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Abstract 

Background  As a domesticated species vital to humans, horses are raised worldwide as a source of mechanical 
energy for sports, leisure, food production, and transportation. The gut microbiota plays an important role in the 
health, diseases, athletic performance, and behaviour of horses.

Results  Here, using approximately 2.2 Tb of metagenomic sequencing data from gut samples from 242 horses, includ-
ing 110 samples from the caecum and 132 samples from the rectum (faeces), we assembled 4142 microbial metagen-
ome-assembled genomes (MAG), 4015 (96.93%) of which appear to correspond to new species. From long-read data, 
we successfully assembled 13 circular whole-chromosome bacterial genomes representing novel species. The MAG 
contained over 313,568 predicted carbohydrate-active enzymes (CAZy), over 59.77% of which had low similarity match 
in CAZy public databases. High abundance and diversity of antibiotic resistance genes (ARG) were identified in the MAG, 
likely showing the wide use of antibiotics in the management of horse. The abundances of at least 36 MAG (e.g. MAG 
belonging to Lachnospiraceae, Oscillospiraceae, and Ruminococcus) were higher in racehorses than in nonracehorses. 
These MAG enriched in racehorses contained every gene in a major pathway for producing acetate and butyrate by fibre 
fermentation, presenting potential for greater amount of short-chain fatty acids available to fuel athletic performance.

Conclusion  Overall, we assembled 4142 MAG from short- and long-read sequence data in the horse gut. Our dataset 
represents an exhaustive microbial genome catalogue for the horse gut microbiome and provides a valuable resource 
for discovery of performance-enhancing microbes and studies of horse gut microbiome.
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Background
Horses (Equus caballus) are used worldwide in leisure, 
racing, transportation, agriculture, and forestry activi-
ties, and they are widely raised for the production of milk 
and animal protein in developing countries [1]. There 
are an estimated 59 million horses worldwide [2], with 
an annual economic impact of approximately $300 bil-
lion [3]. Thus, it is important to achieve a detailed under-
standing of horse biology to potentially improve the use 
of horse in human activities.

Horses have been employed as a model system for 
investigating digestion in herbivores with hindgut fer-
mentation, which include donkey, zebra, rhinoceros, and 
elephant, and for studying ruminant caecal digestion [4, 
5]. The intestinal tract of horses contains a large number 
of symbiotic bacteria, fungi, archaea, protozoa, and virus 
[6], which provide animals with the hydrolytic enzymes 
that convert carbohydrates into energy by fibre fermenta-
tion [7, 8]. The metabolites produced from these micro-
bial groups in horses play important roles in host health, 
diseases, development, and even behaviour [9–15]. Prior 
studies have reported that the intestinal microbiota is 
associated with horse diseases (e.g., colitis, laminitis, 
grass sickness, asthmatic, diarrhoea) [16, 17] and exer-
cise [18, 19]. Mach et al. used blood transcriptome, blood 
metabolome, and faecal microbiome to study horses’ 
endurance before and after races and proposed that 
the gut-mitochondrial axis was associated with athletic 
performance [15]. Thus, an in-depth understanding of 
the microbial composition of the horse intestine offers 
opportunities for enhancing athletic performance and 
improving the maintenance of animal health by manipu-
lating the microbiota through dietary intervention or the 
addition of probiotics.

The microbiota composition in horse gut has been 
partly characterized based mainly on 16S amplicon 
sequencing [9–15], Recently, a gene catalogue and hun-
dreds of MAG of horse gut microbiome have been 
reported [6, 20, 21], but large-scale studies on micro-
biota composition and function in horses are still lack-
ing. The emergence of high-throughput sequencing 
and metagenome binning technology has made it pos-
sible to obtain nearly complete metagenome-assembled 
genomes (MAG) on a large scale [22]. Metagenomic 
sequencing technology can identify a large number of 
previously unknown bacterial species among intestinal 
microbes and has been used to characterize the func-
tions of these microbes at the genomic level [22–26]. 
This technology has generated thousands of MAG from 
humans [23], ruminants [24], chickens [25], pigs [26], and 
horse [6]. Moreover, long-read sequencing can improve 
the quality of assembly by increasing the continuity of 
genome assembly [27]. Thus, the use of high-throughput 

sequencing technology combined with long-read 
sequencing offers a promising strategy for character-
izing the microbial composition and function of the 
horse microbiome. Moreover, performance-enhancing 
microbes and novel enzymes (e.g. CAZy) in the horse gut 
may be deeply explored by the whole-genome metagen-
omics [27].

In this study, we aimed to develop a microbial genome 
resource for research on the horse gut microbiome and 
to use that resource to answer questions about how the 
gut microbiota is related to racehorse performance. We 
used gut samples of 242 horses from two provinces of 
China. A large-scale metagenomic sequencing scan was 
performed to characterize microbiota composition in 
horse gut. Furthermore, we revealed resistome charac-
teristics and athletic performance-associated microbes 
in horses. This study provides an exhaustive catalogue 
of MAG in horse and answers important questions 
about the relationship between the gut microbiome and 
horse performance.

Methods
Metagenomic samples
All details about experimental horses and samples 
are listed in Additional file  1: Table  S1. A total of 242 
gut samples from indigenous Yili horses, Thorough-
bred horses, Tibetan horses, Shetland ponies, and 
Yili racehorses were collected and used in this study. 
These horses were raised in different counties of two 
provinces in China. Indigenous Yili horses (n = 110, 
Yili horse) and Tibetan horses (n = 10, Tibet horse) 
grazed on natural pastures and consumed pasture for-
age. Thoroughbred horses (n = 58, Thoroughbred) 
belonged to stabled horses and were fed a mixed forage 
and concentrate diet. Shetland ponies (n = 8, Shetland 
pony) were raised in a farm and fed a mix of pasture 
grasses and concentrate diet. Yili racehorses (n = 21, 
Yili racehorse) consumed a mix of pasture grasses sup-
plemented with concentrate feedstuffs. These Yili race-
horses were enrolled and winner in the 30-km category 
in the horse race of the Chinese nation. Faeces of race-
horses were collected before the race. Through consult-
ing the racehorse owner, we knew that these racehorses 
had different levels of training every day. A group of 
age-matched Yili nonracehorse (n = 35, Yili nonrace-
horse) was fed a mix of pasture grasses supplemented 
with concentrate feedstuffs and used as control group 
for Yili racehorses. All Yili nonracehorse have no train-
ing plan. All horses in this study were healthy and did 
not receive any antimicrobial treatment (antibiotic, 
anthelmintics, or anti-inflammatory nonsteroidal treat-
ments) for two months before sampling. For 242 gut 
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samples in this study, 110 caecal samples were collected 
from 110 indigenous Yili horses, and the remaining 
132 rectal gut (faeces) samples were from 132 horses 
including Tibet horse, Thoroughbred, Yili racehorse, 
and Yili nonracehorse. All samples were frozen in liquid 
nitrogen, transported to the laboratory, and preserved 
in a freezer at −80°C until DNA extraction.

DNA extraction and quality control
To obtain high-quality microbial DNA from the gut con-
tents, a modified hexadecyltrimethylammonium bro-
mide (CTAB) method was used for DNA extraction [28]. 
Briefly, 1000 μl of CTAB lysis buffer (0.1 M Tris-HCl [pH 
8.0], 1.4 M NaCl, 0.02 M EDTA, 2% CTAB, DNA- and 
RNA-free) was added to a 2.0-ml EP tube (DNase- and 
RNase-free), along with 20 μl of lysozyme (DNA- and 
RNA-free); a 100-mg sample was then added, and the 
lysis solution was incubated for 2–3 h at 65°C. For com-
plete lysis, the sample was mixed by inversion several 
times during incubation. After brief centrifugation, 950 
μl of the supernatant was transferred to a new 2.0-ml EP 
tube containing 950 μl of a phenol–chloroform-isoamyl 
alcohol (25:24:1, pH 8.0, DNA- and RNA-free) solution. 
After mixing, the sample was centrifuged at 12,000 rpm 
for 10 min. The supernatant was carefully transferred to a 
new EP tube, and an equal volume of chloroform-isoamyl 
alcohol (24:1, DNA- and RNA-free) was added, followed 
by thorough mixing and centrifugation at 12,000 rpm for 
10 min. After centrifugation, the supernatant was trans-
ferred to a new 1.5-ml EP tube, a 3/4 volume of isopro-
panol was added to the supernatant, and the tube was 
placed at −20°C for 20 min to allow precipitation after 
mixing. The tube was then centrifuged at 12,000 rpm for 
10 min, the supernatant was discarded, and the precipi-
tate was washed twice with 1 ml of 75% ethanol. After 
drying, 50 μl of ddH2O was added to dissolve the DNA 
sample. Finally, 1 μl of RNase A was added, and the sam-
ple was placed at 37°C for 15 min to digest the RNA. The 
quality of the extracted DNA was checked via 1% agarose 
gel electrophoresis, and the integrity and potential con-
tamination of the sample were assessed via pulsed-field 
gel electrophoresis. For purity determination and precise 
quantification, a Nanodrop Kit (Implen, CA, USA) and 
a Qubit® 2.0 fluorometer (Life Technologies, CA, USA) 
were used, respectively.

Library construction and sequencing
To prepare the Illumina sequencing library, we used the 
NEBNext®Ultra™ DNA Library Preparation Kit (New 
England Biolabs, USA) and a 1 μg DNA sample. An 
index code was added to the primer to allow different 
samples to be distinguished in the sequence data. The 

kit manufacturer’s recommendations were strictly fol-
lowed. Briefly, the extracted DNA was fragmented into 
350-bp fragments via sonication, and the ends were 
repaired. An adenine nucleotide was then added at 
the ends, and full-length adaptor sequences were con-
nected. These libraries were purified with the AMPure 
XP system (Beckman Coulter, Brea, CA, USA). An Agi-
lent 2100 Bioanalyzer and real-time PCR were used 
for size distribution and quantitative analyses of the 
purified products. After the quality of the library was 
verified, all of the samples were subjected to paired-end 
sequencing by using the Illumina NovaSeq 6000 plat-
form with a read length of 150 base pairs (PE150).

For the preparation of the PromethION library, we 
used an SQK-LSK109 Ligation Sequencing Kit (Oxford 
Nanopore Technologies, Oxford, UK) to obtain 8 μg of 
DNA from each sample according to the manufacturer’s 
recommendations. Briefly, the DNA was processed by 
using a Megaruptor (Diagenode, NJ, USA); DNA frag-
ments longer than 10 kb were then screened by using 
BluePippin. A specific barcode was added to the frag-
ments that had been repaired, an A tail was also added, 
and the length of the fragments was checked. To com-
plete the preparation of the DNA library, samples with 
different barcodes were mixed in equimolar amounts 
and purified, and the DNA concentration was quanti-
fied by using a Qubit fluorometer. After the quality of 
the library was verified, nanopore sequencing technol-
ogy was used for sequencing.

Data quality control
For the quality control of the raw data obtained from 
the Illumina sequencing platform, Readfq ver. 8.0 
software was used to filter out low-quality reads with 
ambiguous “N” bases (More than 10 consecutive N 
bases) and adapter contamination (the overlap of the 
adapter sequence exceeds 15bp) with the parameters 
‘--Q 53,40 --C 53,40 --N 10 --alen 15 --amis 3 --dup 
(--amis: cut-off adapter mis-match bases ; --dup: fil-
ter duplications)’ [29]. Briefly, the quality value filter 
value is set to Q20. Alignment was performed with 
Bowtie 2 software (version 2.2.4, http://​bowtie-​bio.​
sourc​eforge.​net/​bowti​e2/​index.​shtml) with the param-
eters ‘--end-to-end, --sensitive, -I 200, -X 400’ [30], 
and reads aligned to the horse genome (EquCab3.0: 
GCA_002863925.1) were removed. The remaining 
high-quality reads were further analysed.

For the Nanopore sequencing data, we used Guppy 
software base calling to convert the data from fast5 for-
mat into fastq format. NanoPlot ver. 1.18.2 (https://​
github.​com/​wdeco​ster/​NanoP​lot/) was used to perform 
quality control on the fastq-format data; the threshold 

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/wdecoster/NanoPlot/
https://github.com/wdecoster/NanoPlot/


Page 4 of 16Li et al. Microbiome            (2023) 11:7 

was set to Q > 7, and the parameters were set to ‘-t 20, 
--loglength, --N50’ [31]. In addition, we used BLASTR 
ver. 5.1 software with the parameters ‘--nproc 30, --bestn 
10, --nCandidates 10, --noSplitSubreads, --maxScore 
-1000, --maxLCPLength 16’ to compare our data with the 
horse genome to filter out reads that might have origi-
nated from the horse host [32]. Reads longer than 500 bp 
constituted the final valid dataset.

Metagenomic assembly and binning
SOAPdenovo2 ver. 2.04 software was used with the 
parameters ‘-d 1, -M 3, -R, -u, -F, -K 55’ [33] to assemble 
clean data from the Illumina sequencing results and to 
obtain scaffolds. The assembled scaffolds were then inter-
rupted at the N junction to obtain scaftigs, and fragments 
shorter than 500 bp were simultaneously filtered out to 
obtain high-quality scaftigs [30]. MetaWRAP ver. 1.2.1 
software (https://​github.​com/​bxlab/​metaW​RAP) was 
subsequently used for metagenomic binning. In brief, the 
assembly was binned with the metaWRAP binning mod-
ule by using the metagenomic binning programs Max-
Bin2, metaBAT2, and CONCOCT. The metaWRAPBin 
refinement module was applied to consolidate multiple 
binning predictions into a new, improved bin set [34]. All 
of the final bins were aggregated, and dRep ver. 1.1.2 soft-
ware was then used with the parameters ‘-p 16, -comp 
80, -con 10, -str 100, -strW 0’ [27] to remove duplicate 
bins. Then, dRep was used with the secondary cluster-
ing at the threshold of 99% ANI with at least 25% over-
lap between genomes. CheckM software ver. 1.0.7 was 
used to evaluate the quality of the assembled bins, which 
were screened according to the criteria of complete-
ness ≥50% and contamination ≤10% (4142 medium-
quality MAG) [35, 36]. Only bins assessed by CheckM 
as complete ≥80% and contamination ≤10% were fur-
ther screened as high-quality MAG. For duplicate bins, 
bin scores were given as completeness − 5 × contamina-
tion + 0.5 × log(genome N50); the MAG with the high-
est score was retained. After analysis, 2272 MAG were 
retained in the assembled data (2240 MAG were assem-
bled from the Illumina sequence data and 32 from the 
Nanopore sequence data). The metawrap quant_bins 
module was used with options ‘metawrap quant_bins -b 
genomes/ -o QUANT_BINS/’ to calculate the abundance 
of MAG in each sample [34].

Flye ver 2.4.2 2 software was used to assemble clean 
data from the Nanopore sequencing results with the 
parameters ‘--threads 4, -- meta, -g 5m’ [37]. Finally, 
the Illumina sequencing data were used to correct the 
Nanopore data, and the preprocessed clean data were 
compared to the scaftig data to obtain unused PE reads 
with the parameters ‘--end-to-end, --sensitive, -I 200, -X 
400’. After scaftigs less than 2 Mb long were filtered out 

[38], the assembled scaftigs were subjected to statistical 
analysis.

Finally, PhyloPhlAn ver. 3.0.51 software [39] was used 
to construct a phylogenetic tree of the 4142 assembled 
MAG. RNAmmer ver. 1.2 software [40] was used to pre-
dict the 16S rRNA genes, and tRNAscan-SE ver1.3.1 [41] 
was used to predict tRNA genes. The ANI was calcu-
lated by using PYANI ver. 0.2.10 with the parameters ‘-m, 
ANIb’ [42].

Gene catalogue construction, taxonomic annotation, 
and abundance profiling
MetaGeneMark (prokaryotic GeneMark.hmm ver. 2.10; 
http://​topaz.​gatech.​edu/​GeneM​ark/) [43] was used to 
predict all open reading frames (ORFs) of the assembled 
scaftigs (≥ 500 bp). Then, a nonredundant gene cata-
logue was then constructed by using CD-HIT ver. V4.5.8 
software (http://​www.​bioin​forma​tics.​org/​cd-​hit) with 
greater than 95% identity over 90% of the shorter ORF 
length clustered together by a greedy pairwise compari-
son implemented. The longest ORF from each group was 
selected as the representative of the group. CD-HIT with 
default parameters during analysis except ‘-G 0, -aS 0.9, 
-g 1, -d 0, -c 0.95 b -n 5’ [44]. The uniqueness of our gene 
catalogue was assessed by clustering with the reported 
equine gut gene catalogue using the same parameters. 
To determine the abundance of genes and reads, these 
sequences were mapped to the gene catalogue (unigenes) 
by using Bowtie ver. 2.2.4 with the parameters ‘--end-to-
end, --sensitive, -I 200, -X 400’. The genes with ≤2 reads 
in each sample were filtered out, and the gene catalogue 
was ultimately used for subsequent analysis [45]. The 
abundance of genes was calculated by counting the num-
ber of reads and normalizing result according to gene 
length.

The unigenes were aligned to the integrated NR data-
base (2018-01-02) by using DIAMOND ver. 0.9.9.110 
with the parameters ‘-k 50, -sensitive, -e 1e-5’ [46]. For 
the final aligned results of each gene, significant matches 
were defined according to an e-value ≤ 10×e-value of the 
top hit, and the taxonomic level was determined by using 
the lowest common ancestor-based algorithm, imple-
mented in MEGAN [47]. The abundance of a taxonomic 
group in each sample was equal to the sum of the abun-
dance of genes annotated to a feature [48].

Metagenomic assignment
ORFs were predicted from the assembled MAG by using 
MetaGeneMark (prokaryotic GeneMark.hmm, ver. 
2.10) [49]. All of the predicted genes were aligned with 
the integrated NR database by using DIAMOND ver. 
0.9.9.110 (https://​github.​com/​bbuch​fink/​diamo​nd). In 

https://github.com/bxlab/metaWRAP
http://topaz.gatech.edu/GeneMark/
http://www.bioinformatics.org/cd-hit
https://github.com/bbuchfink/diamond
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addition, GTDB-Tk (v.1.3.0) was used to assign the tax-
onomy of the MAG [50].

Proteome analysis
DIAMOND software was used to search the predicted 
amino acid sequences of each MAG against the UniProt 
TrEMBL database (ver. 2020-05, https://​www.​unipr​ot.​
org/​stati​stics/​TrEMBL) [51] with the parameter ‘blastp’ 
according to an e-value ≤1e−5. From the BLAST results 
for each sequence, the best BLAST hit was selected for 
subsequent analysis [52]. Sequences that could not be 
aligned were defined as unknown proteins. To under-
stand the functions of the assembled MAG, we used 
DIAMOND software to compare the predicted proteins 
to the KEGG database (ver. 2018-01-01, http://​www.​
kegg.​jp/​kegg/) to obtain KEGG orthologues to determine 
the functional pathways in which the MAG participated. 
All of the predicted proteins were searched against the 
CAZy database (ver. 201801, http://​www.​cazy.​org/), using 
dbCAN2 [53] and HMMER (version 3.3.1) [54] to anno-
tate CAZy. Based on these results, we counted the num-
ber of functional genes with nonzero abundances [29]. 
PUL were predicted for Bacteroidetes MAG by using 
PULpy software [27]. The sex and breed were regarded 
as environmental factors and used Mantel test analysis 
in the vegan package of R 4.0.4 to test the correlation 
between the cazy abundance matrix and the environmen-
tal factor matrix with default parameters [55]. Resistance 
Gene Identifier (RGI, version 5.1.0) software was used to 
align the predicted proteomes to CARD (version 3.0.8) 
with the parameter setting blastp [56, 57].

Faecal RNA extraction and real‑time RT–PCR
Faecal total RNA was extracted from frozen tissues after 
grinding under liquid nitrogen using TRIzol (Invitrogen, 
CA, USA) according to the manufacturer’s protocol. The 
quantity and purity of total RNAs were detected by using 
NanoDrop 2000 Spectrophotometer (Thermo Scientific, 
Wilmington, DE). The isolated RNA was employed to 
synthesize cDNA using an RT–PCR kit (Takara, Dalian, 
China). The RT Primer Mix (Mixture of Random 6 mers 
and Oligo dT Primer) included in the kit was used as the 
primer for RT–PCR. All real-time RT–PCR analyses were 
performed using TB Green (TaKaRa Biotech, Dalian) 
according to the manufacturer’s protocol. All primer 
information is listed in Additional file 2: Table S2.

Mice treadmill experiment
Sixteen CL57BL/6 mice about 12 weeks old (±1 week) 
were purchased from the Experimental Animal Center 
of Huiji District, Zhengzhou City (Zhengzhou, Henan, 
China). All mice were housed in the Animal Genetic 
Engineering Laboratory at Shihezi University. C57BL/6J 

mice were housed in SPF individually ventilated cages (2 
mice per cage) under the controlled room temperature 
(23°C ± 3°C) and relative humidity (60 ± 10%) condi-
tions, with a reverse light to dark cycle (12:12). C57BL/6J 
mice were left to acclimate for 1 week and were randomly 
divided into two groups based on body weight. One 
group was treated with normal standard diets (Experi-
mental Mice Maintenance Feed (AIN-93), XIETONG 
SHENGWU, Nanjing, China) containing 3.5% and 0.5% 
acetate and butyrate (Solarbio, Beijing, China), and the 
other group was supplemented with an equal amount 
of sodium chloride (Solarbio, Beijing, China) in the feed 
as a control. The processed diets were stored in a −20°C 
freezer, and the diets of all mice were changed daily at 
10:00 am. Both groups of mice were given free access 
to water and diets. For 3 days before starting treatment, 
mice were acclimated daily to the treadmill (No. XR-PT-
10B; Shanghai XinRuan Information Technology Co., 
Ltd. Shanghai, China) by walking at 10 m/min for 10 min. 
Exercise capacity was measured after 4 weeks of treat-
ment as previously described [58, 59]. The inclination 
of the runway was 11°. The exercise regimen was started 
with shock grid ON at 10 m/min for 30 S; speed was 
increased by 1 m/3 min up to 20 m/min and then held at 
20 m/min until exhaustion. The electric shock intensity 
was 2mA, and the electric shock tolerance time was 10 
s. The exhaustion time of each mouse was recorded for 
analysis.

Statistical analysis and graphing
Phylogenetic trees were drawn with GraPhlAn ver. 1.1.3 
[60] and the ggtree packages [61] in R ver. 3.6.2 or iTOL. 
All other statistical analyses were carried out in R ver. 
3.6.2. The ComplexHeatmap package [62] was used to 
visualize all of the heatmaps. Box plots and scatter plots 
were drawn with the ggplot2 package [63]. Rarefaction 
analysis was performed to characterize gene richness. 
Our samples were randomly sampled 100 times with 
replacement, and the total number of genes that could be 
identified from these samples was estimated with R ver. 
2.15.3 (vegan package) [64].

Results and discussion
Samples and metagenomic sequencing data
To provide a resource for studying the horse gut micro-
biome, metagenome sequencing was performed on 110 
caecal and 132 rectal gut (faeces) samples from a total 
of 242 horses of different ages (range: 1–11 years), sexes 
(female, male), and breeds (Thoroughbred, Yili horse, 
Yili racehorse, Tibetan horse, or Shetland pony) and that 
were maintained under different diets (Additional file 1: 
Table S1, Fig. 1A). Using high-throughput sequencing, we 
obtained 2.267 Tb of Illumina sequencing data from all 

https://www.uniprot.org/statistics/TrEMBL
https://www.uniprot.org/statistics/TrEMBL
http://www.kegg.jp/kegg/
http://www.kegg.jp/kegg/
http://www.cazy.org/
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242 samples. After quality control, a total of 2.264 Tb of 
clean, high-quality data remained, with an effective data 
quality control rate of 99.86% (Additional file 3: Table S3). 
To evaluate the total number of genes that could be 
identified from these samples, rarefaction analysis was 
performed with random sampling 100 times. The rarefac-
tion curve was close to saturation (Additional file 4: Fig. 
S1), indicating that the sequence data were sufficient for 
a genomic analysis of the horse gut microbiota and that 
few novel genes had gone undetected. In addition, for 
improving the quality of data assembly, we sequenced 
two samples (HGM35 and HGM77) by using Nanopore 
sequencing and obtained 0.057 Tb of long-read sequenc-
ing data.

Assembly of 4142 microbial genomes from the horse gut
We used the metaWRAP-Binning module to generate 
6408 bins (MaxBin2), 7495 bins (metaBAT2), and 12,415 
bins (CONCOCT) (Fig.  1A, left side). After dereplica-
tion (average nucleotide identity (ANI) ≤99%) and qual-
ity assessment, we obtained a final set of 4099 MAG that 
met or exceeded the previously established medium-
quality criteria (completeness ≥ 50% and contamination 
≤ 10%; [65]). An additional 43 genomes were generated 
from the two sequenced samples (HGM35 and HGM77) 

via the Nanopore sequencing approach (Fig.  1A, right 
side). Thus, we assembled a total of 4142 MAG by using 
Illumina and Nanopore sequencing technologies (Addi-
tional file 5: Table S4). Among the 4142 MAG, 2272 were 
high-quality genomes (defined as > 80% completeness 
and < 10% contamination [66]) (Fig.  1B); 646 showed > 
95% completeness and < 5% contamination; and 46 pre-
sented > 97% completeness and 0% contamination (Addi-
tional file 6: Fig. S2).

To classify the 4142 MAG, these MAG sequences were 
aligned with the Genome Taxonomy Database (GTDB). 
Further analysis showed that 126 of the 4142 MAG 
were identified at the species level, 3462 were identi-
fied at the genus level, 4127 were identified at the fam-
ily level, 4139 were identified at the order level, and 4142 
were identified at the class level. Clustering of MAG 
with ANI of 99% and 95% for strain-level and species-
level genome bins threshold, respectively, we found that 
3253 MAG could be considered species-level genomes. 
All 4142 MAG were classified into GTDB-predicted 
taxa (Fig.  1C), including 18 bacterial phyla (n = 4127 
MAG) and 3 archaeal phyla (n = 15 MAG). As shown 
in Fig. 1C, the top 10 bacterial phyla were Bacteroidota 
(2065 MAG), Firmicutes (1432 MAG), Verrucomicro-
biota (200 MAG), Spirochaetota (175 MAG), Fibrobac-
terota (75 MAG), Proteobacteria (70 MAG), Synergistota 

Fig. 1  Pipeline for MAG construction and basic information of assembled MAG. A Summary of study population characteristics and schematic 
diagram of the pipeline for constructing MAG from 242 horse metagenome datasets using Illumina and Nanopore sequence data. B Distribution of 
genome completeness and classification of MAG into quality tiers. The abscissa represents the MAG length, and the ordinate represents the MAG 
completeness. C Phylogenetic tree of 4142 MAG from the horse gut, generated by PhyloPhlAn. The coloured circles represent MAG. The legend is 
arranged in decreasing order (top to bottom) of the number of bacteria detected in the corresponding phyla
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(23 MAG), Patescibacteria (64 MAG), Desulfobacterota 
(17 MAG), Elusimicrobiota (12 MAG), and Campylo-
bacterota (11 MAG). 4015 of the 4142 MAG (> 96.93%) 
did not match the reference genomes in the GTDB and 
therefore represented unknown species or strains iden-
tified for the first time in this study (Additional file  7: 
Table  S5). By dereplication with the horse MAG from 
previous studies [6, 20, 21] based on the 95% ANI level, 
we found that 3936 MAG were unique in this study 
(Additional file 8: Table S6). Upon comparing the MAG 
identified in 242 horses, we found that 36 core MAG 
were present in at least 90% of samples, including Bacte-
roidota (MAG = 16), Firmicutes (MAG = 18) and Verru-
comicrobiota (MAG = 2) (Additional file 9: Table S7), and 
these phyla were also present in the reported horse gut 
metagenomic data [6, 67]. Meanwhile, MAG with a rela-
tive abundance of <1% in 90% of the samples were con-
sidered rare [68], and a total of 43 MAG were identified 
as rare (Additional file 10: Table S8).

Among the 15 archaeal MAG obtained in this study, 13 
belonged to unknown species. All archaeal MAG were 
assigned to three phyla: Halobacterota (n = 9), Ther-
moplasmatota (n = 4), and Euryarchaeota (n = 2). To 
reveal the potential functions of the archaeal MAG, 6 
high-quality archaeal MAG were chosen based on >80% 
completeness threshold and were further analysed for 
the presence of methanogenic pathway genes involved in 
methane production. All 6 high-quality archaeal MAG 
contained >500 methanogenic genes (Additional file  11: 
Table S9). Interestingly, MAG23.bin.19 (100% complete-
ness and 0% contamination) contained the most metha-
nogenic genes identified among these archaeal MAG 
and could utilize all three known pathways (hydrogeno-
trophic, acetoclastic, and methylotrophic pathways) to 
produce methane (Additional file 11: Table S9). MAG23.
bin.19 was assigned to Methanobrevibacter smithii. Pre-
vious study reported that Methanobrevibacter smithii 
was the dominant archaeon (representing up to 10% of 
all anaerobes) in the gut of humans and promoted the 
production of methane in the human large intestine 
[69]. Meanwhile, Methanobrevibacter smithii is also an 
important methanogen in the rumen [70]. Together, our 
results suggest that MAG23.bin.19 may be a major con-
tributor to methane production in horses. The complete 
genome information of Methanobrevibacter smithii may 
provide novel targets for mitigating methane production, 
although further experimental analysis is needed to con-
firm this in the future.

Assembling the first complete, circularized genomes of 13 
unknown species from long‑read data
To generate complete microbial genomes, two metagen-
omic samples (HGM35, female; HGM77, male) were 

subjected to Nanopore sequencing, which produced 
more than 50.13 Gb of clean data (more than 57.71 Gb 
of raw data at an efficiency of > 86.85%). The average 
read length was 55,063 bp, which is superior to the data 
reported in previous studies [27, 71]. After assembling 
these long reads, we obtained a sequence that was 739 
Mb long, and the N50 value reached 217 kb. As shown 
in the pipeline diagram (Fig. 1A), we assembled 32 new 
high-quality MAG that had not previously been iden-
tified in public databases. Compared with Illumina 
data, we observed that Nanopore sequencing data was 
superior in assembly length and contig length (Fig. 2A, 
Additional file 5: Table S4).

Long reads can be used to assemble near-complete 
circular MAG (cMAG) from a single scaffold, which 
greatly improves the accuracy of the assembly. Among 
the 32 MAG generated from long reads, 13 were suc-
cessfully assembled into cMAG, which is an important 
achievement of long-read assembly (Additional file 12: 
Table  S10). The average completeness and contamina-
tion of these cMAG were 93.25% and less than 0.99%, 
respectively. The cumulative GC skew and genomic GC 
content were used to verify the assembly quality of the 
cMAG (Additional file 13: Fig. S3).

These 13 cMAG were further compared with the 
NR database and the Genome Taxonomy Database 
Toolkit (GTDB-Tk) to identify homologous species. 
Among these homologous species, the highest ANI 
with cMAG was 83.69%. This relatively low ANI indi-
cated the novelty of these cMAG representing the first 
circularized, complete genomes for respective species. 
These cMAG contained complete bacterial genome 
information, including multiple copies of 16S, 5S, and 
23S rRNA operons and tRNA operons (Additional 
file  14: Table  S11). We next identified the assembled 
genomes of the highest quality for further analysis 
based on contamination and selected MAG77.2830532.
NO.32, MAG77.2876332.NO.18, and MAG77.3034135.
NO.12, all of which had contamination scores of 0% 
(Fig.  2B, Additional file  13: Fig. S3, Additional file  12: 
Table S10). Comparisons with public databases identi-
fied MAG77.2830532.NO.32 as Anaerovibrio lipolyticus 
(ANI < 73.90%) and MAG77.2876332.NO.18 as a novel 
species of Ruminococcaceae bacteria (ANI < 71.20%) 
(Fig.  2B), and MAG77.3034135.NO.12 was identified 
as an unknown Ruminococcus sp. (ANI < 79.17%) [72]. 
We also searched for full-length 16S sequences in these 
genomes by comparison against the NCBI database, 
and the top hits were an uncultured rumen Anaerovi-
brio sp. (97.30% identity), uncultured Ruminococcus 
sp. (95.60% identity), and uncultured Ruminococcaceae 
bacterium (97.30% identity). According to the general 
standard for 16S rRNA-based taxonomy [73], only 
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Fig. 2  Assembly of the first complete, circularized genomes from long-read data. A Statistical distribution of three important indicators (upper, N50 
value; middle, total length of components; lower, length of the longest contig) for the Illumina and Nanopore sequence assembly results. Nanopore 
sequencing indicators are highlighted. B Overview of 2 circular genomes. From the outside to the inside, the concentric circles indicate the 
positional coordinates of the genomic sequence, coding genes, gene annotation, noncoding RNAs, genomic GC content, and genomic GC skew 
values. Gene annotation: different colours distinguish KEGG and GO annotations. Genome GC content: red indicates that the GC content is less than 
that of the whole genome; green indicates that the GC content is greater than the average. GC skew value: pink indicates that the G content is less 
than the C content; light-green indicates that the G content is greater than the C content
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MAG77.2876332.NO.18 could be considered a new 
species, which further suggests the accuracy of the 
genome sequencing of the microbial taxa. These results 
suggest that the long-read assembly of MAG not only 
increased the integrity of the genome assemblies but 
also revealed previously unresolved genomic features 
and taxonomic information.

Hundreds of thousands of novel CAZy
Next, we analysed the proteomic contents and func-
tions of the horse metagenomes by searching against 
the KEGG and CAZy databases [74, 75]. The 2272 high-
quality MAG contained a total of 4,632,123 predicted 
proteins. By comparing gene catalogue of this study 
with that of published horse data reported by Mach 
et al., Youngblut et al., and Gilroy et al. [6, 20, 67], we 

found that our data greatly expanded the catalogue of 
equine gut microbial gene catalogue (Additional file 15: 
Fig. S4). Among the 4,632,123 predicted proteins, 
6.77% (313,568) of which were predicted to have at 
least one CAZy function (Additional file 16: Table S12). 
The 313,568 CAZy proteins included 130,001 glycosyl 
hydrolases (GH), 73,365 glycosyl transferases (GT), 
52,961 carbohydrate-binding modules (CBM), 46,437 
carboxyesterases (CE), 6320 polysaccharide lyases 
(PL), and 4484 proteins with auxiliary activity (AA) 
(Fig.  3A; Additional file 17: Table  S13). These proteins 
were unevenly distributed in the genomes of the taxa 
that we identified. For example, GH and GT were par-
ticularly enriched in Verrucomicrobiota and Firmicutes 
(Fig. 3B). We further analyse the similarity of the pre-
dicted CAZymes against the current CAZy database 

Fig. 3  Functional annotation of MAG in the horse gut. A Functional annotations of horse microbial proteins. Annotation results obtained using 
KEGG (upper) and dbCAN2 (lower). B Heatmap of the distribution of CAZy. The horizontal axis represents 6 different kinds of CAZy, and the 
different colours of the vertical axis represent different bacterial taxonomic information. C Sequence identity of CAZy in this study with public 
databases. Center lines indicate the median value; boxes show the interquartile range. The origin at the end of the line represents the extreme 
value. D Comparison of CAZy gene numbers with previous studies. GH, glycoside hydrolase; GT, glycosyltransferase; PL, polysaccharide lyase; CE, 
carbohydrate esterase; AA, auxiliary activity; CB, carbohydrate binding. The gene number from previous studies and this study were showed in the 
table below the figure
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[27]. Among the 313,568 CAZy proteins, only 126,139 
(40.23%) showed highly similar matches with ≥ 95% 
consistency, indicating that 187,429 of our predicted 
proteins were novel CAZy (Fig.  3C, Additional file  17: 
Table  S13). Among all the classes of the predicted 
CAZymes, GH presented the greatest amino acid-level 
sequence identity (87.72%) with the CAZy in public 
databases, while AA presented the lowest identity of 
only 49.18% (Fig.  3C), indicating that a large portion 
of the diversity of CAZymes is missing from public 
databases.

We compared the CAZyme profiles of this study with 
those of prior horse study which was recently made 
available by Mach et  al. [6], Youngblut et  al. [20], and 
Gilroy et  al. [67]. We found that our data significantly 
expand the number of CAZy in the horse gut (Fig. 3D). 
For these six classes of CAZy, including GT, GH, AA, 
PL, CE, and CBM, our data expanded the number of 
CAZy by at least an order of magnitude in the horse 
gut, although inconsistencies between our study and 
the prior study related to sample collection or sequenc-
ing method that may impact comparisons between 

these datasets. We further analyse the effect of horse 
gender or breeds on CAZyme profiles. CAZy gene 
abundance in the horse gut was significantly associated 
with sex (R2 = 0.04, P = 0.032) and breed (R2 = 0.2107, 
P = 0.001).

In addition, we detected 4492 polysaccharide utiliza-
tion loci (PUL) among 556 Bacteroides species (Addi-
tional file 18: Table S14), which can degrade a variety of 
carbohydrate substrates in animal digestive systems [76]. 
Most of the 556 Bacteroides genomes had at least one 
PUL; Bacteroides fragilis (MAG117.bin.13), in particu-
lar, contained up to 48 PUL. In total, the identification 
of these novel CAZy and potentially cellulose-degrading 
bacteria will facilitate a better understanding of carbohy-
drate metabolism in horse gut and provide a rich source 
of novel enzymes and microbes for fermentation biotech-
nology industries [77, 78].

The horse gut as a reservoir of antibiotic resistance genes
To characterize horse intestinal antibiotic resistance 
genes (ARG), we examined the distribution of ARG in 
2272 high-quality MAG among 242 horse gut samples. 

Fig. 4  The horse gut as a reservoir of antibiotic resistance genes. A Heatmap of the ARG distribution. Colour from blue to red represents an 
increasing number of ARG. The colour band at the top of the heatmap represents the resistance mechanism corresponding to each column of ARG. 
The second colour band represents the resistance drug corresponding to each column of ARG. B Real-time RT–PCR analysis results of 10 randomly 
selected ARG. The ordinate represents the logarithmic change in ARG copy number. C Heatmap of resistance-associated drug classes in the top 
20 MAG with the number of ARG. Colours from blue to red represent an increasing number of ARG. On the right side of the heat map is the ID and 
taxonomic information of MAG. These MAG are arranged from top to bottom according to the number of encoded ARG. D, E Gene counts (D) or 
relative abundance (E) of ARG in horses gut microbes of different breeds. The abscissa represents the 5 horse breeds
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We identified a total of 266 unique types of ARG across 
25 drug resistance classes in the horse gut MAG (Fig. 4A). 
The number of both ARG and drug resistance classes are 
fewer than those reported in pig and bovine gut [79, 80], 
which may be related to genetics, diet, and exposure to 
antibiotics in life. Firmicutes and Bacteroidota were the 
bacterial groups with the greatest numbers of ARG, and 
we also predicted ARG in three archaeal taxa, including 
Euryarchaeota and Halobacterota (Fig.  4A, Additional 
file  19: Table  S15). Aminoglycoside, aminocoumarin, 
and tetracycline ARG were prevalent in the intestines 
of horses (Fig.  4A, Additional file  19: Table  S15), which 
was consistent with previous ARG studies in the gut 
microbes of cattle, sheep, pig, chicken, and horses [20, 81, 
82]. However, the aminoglycoside resistance genes were 
the most abundant ARG in the intestines of horses. The 
high abundance of aminoglycoside resistance genes has a 
potential negative impact on horse health given that ami-
noglycoside was widely used to treat respiratory diseases, 
septic peritonitis, acute febrile diarrhoea, and cellulitis in 
horses [83, 84].

Furthermore, a total of 2194 MAG (96.57%) contained 
five or more ARG (Additional file 20: Table S16), suggest-
ing that ARG are widespread in the horse gut microbi-
ome. We verified the transcriptional activity of these 
ARG by real-time RT-PCR using 10 randomly chosen 
ARG, and the results indicated that these predicted genes 
have real drug resistance functions (Fig.  4B, Additional 
file  21: Fig. S5). Surprisingly, an Escherichia coli strain 
(MAG166.bin.2) was found to contain 82 unique types 
of ARG belonging to 13 drug resistance classes (Fig. 4C, 
Additional file  20: Table  S16). The strain contained a 
variety of resistance genes against fluoroquinolone anti-
biotics, cephalosporins, acridine dyes, carbapenems, 
aminoglycoside antibiotics, peptide antibiotics, and tet-
racycline antibiotics commonly used in livestock produc-
tion. Considering the common pathogenicity of E. coli, 
this finding suggests that this strain may be a potential 
drug-resistant superbug. In addition, we found a large 
number of ARG in MAG49.bin.28 (Roseburia), MAG250.
bin.22 (Prevotella), and MAG77.2754209.NO.29 (Akker-
mansia), members of which are widely reported to have 
probiotic effects [85–87] (Additional file  20: Table  S16). 
Although antibiotic resistance could be used for facilitat-
ing the future isolation and culture of these strains, we 
may also consider the potential harm caused by these 
ARG to the host gut microbiome.

Then, the pair-wise comparisons of ARG prevalence 
in the gut of six populations (Yili horses, Thoroughbred, 
Shetland ponies, Tibetan horses, Yili nonracehorses, and 
Yili racehorses) were performed. Although the Yili horses 
had the largest sample size, the number and abundance 
of ARG in the Yili horses were not the largest. However, 

Thoroughbred horses had the highest abundance and 
number of ARG, which was more than two-fold times 
than that of Tibetan horses (Fig. 4D, E, Additional file 22: 
Table  S17). Tibetan horses have the lowest abundance 
and number of ARG in the gut, and the horses graze 
freely on the Qinghai-Tibet Plateau with rare exposure 
to antibiotics. In addition, although genetic backgrounds, 
training patterns, and breeding sites of Yili racehorses, 
Yili horses, and Shetland ponies were different, the abun-
dance and quantity of ARG in the guts of these horses 
were similar. Among these six breeds, Thoroughbred 
horses are subjected to commercially formulated feeds, 
antibiotic administration, stabling, and confinement con-
ditions throughout the life cycle, which may be one of 
the reasons for the high antibiotic abundance of ARG in 
Thoroughbred populations [79].

Novel insights into potential performance‑enhancing 
microbes in racehorses
To reveal the link between the gut microbiota and exer-
cise performance in racehorses, we examined the differ-
ences between the microbiomes of elite racehorses (n = 
21, Yili racehorses) and a group of age-matched nonrace-
horses horses (n = 35, Yili horses). Principal coordinate 
analysis (PCoA) revealed that the microbial compositions 
of the racehorses and nonracehorses were distinctly sepa-
rated (Fig. 5A). Further analysis of the differences in the 
composition of the gut microbiomes of the two groups at 
the species level was performed. The MAG from Prevo-
tella (MAG36.bin.6, MAG266.bin.12, MAG146.bin.68, 
MAG122.bin.6, MAG120.bin.60) [88], Lachnospiraceae 
(MAG252.bin.16, MAG32.bin.44) [89], Phascolarctobac-
terium (MAG20.bin.3, MAG19.bin.10, MAG23.bin.66, 
MAG3.bin.34, MAG58.bin.49, MAG23.bin.2, MAG35.
bin.4, MAG80.bin.33, MAG240.bin.26, MAG77.bin.65, 
MAG104.bin.14, MAG148.bin.27) [90], Oscillospiraceae 
(MAG59.bin.38) [91], Eubacterium (MAG77.bin.21) [92], 
and Ruminococcus (MAG73.bin.20, MAG28.bin.65) [93] 
showed higher abundances in the guts of elite racehorses 
than in those of nonracehorses (Fig. 5B, Additional file 23: 
Table S18). Lachnospiraceae and Ruminococcus were the 
highly abundant microbes in racehorse, which is in agree-
ment with a study in endurance horses by Plancade et al. 
[14]. Interestingly, Lachnospiraceae, Oscillospiraceae, and 
Ruminococcus, defined as performance-associated bacte-
ria, have been found to be enriched in the microbiomes 
of human athletes, suggesting that the performance-asso-
ciated bacteria may be, at least in part, conserved across 
animals and human [94].

To further explore the functions of the differen-
tially abundant bacteria, we compared the metabolic 
pathways of the microbiome between the racehorses 
group and nonracehorses group. As shown in Fig.  5C, 
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Lachnospiraceae, Phascolarctobacterium, Oscillo-
spiraceae, Eubacterium, Ruminococcus, Campylobac-
teraceae, Methanobacteriaceae, Succinivibrionaceae, 
Bacteroidaceae, Erysipelotrichaceae, and Treponemata-
ceae, which were enriched in the racehorses (Fig.  5B, 
Additional file  23: Table  S18), contained many key 
enzymes in the acetate and butyrate synthesis pathways. 
The key enzymes (EC 1.2.7.1, EC 2.3.1.54, EC 6.2.1.1, 
EC2.3.1.9, EC 1.1.1.36, EC 4.2.1.17, EC 1.3.1.86, EC 
2.3.1.9, and EC 2.7.2.7) in the acetate and butyrate syn-
thesis pathways were significantly enriched in the race-
horses gut when compared with nonracehorses (Fig. 5D). 
More importantly, 36 MAG (e.g. MAG15.bin.4 belong-
ing to Lachnospiraceae, MAG122.bin.15 belonging to 

Oscillospiraceae, MAG28.bin.65 belonging to Ruminococ-
cus, and MAG17.bin.19 belonging to Treponema) were 
higher in racehorses than that in nonracehorses (Addi-
tional file 24: Fig. S6). The enrichment of Treponema in 
racehorses is consistent with previous studies performed 
in endurance horses by Plancade et al. [14] and in Stand-
ardbred racehorses by Janabi et  al. [19] that showed 
that training led to an increase in Treponema. These 
MAG enriched in Yili racehorses contained every gene 
in a major pathway for producing acetate and butyrate 
(Additional file  24: Fig. S6). These results suggest these 
microbes enriched in the racehorses may synthesize 
more acetate and butyrate in the gut. However, the differ-
ences observed here were likely due to the different diets, 

Fig. 5  Novel insights into potential performance-enhancing microbes in racehorses. A Differences in the gut microbiota of racehorses and 
nonracehorses were visualized by PCoA. B Top 30 differentially abundant MAG in racehorses and nonracehorses. These MAG belong to different tax 
of bacteria presented on the left column. Colours from blue to red represent an increasing abundance of MAG. C Bacteria enriched in the racehorse 
contained key enzyme in each step of the acetate and butyrate synthesis pathway. Different colours represent different types of bacteria that 
contain the enzymes necessary for the pathway. The metabolic pathway and EC numbers obtained from KEGG database. D The bar chart shows the 
differences in key enzymes involved in acetate and butyrate synthesis between racehorses and nonracehorses. Enzymes (EC number in red) that 
produced acetate and butyrate are significantly enriched in the racehorse. EC numbers on horizontal axis were obtained from KEGG database. E 
Acetate and butyrate treatment significantly improve the exercise performance of mice. The plot shows each mouse as an individual point, and the 
central bar representing the mean time (n = 8). *P < 0.05, **P < 0.01, ***P < 0.001
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environment, or exercise of racehorses and nonrace-
horses. Future studies is needed to confirm this.

Acetate and butyrate have been shown to modulate 
skeletal muscle function and exercise capacity [93, 95–
97]. Several groups have reported that continuous sup-
plementation of acetate alone or together with butyrate 
improves endurance performance and muscular strength 
[98, 99]. We also confirmed that infusion of the SCFA 
(a mixture of acetate and butyrate) into mice resulted 
in significant increase of maximum time to exhaustion 
(Fig. 5E). Mice treated with oral SCFA infusion, on aver-
age, showed approximately 87.23% increase in run times 
when compared with the saline vehicle group (n = 8). 
Although it has been reported that oral acetic acid can 
serve as an important energy source for skeletal muscle at 
rest in horses [95, 96], whether or not SCFA can enhance 
athletic performance in horses needs to be in-depth stud-
ied in the future.

Conclusions
We present the large-scale metagenomic sequencing 
dataset and reference genome assembly for the horse gut 
microbiome, which will improve the ability to perform 
taxonomic grouping and metagenomic and metatran-
scriptomic analyses for future microbiome studies of 
horses. High abundance and diversity of ARG were 
identified in the MAG, which showed the horse gut as 
a reservoir of antibiotic resistance genes. In addition, by 
using the assembled genome to mine the functions of the 
horse gut microbiome, 36 MAG (e.g. belonging to Lach-
nospiraceae, Oscillospiraceae, and Ruminococcus) was 
observed to be enriched in the racehorses. These bac-
teria enriched in racehorses may produce more acetate 
and butyrate, presenting potential for greater amount of 
short-chain fatty acids available to fuel athletic perfor-
mance. These acetate and butyrate-producing microbes 
are expected to be used as biomarkers for identifying or 
selecting endurance racehorses and may be developed 
into probiotics that are used for promoting horse exercise 
and health in the future. Our study provides exhaustive 
reference genomic datasets for the horse gut microbi-
ota, and our results emphasize the complex interactions 
between the host and the gut microbiota.
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