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Abstract 

Background:  The early life gut microbiome is crucial in maintaining host metabolic and immune homeostasis. 
Though neonates with critical congenital heart disease (CCHD) are at substantial risks of malnutrition and immune 
imbalance, the microbial links to CCHD pathophysiology remain poorly understood. In this study, we aimed to inves-
tigate the gut microbiome in neonates with CCHD in association with metabolomic traits. Moreover, we explored the 
clinical implications of the host-microbe interactions in CCHD.

Methods:  Deep metagenomic sequencing and metabolomic profiling of paired fecal samples from 45 neonates 
with CCHD and 50 healthy controls were performed. The characteristics of gut microbiome were investigated in 
three dimensions (microbial abundance, functionality, and genetic variation). An in-depth analysis of gut virome was 
conducted to elucidate the ecological interaction between gut viral and bacterial communities. Correlations between 
multilevel microbial features and fecal metabolites were determined using integrated association analysis. Finally, we 
conducted a subgroup analysis to examine whether the interactions between gut microbiota and metabolites could 
mediate inflammatory responses and poor surgical prognosis.

Results:  Gut microbiota dysbiosis was observed in neonates with CCHD, characterized by the depletion of Bifido-
bacterium and overgrowth of Enterococcus, which was highly correlated with metabolomic perturbations. Genetic 
variations of Bifidobacterium and Enterococcus orchestrate the metabolomic perturbations in CCHD. A temperate 
core virome represented by Siphoviridae was identified to be implicated in shaping the gut bacterial composition by 
modifying microbial adaptation. The overgrowth of Enterococcus was correlated with systemic inflammation and poor 
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surgical prognosis in subgroup analysis. Mediation analysis indicated that the overgrowth of Enterococcus could medi-
ate gut barrier impairment and inflammatory responses in CCHD.

Conclusions:  We demonstrate for the first time that an aberrant gut microbiome associated with metabolomic 
perturbations is implicated in immune imbalance and adverse clinical outcomes in neonates with CCHD. Our data 
support the importance of reconstituting optimal gut microbiome in maintaining host metabolic and immunological 
homeostasis in CCHD.

Keywords:  Intestinal microbiology, Congenital heart disease, Metabolic and immune homeostasis, Clinical prognosis

Introduction
The early life gut microbiome is a crucial modulator in 
the health and development of the host [1]. Mounting 
evidence suggests that multilevel microbial traits that 
underpin host–microbiome crosstalk during infancy 
have far-reaching effects on host metabolic and immu-
nological homeostasis, such as facilitating nutrient 
acquisition, promoting immune maturation and toler-
ance development [2, 3], enabling pathogen clearance [4], 
and nourishing intestinal epithelial cells [5]. By contrast, 
the absence or disruption of optimal host–microbiome 
interactions during this critical window of development 
would therefore be expected to have detrimental effects 
on specific functions or potentially on regulation of the 
host system as a whole. From this perspective, decipher-
ing the clinical implications of the early life gut microbi-
ome is of critical importance in guiding health promotion 
and disease prevention.

In the past decade, rapid developments in deep shot-
gun sequencing and metagenome-wide bioinformatics 
have enabled in-depth characterization of the infant gut 
microbiome and have unraveled the complex micro-
bial links to host pathophysiology in multiple clinical 
scenarios, such as prematurity and food allergy [6–8]. 
However, little is known about the impact of the early 
life gut microbiome in patients with congenital heart 
disease (CHD), despite CHD being the most common 
birth defect—affecting more than three million neonates 
worldwide in 2019 [9]. Indeed, nearly 25% of CHD cases 
are critical (CCHD) [10, 11], which remains an impor-
tant cause of infant mortality under the age of 1  year. 
Although advancements in surgical techniques and peri-
operative management have substantially reduced mor-
tality for the entire spectrum of CHD, the occurrence of 
periprocedural complications in CCHD remains a signifi-
cant risk of death, with infection, excessive inflammatory 
response, and malnutrition being the major extracardiac 
risks contributing to poor clinical outcomes [12–14]. 
Notably, up to 50% of neonates with CCHD require car-
diac surgery within the first month of life [15], and the 
immune and nutritional status prior to surgery are highly 
correlated with prognosis [13, 14]. In view of long-lasting 
hyoxemia and abnormal gut perfusion secondary to poor 

cardiac output in neonates with CCHD, gut dysbiosis and 
epithelial barrier impairment are postulated to be impli-
cated in metabolic disorders and inflammatory cascades. 
In addition, our previous research on cyanotic CHD indi-
cated that chronic hypoxia could induce alterations in the 
gut microbiome and predispose bone marrow mesen-
chymal stem cells to premature senescence [16], further 
implying the role of aberrant gut microbiome in mediat-
ing immune dysfunction in the context of CHD pathol-
ogy. Notwithstanding this plausible evidence, it remains 
unclear whether CCHD is accompanied by enteric 
microbial disturbances, and the extent to which the early 
life gut microbiome is implicated in CCHD pathology 
remains to be fully investigated.

In this study, we performed an integrated analysis of 
fecal metabolomics and metagenome sequencing of 
paired samples from neonates with CCHD and healthy 
controls (HCs). We aimed to (i) systematically character-
ize the early life gut microbiome in neonates with CCHD 
in three dimensions (microbial composition, functional-
ity, and genetic variation) and uncover its implications 
on the host metabolic phenotype; (ii) reveal the ecologi-
cal interaction between the gut viral and bacterial com-
munities and unravel its impacts on the overall microbial 
configuration. To gain further biological insights, we pro-
filed serum levels of proinflammatory cytokines and bio-
markers of intestinal permeability in the patient cohort, 
and used metagenome-wide association analysis and 
bi-directional mediation analysis to infer the potential 
regulatory relationships among gut microbiota, epithelial 
barrier impairment, inflammatory response, and surgical 
prognosis.

Material and methods
The detailed information about study design, settings, 
and methods of bioinformatic analyses is available in 
Additional file 1.

Participants’ recruitment and samples collection
This study was approved by the Human Research and 
Ethics Committee of Fuwai Hospital Chinese Academy 
of Medical Sciences (Approval No. 2019–1300) and 
Shanghai Children’s Medical Center (Approval NO. 
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SCMCIRB-K2021021). Full-term neonates with CCHD 
[17] admitted to the Pediatric Cardiac Surgery Center 
from December 2019 to August 2021 were enrolled. The 
exclusion criteria included (i) diagnosed with any extra-
cardiac medical condition that could affect metabolism, 
nutritional status or physical health; (ii) previous usage 
of probiotics, antibiotics or immunosuppressant which 
could potentially affect gut microbial composition. The 
enrollment flowchart is shown in Additional file 1: Fig-
ure  S1. A total of 45 neonates with CCHD were finally 
included. Fifty matched healthy controls were recruited 
simultaneously. Informed consent was obtained from 
all the guardians of the participants for samples and 
data collection. Fecal samples were scrapped from dia-
pers and immediately frozen at –  80  °C until analysis. 
Blood samples were collected on admission from CCHD 
patients and preprocessed to obtain serum (centrifuged 
at 3000 rpm for 10 min and collected the supernatant), 
and then stored at –  80 ℃ until analysis. The baseline 
demographics and clinical metadata were collected from 
electronic medical records.

Metagenomic sequencing
Briefly, genomic DNA was isolated from fecal samples 
using QIAamp PowerFecal Pro DNA Kit (QIAGEN, 
USA) according to the manufacturer’s instructions. Con-
centration and purity of extracted DNA were confirmed 
by TBS-380 and NanoDrop2000, respectively. Paired-end 
library was constructed using NEXTFLEX Rapid DNA-
Seq (Bioo Scientific, USA). Sequencing was performed 
on a Novaseq 6000 platform (Illumina, USA) and gen-
erated a sequencing depth of approximately 117 million 
raw reads per sample. Fastp (https://​github.​com/​OpenG​
ene/​fastp, version 0.20.0) was utilized to remove the 
adaptors and low-quality reads. Host reads were removed 
after alignment with the human genome assembly 
(GRCh38.p13) using Burrows-Wheeler Aligner (http://​
bio-​bwa.​sourc​eforge.​net). The high-quality non-host 
reads were assembled using MEGAHIT (https://​github.​
com/​voutcn/​megah​it, version 1.1.2) and contigs with 
lengths greater than 300  bp were used for gene (ORFs) 
prediction by Prodigal (version 2.6.3) [18]. Only ORF 
longer than 100 bp was considered in downstream analy-
ses. Gene sequences were clustered into a non-redundant 
gene catalogue using CD-HIT (version 4.6) [19] at 95% 
identity and 90% coverage. The high-quality reads were 
mapped to the non-redundant gene catalogue with 95% 
identity using SOAPaligner (http://​soap.​genom​ics.​org.​
cn/, version 2.21).

Bacteria taxonomic and functional profiles were 
obtained with the resulted gene sets aligned to the 
NCBI NR database and KEGG database (http://​www.​
genome.​jp/​kegg/) using Diamond (version 2.0.11) at 

the e value = 1e − 5. The microbiome diversity analy-
ses (including alpha and beta diversity) were conducted 
and visualized using the vegan and ggplot2 packages in 
R (version 4.0.2). The discriminative bacterial species and 
KEGG orthology between the two groups were identified 
using LEfSe with a LDA score > 2.0.

Untargeted LC–MS–based metabolomics
Untargeted metabolomics analysis was conducted as pre-
viously described [20]. Briefly, metabolic extracts were 
obtained from fecal samples following methanol-assisted 
protein precipitation and then analyzed by an UHPLC 
system (Vanquish, Thermo Fisher Scientific) with a UPLC 
BEH Amide column. The raw data were converted to 
the mzXML format using ProteoWizard and processed 
with R package xcms [21], for peak detection, extraction, 
alignment, and integration. The in-house MS2 database 
was applied for metabolite identification. The OPLS-DA 
was performed using the statistics function prcomp in 
R (version 4.0.2). In order to avoid overfitting, a permu-
tation test (200 permutations) was performed. The dis-
criminative metabolites between the two groups were 
identified with variable importance in the projection 
(VIP) > 1 (determined by OPLS-DA) and P < 0.05 (deter-
mined by Student’s t test). The KEGG database (http://​
www.​genome.​jp/​kegg/) and MetaboAnalyst database 
(http://​www.​metab​oanal​yst.​ca/) were used for pathway 
enrichment analysis.

Targeted metabolites measurement of SCFAs
The SCFA concentrations were determined by gas chro-
matography-mass spectrometry. The detailed methodol-
ogy is available in Supplementary file.

Analysis of serum proinflammatory cytokines 
and intestinal permeability biomarkers
The Luminex Human Discovery multiplex assay kit 
(Catalog Number: LXSAHM; R&D Systems, Inc, USA) 
was used for simultaneous measurement of cytokines 
IL-1β, IL-6, IL-8, TNF-α, and INF-γ in serum samples. 
Upon completion of each multiplex assay, the amounts 
of serum cytokines were analyzed via Luminex. The com-
mercially available ELISA kits (Bio-swamp Life Science, 
Wuhan, China) were used to measure the intestinal per-
meability biomarkers according to manufactures’ instruc-
tions, including zonulin, D-lactate, iFABP, LPS, and LBP.

Characterization of microbial genetic structural variations
SGV-Finder pipeline [22] was applied to classify the 
microbial structural variations (SVs). The SV-screen-
ing procedure is mainly divided into two steps: (1) run 
ICRA, which is an ‘iterative coverage-based read assign-
ment’ algorithm, to resolve ambiguous read assignments 
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to regions that are similar between different bacteria. (2) 
run SGV-Finder, which analyses coverage depth across 
all microbial genomes in all samples to characterize SVs 
with respect to the standardized coverage of a genome 
in a given sample (https://​doi.​org/​10.​1038/​s41586-​019-​
1065-y). The variability of microbial SVs between indi-
viduals were determined by Canberra distance.

Virome analysis based on metagenomic sequencing data

1.	 Identification of viral contigs

	 The putative viral contigs were identified from the 
bulk metagenomes using DeepVirFinder [23] with 
default settings. Only predicted contigs with lengths 
greater than 1000 bp were extracted, and those with 
P value < 0.05 and score ≥ 0.7 were considered as can-
didate virus contigs for subsequent analysis.

2.	 Viral taxonomic profiling
	 To ensure the accuracy of viral taxonomic annota-

tion, five latest improved databases were employed 
to classify taxonomy of putative viral contigs: (1) viral 
RefSeq genomes database (virus reference genome 
sequences downloaded from NCBI) (https://​www.​
ncbi.​nlm.​nih.​gov/​labs/​virus/​vssi/#/​virus?​SeqTy​
pe_s=​Genome); (2) Gut Phage Database (GPD) 
[24]. (3) Metagenomic Gut Virus (MGV) catalogue 
[25]. (4) IMG/VR database (version: IMG_VR_2020-
10-12_5.1-IMG/VR v3) [26]. (5) Virus Pathogen 
Resource (ViPR, https://​www.​viprb​rc.​org/​brc/​
home.​spg?​decor​ator=​vipr) [27]. Technically, the 
viral contigs were successively aligned to the above-
mentioned databases using DIAMOND with an E 
value < 10−5, and select the database alignment result 
with the highest identity and the most complete virus 
classification information as the final virus taxo-
nomic information. A total of 22,245 virus contigs 
were successfully annotated and used for subsequent 
analyses.

3.	 Prediction of phage lifestyles
	 PHACTS was used to classify phage lifestyles (i.e., 

temperate or lytic bacteriophages) of putative viral 
contigs. In specific, of 22,245 viral contigs, 22,174 
were classified as “Bacteriophages” and used for 
PHACTS analysis. Ten replicate PHACTS predic-
tions were performed. Probability values obtained 
from PHACTS were standardized between − 1 and 
1, which was presented as probability of “Lytic” or 
“Temperate”.

Prophage‑based bacteria‑phage association analysis
Prophage-based bacteria-phage association analysis was 
conducted as previously described [28, 29]. In brief, the 

prophage sequences in bacterial contigs were predicted 
using VirSorter (version 1.0.3) [30]. Initially, the bacte-
rial contigs (≥ 5  kb) were analyzed by VirSorter using 
both RefSeqABVir (− db 1) and Viromes (− db 2). Then 
the predicted prophage sequences of VirSorter categories 
4 or 5 (presence of viral hallmark genes or enrichment 
of viral-like genes in a prophage region) were extracted. 
The positions of the predicted prophage sequences on 
bacterial contigs were determined through megab-
last (BLAST + version 2.7.1) searches (E value < 10−100 
and ≥ 95% identity), and prophage sequences were 
merged if their positions overlapped. Prophage 
sequences longer than 3 kb were extracted and listed as 
final prophage sequences.

Gene annotation of viral contigs was based on open 
reading frames (ORFs). The ORFs on the viral contigs 
were predicted by MetaProdigal (version 2.6.3) [31]. 
The identified ORFs were then queried by hmmscan in 
HMMER3 (version 3.3.2) [32] against the PfamA data-
base (version 34.0) [33], VFDB [34], and CARD [35] with 
an E value < 10−5.

CRISPR‑based bacteria‑phage association analysis
The CRISPR-based bacteria-phage association analysis 
was conducted as previously described [28, 29]. Briefly, 
we first identified CRISPR spacers on bacterial contigs 
(≥ 5  kb) using CRISPRDetect [36]. To identify the tar-
get phages of the CRISPR spacers, we then queried the 
identified spacers using blastn (BLAST + version 2.12.0) 
(https://​doi.​org/​10.​1186/​1471-​2105-​10-​421) against the 
viral contigs and extracted the aligned spacers with > 90% 
of their length aligned with a minimum identity level of 
95% and a maximum E value of 5 × 10−3.

Enterotype analysis
Enterotype analysis was performed at the genus level 
using the Jensen-Shannon divergence (JSD) distance 
and the Partitioning Around Medoids (PAM) clustering 
algorithm in the R package cluster. The optimal num-
ber of clusters was determined by Calinski-Harabasz 
(CH) index using the R package clusterSim. PCoA was 
performed to visualize the clusters of samples using the 
R package ade4 [37]. The top 10 most abundant species 
enriched in each enterotype were selected for Spearman’s 
rank correlation analysis. For plotting purpose, only cor-
relations with coefficient >  + 0.6 or <  − 0.6 were plotted 
in the network using Cytoscape 3.9.0.

Metagenome‑wide association analysis
The significant associations between continuous micro-
bial variables (microbial abundance, KEGG pathway 
abundance, microbial vSVs) and fecal metabolites were 
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determined by Spearman’s rank correlation analysis. 
Two-sided Mann–Whitney U test was used to calculate 
significance of associations between binary variables 
(dSVs) and the same metabolites.

Mediation analysis
To investigate the mediation linkages between con-
tinuous microbial features, fecal metabolites, and 
host pathological phenotypes (i.e., serum biomarkers 
of inflammation and intestinal permeability), we first 
identified microbe-metabolite-biomarker groups in 
which all variables significantly correlated with each 
other as candidate groups with a potential mediation 
effect. Then we performed bi-directional analysis on 
the candidate groups using the R package mediation 
(version 4.5.0).

Statistical analysis
Basic statistical analyses (including Student’s t test, Wil-
coxon test, chi-square test, and Fisher’s exact test) were 
performed as appropriate to compare continuous and 
categorical variables using SPSS (version 25). Univari-
able and multivariable logistic regression analyses were 
performed to evaluate the predictive value of Enterococ-
cus abundance in prognostic stratification in the study 
cohort (SPSS version 25). Receiver-operating charac-
teristic curve was used to evaluate the discriminative 
performance of the predictive model. Other statistical 
details related to metagenomic and metabolomic data 
can be found in the figure legends and methods. P values 
of < 0.05 were considered significant.

Results
Baseline characteristics of the participants
Forty-five full-term neonates diagnosed with CCHD 
and 50 HCs matched by age and gender were enrolled 

in this study. The enrollment flowchart and cohort char-
acteristics are shown in Additional  file  1: Figure  S1  and 
Table S1, respectively. In brief, no significant differences 
were observed in birth weight, delivery mode, and breast-
feeding status between the two groups.

Differences in gut bacteria between CCHD patients 
and HCs
We first investigated the gut bacterial composition 
and diversity between the two groups (CCHD and HD 
groups) and observed a significant increase in α-diversity 
in the CCHD group (Fig. 1A). In addition, principal coor-
dinates analysis (PCoA) of bacterial composition also sug-
gested a significant separation between the two groups, 
which was largely driven by a subset of bacterial species, 
including Bifidobacterium ramosum, Bifidobacterium 
biavatii, Lactobacillus delbrueckii, Bacteroides caccae, 
Enterococcus asini, Pseudomonas oleovorans, and Lach-
noclostridium sp.An14 (Fig. 1B). To further delineate the 
differences in bacterial configurations between groups, 
we performed enterotype analysis using unsupervised 
clustering at the genus level. Intriguingly, two clusters 
driven by a relatively high abundance of the genera Ente-
rococcus (enterotype 1) and Bifidobacterium (enterotype 
2) were identified (Fig. 1C–E). The Bifidobacterium ente-
rotype was predominant in the HC group and displayed a 
convergent microbial community enriched with multiple 
Bifidobacterium species, whereas the CCHD group was 
dominated with the Enterococcus enterotype and showed 
a relatively discrete microbial community enriched with 
Enterococcus, Klebsiella, and Streptococcus. Next, we 
identified 58 discriminative bacterial species between 
the CCHD and HC groups (Fig. 1F). Compared to that in 
HCs, CCHD patients were characterized by 34 enriched 
species mainly belonging to the genera Enterococcus (6 
species), Enterobacter (5 species), and Clostridium (four 
species), and by 24 depleted species mainly belonging 
to the genera Bifidobacterium (9 species), Lactobacillus 

(See figure on next page.)
Fig. 1  Gut bacterial characteristics in CCHD patients and HCs. A The comparison of gut bacterial α-diversity between CCHD and HC groups 
(Wilcoxon rank sum test). B PCoA of the Bray–Curtis distances based on bacterial composition at the species level revealed significant difference 
between CCHD and HC groups (PERMANOVA). Bacterial taxa that significantly correlated with the PC-axes with Spearman’s correlation 
coefficient >  + 0.35 or <  − 0.35 (with a maximum of the top six for each quadrant) are graphed as contributors that drive the separation. The length 
of the arrow represents the degree of correlation to the PC-axes. The distribution and density of samples projected onto PC-axes are displayed 
in violin plots and assessed individually using the Wilcoxon rank sum test. C Fecal samples of the overall study cohort (n = 95) are clustered into 
enterotype 1 and enterotype 2 by using PCoA of the Jensen–Shannon distances at the genus level. D Box plots showing the relative abundance of 
the top genera in each enterotype (Wilcoxon rank sum test). E Network illustrating the correlations between enterotype enriched species. Only the 
top ten most abundant species enriched in each enterotype are displayed, with orange line indicating positive correlation and gray line indicating 
negative correlation (Spearman, P < 0.05, r > 0.6). Pie charts showing the distribution of neonates with CCHD and HCs in respective enterotypes, 
with the adjacent box plots showing the relative abundance of Bifidobacterium and Enterococcus in both the groups. F Relative abundances of 58 
bacterial species responsible for discriminating the CCHD and HC groups. The genus taxonomy of each species is shown on the right.“#” indicates 
bacterial species enriched in HC group; whereas “†” indicates species enriched in CCHD group. G Co-occurrence network deduced from bacterial 
taxa differentially enriched in the CCHD and HC groups. Red edges indicate positive correlations and blue edges indicate negative correlations 
(Spearman, P < 0.05, r > 0.6). *P < 0.05, **P < 0.01, ***P < 0.001. PCoA, principal coordinates analysis; CCHD, critical congenital heart disease; HC, 
healthy control
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Fig. 1  (See legend on previous page.)
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(4 species), and Veillonella (4 species). Then, a species 
co-abundance network was constructed to provide an 
overview of the interplay among these discriminative 
bacterial species. As shown in Fig. 1G, bacterial species 
belonging to the same genus clade were closely correlated 
with each other. For instance, several Bifidobacterium 
species enriched in HC were closely correlated to gener-
ate a covarying cluster. Notably, we observed that species 
belonging to the genera Bifidobacterium, Lactobacillus, 
and Veillonella were positively correlated and constituted 
a symbiotic bacterial community in HC, whereas the spe-
cies corresponding to the genera Enterococcus, Entero-
bacter, and Clostridium were discretely enriched in the 
CCHD group.

Temperate core virome is implicated in early life bacterial 
perturbations in CCHD
The gut virome is an essential component of the human 
gut microbiome; however, the ecological interaction 
between gut viral and bacterial communities remains 
poorly understood. Here, we characterized the gut virome 
in both CCHD and HC groups, and investigated its inter-
action with gut bacteria. We first explored the richness of 
the gut virome and found a relative increase in α-diversity 
in the CCHD group (Additional  file  1: Figure  S2A). As 
expected, the PCoA of viral composition at the family 
level also revealed a distinct separation between the two 
groups, mainly driven by Siphoviridae, Myoviridae, and 
Herelleviridae (Additional file 1: Figure S2B). After filter-
ing out the low-abundance taxa, 37 viral species respon-
sible for discriminating the two groups were identified, 
of which 25 species were enriched in CCHD relative to 
that in HC (Additional file 1: Figure S2C). Notably, Ente-
rococcus and Escherichia phages are the predominant 
bacteriophages among CCHD-enriched viruses, which 
is corresponding to the overabundance of Enterococcus 
and Enterobacter in CCHD group. To initially assess the 
ecological interaction, we compared bacterial richness 
with viral richness and found a strong positive correla-
tion in the CCHD group (Additional file 1: Figure S2D). 
Additionally, positive correlations in community richness 

between Enterococcus phages and their bacterial host 
(i.e., genus Enterococcus) were also confirmed in both 
groups, with the relative abundance consistently higher 
in CCHD (Additional file 1: Figure S2EF).

To generate an integrated view of the cross-kingdom 
interaction between gut virome and bacterial commu-
nity during the earliest stage of life, we further investi-
gated the replication mode of the predicted phages and 
conducted prophage- and clustered regularly interspaced 
short palindromic repeat (CRISPR)-based bacteria–
phage association analyses. Notably, temperate phages 
were the predominant viruses in both the CCHD and 
HC groups, accounting for more than 70% of the viral 
sequences (Fig. 2A). Additionally, the α-diversity of tem-
perate phages was higher in the CCHD group compared 
to HC group (Fig.  2B). Next, we analyzed prophage-
based host bacteria–phage associations in samples from 
both the groups. In total, 935 and 694 prophages were 
successfully identified in the CCHD and HC groups, 
respectively (Fig.  2C), corresponding to a higher viral 
richness in CCHD (Fig.  2B). By classifying the detected 
prophages according to their host bacteria, we observed 
a similar taxonomic distribution pattern at the phylum 
level between the two groups (Fig. 2C). Among the four 
representative intestinal bacterial phyla—Firmicutes, 
Actinobacteria, Proteobacteria, and Bacteroidetes—
the number of identified prophages was highest in Fir-
micutes, accounting for more than 58% of all prophages 
in both groups. Nevertheless, compared to those in 
HCs, the proportions of prophages integrated into the 
genomes of Proteobacteria and Bacteroidetes were sig-
nificantly elevated in CCHD, whereas the proportion of 
Actinobacteria with prophages declined (P < 0.001, chi-
square test, Fig. 2C). We then examined the viral taxon-
omy of the detected prophages based on their bacterial 
phyla (Fig. 2D). Generally, phages classified as Siphoviri-
dae show major interactions with bacteria. For instance, 
51.47% of the Firmicutes-derived prophage sequences in 
the CCHD group were identified as belonging to Sipho-
viridae (Fig.  2D). Notably, Siphoviridae has generally 
been identified as a temperate phage with an inherent 

Fig. 2  Prophage- and CRISPR-based bacteria-phage association analyses. A Stacked barplots showing the distribution of temperate virus and lytic 
virus in gut virome in both the groups. B The comparison of α-diversity of temperate virome between CCHD and HC groups, as assessed by using 
the Shannon and Chao indexes at the family level (Wilcoxon rank sum test). C Distribution of host-related bacterial classifications for the prophages 
detected in the CCHD and HC groups. D Viral taxonomic distribution of prophages detected from each bacterial phylum in the CCHD and HC 
groups. E Distribution of viral gene categories of Siphoviridae detected from Enterococcus contigs in CCHD group (annotated by Pfam database). 
F An example of an Enterococcus contig, in which the partial sequence of a viral contig was found as a prophage. G The distribution of detected 
CRISPR spacers associated with bacterial taxa at classes level in the CCHD and HC groups. H Venn plot showing the common and specific CRISPR 
spacers in the bacteriomes between CCHD and HC groups, with bar plots showing the number of viral families targeted by CRISPR spacers. I Venn 
plot showing the CRISPR spacers targeting Siphoviridae in the CCHD and HC groups, with bar plots showing the number of CRISPR spacers in the 
bacterial genera. J Network plot depicting the infectious relationships between bacteriophages and host bacteria, inferred from CRISPR-based 
bacteria–phage association analysis. Nodes are colored according to differential abundance results. The edge thickness indicates range of P values 
(P < 0.05). **P < 0.01. CCHD, critical congenital heart disease; HC, healthy control; CRISPR, clustered regularly interspaced short palindromic repeats

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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ability to mediate the transfer of genes between bacteria 
and co-evolve with its host [38]. To determine whether 
there is a host bacteria–temperate phages co-evolution 
relationship mediating the overgrowth of Enterococcus 
in neonates with CCHD, we extracted Enterococcus-
derived prophage sequences classified as Siphoviridae 
in the CCHD group and annotated the gene function 
(mainly the open reading frames, ORFs) using the Pfam 
database. Intriguingly, 56% of the annotated ORFs were 
classified as transposase, phage integrase, and enzy-
matic genes associated with transcriptional regulation 
and catabolism (including transcriptional regulators, 
methylases, hydrolases, peptidases, and glycosidases; 
Fig. 2E), indicating that temperate phages targeting Ente-
rococcus can extensively affect the genetic makeup and 
metabolic traits of their bacterial hosts. Furthermore, 
the same prophage sequences were aligned to virulence 
factor database (VFDB) and comprehensive antibiotic 
resistance database (CARD), with the purpose to inves-
tigate whether there is a complex genetic repertoire of 
virulence factors and antibiotic resistance genes (ARGs) 
derived from temperate phages affecting the bacterial 
hosts’ behavior and fitness. Notably, 47.56% of the pre-
dicted ORFs were classified as virulence factor genes, and 
the functional genes encoding offensive virulence factors 
associated with adherence, toxin, and secretion system 
were the most frequent category (Additional  file  1: Fig-
ure  S3A). In addition, we identified an extensive rep-
ertoire of ARGs that may confer resistance to up to 29 
types of antibiotics (Additional file 1: Figure S3B, C). The 
most diverse ARG type was identified as antibiotic efflux 
pump genes, which account for 58.43% of all annotated 
ARGs and demonstrate resistance to multiple antibiot-
ics including macrolide, fluoroquinolone, tetracycline, 
and aminoglycoside. Besides, the dominant ARG types 
against distinct drug classes included macrolide (rela-
tive abundance 15.40%), tetracycline (11.59%), fluoroqui-
nolone (10.26%), peptide antibiotic (7.37%), and penam 
resistance genes (5.30%). Lastly, we selected a host bac-
terium–prophage pair to decipher the cross-kingdom 
relationship (Fig.  2F). The viral sequence classified as 
Enterococcus phage vB_EfaS_IME197 (39,017-nt-long) 
was identified as a prophage sequence (99.6% identity) 
in a bacterial sequence classified as Enterococcus faeca-
lis (83,776-nt-long). In addition to the phage structural 
protein genes, the presence of functional genes encoding 
virulence factors associated with adherence and toxin, 
enzymes associated with catabolism, and antibiotic efflux 
pump was confirmed in the prophage sequence.

CRISPR spacers are DNA loci that lie in the bacterial 
genome and act as a defensive system against phages; 
therefore, they can be used as a fingerprint to investi-
gate infectious associations between gut bacteria and 

phages [28, 29]. Initially, we screened CRISPR spacers on 
the bacterial sequence using CRISPRDetect [36]. Over-
all, 2747 and 3072 CRISPR spacers were detected in the 
CCHD and HC groups, respectively, with most spacers 
derived from Bacilli, Actinobacteria, and Gamma-pro-
teobacteria (Fig. 2G). Notably, compared to that in HCs, 
the proportion of spacers detected in Bacilli increased 
significantly in the CCHD group, whereas the propor-
tion of spacers derived from Actinobacteria decreased 
(P < 0.001, chi-square test), suggesting a shift in the infec-
tious relationship between the two groups (Fig.  2G). 
Next, we examined the distribution of CRISPR spacers 
in both the groups and the number of viral families tar-
geted by the CRISPR spacers (Fig. 2H). Generally, almost 
all spacers were aligned to viral sequences classified as 
Siphoviridae. Therefore, we determined which bacterial 
phyla carry CRISPR spacers specific for Siphoviridae. 
CRISPR spacers against Siphoviridae were frequently 
detected for the genera Streptococcus and Rothia in both 
the groups (Fig.  2I), implying that Siphoviridae might 
preferentially infect bacteria belonging to Firmicutes and 
Actinobacteria. To systematically elucidate the infec-
tious relationships, we constructed a network model of 
phage–host pairs by integrating the associations inferred 
from CRISPR spacers (Fig.  2J). Multiple scenarios of 
infectious relationships were observed, wherein certain 
bacterial species could be infected by different phages (or 
vice versa). Notably, positive relationships were observed 
between Enterococcus faecalis and several Enterococcus 
phages enriched in CCHD, further implying a co-evolu-
tionary relationship between Enterococcus phages and 
their bacterial hosts.

Collectively, these findings suggest that a temper-
ate core virome represented by Siphoviridae can act as 
an intrinsic force mediating the infectious kinetics and 
co-evolutionary relationship between gut bacteria and 
phages, and further implicates early life bacterial per-
turbations in CCHD by modifying microbial adaptation 
with a complex repertoire of functional genes.

Systemic interactions between gut microbiome and fecal 
metabolome
Fecal metabolomics analysis can provide a functional 
readout of the gut microbiome. Here metabolomic profil-
ing of paired fecal samples was conducted to character-
ize the metabolic signatures of both the groups. A total 
of 748 metabolites were identified by liquid chromato-
graph-mass spectrometry (LC–MS)–based untargeted 
metabolomics analysis. PCoA of metabolite distribu-
tion demonstrated that the overall metabolic signatures 
between the two groups were significantly different (Addi-
tional  file  1: Figure  S4A). By leveraging the orthogonal 
partial least-squares discriminant analysis (OPLS-DA), 
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120 discriminative metabolites between CCHD and HC 
groups were identified (Additional  file  1: Figure  S4B). 
Specifically, the CCHD group displayed enrichment of 
36 metabolites and depletion of 84 metabolites compared 
to those in the HC group. Moreover, pathway-based dif-
ferential abundance analysis highlighted that the meta-
bolic pathways of thiamine metabolism, linoleic acid (LA) 
metabolism, biosynthesis of unsaturated fatty acids, galac-
tose metabolism, phenylalanine metabolism, and tyrosine 
metabolism were downregulated in the CCHD group, 
whereas the metabolic pathways of arachidonic acid 
(AA) metabolism and primary bile acid biosynthesis were 
upregulated (Additional file 1: Figure S4C).

To explore the potential relevance between bacterial 
composition and metabolomic phenotypes, we calcu-
lated Spearman’s correlation matrices and constructed 
a co-occurrence network of differential bacterial spe-
cies and metabolites (Additional  file  1: Figure  S5). To 
visualize strong associations between bacteria and 
metabolites, only results showing Spearman’s correla-
tion coefficients >  + 0.6 or <  − 0.6 with a significance 
(i.e., P < 0.05) were plotted. Consistent with our initial 
findings, the differential bacterial species mainly gener-
ated four covarying clusters corresponding to their genus 
annotations (Bifidobacterium, Lactobacillus, Enterococ-
cus, and Enterobacter), and the differential metabolites 
were clustered according to the metabolic pathways they 
were involved in. Interestingly, most bacterium–metabo-
lite associations converged to the Bifidobacterium, Lac-
tobacillus, and Enterococcus clusters. Strong positive 
correlations were observed between the genus Bifido-
bacterium and fecal metabolites belonging to amino acid 
and carbohydrate metabolism through some node spe-
cies (Bifidobacterium longum CAG:69, Bifidobacterium 
bifidum, and Bifidobacterium catenulatum) and metab-
olites (l-arginine, N-acetyl-l-glutamate, l-fucose, and 
rhamnose). Notably, fecal levels of aromatic lactic acids 
(including hydroxyphenyllactic acid and indolelactic acid 
[IAA]), newly recognized probiotic-associated metabo-
lites derived from phenylalanine and tryptophan metab-
olism, were positively correlated with the abundance of 
Lactobacillus paragasseri and most Bifidobacterium spe-
cies, while consistently displaying negative correlations 
with Enterococcus gallinarum.

Integrated network analysis of microbial abundance, 
functionality, and genomic structural variations with host 
metabolism
In addition to microbial abundance, the investiga-
tion of microbial functionality and genetic varia-
tions can provide an extra layer of information that 
facilitates mechanistic insights into the role of the gut 
microbiome in host metabolism. To this end, we first 

functionally profiled gene families in all metagenomes 
and identified 6103 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) orthologs (KOs). Based on the PCoA 
of KEGG pathways, the overall microbial functional-
ity between the two groups was significantly different 
(Additional  file  1: Figure  S6A). In addition, 840 differ-
ential KOs were identified, most of which were involved 
in metabolic pathways, especially amino acid metabo-
lism, carbohydrate metabolism, and the metabolism of 
cofactors and vitamins (Additional  file  1: Figure S6B). 
Linear discriminant analysis (LDA) showed that 33 
metabolic pathways were differentially depleted in the 
CCHD group, most of which belonged to amino acid 
metabolism (aromatic amino acids (AAAs), branched 
chain amino acids, lysine, and arginine biosynthesis) 
and vitamin metabolism (riboflavin, vitamin B6, and 
pantothenate metabolism), whereas the other 29 meta-
bolic pathways enriched in the CCHD group mainly 
belonged to carbohydrate and lipid metabolism, such as 
glycerolipid metabolism and lipopolysaccharide biosyn-
thesis (Additional file 1: Figure S6C).

Next, we systematically detected microbial structural 
variations (SVs), which are highly variable segments of 
bacterial genomes deleted from certain species (dele-
tion SVs, dSVs) or present in a variable number of cop-
ies (variable SVs, vSVs) in others. We identified 428 
SVs from 15 bacterial species present in at least 5 sam-
ples in both the CCHD and HC groups (with an aver-
age size of 14 kbp per SV), including 157 vSVs and 271 
dSVs, at a rate of 1–81 SVs per species (Additional file 1: 
Figure  S7A, B). We further assessed the SV variabil-
ity among all samples. Interestingly, we found that the 
genetic variability of SVs differed substantially across 
species, with Escherichia coli and Staphylococcus homi-
nis SK119 displaying the greatest inter-group genetic 
variability, whereas Bifidobacterium animalis, Bifidobac-
terium bifidum PRL2010, and Bifidobacterium longum 
showed relatively low inter-group genetic variability 
(Additional file 1: Figure S7C, D).

Then, we explored the associations between multilevel 
microbial features (bacterial abundance, functional-
ity, and SVs) and fecal metabolites. These investigation 
identified 1776 significant associations between 142 
microbial features and 56 metabolites, including 1161 
associations with species and pathway abundance and 
615 associations with microbial SVs (Fig. 3A, B). To sim-
plify the intricate correlation network of bacteria and 
metabolites, we deconstructed and clustered the asso-
ciations according to metabolite categories and mainly 
focused on associations with AA metabolites [39, 40], 
polyunsaturated fatty acids (PUFAs) [41, 42], human milk 
oligosaccharides (HMOs) [43, 44], AAA metabolites [45], 
and short-chain fatty acids (SCFAs) [46], all of which are 
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well-known gut microbiome-related metabolites impli-
cated in host health.

Notably, > 60% of the significant associations between 
metabolites and bacterial abundance were attributed to 
the genera Bifidobacterium and Enterococcus. By plotting 
the associations between the abundance of Bifidobacte-
rium, Enterococcus, and the metabolites of interest, we 
observed a “mutually exclusive” characteristic of associa-
tions with Bifidobacterium and Enterococcus (Fig.  3C). 
Specifically, most Enterococcus species were consist-
ently positively correlated with AA metabolite levels 
(20-hydroxy-leukotriene B4, leukotriene F4, lipoxin A4, 
and lipoxin B4), whereas inverse associations were con-
comitantly found between Enterococcus and PUFA lev-
els (eicosadienoic acid, docosahexaenoic acid, and LA; 
Fig.  3C). Notably, all these AA metabolites are active 
compounds involved in the inflammatory cascades [39], 
whereas the ω-3 and ω-6 PUFAs are capable of alleviat-
ing inflammation and oxidative stress [47]. Intriguingly, 
a significant positive correlation was also identified 
between the abundance of Enterococcus faecium and 
3-nitrotyrosine (Fig. 3D), which is an oxidative product 
of tyrosine and a biomarker of inflammation and oxida-
tive stress [48].

We then looked at the correlations between microbial 
SVs and fecal metabolites (Fig.  3A, B). Notably, 29.9% 
(184 out of 615) of the associations between microbial 
SVs and metabolites were related to the dSVs of Entero-
coccus faecium NRRL B.2354, a genetically unstable spe-
cies identified in our initial findings (Additional  file  1: 
Figure  S6C). Although many SVs harbor genes with 
unknown functions, we observed several intriguing func-
tions in metabolite-associated SVs. For instance, a 2-kbp 
vSV in Escherichia coli that contains genes encoding 
invasion proteins was positively correlated with the abun-
dance of leukotriene F4 (Fig. 3E), suggesting that genetic 
variation in certain functional genes may be implicated 

in microbial adaptation and the subsequent activation of 
the host inflammatory response.

Next, we focused on the correlations between dif-
ferential microbial features and HMOs. Impressively, 
negative correlations were observed between the abun-
dance of 2-fucosyllactose (2′-FL) and most Bifidobac-
terium species, as well as a vSV of two segments in 
Bifidobacterium bifidum PRL2010 (Fig.  3F). Moreover, 
the abundance of Bifidobacterium longum was strongly 
positively correlated with l-fucose (Fig. 3D), which is a 
microbial catabolite of 2′-FL with immunoregulatory 
activity. Fucosyllactose-utilization genes are suggested 
to imprint the early life development of the gut micro-
biome in infants [49]. This prompted us to perform an 
in-depth analysis of HMO-utilization genes in fecal 
metagenomes. Intriguingly, a total of 37 HMO-utiliza-
tion genes were identified and assigned to five clusters, 
which were all over-represented in the HC group rela-
tive to that in the CCHD group (Additional  file  1: Fig-
ure  S8A), and most of them were inversely correlated 
with 2′-FL abundance (Additional file 1: Figure S8B). By 
contrast, the overgrowth of Enterococcus, the depletion 
of HMO-utilization genes in CCHD, and an 8-kbp dSV 
that contains genes encoding beta-galactosidase fam-
ily proteins in Enterococcus faecalis ATCC29212 were 
positively correlated with 2′-FL abundance (Fig.  3C, G, 
Additional  file  1: Figure S8), indicating the incapability 
of HMO-utilization.

Another interesting category of metabolites is the aro-
matic lactic acids, and we observed that the abundance 
of most Bifidobacterium species was positively correlated 
with these metabolites (Fig.  3C). Furthermore, the meta-
bolic pathway of phenylalanine, tyrosine, and tryptophan 
biosynthesis also demonstrated a remarkable positive 
correlation with IAA (Additional  file  1: Figure  S9). As a 
noteworthy example, a 21-kbp dSV in Bifidobacterium 
longum, which contains genes coding for the enzyme AAA 

(See figure on next page.)
Fig. 3  Integrated association of the differential gut microbial features with fecal metabolites, CCHD versus HC. A, B Overview of the significant 
associations between multilevel microbial features and fecal metabolites. The significant associations between continuous microbial variables 
(microbial abundance, metabolic pathways, and vSVs) and fecal metabolites are determined by Spearman’s rank correlation analysis and shown 
in Circos plot A; whereas the significant associations between binary microbial variables (dSVs) and fecal metabolites are determined by Mann–
Whitney U test and shown in heatmap B. The associated microbial features and metabolites are identified in the comparison of CCHD and HC. 
Other metabolites include lipids, amino acids, nucleotides, and carbohydrates. C Heatmap of multiple associations between microbial abundance 
(Bifidobacterium, Enterobacter, and Enterococcus) and fecal metabolites (Spearman’s rank correlation analysis). Only significant associations are 
plotted. D Scatter plots showing positive associations between Enterococcus faecium and 3-nitrotyrosine and Bifidobacterium longum and l-fucose. 
E Scatter plot showing positive association between a 2-kbp vSV in the Escherichia coli genome and leukotriene F4. F Heatmap of multiple 
associations between vSVs in Bifidobacterium bifidum PRL2010 and fecal metabolites (Spearman’s rank correlation analysis). Only significant 
associations are plotted. G Boxplots (center, median; box, IQR; whiskers, IQR × 1.5; dots, outliers) showing the relative abundance of 2-fucosyllactose 
in individuals harboring an 8-kbp dSV in the Enterococcus faecalis ATCC29212 genome (blue, n = 18) and individuals with no deletion (red, n = 18), 
and the relative abundance of hydroxyphenyllactic acid in individuals harboring a 21-kbp dSV in the Bifidobacterium longum genome (blue, n = 8) 
and individuals with no deletion (red, n = 40). Significance is determined by Mann–Whitney U test. CCHD, critical congenital heart disease; HC, 
healthy control; AA, arachidonic acid; HMOs, human milk oligosaccharides; AAA, aromatic amino acid; PUFAs, polyunsaturated fatty acids; SCFAs, 
short chain fatty acids; IQR, interquartile range; dSV, deletion structural variation; vSV, variable structural variation
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Fig. 3  (See legend on previous page.)
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transporter, was positively associated with hydroxyphe-
nyllactic acid abundance (the median level was higher for 
retention, adjusted P < 0.01, n = 48, 40 retaining; Fig. 3G).

Collectively, these findings indicate that the aberrant 
gut microbial composition in neonates with CCHD, char-
acterized by the overgrowth of Enterococcus and deple-
tion of Bifidobacterium, together with the alterations in 
microbial functionality and genetic makeup, considerably 
impact early life immune development and metabolism. 
Moreover, microbial metabolites are important agents 
involved in host–microbe interactions. An in-depth anal-
ysis of microbial genetics provides mechanistic insights 
into the metabolomic perturbations.

Overgrowth of Enterococcus was related to inflammatory 
response and poor prognosis
To further investigate the role of the gut microbiome in 
clinical outcomes of neonates with CCHD, we first sep-
arated our patient cohort into two subgroups based on 
surgical prognosis and conducted a comparative analy-
sis. Specifically, composite adverse events were used to 
define the poor prognosis (Additional  file  1: Table  S2). 
Nineteen patients who had one or more adverse event/s 
were classified as having a poor prognosis. The perio-
perative clinical metadata are summarized in Addi-
tional file 1: Table S3. In brief, no significant differences 
were observed in the demographic data and preopera-
tive and intraoperative variables, including median age 
at operation, blood oxygen saturation (SpO2), cardiac 
surgery complexity (RACHS-1 and ABC categories), 
cardiopulmonary bypass (CPB) time, and intraoperative 
blood loss.

Next, we examined the gut microbial composition 
between HCs and patients with good and poor surgical 
prognosis (termed CCHD-G and CCHD-P respectively). 
Intriguingly, pairwise comparative analyses revealed 
significant differences in gut microbial configurations 
between the three groups (Fig. 4A, Figure S10A–D), with 

LDA indicating that Enterococcus species were enriched 
in both CCHD-P and CCHD-G when compared to 
HC (Additional  file  1: Figure  S10E, F). More notably, a 
total of 19 discriminative bacterial species were identi-
fied between CCHD-P and CCHD-G, with 14 species 
enriched in CCHD-P mainly belonging to genus Ente-
rococcus (eight species; Fig. 4B), implying that the over-
growth of Enterococcus is a crucial microbial feature that 
drives the separation between CCHD-P and CCHD-G. 
To comprehensively characterize the microbial fea-
tures between the two subgroups, we constructed a co-
abundance network based on the differential taxa and 
observed a synergistic microbial consortium of Entero-
coccus harbored in CCHD-P (Fig.  4C). Accordingly, the 
overall microbial functionality between the two sub-
groups was significantly different (Fig. 4D). By leveraging 
LDA, 29 metabolic pathways were found to be down-
regulated in CCHD-P, mainly associated with amino acid 
metabolism (eight pathways) and metabolism of cofac-
tors and vitamins (five pathways), whereas the other 17 
metabolic pathways upregulated in CCHD-P mainly 
belonged to carbohydrate and lipid metabolism (six path-
ways, Fig. 4E).

Interestingly, these findings were in accord with the 
initial evidence we observed from the comparative anal-
ysis between CCHD patients and HCs, which further 
prompted us to hypothesize that gut microbiota dysbiosis 
in neonates with CCHD, characterized by the overgrowth 
of Enterococcus, is implicated in worsening surgical 
outcomes by mediating inflammatory responses and 
microbial metabolites. To verify this hypothesis, we first 
examined the inflammatory status of the patients. Blood 
samples collected on admission were used to quantify 
the serum levels of inflammatory cytokines (including 
interleukin-1β [IL-1β], interleukin-6 [IL-6], interleukin-8 
[IL-8], tumor necrosis factor-α [TNF-α], and interferon-γ 
[INF-γ]) and biomarkers of intestinal permeability 
(including zonulin, D-lactate, intestinal fatty acid binding 

Fig. 4  Aberrant gut microbiome in CCHD patients is associated with gut barrier impairment and systemic inflammation. A PCoA of the Bray–
Curtis distances based on bacterial composition at the species level revealed significant differences between the CCHD-P and CCHD-G subgroups 
(PERMANOVA). Bacterial taxa that significantly correlated with the PC-axes with Spearman’s correlation coefficient >  + 0.4 or <  − 0.4 (with a 
maximum of the top six for each quadrant) are graphed as contributors that drive the separation, and the length of the arrow represents the degree 
of correlation to the PC-axes. The distribution and density of samples projected onto PC-axes are displayed in violin plots and assessed individually 
using the Wilcoxon rank sum test. B Heatmap of discriminative bacterial species between CCHD-P and CCHD-G subgroups. C Co-occurrence 
network deduced from bacterial taxa differentially enriched in the CCHD-P and CCHD-G subgroups. The size of each node is proportional to the 
mean relative abundance. Red edges indicate positive correlation and blue edges indicate negative correlation (Spearman, P < 0.05, r > 0.4). D PCoA 
based on the relative abundance of the KEGG orthology groups revealed significant differences in the microbial functionality between CCHD-P 
and CCHD-G subgroups (PERMANOVA). Dashed lined ellipses indicate 95% confidence interval (CI) of datapoints. E LDA showing discriminative 
KEGG metabolic pathways between CCHD-P and CCHD-G subgroups. F Correlation circle plot showing associations between multiple categories 
of variables (including the relative abundance of bacterial species, KEGG metabolic pathways, and biomarkers of intestinal permeability and 
systemic inflammation), as measured via canonical correlations. Neighboring of variables indicates correlations between variables. **P < 0.01; NS, not 
significant; CCHD-G, CCHD patients with good prognosis; CCHD-P, CCHD patients with poor prognosis; PCoA, principal coordinates analysis; LDA, 
linear discriminant analysis; GBD, gut barrier dysfunction

(See figure on next page.)
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protein [iFABP], lipopolysaccharide [LPS], and lipopoly-
saccharide binding protein [LBP]) [13, 50, 51]. Notably, 
although at low titers, the serum levels of all these bio-
markers were significantly increased in CCHD-P rela-
tive to those in CCHD-G (Additional  file  1: Figure  S11, 
S12), indicating that subclinical systemic inflammation 

and gut barrier impairment existed prior to cardiac sur-
gery in neonates with poor prognosis. To investigate an 
aberrant gut microbiota-disrupted gut barrier–systemic 
inflammation axis, we employed an integrated correla-
tion analysis of differential microbial features and serum 
biomarkers of inflammation and intestinal permeability. 

Fig. 4  (See legend on previous page.)
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Notably, strong positive associations were observed 
between Enterococcus abundance and the serum levels 
of multiple proinflammatory cytokines and biomarkers 
of intestinal permeability (Fig.  4F). Furthermore, uni-
variable and multivariable logistic regression analyses 
were performed to investigate whether there is predic-
tive value of Enterococcus species in prognostic stratifica-
tion for neonates with CCHD (independent of traditional 
clinical risk factors, e.g., SpO2, cardiac surgery complex-
ity indexes, and CPB time, Additional  file  1: Table  S4). 
Intriguingly, a predictive model comprising of Entero-
coccus faecium abundance, CPB time, and intraopera-
tive infusion volume was constructed and yielded an area 
under the curve (AUC) of 0.86 (95% CI 0.74–0.97) in the 
study cohort (Additional  file  1: Figure  S13), indicating 
that Enterococcus faecium abundance could be an inde-
pendent predictor of surgical prognosis for neonates with 
CCHD.

Microbial metabolites linked Enterococcus to the immune–
inflammatory imbalance
By profiling the fecal metabolites of both subgroups, we 
identified significant differences in the overall metabolic 
signatures between the two subgroups (Additional file 1: 
Figure S14A, B). Accordingly, pathway-based differential 
abundance analysis revealed that most metabolic path-
ways associated with amino acids, vitamins, and unsatu-
rated fatty acids were downregulated in the CCHD-P 
group (Additional file 1: Figure S14C). To initially inves-
tigate the pivotal bacterial species that were highly asso-
ciated with metabolomic alterations, we constructed 
a co-abundance network of differential bacteria and 
metabolites. Notably, the interplay between bacteria and 
metabolites was largely attributed to the negative associ-
ations between CCHD-P-enriched Enterococcus species 
and metabolites involved in lipid and vitamin metabo-
lism (Additional file 1: Figure S15), indicating that antag-
onistic relationships between Enterococcus and lipid and 
vitamin metabolism could be central to the metabolomic 
perturbations in neonates with poor prognosis.

To further expand our understanding of the interac-
tions between the aberrant gut microbiome and metabo-
lomic alterations within neonates with different surgical 
outcomes, we performed an integrated correlation analy-
sis of microbial features and fecal metabolites. Similarly, 
we focused on the associations between aromatic lactic 
acids, LA derivatives, SCFAs, B vitamins, and HMOs 
(Fig.  5A, B). As expected, we found that Enterococcus 
abundance and five vSVs in Enterococcus faecalis ATCC 
29,212 were consistently negatively associated with aro-
matic lactic acid levels (Fig. 5C). Intriguingly, LA and its 
derivatives, including 13S-hydroxyoctadecadienoic acid 
(13-HODE) and α-linolenic acid, were another subset of 

metabolites that displayed accordant reverse correlations 
with Enterococcus abundance (Fig.  5C). Another note-
worthy category of metabolites, B vitamins, especially 
pantothenic acid (vitamin B5) and pyridoxal (vitamin 
B6), were highly correlated with Enterococcus abundance. 
For instance, pyridoxal was inversely correlated with the 
abundance of most Enterococcus species and a 9-kbp 
dSV in Enterococcus faecium NRRL B.2354 (the median 
level was lower for retention, adjusted P < 0.01, n = 36, 13 
retaining; Fig.  5C, D). This SV contains genes encoding 
the enzymes CoA synthetase, CoA transferase, and acyl-
CoA, which might be involved in vitamin B6 metabolism. 
Pyridoxal is a critical coenzyme involved in the synthe-
sis of amino acids and neurotransmitters (serotonin and 
norepinephrine), and its depletion is increasingly linked 
to the inflammatory response [52].

Collectively, these findings indicate that the over-
growth of Enterococcus together with genetic variations 
is highly associated with the depletion of probiotic-asso-
ciated metabolites, especially aromatic lactic acids, LA 
derivatives, and B vitamins, thereby implicating an active 
inflammatory response.

Microbiome contributed to host inflammatory response 
and gut barrier impairment through metabolites
To further evaluate whether metabolites can medi-
ate the microbial impact on the inflammatory response 
and gut barrier impairment in neonates with CCHD, 
we performed a bi-directional mediation analysis and 
revealed 23 mediation linkages (Pmediation < 0.05, Pinverse 

mediation > 0.05, Fig. 6A). Interestingly, most of these link-
ages were related to Enterococcus faecium (four link-
ages), Enterococcus columbae (three linkages), and the 
microbial functionality of glycine, serine, and threonine 
metabolism (three linkages). Our mediation analysis 
suggested that Enterococcus faecium might contribute 
to gut barrier impairment (characterized by increased 
serum levels of D-lactate and iFABP) by decreasing fecal 
levels of 13-HODE (26%, Pmediation < 0.05, Fig.  6B) and 
α-dimorphecolic acid (9(S)-HODE; 17%, Pmediation < 0.05, 
Fig. 6C), both of which are LA derivatives. Furthermore, 
the microbial fatty acid degradation pathway may also 
contribute to decreased intestinal permeability by affect-
ing fecal AA level (14%, Pmediation < 0.05, Fig. 6D).

We also identified several metabolite mediation effects 
on the microbial impact on systemic inflammation. An 
interesting example here is Enterococcus columbae, a 
bacterium enriched in CCHD-P, which may contribute 
to the systemic inflammatory response by decreasing 
fecal levels of 9(S)-HODE (23%, Pmediation < 0.05, Fig. 6E) 
and dodecanoylcarnitine (25%, Pmediation < 0.05, Fig.  6F). 
By contrast, the microbial functionality of glycine, ser-
ine, and threonine metabolism probably contributes to 
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Fig. 5  Integrated association of the differential gut microbial features with fecal metabolites, CCHD-P versus CCHD-G. A, B Overview of the 
significant associations between multilevel microbial features and fecal metabolites. The significant associations between continuous microbial 
variables (microbial abundance, metabolic pathways, and vSVs) and fecal metabolites are determined by Spearman’s rank correlation analysis and 
shown in Circos plot A; whereas the significant associations between binary microbial variables (dSVs) and fecal metabolites are determined by 
Mann–Whitney U test and shown in heatmap B. The associated microbial features and metabolites are identified in the comparison of CCHD-P 
and CCHD-G. Other metabolites include lipids, amino acids, nucleotides, and carbohydrates. C Heatmap of significant correlations between 
fecal metabolites (including LA derivatives, B vitamins, and aromatic lactic acids) with Enterococcus abundance and vSVs in Enterococcus faecalis 
ATCC29212 (Spearman’s rank correlation analysis). Asterisks indicate statistical significance. D Boxplots (center, median; box, IQR; whiskers, IQR × 1.5; 
dots, outliers) showing the relative abundance of pyridoxal in individuals harboring a 9-kbp dSV in Enterococcus faecium NRRL B.2354 genome (blue, 
n = 23) and individuals with no deletion (red, n = 13). Significance is determined by Mann–Whitney U test. *P < 0.05, **P < 0.01. CCHD-G, CCHD 
patients with good prognosis; CCHD-P, CCHD patients with poor prognosis; HMOs, human milk oligosaccharides; SCFAs, short-chain fatty acids; LA, 
linoleic acid; dSV, deletion structural variation; vSV, variable structural variation
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alleviating the systemic inflammatory response through 
l-targinine (an arginine derivative; 18%, Pmediation < 0.05, 
Fig. 6G).

Discussion
CCHD is a composite of complex inborn heart defects 
that imposes a huge burden on quality of life. In addition 

Fig. 6  Mediation linkages among the gut microbiome, metabolites, and serum biomarkers of intestinal permeability and inflammation. A 
Sankey diagram illustrating the 23 significant mediation linkages among gut microbiome, fecal metabolites, and serum biomarkers of intestinal 
permeability and inflammation. Columns from left to right show microbial features (including microbial abundance and metabolic pathways), fecal 
metabolites, and serum biomarkers, respectively. The curved lines across the columns indicate the mediation effects and the colors correspond 
to different biomarkers. B–G Examples of mediation linkages among gut microbiome, metabolites, intestinal barrier dysfunction, and systemic 
inflammation inferred by bi-directional mediation analysis. The beta coefficient and significance are labeled at each edge, and the proportions of 
mediation effects are labeled at the center of the ternary diagrams. The red arrows indicate the gut microbial effects on serum biomarkers mediated 
by metabolites, whereas the blue arrows indicate the reverse mediation effects, that is, the microbial effects on metabolites mediated by serum 
biomarkers. Pmedi and Pinv.medi are estimated by using the bi-directional mediation analysis. Asterisks indicate statistical significance for all panels: 
*P < 0.05, **P < 0.01, ***P < 0.001. 13-HODE, 13S-hydroxyoctadecadienoic acid; 9(S)-HODE, α-dimorpholic acid; IL, interleukin; IFN-γ, interferon-γ; 
TNF-α, tumor necrosis factor-α; LPS, lipopolysaccharide; iFABP, intestinal fatty acid binding protein; LBP, lipopolysaccharide binding protein
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to multiple clinical factors being associated with CCHD 
prognosis, the gut microbiota remains an important but 
yet lesser-known aspect that likely influences the patho-
physiology of CCHD. Given the critical role of the early 
life gut microbiome in maintaining host metabolic and 
immune homeostasis, we undertook in-depth analyses to 
elucidate the implications of the gut microbiome in neo-
nates with CCHD.

To the best of our knowledge, this study represents 
the first and most in-depth analysis of the early life gut 
microbiome in neonates with CCHD in the Chinese 
population. By integrating multilevel microbial features 
in association with fecal metabolites and host pheno-
types, we demonstrated that a disrupted gut microbiome 
associated with metabolomic perturbations was involved 
in immune imbalance and adverse clinical outcomes for 
CCHD patients (Additional  file  1: Figure  S16). Specifi-
cally, we found that a microbial consortium of probiotics, 
including Bifidobacterium, Lactobacillus, and Veillonella, 
was depleted in neonates with CCHD, whereas multiple 
opportunistic pathogens, such as Enterococcus, Entero-
bacter, and Clostridium, were enriched in CCHD patients 
compared to that in HCs. Depletion of Bifidobacterium 
and overgrowth of Enterococcus identified in CCHD 
were highly correlated with a panel of fecal metabo-
lites, including HMOs, SCFAs, aromatic lactic acids, 
PUFAs, and B vitamins, all of which are well-recognized 
probiotic-associated metabolites implicated in intesti-
nal homeostasis. Furthermore, we systematically char-
acterized the microbial genetic variations and showed 
that the depletion of HMO-utilization genes and genetic 
SVs in Bifidobacterium and Enterococcus orchestrated 
the metabolomic perturbations in CCHD. By leveraging 
prophage- and CRISPR-based association analysis, we 
identified a temperate core virome represented by Sipho-
viridae in neonates with CCHD, which may be impli-
cated in shaping gut bacterial composition by modifying 
microbial adaptation, potentially enabling the excessive 
colonization of Enterococcus in CCHD. Moreover, we 
profiled serum levels of proinflammatory cytokines and 
biomarkers of intestinal permeability in a patient cohort 
to gain mechanistic insights into the involvement of the 
gut microbiome in CCHD pathology. Our results indi-
cate that the overgrowth of Enterococcus in neonates with 
CCHD is highly associated with gut barrier impairment 
and excessive inflammatory responses, thereby impli-
cating in poor surgical prognosis. Finally, bi-directional 
mediation analysis revealed mediation linkages between 
gut microbiota, bacteria-derived metabolites, and host 
pathological phenotypes, including immune–inflamma-
tory imbalance and gut barrier impairment.

Most notably, the disrupted host–microbiome crosstalk 
we identified in CCHD patients essentially converged to 

the depletion of Bifidobacterium and overgrowth of Ente-
rococcus. Interestingly, a prevailing theory derived from 
several pioneering studies suggests that the assembly of 
the neonate gut microbiome follows a stepwise pattern 
[53, 54], wherein obligate anaerobes such as Bifidobac-
terium would gradually replace the facultative anaerobic 
bacteria (e.g., Enterobacter and Enterococcus) and pre-
dominate in the neonate gut within the first month of life. 
From this perspective, the aberrant gut microbiome in 
CCHD patients could be interpreted as a stunted micro-
bial configuration deviating from the normal trajectory of 
early life microbial succession, resulting from the delayed 
or failed colonization of Bifidobacterium, along with the 
overdue colonization of Enterococcus. Indeed, multiple 
early life events, such as delivery mode, breastfeeding, 
and environmental exposure, could steer the establish-
ment of the early life gut microbiome [55–57]. Given that 
breast milk is the primary source of Bifidobacterium in 
neonates, whereas Enterococcus is ubiquitously detected 
in wards [58], we speculate that breastfeeding intoler-
ance and prolonged exposure to the hospital environ-
ment could be crucial determinants of the aberrant gut 
microbiome in neonates with CCHD; however, further 
research is necessary to verify this speculation.

Bifidobacterium is among the first microbial colonizers 
that predominate in the gut of breastfed term neonates 
[59] and has long been hypothesized to exert a protective 
effect in mediating intestinal homeostasis. Several stud-
ies have highlighted a link between the loss of Bifidobac-
terium in infants and enteric inflammation in early life 
[2, 60]. Thus, the depletion of Bifidobacterium in CCHD 
may play a critical role in immune imbalance. Consistent 
with the results of previous research [61], we identified 
strong correlations between Bifidobacterium, SCFAs, and 
2′-FL, which is the most abundant HMO derived from 
breast milk. Furthermore, our analysis of HMO-utiliza-
tion genes further corroborated the saccharolytic activity 
of Bifidobacterium in the fermentation of 2′-FL. Notably, 
HMOs are non-digestible and structurally complex car-
bohydrates with significant abundance in breast milk, 
which serve as a carbon and energy source for Bifidobac-
terium. In addition to facilitating the growth of Bifido-
bacterium, HMOs can be degraded by Bifidobacterium to 
produce SCFAs, which results in a more acidic gut lumi-
nal environment and inhibits colonization by pathogenic 
microorganisms. SCFAs produced by Bifidobacterium 
are known to have potent anti-inflammatory properties 
by promoting the polarization of Treg cells in the colon 
and serving as fuels for nourishing colonic epithelial 
cells, thereby fortifying the gut barrier [62]. Aromatic 
lactic acids are another subset of metabolites positively 
correlated with Bifidobacterium. These bioactive com-
pounds derived from microbial AAA metabolism have 



Page 19 of 22Huang et al. Microbiome          (2022) 10:245 	

been implicated in immune homeostasis with multi-
ple functions, including protection against pathogenic 
organisms, promotion of immune development, and 
enhancement of the intestinal barrier function [2, 45, 63, 
64]. Collectively, our findings suggested that Bifidobacte-
rium could substantially affect host immune homeosta-
sis early in life via the production of SCFAs and aromatic 
lactic acids, whereas the depletion of Bifidobacterium 
and HMO-utilization genes could lead to an aberrant 
inflammatory response in CCHD patients, which further 
provide mechanistic insights into the supplementation 
of Bifidobacterium and non-digestible oligosaccharides 
to reconstitute optimal gut microbiome and immune 
homeostasis. Although controversial results are reported 
in some studies, it has been extensively shown that the 
addition of non-digestible oligosaccharides to infant for-
mula has a bifidogenic effect [65], thereby reconfiguring 
the gut microbiota of formula-fed infants and increasing 
the production of SCFAs. Therefore, supplementing Bifi-
dobacterium with non-digestible oligosaccharides may 
be a promising therapeutic strategy for reconstituting 
immune homeostasis in neonates with CCHD.

Our results demonstrated that the overgrowth of 
Enterococcus could induce gut barrier impairment and 
an excessive inflammatory response in neonates with 
CCHD, thereby leading to adverse clinical outcomes. 
Specifically, we observed positive correlations between 
Enterococcus and AA metabolites, which are active com-
pounds involved in inflammatory cascades. Furthermore, 
strong positive correlations were also identified between 
Enterococcus and serum proinflammatory cytokine levels 
in the CCHD group, corroborating the aberrant micro-
bial links to the inflammatory response. Indeed, accu-
mulating evidence has emphasized a causal link between 
enterococcal domination and systemic inflammation 
in other clinical conditions [66, 67]. It is postulated that 
Enterococcus can express metalloproteases to disrupt the 
intestinal barrier and translocate into the bloodstream 
in vulnerable hosts, thereby triggering systemic inflam-
mation [68]. In addition, a novel study in experimental 
rodent models suggested that the prescription of vanco-
mycin or ampicillin could alleviate the excessive inflam-
matory response induced by Enterococcus and improve 
survival [69]. However, antibiotic usage carries the risk of 
killing beneficial bacteria and promoting dysbiosis in the 
clinical setting. Therefore, the development of strategies 
to specifically terminate Enterococcus expansion is essen-
tial to alleviate the inflammatory response and improve 
clinical outcomes of CCHD patients.

Beyond microbial abundance, SVs in microbial 
genomes have recently been recognized as an extra layer 
of variability in the gut microbiome that is closely asso-
ciated with host health [22, 70, 71]. We conducted an 

SV-based metagenome-wide association analysis and 
demonstrated that this is instrumental in providing 
mechanistic insights into the role of microbial function-
ality in host pathophysiology. For instance, we noted that 
the deletion of a 21-kbp segment in the genome of Bifido-
bacterium longum, which contains genes hypothesized to 
encode proteins that enable the transport of AAAs, was 
correlated with a lower fecal level of hydroxyphenyllactic 
acid, which is thought to be implicated in host immune 
homeostasis [45]. Another interesting example is that 
the copy number of a 2-kbp segment in the genome of 
Escherichia coli, which contains genes encoding a viru-
lence factor, was positively correlated with the fecal leu-
kotriene F4 level, which is an indicator of innate immune 
response [72]. Collectively, our data suggest mechanisms 
underlying the role of microbial genetic variation in host 
immunity.

There is limited understanding of the ecological inter-
action between gut viral and bacterial communities dur-
ing the earliest stage of life. Consistent with the results 
of previous research, we showed that temperate phages 
are the predominant viruses within the gut virome of 
neonates [73]. Interestingly, positive associations in 
richness between gut bacteria and phages were identi-
fied at both the individual and population levels, with 
prophage- and CRISPR-based association analyses fur-
ther indicating the co-evolutionary relationship between 
temperate phages and their bacterial hosts. Most notably, 
a temperate core virome represented by Siphoviridae was 
identified with a complex repertoire of functional genes, 
which may be implicated in modulating microbial adap-
tation and enabling the overabundance of Enterococcus 
in neonates with CCHD. Indeed, beyond the well-known 
predator–prey relationship which has generally been 
observed between lytic phages and bacteria [74], temper-
ate phages interact with their bacterial hosts in intricate 
ways, as they can integrate into bacterial genomes and 
affect hosts’ behavior via horizontal gene transfer [38]. 
Moreover, recent evidence shows that temperate phages 
will become increasingly more abundant in ecosystems 
with high microbial densities, further indicating the para-
sitic propensity of temperate phages [75]. Although the 
study of host bacteria–temperate phages co-evolution is 
still in its infancy, accumulating evidence suggests that 
temperate phages can be mutualistic with their bacterial 
hosts as well [38]. Given their inherent ability to integrate 
into bacterial genomes, temperate phages can intro-
duce a plethora of genes that provide functions of differ-
ent kinds to their hosts, which can expand the bacterial 
hosts’ metabolic repertoire [76, 77], confer or enhance 
virulence [78], or eliminate competing organisms by 
mediating bacteriocin release [79], and thus enhance bac-
terial fitness. Moreover, temperate phages can facilitate 
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biofilm formation leading to population-level benefits 
for their bacterial hosts [80]. Thus, our series of analy-
ses corroborates the mutualistic relationship between 
temperate phages and host bacteria and demonstrates 
that metagenomic analysis of gut virome combined 
with prophage- and CRISPR-based association analysis 
could be useful to explore the cross-kingdom interaction 
between gut viruses and bacteria. However, further stud-
ies with deeper analyses and experiments are needed to 
confirm our findings. Besides, in view of the tightly inter-
twined co-evolutionary dynamics of phages and bacteria, 
future research with more metagenomic information on 
intestinal phages and bacteria will open the possibility of 
developing phagotherapy to specifically manipulate gut 
microbiome dysbiosis in neonates with CCHD.

In summary, our study provides the first evidence to 
demonstrate that gut microbiome dysbiosis is closely cor-
related with metabolomic perturbations in neonates with 
CCHD and that an aberrant gut microbiome may cause 
an excessive inflammatory response, thereby leading to 
adverse clinical outcomes for CCHD patients. These find-
ings highlight the importance of reconstituting optimal 
host–microbe interactions in CCHD to prevent adverse 
clinical outcomes. Given that limited therapeutic strategies 
are currently available to effectively prevent perioperative 
infection and alleviate excessive inflammatory response 
and antibiotic prophylaxis may further deteriorate gut 
microbial disturbances, our research is the first to advo-
cate for an individualized therapeutic strategy targeting 
the gut microbiota to restore metabolic and immunologi-
cal homeostasis and improve clinical outcomes for CCHD.

We acknowledge several limitations in our study. First, 
the patient cohort of this study was comprised neonates 
with CCHD, and whether these findings may be applicable 
to other types of CHD remains unknown. Future research 
on the entire spectrum of CHD is required to provide a 
comprehensive understanding of the impacts of the gut 
microbiota in CHD. Second, this study was observational 
and the associations were not proof of causation, although 
we did perform bi-directional mediation analysis to infer 
the mediation linkages. Moreover, we provided some 
potential biological mechanistic hypotheses by integrating 
multi-omics datasets, including metagenomics and metab-
olomics, which require further experimental validation.

Conclusions
We demonstrate for the first time that an aberrant gut 
microbiome associated with metabolomic perturbations 
is implicated in immune imbalance and adverse clinical 
outcomes in neonates with CCHD. Our data support the 
importance of reconstituting optimal gut microbiome in 
maintaining host metabolic and immunological homeo-
stasis in CCHD.
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