
Li et al. Microbiome           (2023) 11:38  
https://doi.org/10.1186/s40168-022-01447-0

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Microbiome

Assessment of microbiota in the gut 
and upper respiratory tract associated 
with SARS‑CoV‑2 infection
Jiarui Li1†, Qiuyu Jing2†, Jie Li3†, Mingxi Hua1†, Lin Di4,5, Chuan Song1, Yanyi Huang5,6,7, Jianbin Wang3, 
Chen Chen8* and Angela Ruohao Wu2,9,10* 

Abstract 

Background  The human microbiome plays an important role in modulating the host metabolism and immune 
system. Connections and interactions have been found between the microbiome of the gut and oral pharynx in the 
context of SARS-CoV-2 and other viral infections; hence, to broaden our understanding of host-viral responses in 
general and to deepen our knowledge of COVID-19, we performed a large-scale, systematic evaluation of the effect of 
SARS-CoV-2 infection on human microbiota in patients with varying disease severity.

Results  We processed 521 samples from 203 COVID-19 patients with varying disease severity and 94 samples 
from 31 healthy donors, consisting of 213 pharyngeal swabs, 250 sputa, and 152 fecal samples, and obtained meta-
transcriptomes as well as SARS-CoV-2 sequences from each sample. Detailed assessment of these samples revealed 
altered microbial composition and function in the upper respiratory tract (URT) and gut of COVID-19 patients, and 
these changes are significantly associated with disease severity. Moreover, URT and gut microbiota show different 
patterns of alteration, where gut microbiome seems to be more variable and in direct correlation with viral load; and 
microbial community in the upper respiratory tract renders a high risk of antibiotic resistance. Longitudinally, the 
microbial composition remains relatively stable during the study period.

Conclusions  Our study has revealed different trends and the relative sensitivity of microbiome in different body sites 
to SARS-CoV-2 infection. Furthermore, while the use of antibiotics is often essential for the prevention and treatment 
of secondary infections, our results indicate a need to evaluate potential antibiotic resistance in the management of 
COVID-19 patients in the ongoing pandemic. Moreover, a longitudinal follow-up to monitor the restoration of the 
microbiome could enhance our understanding of the long-term effects of COVID-19.
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Background
COVID-19 is an infectious respiratory disease caused 
by coronavirus SARS-CoV-2. The pandemic has now 
been ongoing for nearly 2 years since the infection was 
first reported in Wuhan, China, at the end of 2019. As of 
December 5, 2021, the ongoing pandemic has affected 
over 200 countries and regions with more than 266 mil-
lion confirmed cases, including over 5 million deaths 
[1]. The emergence of mutations and variants of concern 
(VOCs) has caused several additional waves of infection 
and threatens to compromise the effectiveness of existing 
vaccines and anti-viral drugs [2]. Moreover, SARS-CoV-2 
infection can cause long-term effects on human health, 
with mechanisms largely unknown so far [3].

SARS-CoV-2 binds with angiotensin-converting 
enzyme 2 (ACE2) on the cell surface, facilitating their 
entry into the cell and causing infection [4]. Pneumo-
niae can result when the infection is in alveolar cells, 
and though the respiratory system is the major target, 
accumulating evidence shows that SARS-CoV-2 can 
also infect many other organs. In fact, viral particles and 
nucleic acids have been detected in diverse specimens, 
including bronchoalveolar lavage fluid (BALF), sputum, 
pharyngeal swabs, faeces, blood, and urine [5–7]. Fur-
ther studies using single-cell RNA sequencing revealed 
that ACE2 is expressed in a variety of organs and tissues 
[8–11], and SARS-CoV-2 cell tropism was also identified 
using postmortem samples in multiple organs [12].

Many studies have demonstrated that unique micro-
bial communities reside on the mucosal surface of the 
respiratory tract and that these microbiota have complex 
interactions with the host to maintain balance with the 
host immune system [13]. Respiratory virus infections 
can lead to dysbiosis of the microbiota [14, 15] and can 
predispose patients to secondary bacterial infections, 
resulting in much higher morbidity and mortality [16, 
17]. Aside from local alterations in the respiratory tract, 
changes in the distal gut microbiota have also been 
observed during respiratory virus infections, potentially 
modulated through the so-called “gut-lung axis” [18–20]. 
Altered respiratory tract and gut microbiota have also 
been reported during SARS-CoV-2 infections [21–25], 
and not only were the altered microbiomes associated 
with disease severity [26–28], but also appeared synchro-
nous between the respiratory tract and the gut [29]. How-
ever, these findings were limited by small sample sizes. 
More detailed comparisons of the microbial composition 
and function could provide insights into the mechanism 
of microbial alteration, as well as shed light on the inter-
action between SARS-CoV-2 infection, microbial com-
munity, and host immune system.

We applied a RNA-seq library construction strat-
egy called MINERVA [30], which has greatly reduced 

hands-on time compared to traditional methods, to 
capture both the SARS-CoV-2 and metatranscriptomic 
sequences in samples taken from various body sites of 
COVID-19 patients. These samples include pharyngeal 
swabs, sputum, and faeces. In addition to the associa-
tion of microbiota composition with disease severity in 
all three sample types, we also observed different pat-
terns of microbial dysbiosis in the upper respiratory 
tract compared with that of the gut: the gut microbiota 
composition is highly heterogeneous among patients 
and its alteration seems directly associated with SARS-
CoV-2 viral abundance. In addition, microbial functions 
between the URT and gut are also distinct, with a high 
abundance of stress and toxin-related gene expression 
found in the URT, compared to the loss of carbohydrate 
metabolism and short-chain fatty acids (SCFA)-generat-
ing genes in the gut microbiota of COVID-19 patients. 
These results suggest that the URT microbiota may 
render a high risk of antibiotic resistance; while the gut 
microbiome could be more sensitive to SARS-CoV-2 
abundance and become more unstable. As such, we 
posit that in the care of COVID-19 patients, SARS-CoV-
2-associated antimicrobial resistance, control of second-
ary infection, and supportive maintenance of microbial 
homeostasis warrant more clinical attention.

Methods
Patients and clinical samples
From January 23, 2020, to April 20, 2020, 204 patients 
were enrolled in this study according to the 7th guideline 
for the diagnosis and treatment of COVID-19 from the 
National Health Commission of the People’s Republic of 
China [31]. All patients, diagnosed with COVID-19, were 
hospitalized in Beijing Ditan Hospital and classified into 
three severity degrees: mild, moderate, and severe illness, 
according to the same aforementioned guidelines [31]. 
Briefly, mild cases are those with mild clinical symptoms, 
and there was no sign of pneumonia on imaging. Moder-
ate cases are those showing fever and respiratory symp-
toms with radiological findings of pneumonia. Severe 
cases include adult cases meeting any of the following cri-
teria: (1) respiratory distress (≥30 breaths/min), (2) oxy-
gen saturation ≤93% at rest, (3) arterial partial pressure 
of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ≤300 
mmHg, (4) respiratory failure and requiring mechanical 
ventilation, (5) shock, and (6) with other organ failures 
that require ICU care. In total, we collected 536 samples, 
including 183 pharyngeal swabs, 241 sputa, and 112 fecal 
samples from these patients. We have also collected 97 
samples from 31 healthy donors, including 42 pharyngeal 
swabs, 15 sputa, and 40 faeces (Fig. 1A).

This study was approved by the Ethics Committee of 
Beijing Ditan Hospital, Capital Medical University (No. 
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KT2020-006-01), and consent was obtained from all par-
ticipating patients in accordance with the approved eth-
ics protocol.

RNA extraction, library construction, and sequencing
For all the clinical samples, nucleic acid extraction was 
performed in a BSL-3 laboratory. Samples were deac-
tivated by heating at 56°C for 30 min before extraction. 
Total RNA was extracted using QIAamp Viral RNA 
Mini Kit (Qiagen) following the manufacturer’s instruc-
tions. After nucleic acid extraction, ribosomal RNA 
(rRNA) was removed by ribosomal DNA (rDNA) probe 
hybridization and RNase H digestion, followed by DNA 
removal through DNase I digestion, using MGIEasy 
rRNA removal kit (BGI, Shenzhen, China). The final elu-
tion volume was 12–20 μl for each sample. The sequenc-
ing library was constructed following the MINERVA 
protocol [30]. Briefly, 2.7 μl RNA from rRNA and DNA 
removal reaction was used for standard SHERRY reverse 
transcription [32], with the following modifications: (1) 
10 pmol random decamer (N10) was added to improve 
coverage, and (2) initial concentrations of dNTPs and 
oligo-dT (T30VN) were increased to 25 mM and 100 μM, 
respectively. The RNA/DNA hybrid was tagmented in 
TD reaction buffer (10 mM Tris-Cl pH 7.6, 5 mM MgCl2, 
10% DMF) supplemented with 3.4% PEG8000 (VWR 
Life Science, Cat.No.97061), 1 mM ATP (NEB,Cat.No. 
P0756), and 1U/μl RNase inhibitor (TaKaRa, Cat.No. 
2313B). The reaction was incubated at 55°C for 30 min. 
A 20-μl tagmentation product was mixed with 20.4 μl Q5 
High-Fidelity 2X Master Mix (NEB, Cat.No. M0492L), 
0.4 μl SuperScript II reverse transcriptase, and incubated 
at 42°C for 15 min to fill the gaps, followed by 70°C for 
15 min to inactivate SuperScript II reverse transcriptase. 
Then, indexing PCR was performed by adding 4 μl 10μM 
unique dual index primers and 4 μl Q5 High-Fidelity 2X 
Master Mix, with the following thermo profile: 98°C 30 
s, 18 cycles of [98°C 20 s, 60°C 20 s, 72°C 2 min], 72°C 
5 min. The PCR product was then purified with 0.8x 
VAHTS DNA Clean Beads (Vazyme, Cat. No. N411). 
These libraries were sequenced on Illumina NextSeq 500 
with 2x75 paired-end mode for metagenomic analysis.

Raw data processing and microbial taxonomy assignment
For the raw sequencing reads, bases with a quality lower 
than 20 were firstly trimmed in a k-mer-based strategy 
using BBmap (version 38.68) [33]. Reads with a length 
shorter than 20bp were discarded. Qualified reads were 
then mapped to the human genome reference (GRCh38) 
using STAR (version 2.6.1d) [34] with default parame-
ters. All unmapped reads were collected using samtools 
(version 1.3) [35], and then, rRNA reads were removed 
using SortMeRNA (version 2.1b) [36] based on SILVA 
and Rfam databases. Samples with nonhuman reads less 
than 100k after rRNA removal were excluded from the 
following analysis to ensure enough sequencing depth 
for microbiota profiling. The microbial taxonomy assign-
ment was done by Kraken2 [37]. Custom reference was 
built from all complete bacterial, viral, and any assem-
bled fungal genomes downloaded from the NCBI RefSeq 
database (viral and fungal genomes were downloaded 
on February 4, 2020, and bacterial genomes were down-
loaded on November 14, 2018). There were 11,174 bac-
terial, 8997 viral, and 308 fungal genomes, respectively. 
Taxa with only 1 mapped read were excluded to avoid 
random false positives. Decontamination was performed 
first by PERFect using the “permutation filtering” method 
[38]; then, the left microbes for each sample were further 
filtered based on non-template controls as described by 
Shen et al. with modifications [39]. Briefly, only microbes 
satisfying the following criteria would be considered true 
signals and would be kept for the following analysis: (1) at 
least 4-fold of that in non-template controls and (2) with 
relative abundance ≥1%.

Analysis of Halomonas species
Nonhuman reads from samples with high abundance 
(≥3% of total bacterial reads) of Halomonas detected 
were mapped against genomic references of all Halo-
monas species downloaded from the NCBI RefSeq data-
base using Bowtie2 [40]. We extracted mapped reads 
for co-assembly using Megahit [41] and metaSpades 
[42] at the same time. In total, we got 4182 contigs with 
a total length of 2.67Mbp and the N50 value as 896bp 
from Megahit; metaSpades gave relatively better results, 
with 6577 contigs, a total length of 2.67Mbp and N50 as 
1295bp. To identify species, we aligned contigs against all 

Fig. 1  Overview of the dataset and microbial composition in different sample types of COVID-19 patients. A Summary of sample and patient 
information used in this study (left) and distribution of sequencing depth for each sample (right). Uppercase N indicates the number of patients 
and lower-case n represents the number of samples. Besides disease diagnosis, gender, and sample types, samples were also divided into young 
(<15 years old), working age (15–60 years old), and old (≥60 years old) groups based on patient age. Samples with nonhuman reads less than 
100,000 were labeled in gray and excluded from further analysis. B Comparison of alpha diversity between healthy controls and COVID-19 patients. 
Wilcox rank-sum test was used. C PCoA and PERMANOVA analysis of the microbial composition using Bray-Curtis distance in healthy controls and 
COVID-19 patients. Detailed microbial community was also profiled at genus level for pharyngeal (D), sputum (E), and faeces (F) samples. Only the 
first sample of each subject was used for comparison in B–F 

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Halomonas species genomes using Megablast (-evalue 
1e−10; -qcov_hsp_perc 70; -perc_identity 90) [43]. The 
genomic similarity between assembled contigs with top 
species from blast results was compared using an in-sili-
con DNA-DNA hybridization strategy [44]. Comparative 
circular genomes were visualized using CGView [45].

Microbial function analysis
Reads after the removal of human and rRNAs were 
used for microbial function analysis using HUMAnN2 
(version 2.8.1) [46]. Gene families were first identi-
fied based on UniRef90 database and then regrouped 
to KEGG Orthogroups (KO) and normalized as rela-
tive abundance. Gene families with relative abundance 
>1e−5 in more than 30% of the samples were used for 
the comparison between different disease groups using 
linear discriminant analysis by LEfSe (version 1.0.7) 
[47]. Finally, differential features with relative abun-
dance >5e−5 in more than 30% of samples of each 
group and FDR-adjusted p values <0.05, as well as log-
transformed LDA≥2 were kept. The functional cate-
gory was annotated based on UniProt database [48].

Quantification and statistical analysis
Permutational multivariate analysis of variance (PER-
MANOVA) was applied to assess meta-factors associ-
ated with microbial composition in different sample 

types using R vegan package. Differential genera and 
species in each group were identified by linear discri-
minant analysis using LEfSe, only microbes with FDR-
adjusted p values <0.05 were denoted as significant. 
Kruskal-Wallis test was applied for multi-group com-
parisons, and Wilcox rank sum test was used as post 
hoc test between two groups if not specifically stated. 
The Spearman’s correlation coefficients were trans-
formed using Fisher’s Z transformation for comparison. 
All statistical analysis and visualization were performed 
in R (version 3.5.1).

Results
Overview of the dataset
In total, we collected 536 samples from 204 COVID-19 
patients and 97 samples from 31 healthy donors, of which 
225 samples were pharyngeal swabs, 256 samples were 
sputum, and 152 samples were faeces (Fig.  1A, left). To 
ensure adequate sequencing depth for profiling microbial 
composition, samples with fewer than 100,000 reads after 
the removal of low-quality reads, human reads, and rRNA 
reads were excluded (Fig. 1A, right). Finally, 521 samples 
from 203 patients and 94 samples from 31 healthy donors 
were kept for the following analysis. The summary char-
acteristics of the subjects are shown in Table 1. To avoid 
potential bias introduced by multiple sampling from the 
same patients at different time points, we selected the 
first sample of each patient that was collected within 14 

Table 1  Summary characteristics of the study cohort

Patients with pharyngeal swab samples
Clinical indexes Healthy controls (N=29, n=39) Patient (N=96, n=174)

Mild (N=19, n=31) Moderate (N=51, n=73) Severe (N=26, n=70)
Age 33 (23–42) 22 (8–28) 37 (23–41) 71 (59–79)
Sex (female/male) 18/11 9/10 27/24 10/16
Antibiotic usage 0 2 20 13
Anti-viral drug usage 0 13 78 22
Patients with sputum samples
Clinical indexes Healthy controls (N=12, n=15) Patients (N=142, n=235)

Mild (N=27, n=39) Moderate (N=89, n=156) Severe (N=26, n=40)
Age 32 (25–36) 23 (18–28) 38 (24–48) 62 (47–73)
Sex (female/male) 7/5 15/12 46/43 10/16
Antibiotic usage 0 4 20 13
Anti-viral drug usage 0 18 78 22
Patients with stool samples
Clinical indexes Healthy controls (N=28, n=40) Patient (N=70, n=112)

Mild (N=22, n=40) Moderate (N=44, n=68) Severe (N=4, n=4)
Age 32 (7–40) 22 (6–26) 35 (25–46) 52 (36–69)
Sex (female/male) 15/13 12/10 19/25 1/3
Antibiotic usage 0 3 8 4
Anti-viral drug usage 0 17 38 3
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days since symptom onset as a representative to profile 
the microbial composition and function. Using patients 
with multiple samples available, we further checked the 
dynamics of microbial signatures. All patient samples 
were collected before their discharge from the hospital. 
Detailed information about each sample is listed in Sup-
plementary Table  S1. We also included non-template 
controls (NTCs) during nucleic acid extraction, library 
construction, and sequencing to profile potential envi-
ronmental or reagent contaminations. Microbes detected 
in non-template controls are shown in Supplementary 
Table S2.

Altered microbiota in different sample types 
from COVID‑19 patients
Multiple studies have reported the alteration of respira-
tory tract microbiome in COVID-19 patients, in terms 
of both alpha and beta diversity [24, 49]. In our dataset, 
there is no difference in species richness (number of 
species) in all three sample types between patients and 
healthy controls, but Shannon diversity was significantly 
reduced in respiratory tract samples, including both 
pharyngeal swabs and sputum of COVID-19 patients 
(Fig.  1B). We also did not observe any difference in the 
alpha diversity of fecal samples, which somewhat differs 
from the results reported by others that gut microbiome 
of COVID-19 patients had significantly reduced alpha 
diversity [22, 25]. However, when we then compared the 
beta diversity between patients and healthy controls, 
patient samples form a distinct group from controls on 
principle coordinate analysis (PCoA) using Bray-Curtis 
distance (PERMANOVA test, p < 0.001) for pharyn-
geal, sputum, and fecal samples (Fig.  1C). This suggests 
that even though there is no difference in terms of the 
alpha diversity, COVID-19 patients’ gut microbiomes 
were indeed altered compared to controls. We further 
profiled the microbial composition at the genus level in 
healthy donors and COVID-19 patients for all three sam-
ple types. In pharyngeal and sputum samples, there is a 
striking increase of Streptococcus, the most abundant 
genus in the patient group (Fig. 1D, E). In fecal samples, 
Bacteroides is the most abundant genus but shows no 
obvious difference between patients and healthy con-
trols; rather, the overall microbial composition of patient 
samples shows distinctive patterns compared to healthy 
controls, as exemplified by a decrease in Fecalibacterium 
and expansion of Acinetobacter, Citrobacter, and Pseu-
domonas (Fig. 1F).

Alteration of microbial composition in COVID‑19 patients 
is associated with disease severity
Since there are microbial composition changes in both 
the respiratory tract and gut samples of COVID-19 

patients, we further assessed the effect of meta-factors 
associated with these alterations and found that the 
microbial composition is significantly affected by dis-
ease severity in all three sample types (PERMANOVA; 
Fig. 2A). Consistently, Shannon diversity was significantly 
reduced in pharyngeal and sputum samples of COVID-
19 patients, irrespective of the disease severity (Supple-
mentary figure  S1A). The situation was more complex 
in fecal samples, while there is no reduction in the alpha 
diversity, there are significant effects on the microbial 
composition attributed to SARS-CoV-2 abundance as 
well as antibiotic and anti-viral treatments (Fig.  2A and 
Supplementary figure S1A).

To further identify differential microbes associated 
with disease severity, we performed linear discriminant 
analysis using LEfSe in pharyngeal samples and found 
Tannerella, Fusobacterium, Selenomonas, Burkholderia, 
Treponema, Micrococcus, Escherichia, Campylobacter, 
Haemophilus, and Neisseria to be depleted in COVID-
19 patients; Rothia, Streptococcus, and Actinomyces 
were enriched (Fig. 2B). We also identified differentially 
represented bacterium in sputum samples: Treponema, 
Delftia, Porphyromonas, Tannerella, Haemophilus, and 
Neisseria showed decreased abundance in patients, espe-
cially in those with severe symptoms, while Capnocy-
tophaga and Streptococcus were elevated (Supplementary 
figure S1B). Although the origin of the microbes found in 
sputum samples cannot be precisely pinpointed as upper 
or lower respiratory tract, we found that the same bacte-
rial species were altered in both pharyngeal (Supplemen-
tary figure S1C) and sputum (supplementary figure S1D) 
samples of severe symptom patients. Multiple Strepto-
coccus species were enriched in patient samples, and 
some of them are reported to be normal flora colonizing 
the oral cavity or respiratory tract, but are  also capable 
of causing opportunistic infections [13, 50, 51]. In fecal 
samples, Lachnoclostridium, Eggerthella, Anaerostipes, 
Lachnospira, Enterocloster, Roseburia, Flavonifractor, 
Bifidobacterium, Parabacteroides, and Faecalibacterium 
were reduced in patients, whereas Pseudomonas and 
Halomonas were enriched (Fig.  2C). At species level 
(Supplementary figure S1E), multiple depleted microbes 
were reported to be involved in the generation of SCFA 
and play important role in modulating gut health and 
response to inflammation, such as Parabacteroides dis-
tasonis, Roseburia hominis, Faecalibacterium prausnitzii, 
and many Bifidobacterium species [52, 53].

For microbes found to be associated with disease sever-
ity (Fig. 2B, C, and Supplementary figure S2B), increased 
abundance in the corresponding severity group was 
observed even though not statistically significant (Sup-
plementary figure  S1F). We noticed that there are spe-
cies enriched in COVID-19 which are not commonly 
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detected in human faeces, including the Pseudomonas 
fluorescens group and unclassified Halomonas (Supple-
mentary figure  S1E). Pseudomonas fluorescens generally 
has low virulence but can also cause human infection 
infrequently [54]. Halomonas species are usually found 
in marine or saline environments, as they thrive under 
high salinity environments. However, some strains were 
reported to cause nosocomial infections and contamina-
tions in hospital settings [55]. To more accurately iden-
tify the Halomonas species in our samples, we separately 
mapped non-human reads from samples with a high 

abundance of Halomonas (≥3% of total bacterial reads) 
to all Halomonas genomes downloaded from NCBI Ref-
Seq database and performed meta-assembly with two 
different approaches. To achieve species-level identifica-
tion, we then blasted the assembled contigs against the 
known Halomonas genomes. Most of the hits had ~99% 
identity, confirming the existence of Halomonas in our 
samples (Supplementary figure  S2A). We further com-
pared the genomic similarity between assemblies and 
top species identified from blast results (Supplementary 
figure S2B). The similarity between assemblies generated 

Fig. 2  Altered microbial composition associated with disease severity. A PERMANOVA test of meta-factors potentially associated with microbial 
composition in all three sample types. Representative genera associated with disease severity were identified by LEfSe in pharyngeal (B) and faeces 
(C) samples, respectively
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using different methods was 97.9%, indicating compara-
ble results from both. There were no species with more 
than 70% similarity identified. Interestingly, several spe-
cies reported to be associated with infection in clinical 
environments were also detected in our samples, includ-
ing H. stevensii, H. johnsoniae, and H. hamiltonii [55, 56]. 
Genomes with more than 60% similarity were visualized 
in Supplementary figure S2C.

Gut microbiota alterations are associated with SARS‑CoV‑2 
abundance
We have observed different alteration patterns of gut 
microbiota in COVID-19 patients from that of the res-
piratory tract when comparing alpha and beta diversity. 
Meanwhile, patient gut microbiomes were affected by 
multiple factors, including disease severity, SARS-CoV-2 
abundance, as well as antibiotic and anti-viral treatment 
(Fig.  2A). Moreover, there is a greater Bray-Curtis dis-
tance between patients and corresponding healthy con-
trols in fecal samples (Fig 3A), indicating that the gut 
microbiota may be more severely disrupted by SARS-
CoV-2 infection. We also calculated Bray-Curtis dis-
tances for samples within the patient and healthy control 
groups, respectively. Generally, the within-patient Bray-
Curtis distance is higher than the within-control dis-
tance for all three sample types; moreover, the degree 
of increase is larger in fecal samples (Fig.  3B), which 
suggested that gut microbial composition of COVID-
19 patients is more dispersed than the respiratory tract 
microbiota.

To further explore potential mechanisms associated 
with the different alteration patterns between URT and 
gut microbiota, we assessed the effects of meta factors, 
including disease severity, age, gender, SARS-CoV-2 
abundance, antibiotic, and anti-viral treatment using 
patient samples. Only patients with mild or moder-
ate symptoms were included since there are insufficient 
numbers of fecal samples from severe patients. Our 
results show that in pharyngeal and sputum samples, 
there is no significant difference in the microbial compo-
sition between mild and moderate patients (Supplemen-
tary figure S3A and S3C); at the same time, no significant 
associations were found among the tested factors (Sup-
plementary figure  S3B and S3D). In contrast, microbial 
composition in fecal samples was significantly associated 

with SARS-CoV-2 abundance (Fig. 3C and D), which sug-
gests that gut microbiota might be more vulnerable to 
disruption by SARS-CoV-2 infection. We then checked 
for the correlation between the abundance of SARS-
CoV-2 and that of the major species from differential 
analysis (Supplementary figure  S1C, S1D, and S1E) and 
found a stronger negative correlation in fecal samples 
(Fig. 3E). This result was also confirmed at the genus level 
(Supplementary figure S3E). Together, these findings sug-
gest that alteration of gut microbiota was more likely to 
be directly associated with SARS-CoV-2 abundance. In 
addition to disease progression, gut microbiota could be 
more easily affected by therapies, showing greater disper-
sion than upper respiratory tract microbiome in COVID-
19 patients.

Microbial composition remains relatively stable 
during the study period
We checked the dynamics of the microbial composition 
for patients with multiple samples available. All sam-
ples were collected during the patients’ hospitalization 
period. The microbial composition profiled by represent-
ative genera from differential analysis remained relatively 
stable in samples from the same patient, irrespective of 
disease severity, and sample type (Supplementary fig-
ure S4A, S4B, and S4C). We also checked the dynamics 
of the average Bray-Curtis distance to healthy controls 
for each patient. There were fluctuations in a subset of 
patients, such as P17, P37, P60, P102, and P103, in terms 
of pharyngeal swabs (Supplementary figure  S5A); P17, 
P137, P161, P164, P165, P168, P169, and P198 in terms 
of sputum (Supplementary figure  S5B) as well as P137, 
P145, and P239 in terms of fecal samples (Supplementary 
figure S5C). However, generally, the Bray-Curtis distance 
remained relatively stable during the sampling period.

Altered microbial function in COVID‑19 patients
In addition to composition, we also assessed the func-
tion of microbial community potentially associated 
with disease severity using the LEfSe method. Generally 
speaking, different patterns of functional dysbiosis were 
observed in the respiratory tract and gut microbiota of 
COVID-19 patients. In the respiratory tract, the micro-
bial community conferred a high abundance of stress-
response and toxin genes, while gut microbiota was 
mainly found with loss of carbohydrate metabolism and 

Fig. 3  Comparison of the dysbiosis patterns of microbial composition in respiratory tract and gut samples. A Comparison of Bray-Curtis distance 
between patients and healthy controls in three sample types. B Comparison of the within-patient and within-healthy control Bray-Curtis distance 
in three sample types. C PCoA analysis of the microbial composition in faeces samples from mild and moderate patients. D PERMANOVA test to 
identify meta-factors potentially associated with the microbial composition in faeces samples from mild and moderate patients. E Distribution of 
the correlation coefficients between SARS-CoV-2 and representative species in three sample types. Kruskal-Wallis test was used for multiple-group 
comparison and Wilcox rank-sum test was used for post hoc two-group comparison

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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SCFA-generating pathways and also with enrichment of 
stress response-related genes.

Specific to pharyngeal samples, multiple genes related 
to fundamental cellular activities were enriched in healthy 
controls, such as glutamate dehydrogenase (NADP+), 
which is involved in amino acid metabolism; and factors 
related to protein translation, such as elongation factor G 
and Ts; as well as cellular components flagellin (Fig. 4A). 
In contrast, multiple genes related to the transporta-
tion of different molecules were found to be enriched in 
patient samples, such as manganese transport protein, 
phosphate transport system permease, sucrose PTS sys-
tem EIIBCA component, iron/zinc/manganese/copper 
transport system substrate-binding protein, oligopeptide 
transport system permease protein, and osmoproctectant 
transport system ATP-binding protein. Moreover, mul-
tidrug efflux pump SatA and SatB, components of nor-
floxacin and ciprofloxacin ABC transport [57, 58], were 
found enriched in severe patients, indicating a higher 
risk of antibiotic resistance in the microbial community 
profiled from patient samples. Genes related to bacterial 
response to stress/inflammation and virulence-related 
genes were also found to be abundant in patient sam-
ples regardless of the disease severity (Fig.  4A). Similar 
in sputum samples, functions related to normal cellular 
activities, including carbohydrate and fatty acid metabo-
lism, protein translation, and genetic organization, were 
enriched in healthy controls. In patient samples, multiple 
genes related to the transportation of molecules, such 
as metal ions, oligopeptides, and amino acids, as well as 
genes related to stress response and virulence were found 
highly abundant (Fig. 4B).

Many of the upregulated genes found in the respira-
tory tract microbiota of COVID-19 patients are associ-
ated with bacterial response to diverse stresses. RseA is 
a negative regulator of the sigma E factor, whose func-
tion is central to the response to envelope stress [59, 
60]. General stress protein 13 was found to be in asso-
ciation with the 30S subunit of the ribosome and can 
be induced by heat shock, salt stress, oxidative stress, 
glucose, and oxygen limitations [61]. Clp protease 
plays a central role in proteolysis and is involved in 
bacterial adaptation to various environmental stresses 
[62]. Fatty acid kinase FakA is involved in lipid metab-
olism and is important for the activation of the SaeRS 
two-component system and secreted virulence factors 
like α-hemolysin [63]. SufB is a component of the Suf 
system, which is a specialized pathway for Fe-S clus-
ter assembly under iron starvation or oxidative stress 
[64]. DNA glycosylase MutY mainly functions to cor-
rect DNA G-A mispairs from oxidative damage [65]. 
LiaR is a component of the LiaFSR system, which is a 
gene regulatory system important for response to cell 

membrane stress in Gram-positive bacteria [66]. Toxin 
FitB is a component of the type-II toxin-antitoxin sys-
tem and plays a role in the speed with which bacteria 
traverse human epithelial cells [67]. Hemolysin-III is 
a potent pore-forming toxin [68]. Taken together, the 
enrichment of these genes in patient samples sug-
gested that the microbial community was underlying 
stressful situations, which might be caused by SARS-
CoV-2 infection or other factors, such as treatment or 
host inflammation.

In fecal samples, healthy controls were observed 
with enriched fatty acid metabolism genes, such as 
phosphate acetyltransferase and 3-hydroxybutyryl-
CoA dehydrogenase; and carbohydrate metabolism 
genes, such as mannose dehydratase, acetate kinase, 
glucose-6-phosphate isomerase, aldose 1-epimerase, 
phosphoglucomutase, gluose-1-phosphate adenylyl-
transferase, triosephosphate isomerase, 6-phospho-
fructokinase 1 and gluocosamine-6-phosphate 
deaminase; and carbohydrate transportation proteins, 
such as raffinose/stachyose/melibiose transport sys-
tem substrate-binding protein and components of 
multiple sugar transport system. Some of the genes 
are known to be involved in the pathways generating 
short-chain fatty acids. Phosphate acetyltransferase 
catalyzes the reversible interconversion of acetyl-CoA 
and acetyl phosphate, which is related to acetate syn-
thesis [69]. Acetate kinase can catalyze the formation 
of acetyl phosphate from acetate and ATP and also 
the reverse reaction to favor the formation of acetate. 
A 3-hydroxybutyryl-CoA dehydrogenase converts 
3-hydroxybutanoyl-CoA to acetoacetyl-CoA and is 
involved in the butanoate metabolism [70, 71]. These 
functions were depleted in patient fecal samples. In 
patients, the elevated genes were mainly related to 
amino acid metabolisms, such as aspartate carbamoyl-
transferase catalytic subunit, argininosuccinate lyase, 
and ketol-acid reductoisomerase and other molecule 
transporting proteins, such as F-type H+ transport-
ing ATPase, preprotein translocase subunit YajC, ABC 
transport system, and N-acetylgucosamine PTS system 
EIIB components. At the same time, stress response-
related genes were also found to be enriched in patient 
fecal samples, such as molecular chaperone HtpG and 
chaperonin GroES (Fig. 4C).

Discussion
We systematically evaluated the microbiota in diverse 
sample types of COVID-19 patients. There are altera-
tions directly associated with disease severity in the URT, 
represented mainly by pharyngeal swab samples, and 
also in the gut microbiome. Moreover, the URT and gut 
microbiota show different patterns of alterations. There is 
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Fig. 4  Altered microbial function in COVID-19 patients. Differentially enriched microbial functions associated with disease severity were identified 
by LEfSe in pharyngeal (A), sputum (B), and faeces (C) samples
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reduced microbial diversity in both pharyngeal swabs and 
sputum samples, which may be due to the loss of normal 
flora and expansion of Streptococcus. This echoes a previ-
ous study that discovered Streptococcus to be dominant 
in the URT of recovered COVID-19 patients and S. para-
sanguinis to be correlated with prognosis in non-severe 
subjects [28]. In gut samples, we saw a depletion of ben-
eficial microbes, including Roseburia, Bifidobacterium, 
Parabacteroides, and Faecalibacterium in patients, which 
are well-known SCFA-generating groups [52, 53]. SCFAs 
are a subset of fatty acids produced by the gut microbi-
ota through fermentation of partially digestible or non-
digestible polysaccharides and play important roles in 
maintaining mucosal integrity, modulating metabolism, 
and regulating local and distal immune homeostasis [20, 
72–74]. Compared to the URT, gut microbiomes showed 
more dispersion and heterogeneity among patients, as 
well as a greater distance to corresponding healthy con-
trols, indicating a wider range of perturbed states in 
patient gut microbiota composition.

The human microbiome and its dynamics are impor-
tant in modulating the host immune system; the recov-
ery of microbiome homeostasis is also critical for the 
recovery of COVID-19 patients [75, 76]. SARS-CoV-2 
infection can affect multiple organs; moreover, multi-
faceted long-term symptoms have been reported for 
patients infected with SARS-CoV-2, with around 70–80% 
of patients showing at least one symptom 6 months after 
their discharge from the hospital [77]. The main symp-
toms were fatigue, muscle weakness, sleep disturbance, 
dyspnea, anxiety/depression, hair loss, loss of taste/smell, 
chest pain, and diarrhea [78]. Incidentally, studies have 
shown that alteration of the gut microbiota persists in a 
significant subset of patients with COVID-19 even after 
disease resolution and clearance of SARS-CoV-2 [22, 
27]. One study found that gut microbiota richness was 
not restored to normal levels even up to 6 months after 
hospital discharge [79]; another recently revealed the 
association of gut microbiota with post-acute COVID-19 
syndrome [80]. Thus far, there is accumulating evidence 
of respiratory tract and gut microbiota alterations as 
a result of SARS-CoV-2 infection, leading to the deple-
tion of normal flora and enrichment of pathogenic spe-
cies along with overall reduced microbiome diversity 
[23, 24, 81]. One study with a small sample size reported 
a synchronous transition of both URT and gut microbi-
ome from early dysbiosis towards late more diverse sta-
tus in mild COVID-19 patients during hospitalization 
[81]. In our study cohort, both URT and gut microbiota 
remained relatively stable during the study period, and 
no obvious trend of restoration was observed. Host- or 
environment-specific patterns of microbiome disruption, 

as well as impaired host immunity at different body sites 
could pose varying challenges to restoring microbi-
ome and immunological homeostasis when recovering 
from COVID-19. Further investigation is needed to fully 
understand the role of the microbiome in host immunity 
against SARS-CoV-2 infection, as well as its relationship 
to the long-term effects post-COVID-19.

Along with changes in microbiome composition, dif-
ferent gene expression profiles that suggest functional 
changes were also observed in microbial communities 
of the URT and gut. An abundance of bacterial stress-
response and toxin genes were detected in patients’ 
pharyngeal swabs and sputum. Genes related to the 
transport of diverse molecules were also enriched in 
patients’ microbiota, including components of antibi-
otic resistance-associated multi-drug efflux systems. 
Together with the discovery of reduced microbial 
diversity and expansion of a single microbe in the URT, 
this raises concerns regarding secondary infections 
and antimicrobial resistance in COVID-19 patients. 
In the gut microbiota of patients, there was a loss of 
genes related to fatty acid and carbohydrate metabo-
lism, especially the depletion of SCFA-generation 
pathways, which is also consistent with the microbial 
compositional changes. Like the URT, patients’ gut 
microbiota also displayed elevated molecule transport 
and stress-response gene expression, further highlight-
ing the stressful microenvironment associated with 
SARS-CoV-2 infection.

In summary, we revealed different types of the respira-
tory tract and gut microbiota alterations in COVID-19 
patients, in terms of both microbial composition and 
function. We also did not observe any obvious trend of 
microbiome restoration during the study period, for both 
body sites sampled. Moreover, the compositional and 
functional profiling results further raise concerns about 
antibiotic resistance associated with the disease, which 
may further hinder the recovery of normal microbiota 
and leave long-term effects post-COVID-19. As such, 
more attention to potential antibiotic resistance and 
microbial homeostasis during clinical care of COVID-
19 patients could offer additional insights for improving 
outcomes.

There are some limitations to this study. Due to the 
urgency and special situation of this disease, and pres-
sures on clinical resources, sampling timepoints, and 
recordings of detailed clinical procedures were some-
times sacrificed to prioritize clinical care, resulting 
in missing samples at certain timepoints, or lack of 
sampling at baseline. Longer follow-up after patients’ 
recovery would also be more helpful for evaluating the 
relationship between alteration patterns and the resto-
ration of microbiota in different body sites. Additional 
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fecal samples from more symptomatically severe patients 
would also be beneficial to further elucidate the associa-
tion of the gut microbiota and disease status; currently, 
this sample type is lacking due to sampling difficulties 
in the clinic. Since sputum samples may contain flora 
from both the upper and lower respiratory tract, they are 
therefore not a classical URT sample type. As such, we 
have used them mainly to supplement our findings from 
the pharyngeal swab samples. It is also extremely diffi-
cult to experimentally validate the findings of potential 
antibiotic resistance, stress response-, and toxin-related 
microbial pathways since the original samples are of lim-
ited quantity.

Conclusions
We systematically assessed and compared the changes 
of microbiota from different body sites of COVID-
19 patients and discovered distinguishing dysbio-
sis patterns between the respiratory tract and gut 
microbial communities. While there is a depletion 
of normal flora in both sample types, the gut micro-
biota is more sensitive to SARS-CoV-2 abundance and 
showed higher variability among patients. In terms of 
microbial function, gut microbiota show loss of car-
bohydrate and fatty acid metabolism, especially genes 
important for SCFA generation, while in the respira-
tory tract microbial community, stress response- and 
toxin-related genes are highly enriched and abundant. 
This study also revealed a potential problem of anti-
microbial resistance in the clinical management of 
COVID-19 patients. While the prophylactic applica-
tion of antibiotics is sometimes essential for the pre-
vention and treatment of secondary infections, close 
monitoring and strategies for more precise use of 
antibiotics are urgently required in the ongoing SARS-
CoV-2 pandemic.
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