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Abstract 

Background:  The rapid and accurate identification of a minimal-size core set of representative microbial species 
plays an important role in the clustering of microbial community data and interpretation of clustering results. How-
ever, the huge dimensionality of microbial metagenomics datasets is a major challenge for the existing methods such 
as Dirichlet multinomial mixture (DMM) models. In the approach of the existing methods, the computational burden 
of identifying a small number of representative species from a large number of observed species remains a challenge.

Results:  We propose a novel approach to improve the performance of the widely used DMM approach by com-
bining three ideas: (i) we propose an indicator variable to identify representative operational taxonomic units that 
substantially contribute to the differentiation among clusters; (ii) to address the computational burden of high-
dimensional microbiome data, we propose a stochastic variational inference, which approximates the posterior 
distribution using a controllable distribution called variational distribution, and stochastic optimization algorithms 
for fast computation; and (iii) we extend the finite DMM model to an infinite case by considering Dirichlet process 
mixtures and estimating the number of clusters as a variational parameter. Using the proposed method, stochastic 
variational variable selection (SVVS), we analyzed the root microbiome data collected in our soybean field experiment, 
the human gut microbiome data from three published datasets of large-scale case-control studies and the healthy 
human microbiome data from the Human Microbiome Project.

Conclusions:  SVVS demonstrates a better performance and significantly faster computation than those of the 
existing methods in all cases of testing datasets. In particular, SVVS is the only method that can analyze massive 
high-dimensional microbial data with more than 50,000 microbial species and 1000 samples. Furthermore, a core set 
of representative microbial species is identified using SVVS that can improve the interpretability of Bayesian mixture 
models for a wide range of microbiome studies.

Keywords:  Variational inference, Stochastic optimization, Bayesian infinite mixture model, Variable selection, Drought 
irrigation, Environmental and human microbiome

Background
The development of metagenomic high-throughput 
sequencing technologies has provided a rapid and sen-
sitive method for the discovery of human and soil 

microbial communities. Accordingly, our understand-
ing of the impact of the gut microbiota on the human 
body [1, 2] and the significance of bacterial ecology 
in the global biogeochemical nutrient cycle [3] has 
greatly expanded. There are two major types of micro-
bial metagenomic data: 16S ribosomal RNA genes and 
shotgun metagenomics. In this study, we focus on the 
analysis of the 16S ribosomal RNA gene as an example, 
although shotgun metagenomics data can be analyzed in 
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a relatively similar manner. One standard approach is to 
transform the 16S rRNA gene of the bacteria in the sam-
ples into operational taxonomic units (OTUs) using some 
preprocessing methods of microbiome bioinformatics 
platform, such as QIIME2 [4]. Using the transformed 
data sets, we aim to identify groups of samples based on 
differences in microbial composition and to elucidate the 
relationships between these groups.

Considering the heterogeneous pattern of sample-
to-sample variability in the microbiome data, various 
model-based approaches have been proposed for cluster-
ing microbiome samples. The finite Dirichlet multinomial 
mixture (DMM) model is one of the most widely used 
methods [5]. The main ideas behind the DMM model 
are as follows. First, a multinomial sampling scheme is 
adopted for the taxonomic count data, and then a mix-
ture of Dirichlet components is considered as the natural 
prior for the parameters of the multinomial distribution. 
This approach helps avoid the disadvantages of previous 
methods, assuming that all samples in a cohort are gen-
erated from a single community profile, and allows each 
community to be considered a mixture of multiple com-
munities, which can be described by a vector generated 
by one of the finite Dirichlet mixture components with 
different hyperparameters. Therefore, the flexibility of 
the DMM model with respect to model dimensionality 
makes it well suited for capturing many different sub-
community structures. The DMM model is of great prac-
tical importance and has been used to assess the potential 
associations of the microbiome community in studies on 
human health and disease [6, 7], microbiome genome-
wide association [8], and animal microbiomes [9].

The first step in an analysis with a conventional DMM 
model is to determine the number of microbiome clus-
ters, that is, the metacommunities biologically required 
to explain the observations. A fully Bayesian model selec-
tion through Laplace approximation [5] has been pro-
posed to consider all possible values for the number of 
metacommunities up to a certain maximum value. How-
ever, the optimization of this number via this approach is 
computationally prohibitive and may cause poor perfor-
mance when the dimensionality of the microbiome data-
sets is high. Moreover, all taxonomic units in the DMM 
model are considered equally significant in the clustering 
analysis; however, this is not realistic in practical analysis 
as a large number of taxonomic units may be irrelevant 
and would not significantly contribute to the identifica-
tion (or characterization) of the microbiome clusters.

Recently, various potential approaches have been pro-
posed to estimate the parameters of a nonparametric 
Bayesian unsupervised variable selection in the field of 
computer science, such as a typical Markov chain Monte 
Carlo (MCMC) approach based on either Gibbs sampling 

or Metropolis-Hastings algorithm that appropriately 
accounts for the conditional independence relationships 
between latent variables and model parameters [10, 11]. 
The MCMC approach can simulate the unobserved vari-
ables alongside the model parameters from their full pos-
terior distribution; however, the computational burden 
of MCMC solutions is prohibitive for inference given the 
large dimensionality of microbial metagenomics datasets, 
and it can be very difficult to diagnose their convergence.

In this study, we propose a novel approach that over-
comes the challenges described above and achieves fea-
sible computational ability for a personal computer. The 
main contributions of this study are threefold. First, we 
propose an indicator variable that enabled the estima-
tion of the significant contributions of taxonomic units to 
detect a minimum core set of taxonomic units that char-
acterize clusters and maximize the identification ability 
of the clusters. Second, to overcome the current compu-
tational difficulties related to deterministic learning and 
MCMC approaches, we propose a stochastic variational 
inference (SVI) method [12–14] , which is originally used 
in statistical physics to approximate intractable integrals 
and has been successfully used in a wide variety of appli-
cations for analyzing large datasets related to population 
genetics [15, 16] and phylogenetics [17–19]. Moreover, 
we propose mathematical expansions, such as the Tay-
lor expansion, for the special expectations that cannot 
be obtained directly from the analytically tractable solu-
tions. This approach avoids expensive computations of 
the numerical approximations in MCMC approaches 
[20, 21]. Finally, we extend the finite DMM model by 
proposing a Bayesian nonparametric approach based on 
a countable infinite mixture model coupled with vari-
able selection. In our approach, the number of clusters 
(metacommunities) is not fixed a priori and is itself a free 
parameter of inference under the truncated stick-break-
ing representation of the Dirichlet process prior on the 
mixture metacommunities [22–24]. This solution can 
overcome the difficulty of choosing an appropriate num-
ber of clusters based on the data.

Finally, to test the performance of the proposed 
approach, we use two types of 16S rRNA gene amplicon 
sequencing microbiome data. The first type includes sev-
eral datasets in which two or three groups are known and 
the samples are clearly labeled. Thus, we can measure the 
similarity between the truth clusters and inferred clusters 
to compare the accuracies of the different approaches. 
The second type includes a dataset in which the num-
ber of groups is unknown. Various studies of the healthy 
human microbiome have shown that the identification 
of clusters (referred to as enterotypes) is difficult if the 
number of groups of samples is unknown [25]. Dataset 
A (of the first type) includes 196 and 197 rhizosphere 
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samples from our field experiments of soybean genetic 
resources, which contains 888 taxonomic units from a 
drought irrigation and control conditions, respectively. 
We also apply our proposed approach to three published 
case-control 16S rRNA gene amplicon sequencing data-
sets of the human gut microbiome [26–28]. Specifically, 
dataset B (of the first type) includes 3347 taxonomic units 
for Clostridium difficile infection (CDI) from 338 individ-
uals, including 89 individuals infected with CDI (cases), 
89 individuals with diarrhea who test negative for CDI 
(diarrhea controls), and 155 non-diarrheal controls [26]. 
The two larger datasets of the first type are inflammatory 
bowel disease (IBD) data (denoted dataset C) and obe-
sity (OB) data (denoted dataset D). These datasets pro-
vide numerous taxonomic units (approximately 10,000 
and 50,000, respectively) to challenge the computational 
capability of stochastic variational variable selection 
(SVVS) [27, 28]. Dataset E (of the second type) includes 
the stool samples from the Human Microbiome Project 
(HMP), specifically the HMP16SData package, which has 
319 samples and 11,747 taxonomic units [29], to identify 
the number of distinct clusters (or enterotypes).

Materials and methods
The finite Dirichlet multinomial mixture model
First, we briefly review the finite DMM model that 
describes the heterogeneity of cross-sample variability 
among microbiome species [5]. This model allows a data-
set to be generated by a mixture of K metacommunities 
instead of a single metacommunity. The key concepts 
behind the DMM model are as follows:

Given a microbiome dataset consisting of N community 
samples and S taxonomic units (or species), the observed 
count of the ith community for jth taxonomic unit is 
denoted as Xij (i = 1, ..., N; j = 1, ..., S). The total number 
of counts (i.e., sequence reads) from the ith community 
sample is Ji =

∑S
j=1 Xij . The DMM model [5] considers 

a vector 
−→
Xi = (Xi1, . . . ,XiS) , drawn from a multinomial 

distribution with community vector −→pi = (pi1, . . . , piS) as 
follows:

where pij is the probability that a single read in the ith 
community belongs to the jth taxonomic unit. The DMM 
model defines a mixture of K Dirichlets for the multino-
mial parameter probability vectors −→pi  . −→αk = (αk1, . . . ,αkS) 
are the parameters of the Dirichlet distribution repre-
senting the kth metacommunity (or cluster), and 
π = (π1, . . . ,πK ) represents the mixing coefficients with ∑K

k=1 πk = 1 , πk ≥ 0 for k ∈ (1, . . . ,K ) . The finite DMM 
model examines a case where the number of 

(1)p
(
−→
Xi |Ji,

−→
pi

)
∼ Multi

(
Ji,
−→
pi
)

metacommunities, K, is fixed. Each sample is assumed to 
be drawn from each unique community vector −→pi  , which 
is derived from one of the K metacommunities. The 
DMM model introduces the allocation variable 
−→
Zi = (Zi1,Zi2, . . . ,Zik) , where Zik ∈ {0, 1} and ∑K

k=1 Zik = 1 . If 
−→
Xi belongs to the kth metacommunity 

(i.e., the kth cluster), then the value of Zik is one; other-
wise, it is zero. The distribution of Z follows the categori-
cal distribution p

(
−→
Zi |π

)
=

∏K
k=1 π

Zik

k  . Therefore, Eq. (1) 
can be rewritten by marginalizing the multinomial 
parameters as follows [5]:

where the function B is the multinomial beta function 
B
(−→αk

)
=

∏S
j=1 Ŵ(αkj)

Ŵ

(∑S
j=1 αkj

) and B
(
−→αk +

−→
Xi

)
=

∏S
j=1 Ŵ(αkj+Xij)

Ŵ

(∑S
j=1

(
αkj+Xij

))

The infinite Dirichlet multinomial mixture model 
with variable selection
The goal is to consider the number of metacommunities 
(K) as a random variable. To achieve this, it is assumed 
that the prior distribution of the mixing coefficients π 
follows a Dirichlet process prior [22]. The stick-breaking 
representation [23, 24], which is a straightforward con-
structive definition of the Dirichlet process, is adopted 
to construct the infinite DMM model proposed in this 
study. This is defined as follows:

where πk is the mixing proportion of an infinite number 
of successively broken sticks, and independent random 
variables γk with (k ∈ [1, . . . ,K ]) represent proportions 
that are sequentially broken from the remaining length, ∏k−1

k ′=1(1− γk ′) , of a unit-length stick, and ν represents 
the total mass parameter of the Dirichlet process. It is 
assumed that each community sample 

−→
Xi is generated 

from the DMM model with a countably infinite of num-
ber of clusters (or metacommunities). Therefore, the Eq. 
(2) can be rewritten as

All taxonomic units in the DMM model are assumed to 
be equally important for clustering microbial community 

(2)

p(X |Z,α) =

N

i=1

K

k=1

B −→αk +
−→
Xi

B −→αk
Ji!

S

j=1

1

Xij!

Zik

p(γk) ∼ Beta(1, ν)

πk = γk

k−1∏

k ′=1

(1− γk ′)

(3)

p(X |Z,α) =

N�

i=1

∞�

k=1



B
�
−→αk +

−→
Xi

�

B
�−→αk

� Ji!

S�

j=1

1

Xij!




Zik
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data. However, this is not realistic in microbiome stud-
ies, because numerous microbiome species (which can 
be reflected in taxonomic units) and functions might be 
irrelevant and significantly influence the performance of 
clustering algorithms [30]. To overcome this problem, we 
propose that the count of a given taxonomic unit, Xij , be 
generated from a mixture of two Dirichlet-multinomial 
distributions; the first one is assumed to generate a core 
set of the most significant microbial taxonomic units and 
is different for each metacommunity (i.e., each cluster), 
and the second one is assumed to generate the unim-
portant taxonomic units and was common to all meta-
communities (i.e., all clusters). Thus, we can write the 
likelihood of the observed microbiome dataset X follow-
ing the infinite DMM model with microbiome taxonomic 
unit selection as follows:

where φij is an indicator variable, such that φij = 1 indi-
cates that the jth taxonomic unit of the ith community is 
important for clustering and follows a Dirichlet multino-
mial distribution with α , and φij = 0 denotes that the jth 
taxonomic unit of ith the community is unimportant for 
clustering and follows a Dirichlet multinomial distribu-
tion with β . φij characterizes the importance of each tax-
onomic unit in a sample. Although some samples are 
assigned to a cluster, each sample has a different group of 
important taxonomic units that are selected in the clus-
tering process. B

(−→αk
)
 and B

(
−→αk +

−→
Xi

)
 are the multino-

mial beta functions for a core set of taxonomic units that 
significantly represent the cluster. For unimportant spe-
cies, the multinomial beta functions are 
B(β) =

∏S
j=1 Ŵ(βj)

Ŵ

(∑S
j=1 βj

) and B
(
β +

−→
Xi

)
=

∏S
j=1 Ŵ(βj+Xij)

Ŵ

(∑S
j=1 (βj+Xij)

) . 

The prior distribution of the indicator variable of micro-
biome selection φ is defined as follows:

where each φij follows a Bernoulli distribution such that 
p
(
φij = 1

)
= ǫj1 and p

(
φij = 0

)
= ǫj2 with ǫj1 + ǫj2 = 1 

[11]. Furthermore, we use the Beta distributions over ǫ 
[31].

(4)

p(X �Z,�,�,�) =
N�
i=1

∞�
k=1

⎡⎢⎢⎢⎢⎢⎣

�
B
�
��⃗𝛼k+��⃗Xi

�

B
�
��⃗𝛼k
� Ji!

S∏
j=1

1

Xij !

�𝜙ij

�
B
�
�+��⃗Xi

�

B(�)
Ji!

S∏
j=1

1

Xij !

�1−𝜙ij

⎤⎥⎥⎥⎥⎥⎦

Zik

p(φ|ǫ) =

N∏

i=1

S∏

j=1

ǫ
φij
j1
ǫ
1−φij
j2

where the hyperparameters (ξ1, ξ2) > 0 are subject to the 
constraint in order to ensure that the distribution can be 
normalized. The prior distributions of α and β follow the 
Dirichlet distributions with hyperparameters ζ and η.

In our computational experiments, we attempted to use 
both Gamma distribution and Dirichlet distribution for 
the prior distributions for α and β . However, scale param-
eter of Gamma distribution was not able to obtain good 
updated values. Parameters of Dirichlet distributions 
obtained the better updated values for each iteration; 
therefore, we opted to choose Dirichlet distributions.

Stochastic variational variable selection approach
In this section, we propose an SVI method [12–14] 
for performing the infinite DMM model with feature 
selection. The basic idea of variational learning in the 
Bayesian approach is to approximate the posterior 
distribution using a computationally tractable func-
tion called the variational distribution. The variational 
parameter, which specifies the variational distribution, 
is estimated by minimizing the Kullback-Leibler (KL) 
divergence of the posterior distribution to the vari-
ational distribution. As a result, the posterior distribu-
tion is estimated by numerical optimization without 
invoking the simulation approaches, such as MCMC 
algorithms.

Given the observed count dataset X  , the infinite 
DMM model has a set of parameters (�) , which con-
sists of the stick-breaking proportions (γ ) , the alloca-
tion variable (Z) of the prior Dirichlet, the indicator 
variable of the taxonomic unit selection (φ) , and the 
Dirichlet parameters (α,β) . At the initial step of the 
variational approach, we propose an element of a trac-
table family of probability distributions q(�|�) called 
the variational distribution, which approximates the 
true intractable posterior distribution p(�|X) . This 

p(ǫ|ξ) =

S∏

j=1

Ŵ(ξ1 + ξ2)

Ŵ(ξ1)Ŵ(ξ2)
ǫ
ξ1−1
j1

ǫ
ξ2−1
j2

p(α|ζ ) =

∞∏

k=1

Ŵ

(∑S
j=1 ζkj

)

∏S
j=1 Ŵ(ζkj)

S∏

j=1

α
ζkj−1

kj

p(β|η) =
Ŵ

(∑S
j=1 ηj

)

∏S
j=1 Ŵ(ηj)

S∏

j=1

β
ηj−1

j
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distribution is parameterized by free parameters, 
called variational parameters �.

Subsequently, variational inference estimates these 
parameters to find a distribution close to the true intrac-
table posterior distribution of interest. The distance 
between the distributions p(�|X) and q(�|�) is evalu-
ated using KL divergence, defined as follows:

The log marginal probability log(p(X)) in Eq. (5), which 
causes computational difficulty in the Bayesian approach, 
can be treated as a constant term in the numerical opti-
mization for estimating the variational parameters as 
follows:

In addition, the term log(p(X)) , which is known 
as the evidence of X , can be decomposed as 
log(p(X)) = L[q(�|�)]+ KL[q(�|�)|p(�|X)] . The vari-
ational inference maximizes the computationally feasible 
target function defined as:

where Eq. (6) is the Evidence Lower Bound (ELBO) 
[12]. L[q(�|�)] can be considered a lower bound for 
log(p(X)) . The maximization of ELBO equals the mini-
mization of KL divergence, that is, when the variational 
distribution q(�|�) approximates the true posterior 
distribution p(�|X) . However, direct application of the 
variational approach is unfeasible. Therefore, a mean-
field approach is adopted in order to factorize the pos-
terior distribution into disjoint tractable distributions. 
According to the factorization assumption of mean-field 
variational approximations [13, 14], each variable in the 
variational distribution q(�|�) is independent. Further-
more, we use truncated stick-breaking representations to 
approximate the posterior Dirichlet process. The trun-
cation level K is not a part of the prior model specifica-
tion. The variational approach can optimize the value 
of K because it becomes a variational parameter [13, 32, 
33]. The family of variational distributions in the infinite 
DMM model with the selection of representative taxo-
nomic units can be expressed as follows:

where

(5)

KL[q(�|�)|p(�|X)]

= Eq[log(q(�|�))]− Eq[log(p(�|X))]

= Eq[log(q(�|�))]− Eq[log(p(�,X))]+ log(p(X))

�∗ = argminKL[q(�|�)|p(�|X)]

(6)
L[q(�|�)] = Eq[log(p(�,X))]− Eq[log(q(�|�))]

(7)

q(Z,�, �, �,�, �|Θ)

=

N∏
i=1

K∏
k=1

q
(
Zik

)
×

K∏
k=1

q
(
�k
)
×

N∏
i=1

S∏
j=1

q
(
�ij

)
× q(�) × q(�) × q(�)

The set of free variational parameters � includes 
r,ϑ ,ϑ ′, f , ξ∗, �∗, ι∗ . We use the variational distributions 
from exponential families to guarantee tractable compu-
tations of expectations.

The key idea of SVI inference is to divide the vari-
ational variables into two subgroups: the local variables 
[�l ∈ (Z,φ)] , which are per-datapoint latent variables, 
and the global variables 

[
�g ∈ (γ , ǫ,α,β)

]
 , which poten-

tially control all the data. The ith local variable Zik of the 
mixture component, which represents the allocation 
of sample i, is governed by the local variational param-
eter rik . In addition, the local variational parameter fij 
is proposed to capture the ith local variable φij , which 
represents the selection situation of the jth taxonomic 
unit in the ith community. The coordinate ascent algo-
rithm is used to overcome the optimization problems 
of these variational variables [13, 14]. The main idea of 
this approach is to optimize each factor of the mean-
field variational distribution while fixing the others. For 
example, we obtain the optimal solution of local variable 
Zik by applying variational distributions in Eqs. (7) and 
(8) to the ELBO in Eq. (6). We omit terms that do not 
depend on the variational parameter of Zik . The loga-
rithm of the optimal value of q(Zik) is proportional to the 
expected logarithm of the joint distribution as follows:

(8)

q(Z) =

N∏

i=1

K∏

k=1

r
Zik

ik

q(φ) =

N∏

i=1

S∏

j=1

f
φij
ij

(
1− fij

)1−φij

q(γ ) ∼

K∏

k=1

Beta
(
γk |ϑk ,ϑ

′

k

)

q(ǫ) ∼Dirichlet
(
ǫ|ξ∗

)

q(α) ∼Dirichlet
(
α|�∗

)

q(β) ∼Dirichlet
(
β|ι∗

)

(9)

logq∗
�
Zik

�

∝

S�
j=1

Eq

�
�ij

�⎛⎜⎜⎜⎝
Eq

⎡
⎢⎢⎢⎣
log

⎛⎜⎜⎜⎝

Γ

�∑S

j=1
�kj

�

Γ

�∑S

j=1
Xij +

∑S

j=1
�kj

�
⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠

+

S�
j=1

Eq

�
�ij

��
Eq

�
log

�
Γ
�
Xij + �kj

�

Γ(�kj)

���

+

S�
j=1

Eq

�
�ij

��
log(Ji!) + log

�
1

Xij!

��

+ Eq

�
log(�k )

�
+

k−1�
k �=1

Eq

�
log(1 − �k � )
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As γk follows a beta distribution, we can obtain the 
analytically tractable solutions for Eq[log(γk)] and 
Eq[log(1− γk ′)] . However, the first and second terms of 
Eq. (9) do not have the same form as the logarithm of 
the Dirichlet prior distribution. Thus, analytically trac-
table solutions cannot be obtained directly. The intrac-
table computation of expectations can be resolved using 
the Metropolis-Hastings algorithm and numerical inte-
gration. Nevertheless, the simulation approaches sig-
nificantly increase the computational burden in the huge 
dimensionality of microbial metagenomics datasets [5]. 
Therefore, we adopt the Taylor expansion to obtain the 
nearly optimal analytically tractable solutions for the first 
and second terms of Eq. (9), such that the computational 
burdens are avoided [20, 21, 34]. A nearly optimal ana-
lytically tractable value of q

(
φij

)
 can be obtained using 

the proposed approach. The mathematical details of the 
Taylor expansion and variational objective functions are 
provided in the Supplementary Material.

The global variational parameters 
[
Θg ∈

(
�k , �

�

k
, �∗, �∗

kj
, �∗
j

)]
 

are proposed to govern the global variable �g . The SVI 
approach uses the stochastic gradient ascent to estimate 
the global variational parameters [14]. This is mainly 
because as the sizes of microbiome datasets increase, 
each iteration of coordinate ascent algorithm becomes 
more computationally expensive. The computational 
structure of the algorithm therefore requires iterating 
over the entire dataset for each iteration. The SVI, how-
ever, is based on the stochastic approximation approach 
that iteratively generates subsampled datasets that are 
used to update the values of the local and global varia-
tional parameters. The main advantage of these computa-
tional strategies is that they ensure that algorithms will 
avoid shallow local optima for complex objective func-
tions. Furthermore, the natural gradients are an impor-
tant part of the SVI approach that increase the scale of 
variational inference and allow for the analysis of vast 
amounts of data [35–37]. Natural gradients adjust the 
direction of the conventional gradients to account for the 
geometric structure of probability parameters that use 
the Riemannian metric and the Fisher information 
matrix. Therefore, the natural gradients are not only 
cheaper computations but also have faster convergence 
than conventional gradients.

Principally, we seek to construct a noisy but unbiased 
and cheap-to-compute natural gradient to reach the opti-
mum of the objective function of the infinite DMM 
model. First, we generate a uniform a dataset [
−→
Xn

(N ),
−→
Zn

(N ),
−→
φn

(N )
]
 that is formed by N replicated from 

the microbiome community sample 
−→
Xi , allocation varia-

ble 
−→
Zi , and indicator variable 

−→
φi  at each iteration. Next, 

noisy estimates of the natural gradient are computed with 

respect to each global variational parameter �g given N 
replicates of the sampled data point. Using these gradi-
ents, the values of �g are updated at iteration m given the 
local variational parameters 

[
�l ∈

(
rik , fij

)]
 as follows:

where t(.) denotes the sufficient statistics in the expo-
nential family and ρm denotes the step size at iteration 
m. Owing to the subsampling strategies, the SVI signifi-
cantly accelerates the computational processes by avoid-
ing expensive sums in the ELBO when the dimensionality 
of the microbial metagenomics is large. The mathemati-
cal explanations of the SVI are described in the Supple-
mentary Material.

Criteria to evaluate the performance of the approaches
We use the Adjusted Rand Index (ARI) [38] in order to 
measure the similarity between the truth (or known) clus-
ters and clusters inferred by various algorithms. Given 
a dataset of X with n total samples, Z = [Z1, . . . ,Zk ] 
denotes the true cluster memberships of X into k clus-
ters, and Z′ =

[
Z′
1, . . . ,Z

′
k ′

]
 denotes an inferred cluster 

membership of X into k’ clusters. The Rand Index (RI) is 
calculated as follows:

where a denotes the number of times a pair of samples is 
assigned to the same cluster in Z and Z′ , and b denotes 
the number of times a pair of samples is assigned to dif-
ferent clusters in Z and Z′ . The RI values are in the range 
of [0,1], where 1 represents a perfect similarity between 
the truth and inferred clusters. The ARI is proposed to 
normalize the difference between the RI and its expected 
value as follows:

where E(RI) is the expected value of the RI.

Database description
Study inclusion and data acquisition
Dataset A represents the environmental microbiome data 
of our field experiments, which includes 196 drought irri-
gation samples, 197 control conditions samples and 888 
microbiome species (or taxonomic units). The experi-
mental explanations of dataset A are described in the 
Supplementary Material.

∇̂�gL =prior + N
(
E�l

[
t
(
−→
Xn,

−→
Zn,

−→
φn

)
, 1
])

−�g

�(m)
g =�(m−1)

g + ρm∇̂�gL

R
(
Z,Z′

)
=

a+ b

n(n− 1)/2

ARI =
RI − E(RI)

max(RI)− E(RI)
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We also employ case-control 16S amplicon sequencing 
from three published human microbiome datasets span-
ning three different disease states: Clostridium difficile 
infection (CDI) [26], inflammatory bowel disease (IBD) 
[28], and obesity (OB) [27]. These datasets are available 
in the MicrobiomeHD database [39]. Dataset B repre-
sents the CDI dataset, which includes 183 diarrheal stool 
samples from the 94 individuals with CDI, 89 diarrheal 
control samples, 155 non-diarrheal control stool samples, 
and 3347 microbiome species (or taxonomic units). Data-
set C represents the IBD dataset, which includes 146 IBD 
case samples, 16 non-IBD control samples and 10,119 
microbiome species (or taxonomic units). Dataset D rep-
resentes the OB dataset, which is the largest and most 
challenging. There are 1081 fecal samples from 977 indi-
viduals and 55,964 microbiome species (or taxonomic 
units).

Finally, we use the variable region 3-5 (V35) of the 16S 
rRNA gene sequence dataset from the HMP16SData 
package in R to study the considerable variation in the 
composition of the healthy human microbiome [29]. 
Dataset E represents the data of stool community types 
from the HMP16SData package, which includes 319 
samples and 11,747 microbiome species (or taxonomic 
units). Moreover, we use other R packages to perform 
the graphical visualizations for the microbiome datasets, 
such as the unweighted UniFrac distance and non-metric 
multidimensional scaling (NMDS) functions in the phy-
loseq package [40].

Open‑source software
The software is implemented in Python and used stand-
ard libraries, such as NumPy and SciPy, for mathemati-
cal computations. The software inputs microbiome count 
data in a CSV file and outputs the inferred clusters and 
a core set of selected taxonomic units. The main options 
in the software tool are the maximum number of clus-
ters, which pose limitations in estimating the number of 
clusters, and the number of taxonomic units that users 
want to select. SVVS uses the iterative optimization algo-
rithms to estimate the parameters; thus, a convergence 
criterion is used to implement a stopping rule. The SVVS 
algorithm stops when the change in the ELBO compu-
tations is less than 1e−3 (Supplementary Material). We 
use the convergence criterion fixed across all datasets in 
this study. The number of iterations should be modified 
for datasets notably smaller or larger in scale than those 
considered in this study. This is a tunable option in the 
software. The software is available at https://​github.​com/​
tungt​okyo1​108/​SVVS.

In all our experiments, we initialized the truncation 
levels of the number of clusters to 10. We set the ini-
tial values of hyperparameter ν of the stick-breaking 

representation to 0.1, the initial values of hyperparam-
eters ζ and η of the Dirichlet priors to 1, and those of 
hyperparameters (ξ1, ξ2) to 0.1 [41].

To address the selection of species based on the model, 
we calculate average of φij over sample i after estimat-
ing the values of φij and ranked microbiome species 
from the highest to lowest values. Our package exports 
a table containing these ranked values, and a user can 
then select a core set of microbial species from the higher 
values in this table. For example, Tables S1 and S2 show 
the average values of φij over sample i that are arranged 
in descending order (largest first) in the dataset A and B.

Results
Runtime performance and physical memory 
of the computational system
An important advantage of SVVS over conventional 
DMM approaches is that the computational time and 
memory required for calculations can be greatly reduced. 
To evaluate the computational time and memory of the 
different approaches, we varied the sample size and num-
ber of taxonomic units in the sample datasets. The scal-
ability of the methods was specifically demonstrated in 
cases of datasets C and D; meanwhile, datasets A and B 
were selected to compare their accuracies. We followed 
the Laplace approximation to the model evidence and 
default values of the DirichletMultinomial 1.34.0 pack-
age in R to determine the number of clusters K for the 
finite DMM model [5, 42]. Our proposed method does 
not require selection of the number of clusters because 
the number of clusters is estimated as a random variable. 
Our Python implementations of SVVS for the infinite 
DMM model were used to analyze all empirical data-
sets. Tables 1 and 2 compare the computational time and 
physical memory required for the calculation between 
the SVVS algorithm of the infinite DMM model and the 
EM algorithm of the finite DMM model. We found that 
SVVS was able to considerably reduce run times and 
physical memories for datasets A, B, and C. SVVS was 
the only approach that was able to analyze dataset D, 
which is a large dataset of more than 50,000 taxonomic 
units and 1,000 samples. In addition, the computational 
time and memory of each of the above methods were 
found to significantly increase with the number of taxo-
nomic units and samples.

The SVVS improves the accuracy of the approach
Table 3 compares the number of clusters predicted using 
the two approaches. Both the SVVS algorithm of the 
infinite DMM model and the EM algorithm of the finite 
DMM model obtained the correct numbers of clusters 
for datasets A and B. However, the number of taxonomic 

https://github.com/tungtokyo1108/SVVS
https://github.com/tungtokyo1108/SVVS


Page 8 of 14Dang et al. Microbiome          (2022) 10:236 

units was significantly larger in datasets C and D, and 
the SVVS approach achieved the most accurate predic-
tions. Moreover, Table 4 compares the ARI values of the 
two methods. The SVVS algorithm of the infinite DMM 
model demonstrated a better performance than the con-
ventional finite DMM model for all real datasets. Specifi-
cally, SVVS showed the highest ARI value (ARI = 0.98) 
for dataset A; coversely, the ARI value of the finite DMM 
with the EM algorithm was 0.76. For dataset B, the ARI 
values were slightly reduced in the performance of the 
SVVS (ARI = 0.66) and EM algorithms (ARI = 0.44). The 
number of taxonomic units in dataset B (3347) was sig-
nificantly larger than that in dataset A (888). For dataset 
C, the number of taxonomic units (10,119) was consid-
erably larger than that in datasets A and B; however, the 

number of samples (162) was smaller than that in data-
sets A (393) and B (336). Thus, we observed the lowest 
ARI values across datasets for the SVVS (ARI = 0.48) 
and EM algorithms (ARI = 0.21). Although dataset D 
had the largest number of taxonomic units (55,964), the 
sample size was large (1081). The ARI value of the SVVS 
approach in dataset D (ARI = 0.5) was better than that in 
dataset C. The EM algorithm of the finite DMM model 
was not able to complete its estimation in dataset D, in 
which the dimensionality of the microbial data was the 
highest.

Furthermore, to address graphical visualizations 
for the cluster labels that were predicted by the SVVS 
approach for the dataset A, we used non-metric mul-
tidimensional scaling (NMDS), which was performed 
on the unweighted UniFrac distance, to generate two-
dimensional positions for community samples. Fig-
ure  1a and b show that the two groups of dataset A 
are separated by both approaches. Figure 1c shows the 
true label of dataset A. The confusion matrix plots for 
dataset A calculated by the SVVS and previous method 
are shown in Figs. 1d and e. Figure S1a-d show the esti-
mated values of the mixing coefficients πk in datasets A, 
B, C, and D after convergence. Evidently, there are some 
clusters in which their estimated mixing coefficients 
are close to zero after convergence. Thus, an accurate 
number of clusters can be obtained. Figure S1a shows 
the strongest support for 2 clusters in dataset A because 
π2 and π4 have large values; Fig. S1b shows the highest 
probability of 3 clusters in dataset B because π2 , π3 and 
π5 have large values; and Fig. S1c and d show the highest 
probability of 2 clusters in datasets C and D. Figure S2 
shows the values of the variational lower bound during 
the estimation iterations in dataset A. The initial num-
ber of clusters was 10. Figure S2 shows that the number 
of clusters decreases rapidly with a significant increase 
in the variational lower bound. As the change in the 
lower variational bound value decreases, the speed of 
the decrease in the number of clusters slows. When the 
variational lower bound value converges, the number of 
clusters in dataset A is 2.

Table 1  Running time of the two approaches on the empirical 
datasets. Note: All algorithms were run on a personal computer 
(Intel� Xeon� Gold 6230 Processor 2.10 GHz × 2, 40 cores, 2 
threads per core, 128 Gb RAM) under Ubuntu 20.04.1 LTS

Datasets Finite DMM with EM 
algorithm

Infinite DMM 
with SVVS 
algorithm

A 17.63 min 2.68 min

B 2.75 h 13.25 min

C 3.37 d 30 min

D Failed 5 h

Table 2  Physical memories of the two approaches on the 
empirical datasets

Datasets Finite DMM with EM 
algorithm

Infinite DMM 
with SVVS 
algorithm

A 1.02 Gbs 0.186 Gbs

B 3.5 Gbs 1.65 Gbs

C 15 Gbs 4.5 Gbs

D Over 128 Gbs 45 Gbs

Table 3  Numbers of clusters predicted by the two approaches 
for the empirical datasets

Dataset True numbers 
of clusters

Predicted numbers of clusters

Finite DMM with 
EM algorithm

Infinite DMM 
with SVVS 
algorithm

A 2 2 2

B 3 3 3

C 2 3 2

D 2 Failed 2

Table 4  ARI scores of the two approaches for the empirical 
datasets

Datasets Finite DMM with EM 
algorithm

Infinite DMM 
with SVVS 
algorithm

A 0.76 0.98

B 0.44 0.66

C 0.21 0.48

D Failed 0.5
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The selected microbiome species mapped 
on the phylogenetic trees
The other considerable contribution of SVVS is its 
ability to select a minimum core set of microbial spe-
cies that shows significant differences among the clus-
ters obtained in the analysis. Specifically, Figs. 2 and S4 
show that the top 100 and 50 selected microbiome spe-
cies in dataset A mapped on the 16S phylogenetic tree. 
Table S1 shows the average of φij over ith sample that are 
ordered in decreasing order (from largest to smallest) in 
dataset A. Figure S3a shows the histogram of the aver-
age of φij over ith sample in dataset A. The identification 
of group-microbiome associations is based on testing 
for pairwise correlations between allocation variables 
(drought and control conditions) and the number of 
counts of the top 50 and 100 selected microbiome spe-
cies using Spearman correlation. Most microbiome fam-
ilies that were significantly associated with plant growth 
promotion under drought conditions were observed in 
the orange region of the tree. Our results are consist-
ent with those of previous studies. For example, many 

species of bacterial families, including Micrococcaceae, 
Paenibacillaceae, Bacillaceae, and Planococcaceae, 
showed a strong dominance in ecosystems after the 
impact of wildfires on living organisms [43].

Moreover, Fig. S5 shows the top 100 selected microbi-
ome species in dataset B mapped on the 16S phylogenetic 
tree. Table S2 shows the average of φij over ith sample that 
are ordered in decreasing order (from largest to small-
est) in dataset B. Figure S3b shows the histogram of the 
average of φij over ith sample in dataset B. The identifica-
tion of group-microbiome associations is based on test-
ing for pairwise correlations between allocation variables 
(CDI cases and non-diarrheal controls) and the number 
of counts of the top 100 selected microbiome species 
using Spearman correlation. The green region of the tree 
includes most microbiome species that show significant 
associations with non-diarrheal controls. Several domi-
nant species that were significantly associated with CDI 
were observed in the orange region of the tree. A mixture 
of the two groups was observed in the purple region. Spe-
cifically, numerous microbiome species belonging to the 

Fig. 1  Non-metric multidimensional scaling (NMDS) and confusion matrix plots of dataset A with labels indicating predicted class using the two 
approaches and true group. a Infinite Dirichlet multinomial mixture (DMM) with the stochastic variational variable selection (SVVS) algorithm. b The 
finite DMM with EM algorithm. c True labels. Red-colored circles denote the control and blue-colored circles denote drought. d Confusion matrix 
obtained by SVVS. d Confusion matrix obtained by previous method



Page 10 of 14Dang et al. Microbiome          (2022) 10:236 

Bacteroidaceae, Porphyromonadaceae, and Rikenellaceae 
families were observed in the green region of the tree. 
Several studies have shown that several bacterial species 
within these families are largely absent in CDI cases and 
are closely associated with non-diarrheal controls [26, 
44]. One of the main risk factors is antibiotic treatments 
that alter the host nutritional landscape to produce the 
essential branched-chain amino acids and proline for C. 
difficile growth and to suppress the return of members of 
the Rikenellaceae, Bacteroidaceae families [45, 46].

SVVS improves enterotype clustering
Figures  3a and b show that the SVVS algorithm of the 
infinite DMM model and the EM algorithm of the finite 
DMM model revealed two enterotypes of dataset E. The 
NMDS plots with the unweighted UniFrac distances 
showed that two enterotypes were clearly separated 

by the two approaches. The confusion matrix plot for 
dataset E calculated by the SVVS and previous method 
is shown in Fig. 3c. Figure S6 shows the Shannon diver-
sity index was significantly different between the two 
enterotypes. Moreover, the top 100 microbiome species 
with the highest average values of φij over ith sample are 
selected. The identification of enterotype-microbiome 
associations is based on testing for pairwise correlations 
between allocation variables and the number of counts of 
the top 100 selected microbiome species using Spearman 
correlation. The top 100 selected microbiome species in 
dataset E, which significantly contributed to the entero-
type clustering process, were mapped on the 16S phylo-
genetic tree. Figure S7 shows that the two enterotypes 
were clearly separated on the phylogenetic tree. Ente-
rotype 2 had the highest levels of the genus Bacteroides. 
In the previous studies [47–49], the populations such as 

Fig. 2  Microbial species selected using the stochastic variational variable selection (SVVS) approach and mapped on the phylogenetic tree for 
dataset A. Mapping of 100 selected microbiome species. Red-colored plus symbols denote the control and blue-colored stars denote drought. 
The identification of group-microbiome associations is based on testing for pairwise correlation between allocation variables (drought and control 
conditions) and the number of counts of top 50 and 100 selected microbiome species using Spearman correlation. Green-colored clade denotes 
internal node numbers from 12 to 913. Orange-colored clade denotes internal node numbers from 945 to 1448. Purple-colored clade denotes 
internal node numbers from 1496 to 1737. Black-colored clade denotes the rest of the tree
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the European population, which consumes more animal 
protein and fats, show the dominance of the Bacteroides 
enterotype. Alternatively, Enterotype 1 showed a lower 
relative abundance of Bacteroides than in Enterotype 2 
but had higher levels of the genera Alistipes and Para-
bacteroides (phylum Bacteroidetes), which characterize 
the Bacteroides enterotype. Moreover, the presence of the 
genera Roseburia, Ruminococcus, Faecalibacterium, Sub-
doligranulum, and Lachnospiraceae (phylum Firmicutes) 
was observed in Enterotype 1.

Discussion
Rapid identification of the minimum core set of taxo-
nomic units in high-dimensional data of microbial stud-
ies is essential to further our understanding of microbial 
community structures in clustering analysis. The inten-
sive concentration of a small number of relevant taxo-
nomic units that significantly contribute to the task of 
clustering will not only increase the performance of these 
analyses but also open new opportunities for studies that 

explore the important associations of microbial commu-
nities with human diseases, precision medicine, and envi-
ronmental conditions.

As the substantial increases in the dimensionality of 
the microbial datasets cause computational burden and 
poor performance with previous methods, the proposed 
approach can satisfy the high demands of the microbi-
ome analysis. Our SVVS approach is useful in several 
aspects. First, SVVS integrates an indicator variable into 
the approach of the infinite DMM model to identify sig-
nificant microbiome species (or taxonomic units) and use 
SVI to overcome computational limitations. Thus, the 
SVVS approach quickly identify the core set of microbial 
species (or taxonomic units), considerably improving the 
performance of the infinite DMM model. In particular, 
the SVVS method can complete its main tasks in massive 
microbiome datasets [27] that the previous methods can-
not perform. Moreover, SVVS focuses on identifying the 
important taxonomic units that vary per sample rather 
than per cluster. Within a set of samples that are assigned 

Fig. 3  Enterotypes of the healthy human microbiome from the stool samples in dataset E. a Labeled enterotypes of the finite Dirichlet multinomial 
mixture (DMM) with the EM algorithm. b Labeled enterotypes of the infinite DMM with the stochastic variational variable selection (SVVS) 
algorithm. Red color denotes Enterotype 1 and blue color denotes Enterotype 2. c Confusion matrix obtained by SVVS and previous method
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to a cluster, each sample has a different group of impor-
tant taxonomic units that are selected in the clustering 
process. For example, some human populations (or clus-
ters) exist, such as the Japanese, American, and European 
populations. Each individual (or sample) in a population 
(or cluster) usually has a different group of important 
microbial species because of differences in daily diet. If 
we can use other types of data, such as host genotypes 
and host metabolism, in the future, we will obtain more 
information about important microbial species that 
are selected for assigning samples to clusters. Second, a 
stick-breaking representation is proposed to extend the 
finite DMM model to an infinite case. This solution treats 
the total number of clusters as a variational parameter, 
which can help avoid the disadvantages of determining 
the number of clusters before running the algorithms. 
Therefore, SVVS can identify the main enterotypes of 
the healthy human microbiome and detect the important 
microbiome species that contribute to the variation of 
the different community compositions.

This study uses 16S ribosomal RNA genes datasets. 
SVVS identify a core set of important microbial species 
(or taxonomic units); however, their taxonomic resolu-
tion is limited at the genus level (e.g.,  Bifidobacteria). 
Applying SVVS to metagenomic count data will pro-
vide information on microbial species such as bacteria 
(e.g.,  Bifidobacterium longum) at strain-level resolution 
based on shotgun metagenomic sequencing. However, the 
high dimensionality of metagenomic count data [50, 51] 
challenges the performance of the SVVS approach. Fur-
thermore, shotgun metagenome sequencing can provide 
additional information regarding the functional potential 
of the microbiome. Integration of microbiome functional 
profiles can improve the performance of clustering algo-
rithms and contribute to the interpretation of host-micro-
bial co-metabolism interactions.

In recent years, several studies have highlighted the 
substantial role of large-scale analysis in discovering 
microbiome connections with host metabolism, host 
genetics in human health, medication [52, 53], and agro-
ecosystems [54]. An increasing number of multi-omics 
datasets have been published, such as the integration of 
metagenomics, metatranscriptomics, metaproteomics 
[55], whole-genome sequencing, and whole-transcrip-
tome sequencing of the TCGA cancer microbiome [56]. 
In the future, we plan to extend the SVVS approach to 
a comprehensive analysis of multi-omics datasets. The 
main approach of the SVVS can be developed for the 
other Bayesian mixture models such as beta-mixture 
models for microarray gene expression datasets [57], 
and multinomial mixture model for ChIP-exo sequenc-
ing data [58]. Therefore, this approach provides to new 
opportunities for discovering the significant associations 

of microbes with specific nutrients and medication or the 
important interactions between plants, microbes, and 
soils.

Conclusion
In conclusion, the proposed stochastic variational vari-
able selection approach can significantly improve the 
performance of the Dirichlet multinomial mixture 
model for analyzing high-dimensional microbial data 
sets. The selected minimum core set of microbial spe-
cies facilitates the detection of features that contribute 
most to the differences between samples. This study will 
contribute to and stimulate ongoing efforts to improve 
the performance of metagenomic statistical models 
that rapidly identify the key species of the environmen-
tal and human microbiomes in multiple fields of study, 
including the industrial sectors, and health and medical 
field.
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