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Abstract 

Background  It is well-known that the microbiome produces a myriad of specialised metabolites with diverse func-
tions. To better characterise their structures and identify their producers in complex samples, integrative genome and 
metabolome mining is becoming increasingly popular. Metabologenomic co-occurrence-based correlation scoring 
methods facilitate the linking of metabolite mass fragmentation spectra (MS/MS) to their cognate biosynthetic gene 
clusters (BGCs) based on shared absence/presence patterns of metabolites and BGCs in paired omics datasets of mul-
tiple strains. Recently, these methods have been made more readily accessible through the NPLinker platform. How-
ever, co-occurrence-based approaches usually result in too many candidate links to manually validate. To address this 
issue, we introduce a generic feature-based correlation method that matches chemical compound classes between 
BGCs and MS/MS spectra.

Results  To automatically reduce the long lists of potential BGC-MS/MS spectrum links, we match natural product 
(NP) ontologies previously independently developed for genomics and metabolomics and developed NPClassScore: 
an empirical class matching score that we also implemented in the NPLinker platform. By applying NPClassScore on 
three paired omics datasets totalling 189 bacterial strains, we show that the number of links is reduced by on average 
63% as compared to using a co-occurrence-based strategy alone. We further demonstrate that 96% of experimentally 
validated links in these datasets are retained and prioritised when using NPClassScore.

Conclusion  The matching genome-metabolome class ontologies provide a starting point for selecting plausible 
candidates for BGCs and MS/MS spectra based on matching chemical compound class ontologies. NPClassScore 
expedites genome/metabolome data integration, as relevant BGC-metabolite links are prioritised, and researchers are 
faced with substantially fewer proposed BGC-MS/MS links to manually inspect. We anticipate that our addition to the 
NPLinker platform will aid integrative omics mining workflows in discovering novel NPs and understanding complex 
metabolic interactions in the microbiome.

Keywords  Multi-omics, Genome mining, Genomics, Metabolome mining, Metabolomics, Chemical compound 
classification, Natural products, Specialised metabolites

Background
Complex microbial communities are nearly everywhere 
and rely on specialised metabolites to mediate host-
microbe and microbe-microbe interactions. Such spe-
cialised metabolites, also called natural products (NPs), 
cover vast numbers of different scaffolds that constitute 
an incredible chemical diversity. Microbially derived NPs 
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are also a prolific source for many types of drugs, such 
as antibiotics and anticancer agents [1]. This explains 
the drive to mine the microbiome for novel NPs and 
understand its largely unexplored and complex chemical 
interactions. Currently, the most common technique for 
analysing the microbial metabolome is liquid chroma-
tography followed by tandem mass spectrometry (MS/
MS or MS2), allowing for the discovery and structural 
annotation of NPs in complex mixtures [2, 3]. Especially 
in microbes, the biosynthetic pathways for synthesis-
ing NPs are often encoded by physically clustered sets of 
genes in the genome, known as biosynthetic gene clusters 
(BGCs). With the growing availability of genomic data in 
the last decade, multiple genome mining approaches for 
the identification of BGCs have appeared, such as ant-
iSMASH and DeepBGC [4, 5].

Not only is the availability of metabolomic and genomic 
data growing independently, but also paired datasets of 
both types of omics data are currently recorded in plat-
forms such as the Paired Omics Data Platform (PoDP) 
[6]. Leveraging genomic and metabolomic data together 
facilitates rapidly assessing the novelty of metabolites 
and linking them to their producing organisms and bio-
synthetic loci [7, 8]. Identifying candidate biosynthetic 
genes for a given metabolite provides complementary 
structural information inferred from the genome and 
metabolome for structural elucidation. While promising, 
such integrative omics mining is still challenging: despite 
community efforts like MIBiG [9], the typical number 
of validated paired data points, for which both the gene 
cluster and MS/MS spectral data of the metabolites pro-
duced from it are recorded, available within one experi-
ment generally remains low. This hampers training and 
validation of integrative genome-metabolome mining 
strategies. One route to partially solve this challenge is 
by focusing on well-known and well-understood natural 
product classes [7]; however, this would severely decrease 
the discovery potential for novel chemistry. Therefore, 
generalised methodologies are required that can identify 
links between BGCs and metabolites without the neces-
sity for large amounts of highly specific genetic or bio-
chemical labelled data.

Recently, the NPLinker platform was developed for 
the systematic linking of MS/MS spectra and BGCs [10]. 
Currently, the standardised Metcalf score, a co-occur-
rence-based strain correlation score (i.e., using presence/
absence patterns of strains that contain the BGC and/
or the MS/MS spectrum), constitutes the main generic 
method to link BGCs and MS/MS spectra. To facilitate 
the linking process, NPLinker can currently integrate the 
output of molecular networking through Global Natural 
Products Social Molecular Networking (GNPS), which 
dereplicates and clusters MS/MS spectra into molecular 

families (MFs), with the output of BiG-SCAPE, which 
groups BGCs into gene cluster families (GCFs) [11, 12]. 
The MS/MS spectra or MFs and GCFs are used as inputs 
for two different scores: a co-occurrence-based score 
(originally devised by Doroghazi et  al. [13]) that essen-
tially considers if a GCF and a spectrum (or MF) occur 
together in the same strains, and a feature-based score 
that relies on (typically few) matches with public refer-
ence libraries. Unfortunately, the main co-occurrence-
based score often produces a large list of potential links 
per GCF or spectrum, mainly because many BGCs are 
co-conserved in the same strains across long periods of 
evolutionary time [14]. This makes it hard to prioritise 
and find correct links, even when using reasonable cut-
offs on the co-occurrence score. Hence, additional com-
plementary scoring systems are needed to trim the list to 
a comprehensible length.

Apart from co-occurrence-based scoring, so-called 
feature-based scores that rely on annotated or inferred 
information of BGCs and MS/MS spectra could be 
used [7]. However, the current feature-based score that 
is implemented in NPLinker only solves the problem of 
long candidate lists in the few cases when there is suffi-
cient similarity to known BGCs and spectra, as it com-
pares BGCs and mass spectra to entries in MIBiG, a 
repository of experimentally validated BGCs [9, 15]; 
BGCs and mass spectra are then linked if they both 
have high similarity to (mass spectra associated with the 
product(s) of ) the same MIBiG entry. Hence, it is often 
still challenging to find links when prioritising for novel 
chemistry, even within well-known NP classes such as 
non-ribosomal peptides (NRPs) or polyketides (PKs). 
Hence, in this work, we developed a novel concept for 
integrative omics mining that allows for generic chemi-
cal compound class matching to complement currently 
existing generic co-occurrence-based scores.

Instead of using similarity to entries in public reference 
libraries, we can obtain general knowledge about the 
structure of an unknown NP in the form of likely occur-
ring scaffolds or substructures by using chemical com-
pound classification strategies and using that to filter for 
(more) plausible candidates based on matching chemical 
compound classes. Over the last years, several general 
chemical compound classification ontologies have been 
constructed. One of these is ClassyFire: a hierarchical 
ontology consisting of superclass, class, and subclass cat-
egories and seven more detailed levels [16]. As an exam-
ple, many PKs are classified at the superclass level as 
‘phenylpropanoids and polyketides’, benzenoids, or lipids 
and lipid-like molecules. Recently, NPClassifier was 
developed specifically for NP classifications, taking both 
chemistry and biosynthetic pathways into account [17]. 
Compared to ClassyFire, it tailored the categorisation of 
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NPs into seven major pathways, such as polyketides and 
‘amino acids and peptides’, which are subsequently split 
into more detailed superclasses and classes, like mac-
rolides and polyene macrolides. Furthermore, predicting 
these structure-based ontologies directly from MS/MS 
spectra has also become possible through CANOPUS 
and MolNetEnhancer [18, 19]. Similarly, chemical classi-
fications can also be derived from genomic sequences, as 
antiSMASH uses class-specific detection rules to detect 
different types of BGCs, such as various types of PK 
synthases and NRP synthetases. However, a connection 
between structure- and genome-based classifications is 
currently still missing, as the ontologies from both clas-
sifications are not directly comparable.

To reduce the number of false-positive BGC-MS/MS 
links in multi-omics analyses and thus accelerate NP 
discovery, we here introduce an automated approach to 
match these BGC and compound class ontologies. We 
used the matched class ontologies as a basis for the devel-
opment of NPClassScore: NPLinker Class-based match-
ing Score for linking BGCs and MS/MS-spectra. We also 
implemented NPClassScore in the NPLinker platform. 
This served two main purposes: (i) the impact of the 
novel score could be more easily addressed building on 
the existing NPLinker workflow and (ii) NPClassScore 
is also available for NPLinker users as a new generic fea-
ture-based linking score to remove unlikely BGC-MS/MS 
links predicted by correlation-based scores. To bridge 
the different class ontologies resulting from genome 
and metabolome mining, we used the MIBiG repository 

that contains experimentally validated BGCs and their 
products: antiSMASH genome-based classifications and 
manually annotated genome-based MIBiG classifications 
of the BGCs were matched to the chemical structure 
ontologies NPClassifier and ClassyFire [9] (Fig. 1a). The 
chemical compound class matching was automated by 
counting the genome-metabolome ontology connections 
between all the class terms for each MIBiG entry and 
using relative counts to assess the validity of matching 
class terms for the genome- and structure-based ontolo-
gies (Fig. 1b, c and Eqs. 1 and 2 in the ‘Implementation’ 
section). Here, using three use cases available from the 
Paired Omics Data Platform (PoDP), we demonstrate 
that these automatically matched ontologies are sensi-
ble as well as effective in removing irrelevant candidate 
links between BGCs and MS/MS spectra, while prioritis-
ing previously verified BGC-MS/MS spectra-metabolite 
links in three paired omics datasets from actinobacteria 
and cyanobacteria.

Results and discussion
Matching class ontologies between known BGC‑structure 
pairs
Currently, there are 1926 experimentally validated BGCs 
with their corresponding structures present in the MIBiG 
v2.1 repository [9]. We used the manually annotated 
MIBiG classes and antiSMASH 5 class predictions for the 
BGCs alongside NPClassifier and ClassyFire class assign-
ments for the structures to count all interactions between 
biosynthetic and structural classes (Fig.  1a). Based on 

Fig. 1  a 1926 MIBiG BGCs with corresponding structures were queried to antiSMASH, NPClassifier, and ClassyFire to retrieve BGC and chemical 
compound classifications. The arimetamycin MIBiG entry (BGC0000199) is given as an example with part of its BGC and the arimetamycin B 
chemical structure, for which the chemical compound classes are determined and the genome-based and structure-based classifications are 
matched. Please note that the NPClassifier and ClassyFire ontologies have more class terms than shown here. b Sankey diagram showing the 
relationships between matched MIBiG and NPClassifier pathway class terms. For reference, 722 BGCs had a Polyketide MIBiG class, 548 of which 
matched to NPClassifier pathway Polyketides. c Example scoring matrix between MIBiG classes and NPClassifier pathways, where each count is 
divided by the total occurrence of the class, in this case the column, to compute a score (see Eqs. 1 and 2 in the ‘Implementation’ section)
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the prevalence in MIBiG, we can then infer which class 
terms match frequently between the different ontologies. 
We note that the NPClassifier ontology is designed with 
natural products in mind, thus taking both chemistry 
and biosynthetic context into account, indeed leading to 
more direct matches between genome-based and struc-
ture-based classifications (Fig.  1b). For example, 76% of 
polyketide BGCs match to the NPClassifier ‘Polyketides’ 
pathway, most RiPPs and NRPs match to the ‘Amino 
acids and Peptides’ pathway, and 65% of terpene BGCs 
match to the ‘Terpenoids’ pathway. The most general 
superclass ontology of ClassyFire seems to be less suit-
able, as matches are more sparsely distributed across the 
different superclasses (Fig. S1). For instance, polyketide 
BGCs are distributed almost equally across five different 
ClassyFire superclasses. However, we also note that a cer-
tain degree of complementarity between the two chemi-
cal compound ontologies does exist, since, for example, 
NRPs match for 75% to the ‘Organic acids and deriva-
tives’ superclass from ClassyFire, which is higher than for 
the NPClassifier pathway ontology.

At more detailed structure-based classifications levels, 
like the NPClassifier superclass or class levels, matches 
between genome-and structure-based classifications 
become more distributed as there are more options, and 
small distinctions within the classifications; hence, some 
structure-based ontologies are not reflected in current 
automated antiSMASH BGC classifications. For example, 
different type 1 polyketide synthase products, like prod-
ucts with the NPClassifier superclasses ‘Macrolides’, ‘Aro-
matic polyketides’, and ‘Linear polyketides’, now match 
to the generic type 1 polyketide synthase BGC class 
resulting in matches that are less conclusive (Fig. S2-S3). 
Another difficulty for class matching is the fact that many 
different hybrid classes exist that will make it impossible 
to reach perfect matches between most classes. Some 
NPs consist of very complex tailored scaffolds for which 
a combination of different types of biosynthetic machin-
ery is needed, resulting in complex MIBiG classes like 
‘Polyketide-NRP-Other’ for bromoalterochromide A. 
Additionally, some MIBiG records have very loose cluster 
boundaries with flanking genes that can trigger errone-
ous antiSMASH rules, and may therefore lead to erro-
neous biosynthetic class assignments. In contrast, the 
structure-based classifications are less affected by the 
presence of different structural scaffolds, as ClassyFire 
has a priority system to only consider the most important 
class terms and NPClassifier will only return at most two 
terms for its class level. However, the presence of multi-
ple functional groups can sometimes cause challenges 
in putting a structure in ‘one’ chemical compound class. 
Nevertheless, both genome- and metabolome-based 
chemical compound classification systems seem to work 

well for most structures (Fig. 1). Furthermore, the more 
characterised BGCs will be deposited in MIBiG, the more 
these difficulties are expected to average out and improve 
the class matching usefulness. Similarly, depositing BGCs 
from a larger variety of classes will address biases in cur-
rent data availability, as some classes, such as PKSs, are 
more abundant in the MIBiG database than others.

NPClassScore can filter out many false‑positive links
Based on the matched genome-based and structure-
based chemical compound class ontologies, we con-
structed NPClassScore: the NPLinker Class-based 
matching Score for linking BGCs and MS/MS-spectra. 
We directly implemented NPClassScore in the NPLinker 
platform, where it can be used as an additional filtering 
step to assess the validity of a predicted link between a 
BGC or gene cluster family (GCF), and an MS/MS spec-
trum or molecular family (MF) [10]. NPClassScore con-
sists of a scoring table for each of the 28 pairs of the 
matched genome- and structure-based ontology levels 
derived from MIBiG. The scores in the tables are made 
by dividing the counts for each class match by the total 
occurrence of either the genome-based class or the struc-
ture-based class (Fig. 1c; Table S1). This resulted in two 
different sets of scoring tables, one set that is used when 
starting from the genome side and one set that is used 
when starting from the metabolome side. NPClassScore 
takes the genome-based and structure-based classes 
from a proposed link as input, looks up the matching 
scores between these two classifications in the scoring 
tables, and reports the class match with the highest score 
from one of the scoring tables (Eqs. 1 and 2 in the ‘Imple-
mentation’ section). Thus, the NPClassScore indicates 
how plausible the link is between a BGC and a possible 
product based on how often their classes match among 
BGCs from MIBiG and their experimentally validated 
metabolic products.

Predicted antiSMASH classes are directly used as input 
for NPClassScore and the general BiG-SCAPE classes are 
converted to MIBiG classes (Tables S2–S3). In order to 
predict ClassyFire and NPClassifier ontologies from MS/
MS spectra, we used predictions from CANOPUS and 
MolNetEnhancer within NPClassScore (Fig.  2) [18, 19]. 
CANOPUS is a command-line tool that is part of the 
SIRIUS platform and can very accurately predict com-
pound classifications if the right fragmentation trees are 
calculated. We implemented CANOPUS to run within 
NPLinker, but as it depends on calculating fragmentation 
trees, especially time-wise, it is only suitable to be used 
for the lower masses, below 850 Da. To also capture com-
pound classifications for masses above 850 Da, we used 
MolNetEnhancer, which relies on propagating annota-
tions between MS/MS spectra within MFs. Currently, 
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MolNetEnhancer only provides ClassyFire predictions 
and has to be run on the GNPS platform, from which 
the results can be imported into NPLinker [12]. As the 
default for NPClassScore, MolNetEnhancer is used as 
well when there is no CANOPUS prediction for an MS/
MS spectrum with a mass below 850 Da, but CANOPUS 
and MolNetEnhancer can also be used separately.

To assess how well NPClassScore removes improbable 
links, we used NPLinker on three paired omics data-
sets from the PoDP that consist of 154 Streptomyces and 
Salinispora strains [20], 24 cyanobacterial strains [6], and 
11 Nocardia strains [21] (Table S4). These are the larg-
est datasets that contain multiple verified BGC-MS/
MS-metabolite links in the PoDP, totalling 26 validated 
links across the three datasets. The three datasets will 
be referred to by their taxonomic descriptors indicated 
above. We analysed the three datasets separately using 
NPLinker and first used a co-occurrence-based strategy 
(standardised Metcalf score) to identify possible links 
between GCFs and MS/MS spectra, after which we used 
NPClassScore to filter the number of linked spectra per 
GCF [10, 13]. After filtering, the number of candidate 
MS/MS spectrum links for all GCFs decreased sub-
stantially for all datasets. In the Streptomyces/Salinis-
pora dataset, the average number of candidate links per 
GCF decreased by 68% from 550 to 177. In the smaller 
Cyanobacteria and Nocardia datasets, the number of 
candidate links per GCF decreased from 27 to 13, and 
from 206 to 64, representing decreases of 53% and 69%, 
respectively. Averaging over the three datasets, this con-
stitutes an average decrease in candidate links per GCF 

of 63% (Fig. 3a; Table S5). As the NPClassScore filtering 
depends on the chosen cut-off, we tried different cut-offs 
and decided on a cut-off of 0.25 as a default, as around 
this value there is a marked drop in the number of links 
per GCF for all datasets (Figs. S4-S6). This is also defend-
able from a theoretical perspective, as this cut-off means 
that a given class match should occur for at least 25% of 
the total occurrences of the class among MIBiG entries. 
Additionally, this threshold results in many more GCFs 
with manageable numbers of candidate MS/MS links, 
which can be analysed manually: in the large Strepto-
myces/Salinispora dataset, it yields 92 GCFs with 10 or 
fewer candidate links and 270 GCFs with 25 or fewer 
candidate links. In contrast, without filtering based on 
NPClassScore, only 5 GCFs would have fewer than 10 
candidate links and only 42 GCFs would have fewer than 
25 candidate links in the same dataset (Fig. 3b). Similar 
trends can be seen for the other two datasets (Fig. S7). 
Thus, using NPClassScore constitutes a real advantage 
for end-users as they can now realistically inspect a much 
larger percentage of predicted candidate links that are 
also more likely to be real.

One of the main reasons that the co-occurrence-based 
strain correlation score produced a substantial number 
of false positives is that it does not consider the type or 
function of the natural product. Feature-based scores 
such as NPClassScore are mostly complementary to 
strain-correlation-based scores, as they link BGCs and 
mass spectra based on different principles. Using feature-
based scores alone would also yield many false positives, 
as then the actual co-occurrence across strains would not 

Fig. 2  Schematic overview of the use of NPClassScore in integrative omics mining where functionality that previously existed in the NPLinker 
workflow is shaded in grey. First, BGCs and MS/MS spectra are clustered and dereplicated by BiG-SCAPE and GNPS molecular networking, 
respectively. Co-occurrence scoring (standardised Metcalf ) is used to generate ranked candidate links of BGC-MS/MS spectra by correlating the 
presence/absence patterns of strains that contain a BGC and/or MS/MS spectrum. Depicted in the non-shaded area is the NPClassScore workflow 
which we integrated in the NPLinker platform. We incorporated structure-based classification predictions into the integrative omics mining 
workflow using CANOPUS from the SIRIUS platform and MolNetEnhancer, which predict ClassyFire and NPClassifier ontologies, while using 
antiSMASH and BiG-SCAPE for genome-based chemical compound classification ontologies. Based on the predicted classes of a BGC and MS/MS 
spectrum, NPClassScore outputs a score based on the matched genome- and structure-based ontologies in MIBiG. The best use of the scores from 
NPClassScore is to filter candidate BGC-MS/MS spectrum links based on a NPClassScore cut-off and then rerank the previously ranked candidate lists 
resulting from co-occurrence scoring
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be considered at all. The effect of using just a co-occur-
rence-based strain correlation score (standardised Met-
Calf ) as compared to using the combined co-occurrence 
and feature-based scores is demonstrated both in Fig. 3 
and in Table 1.

Validated links are retained and get higher ranks 
after NPClassScore filtering
To assess if the filtered links based on NPClassScore are 
sensible, we used our three selected paired omics data-
sets from the PoDP, in each of which several previously 

Fig. 3  a The percentual decrease in the number of candidate links per GCF is shown for each dataset. Boxes are drawn from the first to the third 
quartile, separated by the median. Whiskers are extended to 1.5 times the interquartile range. b Histogram showing the number of candidate links 
per GCF in the Streptomyces/Salinispora dataset after co-occurrence scoring (standardised Metcalf ), and after NPClassScore filtering with a cut-off 
of 0.25. The bin size is 25. The triangles and stars depict the number of links for the GCFs of staurosporine and rosamicin, respectively, as shown in 
d. c Summary for the detection of the experimentally validated links in the three datasets as listed on the PoDP. It is indicated whether links were 
correctly retained, incorrectly discarded due to a low standardised Metcalf score while passing the NPClassScore threshold of 0.25, or incorrectly 
discarded due to NPClassScore. Some validated links could not be detected as the reported spectrum on the PoDP was lacking in the dataset. 
Strepto/Sali is short for the Streptomyces/Salinispora dataset. d Depiction of two experimentally validated BGC-MS/MS links, for staurosporine 
and rosamicin, from the PoDP that are present in the dataset. The staurosporine-encoding BGC NC_009953.1.region013 from Salinispora arenicola 
CNS205 is shown as representative for GCF 534, linked to spectrum 89513. The rosamicin-encoding BGC NZ_AUGH01000019.region001 from 
Salinispora pacifica CNS237, which is fragmented due to being located on a contig edge, is shown as representative for GCF 944, linked to spectrum 
130529. NPClassScore is depicted for both validated links as well as their ranks before and after filtering with NPClassScore, where OrgHetCyc is 
short for Organoheterocyclic compounds. Additionally, the total number of candidate MS/MS spectrum links are given for the staurosporine-and 
rosamicin-encoding GCF, denoted after the slash, before and after NPClassScore filtering. The number of links for the GCFs of staurosporine and 
rosamicin before and after NPClassScore filtering is also shown in b using the triangles and stars, respectively
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experimentally validated BGC-MS/MS spectral-chemical 
structure links had been recorded. In the three datasets, 
we checked whether these validated links were retained 
and whether they gained a higher rank in the lists of pre-
dicted links upon NPClassScore application. The Strepto-
myces/Salinispora, Cyanobacteria, and Nocardia datasets 
have 11, 6, and 9 validated links recorded on the PoDP. 
Out of the 26 total validated links, 2 could not be found 
due to a missing spectrum in the datasets. Of the remain-
ing links, 23 out of 24 passed the default NPClassScore 
threshold, constituting an accuracy of 96% (Fig.  3c). 
Additionally, this confirms the choice for our default 
NPClassScore threshold of 0.25 as substantial numbers 
of validated links are removed beyond this threshold (Fig 
S8). As an example, from the Streptomyces/Salinispora 
dataset, we found a link between GCF 534 (present in 54 
strains), and spectrum 89513 (present in 67 strains), rep-
resenting the link for staurosporine based on the PoDP 
[6] (Fig 3d). With a co-occurrence score of 9.0, this link 

was initially ranked second in the list of 100 potential 
links for GCF 534. After filtering using NPClassScore, 16 
potential links were left, and spectrum 89513 was ranked 
first; its NPClassScore was 0.78 from the antiSMASH-
ClassyFire-superclass scoring table, matching indole to 
Organoheterocyclic compounds. Similarly, our analysis 
retrieved the validated link for rosamicin: the rosamicin-
biosynthesis-associated GCF 944 (present in 2 strains) 
was linked to spectra 130529 and 141312, each of which 
was present in 1 of the 2 strains (Fig.  3d). With a co-
occurrence score of 8.7, the links with both spectra were 
ranked at a shared eighth position in the list of 275 can-
didate links. After filtering using NPClassScore, 38 candi-
date links were left in total, and both spectra were jointly 
ranked at the first position; their NPClassScore scores 
were 0.76 from the MIBiG-NPClassifier-pathway scoring 
table, matching Polyketide to Polyketides.

Of note, 5 out of 26 validated links did not pass the co-
occurrence scoring threshold implemented in NPLinker, 

Table 1  All validated links from the three datasets as listed on the PoDP. The standardised Metcalf score and NPClassScore of all the 
links are stated as well as the rank of the verified link in the candidate list before and after NPClassScore filtering. The rank number 
may be shared with a number of other links due to their scores being the same which is indicated in parentheses. Retimycin and 
nocardimicin have no information as their MS/MS spectra could not be located in their respective datasets

Name Dataset Rank NPClassScore 
(shared with n other links)

Rank Metcalf (shared 
with n other links)

Standardised 
Metcalf

NPClassScore

Staurosporine Streptomyces/Salinispora 1 2 9.0 0.78

Rosamicin Streptomyces/Salinispora 1 (6) 8 (38) 8.7 0.76

Desferrioxamine Streptomyces/Salinispora 1 1 9.5 0.36

Rifamycin Streptomyces/Salinispora 152 257 4.4 0.45

Lomaiviticin Streptomyces/Salinispora 30 (18) 381 (151) 3.0 0.96

Arenimycin Streptomyces/Salinispora 1 (4) 1 (12) 12.4 0.96

Enterocin Streptomyces/Salinispora 1 (8) 4 (81) 12.4 0.40

Salinamide Streptomyces/Salinispora 1 (40) 1 (84) 12.4 0.64

Cyclomarin Streptomyces/Salinispora 3 (49) 4 (83) 8.7 0.91

Retimycin Streptomyces/Salinispora - - - -

Actinomycin Streptomyces/Salinispora 1 (97) 1 (159) 12.4 0.76

Anabaenopeptin Cyanobacteria 2 (3) 3 (6) 4.2 0.93

Micropeptin Cyanobacteria - Incorrectly discarded - 1.00

Kawaguchipeptin Cyanobacteria 1 (37) 2 (39) 4.7 0.71

Microcyclamide Cyanobacteria 1 (13) 1 (18) 4.7 1.00

Microcystin Cyanobacteria 11 (4) 13 (8) 3.2 0.64

Microcystin RR Cyanobacteria - Incorrectly discarded - 0.64

Mycobactin Nocardia 1 (90) 2 (133) 3.2 0.64

Mycobactin Nocardia Incorrectly discarded - - 0.03

Nocardimicin Nocardia - - - -

Nocobactin Nocardia - Incorrectly discarded - 0.59

Nocobactin Nocardia - Incorrectly discarded - 0.59

Nocobactin Nocardia - Incorrectly discarded - 0.64

Formobactin Nocardia 1 (338) 4 (648) 2.12 0.64

Nocardimicin Nocardia 2 (255) 11 (427) 2.12 0.59

Carboxynocobactin Nocardia 1 (338) 4 (648) 2.12 0.46
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meaning an accuracy of 75% for the entire NPLinker 
workflow including NPClassScore. Most probably, for 
these links, the clustering of MS/MS spectra and BGCs 
into dereplicated MS/MS spectra and GCFs do not agree 
with each other, i.e., their MS/MS spectra are similar 
enough to be clustered together but BGCs are not, or 
vice versa. An example that supports this hypothesis 
is nocobactin in the Nocardia dataset, where the actual 
link passed the NPClassScore cut-off with a score of 0.59, 
but the BGCs did not cluster together with our currently 
applied BiG-SCAPE cut-off, whereas the MS/MS spec-
tra did cluster with the current parameter and threshold 
settings. Regarding the 21 correctly retained validated 
links, they were not only retained, but they also ranked 
higher in the lists with candidate links due to removing 
false-positive links (Table 1). Out of 21 validated links, 12 
are even ranked at the first position after NPClassScore 
filtering, compared to 5 links being ranked first when 
just using co-occurrence-based scoring. This shows that 
after NPClassScore filtering, the candidate links that are 
retained at high rankings are more reliable and worth 
exploring manually.

It is good to note that by using multiple classification 
ontologies, and their multiple hierarchical levels at the 
same time, most BGCs and MS/MS spectra will have at 
least one match in the NPClassScore tables. This ensures 
that NPClassScore can almost always be used to assess 
the validity of a proposed link based on chemical class 
information. As such, NPClassScore is used as a leni-
ent and generic filtering mechanism, as a potential link 
is already retained when there is a match in only one 
of the scoring tables that passes the threshold (coming 
from either the genome or metabolome). We do note 
that CANOPUS and MolNetEnhancer both give quite 
different chemical class predictions for the spectra in 
our dataset (Tables S6–S7). Looking at the 6606 spectra 
with predictions from both tools in the Streptomyces/
Salinispora dataset, the ClassyFire superclass ‘Lipids and 
lipid-like molecules’ is predicted 2686 times by Mol-
NetEnhancer and 1,301 times by CANOPUS. Similar 
stark differences can be seen for other superclasses like, 
‘Organic acids and derivatives’ and ‘Phenylpropanoids 
and polyketides’. Although we show that NPClassScore 
can filter down the results and prioritise actual BGC-MS/
MS spectrum links, the choice of software tool for struc-
ture-based ontology prediction will have a large influence 
on the final outcome.

Conclusion
We made a substantial step forward in generic integra-
tive genome-metabolome mining by enabling auto-
mated matching of genome-derived and structure-based 
chemical compound class ontologies and implementing 

the empirical NPClassScore to assess possible BGC-
MS/MS spectrum links. To facilitate its use, NPClassS-
core is implemented in the NPLinker platform, and the 
NPClassScore scoring tables can be further updated upon 
new releases of MIBiG. For now, we rely mostly on CAN-
OPUS as a predictive software for chemical classes from 
MS/MS spectra with lower masses, and MolNetEnhancer 
for larger-sized molecules. In the future, other meth-
ods, like mass-spectral embeddings such as Spec2Vec 
and MS2DeepScore, might be better suited to deal with 
bigger metabolites and decrease run times [8, 22, 23]. 
Although we made good efforts to show that most vali-
dated links are retained by NPClassScore in three data-
sets that contain many of the validated links in the PoDP, 
the lack of verified genome-metabolome links remains 
one of the current bottlenecks to validate new integra-
tive omics mining methods. We anticipate that our 
method will help to record more validated links to move 
this field forward. Integrative genome-metabolome min-
ing is a complex problem that will require many different 
solutions and smart ways to integrate those. Combin-
ing and streamlining NPLinker with other novel linking 
methods, such as NPOmix, will be key for advancing 
this field to understand complex microbial communities 
and prioritise NP discovery [24]. Other possible routes 
are to implement additional feature-based scores such 
as a score based on shared substructures as inferred to 
be present from the genomic and metabolomic data, the 
first for example through iPRESTO that finds sub-clus-
ters in BGCs that likely encode for biosynthetic scaffolds 
or substructures [25], and the latter for example through 
the use of data-driven approaches that find (MS2LDA) 
or contain (MotifDB) mass spectral patterns that can be 
connected to chemical substructures [26, 27]. The class 
matching matrices developed here could also be used 
to select a reduced list of plausible candidates in struc-
ture databases for predicted BGCs based on matching 
classes. Our contribution will aid researchers in finding 
correct BGC-MS/MS spectrum links more easily and we 
think that NPClassScore will facilitate the acceleration of 
efforts to connect metabolites to their producer strains 
and elucidate their roles in microbial ecosystems and the 
microbiome.

Implementation
Matching class ontologies in MIBiG repository
All entries from MIBiG 2.0 were downloaded from mibig.​
secon​darym​etabo​lites.​org in json format. The SMILES 
and MIBiG (sub)classes were extracted from the json 
files, and the predicted antiSMASH 5 classes for the 
MIBiG BGCs were retrieved from the MIBiG website. For 
each MIBiG entry, the ClassyFire and NPClassifier chem-
ical compound classifications were retrieved through the 

http://mibig.secondarymetabolites.org
http://mibig.secondarymetabolites.org
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GNPS API (ccms-ucsd.github.io/GNPSDocumentation/
api/) using the SMILES or RDKit generated InChIKeys. 
ClassyFire classes were retrieved until the subclass level. 
Genome- and structure-based classes were related to 
each other by splitting up hybrid classes and counting the 
connections between all class terms, except for PKS-NRP 
hybrids that were grouped together at the MIBiG class 
level. The count of a pair of class terms from the genome-
and structure-derived ontologies is then used to express 
the match between the pair of class terms. As different 
classes have different overall occurrences, we used the 
relative counts as a score to assess the validity for a match 
between a genome- and structure-based class. For each 
matching pair of class terms, the score was calculated by 
dividing the count of the match by the total occurrence 
of the class term, starting either from the genome-based 
class (Eq. 1) or from the structure-based class (Eq. 2).

Equation  1: NPClassScore methodology for calculat-
ing the score between a BGC (or GCF) and an MS/MS 
spectrum (or molecular family) starting at the genome 
side. Let b be a predicted genome-based class term of a 
BGC and B the set of all b for a BGC. Let m be a pre-
dicted structure-based class term of an MS/MS spec-
trum and M the set of all m for an MS/MS spectrum. 
The match between a given b and m is expressed by the 
relative frequency of the number of MIBiG BGCs with 
b that encode a structure with m, given by Nbm divided 
by Nb. The relative frequencies are stored in the scoring 
tables used by NPClassScore. The final score returned by 
NPClassScore is the maximum of all relative frequencies 
that arise between all combinations of values between B 
and M.

Equation 2: NPClassScore methodology for calculating 
the score between an MS/MS spectrum (or molecular 
family) and a BGC (or GCF) starting at the metabolome 

(1)

b = class term from a genome based ontology,
m = class term from a structure based ontology,

B =
{

b1 . . . bn
}

: set of predicted classes for a BGC,
M = {m1 . . .mn} : set of predicted classes for an MS/MS spectrum,

Nb = number of MIBiG BGCs with b,
Nbm = number of MIBiG BGCs with b that encode a structure with m,

NPClassScoreBGC→MS/MS (B,M) = max
{

Nbm

Nb

}

: b1 . . . bn,m1 . . .mn

(2)
Nm = number of MIBiG structures with m,

Nmb = number of MIBiG structures with m that are encoded by a BGC with b,

NPClassScoreMS/MS→BGC (M,B) = max
Nmb

m
: b1 . . . bn,m1 . . .mn

side. Using the same definitions as in Eq.  1, the match 
between a given m and b is expressed by the relative fre-
quency of the number of MIBiG structures with m that 
are encoded by a BGC with b, given by Nmb divided by 
Nm. The relative frequencies are stored in the scoring 
tables used by NPClassScore. The final score returned by 
NPClassScore is the maximum of all relative frequencies 
that arise between all combinations of values between M 
and B.

From the 3 genome-based and 9 structure-based 
class levels, this created in total 54 scoring tables of two 
types, one set to use when coming from the genome side 
and one set to use when coming from the metabolome 
side, akin to NPLinker that can create a link between 
a BGC and spectrum or vice versa. Code and scoring 
tables are available at github.​com/​louwe​njjr/​mibig_​class​
ifica​tions.

Predicting chemical compound classifications from mass 
spectra
Currently, CANOPUS and MolNetEnhancer are used 
within NPLinker to predict ClassyFire and NPClassi-
fier ontologies directly from MS/MS spectra. By default, 
CANOPUS is used for mass values below 850 Da, and 
MolNetEnhancer for mass values above 850 Da and for 
spectra without a CANOPUS prediction. CANOPUS and 
MolNetEnhancer can also be used separately. Sirius v4.9.3 
is used to run CANOPUS directly on the mgf file resulting 
from GNPS molecular networking. By default, the ‘for-
mula zodiac structure canopus’ setting and the ‘--maxmz’ 
cut-off set to 850 are used. The CANOPUS results are 
related to the spectra and molecular families (MFs) with 
classifications_to_gnps.py from canopus_treemap (github.​
com/​kaibi​oinfo/​canop​us_​treem​ap). For the CANOPUS 

predictions, the ClassyFire cut-off is 0.5 and the NPClassi-
fier cut-off 0.33. All resulting ClassyFire classes are sorted 
by priority at each class level, while NPClassifier classes 

http://github.com/louwenjjr/mibig_classifications
http://github.com/louwenjjr/mibig_classifications
http://github.com/kaibioinfo/canopus_treemap
http://github.com/kaibioinfo/canopus_treemap
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are sorted by their probabilities. To obtain classes for 
MFs, classes of all spectra belonging to an MF are counted 
at each level, and classes that occur in at least 20% of the 
spectra in the MF are kept. ClassyFire classes are again 
sorted by priority and NPClassifier classes by class occur-
rence in the MF. Currently, MolNetEnhancer has to be 
run externally, for example on the GNPS platform [12]. 
The output file ClassyFireResults_Network.txt can be 
downloaded from the GNPS platform and used directly as 
input for NPLinker and NPClassScore.

NPClassScore in NPLinker
The MIBiG scoring tables are used in NPLinker v1.2 
(github.​com/​NPLin​ker/​nplin​ker) by the new scoring 
method NPClassScore, which can create links between 
BGCs or GCFs and MS/MS spectra or MF. Out of the 
54 total scoring tables, 28 are used by NPClassScore, as 
some classes could not be predicted from BGCs or MS/
MS spectra, like MIBiG-subclass and the is_glycoside 
class level from NPClassifier. Within NPClassScore, GCFs 
are annotated with an MIBiG class, based on their BiG-
SCAPE class, and with antiSMASH classes of the children 
BGCs if the class occurs in at least half of the BGCs in the 
GCF (Tables S2–S3). Spectra and MFs get their ClassyFire 
and NPClassifier annotations from CANOPUS or Mol-
NetEnhancer predictions. The scores are looked up in the 
scoring tables for all the different combinations of class 
ontologies and then returned from high to low, where 
the highest score is returned by NPClassScore and can be 
used to filter out candidate links after using other scoring 
methods such as co-occurrence-based scoring (Fig. 2). A 
demo notebook to perform NPClassScore linking within 
NPLinker is available at https://​github.​com/​NPLin​ker/​
nplin​ker/​blob/​master/​noteb​ooks/​npcla​sssco​re_​linki​ng/​
NPCla​ssSco​re_​demo.​ipynb.

Preparing the datasets and running NPLinker
The molecular network for the Streptomyces/Salinispora 
dataset used in Crüsemann et  al. was cloned to GNPS 
version 28.2, which consists of MassIVE accessions: 
MSV000078836, MSV000078839, and MSV000079284, 
containing data for 159 strains of Streptomyces and Salin-
ispora (gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9b
a6f1296adb494db4dac117110a420a) [20]. From these 
accessions in the Paired-omics Data Platform, the corre-
sponding genomes were downloaded from NCBI if they 
had RefSeq or GenBank identifiers. On the 104 retrieved 
genomes, antiSMASH 6 was run and the output was 
merged with antiSMASH 3 data from the other 50 strains 
used in Crüsemann et  al. [20]. The used strain map-
pings file was combined from the three PoDP accessions 
(github.​com/​NPLin​ker/​nplin​ker/​tree/​master/​noteb​ooks/​
npcla​sssco​re_​linki​ng/​cruse​mann_​strain_​mappi​ngs.​csv). 

The Cyanobacteria and Nocardia datasets were accessed 
through their PoDP accessions, MSV000084950 and 
MSV000084771, respectively. The molecular networks 
listed in the PoDP were used, while antiSMASH 6 was 
run on the listed 24 and 11 genomes, respectively. CAN-
OPUS was run for the three datasets within NPLinker 
with the aforementioned default settings, which took 
around 24 h for the Streptomyces/Salinispora dataset 
and less for the other two datasets. MolNetEnhancer was 
run for the three datasets on GNPS (https://​gnps.​ucsd.​
edu/​Prote​oSAFe/​status.​jsp?​task=​6a07f​f87c7​57432​9b397​
a779a​716fc​69, https://​gnps.​ucsd.​edu/​Prote​oSAFe/​status.​
jsp?​task=​bb106​ef439​09497​5a503​5b5d7​c7f76​2e, https://​
gnps.​ucsd.​edu/​Prote​oSAFe/​status.​jsp?​task=​1de52​1d093​
2f414​682ef​40524​96ff8​a6). NPLinker v1.2 was first run 
through the docker version with a BiG-SCAPE cut-off 
of 0.3, after which the datasets were further analysed 
within jupyter notebooks (https://​github.​com/​NPLin​ker/​
nplin​ker/​tree/​master/​noteb​ooks/​npcla​sssco​re_​linki​ng). 
Standardised Metcalf scoring was used with a cut-off of 
2.5, after which candidate links were filtered out if their 
NPClassScore score was below a cut-off of 0.25. By using 
CANOPUS and MolNetEnhancer together, most MS/
MS spectra were annotated with structure-based ontolo-
gies. We note that we discarded candidate links without 
structure-based classes, due to the 1988 MS/MS spectra 
across the datasets without a CANOPUS or MolNetEn-
hancer prediction (Table S4). We decided to do this as it 
did not hamper our effort of finding the validated links 
in the three datasets. Not filtering out such links results 
in an average decrease of 49% of the candidate links per 
GCF (Table S8). This functionality can be easily switched 
on or off by toggling the .filter_missing_scores attribute 
of the NPClassScore scoring method within NPLinker.

Validating experimentally validated BGC‑MS/MS spectrum 
links
To locate the BGCs for the validated links as listed in 
the PoDP, we used cblaster with default settings with the 
MIBiG BGC listed on the PoDP as query and the ant-
iSMASH gbk files of each of the three datasets as data-
base [28]. To identify the correct MS/MS spectra for 
the validated links, we found the MF, cluster, or scan id 
as listed on the PoDP in our molecular networks. If that 
failed, for example in the case where we created a new 
molecular network for the Streptomyces/Salinispora 
dataset, we compared parent masses that occurred in the 
same strains as listed on the PoDP. No MS/MS spectrum 
could be found this way for retimycin and nocardimicin. 
The ranked position for each validated link was recorded 
before and after filtering with NPClassScore, taking 
into account that ranks can be shared as multiple can-
didate links can have the same scores. We note that 

http://github.com/NPLinker/nplinker
https://github.com/NPLinker/nplinker/blob/master/notebooks/npclassscore_linking/NPClassScore_demo.ipynb
https://github.com/NPLinker/nplinker/blob/master/notebooks/npclassscore_linking/NPClassScore_demo.ipynb
https://github.com/NPLinker/nplinker/blob/master/notebooks/npclassscore_linking/NPClassScore_demo.ipynb
http://github.com/NPLinker/nplinker/tree/master/notebooks/npclassscore_linking/crusemann_strain_mappings.csv
http://github.com/NPLinker/nplinker/tree/master/notebooks/npclassscore_linking/crusemann_strain_mappings.csv
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6a07ff87c7574329b397a779a716fc69
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6a07ff87c7574329b397a779a716fc69
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6a07ff87c7574329b397a779a716fc69
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=bb106ef439094975a5035b5d7c7f762e
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=bb106ef439094975a5035b5d7c7f762e
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1de521d0932f414682ef4052496ff8a6
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1de521d0932f414682ef4052496ff8a6
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1de521d0932f414682ef4052496ff8a6
https://github.com/NPLinker/nplinker/tree/master/notebooks/npclassscore_linking
https://github.com/NPLinker/nplinker/tree/master/notebooks/npclassscore_linking
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the Nocardia dataset exhibited quite low standardised 
Metcalf scores for the validated links, which is why we 
changed the standardised Metcalf threshold from 2.5 to 
2 for this dataset to include the validated links. This is 
probably due to the Nocardia dataset being the smallest 
out of the three datasets, as well as due to the incongru-
ence between the BGC and MS/MS spectrum clustering 
cut-offs.

Availability and requirements
Project name: NPClassScore implemented in NPLinker.

Project home page: https://​github.​com/​NPLin​ker/​nplin​ker
Operating system(s): Platform independent
Programming language: Python
Other requirements: See requirements.txt at https://​

github.​com/​NPLin​ker/​nplin​ker.
License: Apache-2.0 License.
Any restrictions to use by non-academics: See license.

Abbreviations
MS/MS	� Mass fragmentation spectra
BGC	� Biosynthetic gene cluster
NP	� Natural product
PoDP	� Paired Omics Data Platform
GCF	� Gene cluster family
MF	� Molecular family
NPClassScore	� NPLinker Class-based matching Score for linking BGCs 

and MS/MS-spectra
NRP	� Non-ribosomal peptide
PK	� Polyketide
OrgHetCyc	� Organoheterocyclic compounds
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Additional file 1: Figure S1. MIBiG classes matched to ClassyFire super-
classes. Figure S2. antiSMASH-predicted classes matched to NPClassifier 
superclasses, where matches with counts above five are shown. Figure 
S3. antiSMASH-predicted classes matched to ClassyFire classes, where 
matches with counts above five are shown. Figure S4. Number of links 
with MS/MS spectra per GCF for all the GCFs in the Streptomyces/Salin-
ispora dataset after using standardised Metcalf scoring in combination 
with NPClassScore filtering at varying cut-offs for the NPClassScore. The 
standardised Metcalf score cut-off was 2.5. Figure S5. Number of links 
with MS/MS spectra per GCF for all the GCFs in the Cyanobacteria dataset 
after using standardised Metcalf scoring in combination with NPClassS-
core filtering at varying cut-offs for the NPClassScore. The standardised 
Metcalf score cut-off was 2.5. Figure S6. Number of links with MS/
MS spectra per GCF for all the GCFs in the Nocardia dataset after using 
standardised Metcalf scoring in combination with NPClassScore filtering 
at varying cut-offs for the NPClassScore. The standardised Metcalf score 
cut-off was 2.5. Figure S7. Histograms showing the number of candidate 
MS/MS spectrum links per GCF in the (a) Cyanobacteria dataset and (b) 
Nocardia dataset after co-occurrence scoring (standardised Metcalf ), and 
after NPClassScore filtering with a cut-off of 0.25. The bin sizes are 5 in (a) 
and 25 in (b). The results highlight how NPClassScore narrows down the 
number of candidate links for most GCFs. Figure S8. Number of retained 
validated MS/MS spectrum links versus the percentage of filtered out 
candidate links per GCFs with different NPClassScore cut-offs. The percent-
age of filtered out candidate links is an average over the three datasets. 

Table S1. Scoring table from NPClassScore showing the scores from MIBiG 
classes to NPClassifier pathways. Table S2. Translation of BiG-SCAPE to 
MIBiG classes. Table S3. Translation of antiSMASH classes from all other 
versions to match antiSMASH v5 classes. Table S4. Information about the 
contents of the three datasets. We included the number of spectra in our 
versions of the datasets separately as some spectra present in the molecu-
lar networks occurred in, for example, control samples, or samples we 
did not use. Table S5. The average number of MS/MS spectrum links per 
GCF for each dataset after NPClassScore filtering with different cut-offs, 
along with the percentual decrease in the number of links. In this case, 
the MS/MS spectra without structure-based predictions are automati-
cally excluded. Table S6. Counts for the number of spectra with certain 
ClassyFire superclasses as predicted by MolNetEnhancer (MNE), MNE for 
spectra below 850 Da, and CANOPUS. Counts are coloured from white to 
red, white being the lowest count and red being the highest count for 
each column. Table S7. Counts of the ClassyFire superclass predictions for 
the 6,606 spectra that could be predicted by both MolNetEnhancer (MNE), 
and CANOPUS, showing the MNE predictions and CANOPUS predictions. 
Counts are coloured from white to red, white being the lowest count 
and red being the highest count for each column. Table S8. The average 
number of candidate links per GCF for each dataset after NPClassScore 
filtering with different cut-offs, along with the percentual decrease in the 
number of links. In this case, the MS/MS spectra without structure-based 
predictions are automatically included.
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