF 
analysis showed that both acetic and malonic acid were 
the best predictors of community structure. Apparent 
immigration (as calculated by the neutral theory model), 
diversity, and abundance were also all significantly corre-
lated with organic acids, suggesting that niches with higher 
organic carbon loadings might be hotspots for bacterial 
activity and growth. This growth would then be included in 
the model calculation of the metacommunity and possibly 
prevent the model from accurately estimating immigration 
rates. Bacilli (dominant in samples from cluster c) were 
significantly correlated with acetic, oxalic, and malonic 
acids, NO3

−, and deposited WIOC concentrations in 

snowpacks. Bacilli are versatile N-cyclers [122] and some 
strains can produce mixtures of lactic, isovaleric, isobu-
tyric, and acetic acid [123], while other organic acids, such 
as glycolic, oxalic, malonic, and succinic acid are produced 
by phosphate-solubilizing bacteria and fungi [124–126]. 
Laboratory studies conducted at −5°C in the dark using 
snow from Svalbard recently showed that heterotrophic 
communities were able to metabolize dissolved inorganic 
nitrogen, leading to increased abundance and the selection 
towards N-metabolizing genera such as Bacillus and Cau-
lobacter [11]. In our data set, increases in estimated cell 
abundance and diversity were also correlated to inorganic 
nitrogen species (Table 5). Cell abundance was also posi-
tively correlated with snow temperature. Snow samples 
with higher density had higher numbers of ice lenses and 
ice layers, suggesting the potential presence of anaerobic 
microhabitats. Given that Bacilli are facultative anaerobes 
that can potentially switch to N-oxide respiration when 
O2 becomes limited, they might have an advantage in 
anaerobic habitats [122]. While activity was not measured 
in our study, these results highlight the need for targeted 
laboratory studies to quantify the role of microorganisms 
in organic acid metabolism and their potential growth in 
snowpacks.

Conclusions
Our results show that deterministic processes structure 
local snow microbial communities when the snow com-
munity is active, while stochastic processes affect the 
microbial communities that arrive via the fresh snow with 
the exception of ice nucleators. Initial seeding was shown 
to be facilitated by the capacity to nucleate ice, although 
this did not ensure post-depositional success, since poten-
tial ice-nucleating capacity was negatively correlated to 
immigration. Once in the snowpack, the microbial com-
munity evolved in part due to the availability of organic 
substrates. Sites and samples that did not receive signifi-
cant amounts of carboxylic organic acids remained simi-
lar to the seeding community. Organic acids were the 
most significant predictors of microbial diversity. While 
inorganic chemistry was not linked to diversity, it can be 
used to help identify dominant colonization sources and 
to predict microbial abundance, which was tightly linked 
to sea air. The general assumption of the UNTB is that 
the metacommunity, calculated from the taxa in the local 
communities, represents the seeding community. How-
ever, in our snow samples, this was not the case. The simi-
larity of samples with high organic acid concentrations to 
mature snowpack microbial communities drove the gen-
eralized snowpack microbial community structure away 
from the seeding community and towards the calculated 
metacommunity. Future research should include studies 
that target microbial growth and activity.
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