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Abstract 

Background:  The gastrointestinal ecosystem is a highly complex environment with a profound influence on human 
health. Inflammation in the gut, linked to an altered gut microbiome, has been associated with the development 
of multiple human conditions including type 1 diabetes (T1D). Viruses infecting the gastrointestinal tract, especially 
enteroviruses, are also thought to play an important role in T1D pathogenesis possibly via overlapping mechanisms. 
However, it is not known whether the microbiome and virome act together or which risk factor may be of greater 
importance at the time when islet autoimmunity is initiated.

Results:  Here, we apply an integrative approach to combine comprehensive fecal virome, microbiome, and 
metaproteome data sampled before and at the onset of islet autoimmunity in 40 children at increased risk of T1D. We 
show strong age-related effects, with microbial and metaproteome diversity increasing with age while host antibody 
number and abundance declined with age. Mastadenovirus, which has been associated with a reduced risk of T1D, 
was associated with profound changes in the metaproteome indicating a functional shift in the microbiota. Multi-
omic factor analysis modeling revealed a cluster of proteins associated with carbohydrate transport from the genus 
Faecalibacterium were associated with islet autoimmunity.

Conclusions:  These findings demonstrate the interrelatedness of the gut microbiota, metaproteome and virome in 
young children. We show a functional remodeling of the gut microbiota accompanies both islet autoimmunity and 
viral infection with a switch in function in Faecalibacterium occurring at the onset of islet autoimmunity.

Keywords:  Gut microbiota, Microbiome, Metaproteome, Virome, Type 1 diabetes, Islet autoimmunity, Infant/child, 
Faecalibacterium, Mastadenovirus
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Background
Type 1 diabetes (T1D) is an autoimmune disease caused 
by immune cell destruction of the insulin-producing 
beta cells in the pancreatic islets. As with many autoim-
mune and auto-inflammatory disorders, the incidence 
of T1D has been steadily increasing for the past 50 years 
particularly in Western countries [1]. This increase has 
been too rapid to be caused by a change in genetic risk 
profile, but rather is thought to be caused by altered 

exposure to environmental risk factors [2]. The increase 
has been greatest in younger children and in those car-
rying low-risk HLA haplotypes suggesting altered gene-
environmental interactions in early-life [3]. Multiple 
environmental risk factors have been proposed with 
many related to early-life diet (including breastfeeding 
and timing and type of solid food introduction), child-
hood obesity and infections, particularly from entero-
viruses [2, 4, 5]. Together, these risk factors strongly 
suggest an involvement of the gut and the gut micro-
biota, with altered gut bacterial composition (dysbiosis), 
increased intestinal permeability and intestinal immune 
activation all reported to precede T1D diagnosis [6–9]. 
However, which environmental risk factors are of greater 
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importance for the development of islet autoimmunity or 
whether they act in consort and how they may interact 
with each other to modify the host intestinal environ-
ment remains unknown.

While associations between T1D risk and the gut 
microbiota have tended to demonstrate variable find-
ings between studies [10], several commonalities have 
been found. These include an increase in members of the 
genus Bacteroides associated with higher T1D risk and 
a decrease in taxa that produce short-chain fatty acids 
(SCFA), which are microbial metabolites produced from 
fermentation of dietary fiber [6, 7, 11–13]. SCFA have 
diverse benefits to the host with a role in promoting the 
integrity of the intestinal barrier, regulating appetite, sup-
pressing inflammation and stimulating differentiation of 
regulatory T cells [10]. Taxa that produce high levels of 
the SCFA butyrate including genera Clostridium, Eubac-
terium, Faecalibacterium, Roseburia, and Ruminococcus 
and are generally considered beneficial for human health 
[10, 14]. However, the various studies in T1D tend to 
differ in which SCFA producing bacteria are reduced in 
abundance if at all [15]. One explanation for this is that 
the dysbiosis associated with T1D is functional rather 
than associated with specific taxa. In this study we incor-
porate metaproteomics along with traditional sequencing 
analysis to identify functional changes in the activity of 
the microbiota and gut together with taxonomic changes 
associated with the development of islet autoimmunity 
and the presence of viral infections.

Enterovirus infections are one of the most studied envi-
ronmental factors associated with the presence of islet 
autoimmunity and T1D [4, 16]. Belonging to the Picor-
naviridae family, enteroviruses are ubiquitous single-
stranded RNA viruses that are commonly transmitted 
through the fecal-oral route in children. Most enterovi-
ruses establish primary infection and replication in the 
intestine but can ascend into the pancreas, where they 
can establish persistent infection [17, 18]. Longitudinal 
analysis of the gut virome (both mammalian and bacte-
rial derived viruses) from children that developed islet 
autoimmunity and/or T1D found that prolonged entero-
virus B shedding was associated with islet autoimmunity 
[19]. Furthermore, we previously showed that children 
with islet autoimmunity exhibit a greater abundance 
of enterovirus A species in the gut compared to islet 
autoantibody negative controls [20]. Mastadenoviruses 
of the Adenoviridae family are also common causes of 
human respiratory and gastrointestinal infection in child-
hood [21]. Children with islet autoimmunity exhibit 
fewer mastadenovirus C infections compared to controls, 
suggesting a possible protective effect of this virus, while 
human mastadenovirus F showed a weak positive corre-
lation with the timing of seroconversion [19]. However, 

very little is known about possible mechanisms by which 
mastadenoviruses may impact islet autoimmunity or how 
any of these infections relate to the gut microbiota or 
intestinal barrier function.

Clinical onset of T1D is preceded by a period of ongo-
ing islet autoimmunity detected by the presence of islet-
specific autoantibodies (IAb) [22]. As seroconversion 
to IAb positivity is the first sign that an islet-specific 
immune response has been initiated, this is a likely time 
of action for a putative environmental trigger. However, 
environmental drivers may also act during the period 
between the appearance of IAb and clinical onset to 
accelerate disease progression. While multiple studies 
have examined associations between individual environ-
mental factors such as the gut microbiota or viral infec-
tions with islet autoimmunity, there is a lack of integrated 
studies investigating interactions between these factors. 
We hypothesized that gastrointestinal viral infection may 
remodel the gut microbiota toward either a more dysbi-
otic state or a more beneficial phenotype depending on 
the type of infection. To test this hypothesis, we per-
formed an exploratory multi-omic analysis using a cohort 
of children with stool samples collected before and at the 
time of seroconversion to islet autoimmunity, to examine 
the relationship between the gut microbiome, infection 
with vertebrate-infecting viruses and the stool metapro-
teome in children at-risk of T1D.

Results
Characterization of the gut microbiota, virome, 
and metaproteome before and after the onset of islet 
autoimmunity—study design
Participants included n = 40 children (20 cases who 
developed persistent IAb and 20 age-, sex-, and HLA-
matched controls; Supplementary Table S1) from the 
Australian Viruses in the Genetically at Risk (VIGR) pro-
spective birth cohort, a longitudinal observational study 
of children with a first-degree relative with T1D [20, 23]. 
Stool samples (n = 64) were collected from the cases at 
the time of seroconversion to islet autoimmunity and/or 
15 ± 6 months prior. These stool samples were used for 
microbial community profiling via 16S rRNA sequencing 
and shotgun metaproteomics to assess functional char-
acteristics of both the gut microbiota and host intestinal 
environment. These data were integrated with virome 
sequencing data of known vertebrate infecting viruses 
(excluding bacteriophages) from the same samples that 
was previously reported [20].

Microbial diversity and abundance are associated with age
As well documented [24], the richness, as measured 
by the number of observed OTUs, and the evenness, 
as measured using the Shannon index of the stool 
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microbiome, both increased steadily during early child-
hood (Fig.  1A). In contrast to some previous reports 
[25, 26], case and control samples did not significantly 
differ in their alpha diversity (Fig.  1B, p = 0.85 for 
observed OTUs and p = 0.11 for Shannon). PCoA was 
used to investigate major drivers of variation in the stool 
microbiome. The dominant principal coordinates of the 

Bray-Curtis distances identified strong effects of age 
and the proportion of Bacteroidetes and Firmicutes on 
the first principal coordinate (Fig. 1C–E). Four samples 
from two age-matched pairs appear to have a very dis-
tinct microbiome composition (con11, con 17, case11, 
case 17, Fig.  1C). These samples were collected before 
0.8 years of age and their unique composition may 

Fig. 1  Microbial diversity and abundance are associated with age. The number of OTUs observed and Shannon index related to A age and B case 
and control status and timepoint. The thick blue curve represents all samples, the grey shaded are represents the 95% confidence interval, and the 
thinner curves represent the sample group. The first two principal coordinates of the Bray-Curtis distance are shown with each sample colored 
according to C age, D the proportion of counts attributed to Bacteroidetes, E the proportion of counts attributed to Firmicutes and F case group. 
Four samples (aged < 1 year of age) with a distinct microbiota are labeled in C. Case pre: IAb+ children prior to seroconversion, case post: IAb+ 
children after seroconversion, control pre: IAb− controls at first timepoint, control post: IAb− at second timepoint
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reflect the consumption of breast milk [27, 28]. These 
four younger aged samples also had lower diversity, with 
an average of 90 detected OTUs in samples taken in the 
first year versus 174 in the other samples. No grouping 
according to case-control status was observed within 
the first five principal coordinates, which collectively 
account for 53% of the variance (PCo1 and PCo2 are 
shown in Fig. 1F). Eighteen individual OTUs were signif-
icantly associated with the age of sample collection (Sup-
plementary Table S2). These included three unclassified 
Bacteroides and 8 Clostridiales, consisting of 4 Rumino-
coccaceae, and 5 Lachnospiraceae, which increased with 
age (q < 0.1). A single OTU from Erysipelotrichaceae was 
found to decrease with age. These findings are consist-
ent with previous reports that have found an increase in 
the proportion of Firmicutes after the adoption of solid 
food during early childhood as well as a drop in Erysipel-
otrichaceae after the cessation of breastfeeding consist-
ent [12, 29, 30].

Dynamics of the metaproteome during early childhood
Paralleling the increase in microbial diversity observed 
in amplicon sequencing, the total number of microbial 
proteins identified rose rapidly in the first three years of 
life, after which they stabilized (Fig.  2A). The number 
of microbial proteins was highly correlated to the num-
ber of OTUs detected by 16S sequencing (Supplemen-
tary Figure S1, R = 0.83, p < 0.001). The overall number 
of human proteins was stable across the range of ages 
within this study (Fig.  2A), although the number and 
combined intensity of immunoglobulin variable regions 
observed and immunoglobulin kappa and lambda light 
chain intensity decreased with age (Fig. 2A, Supplemen-
tary Figure S2). Interestingly, none of the class-specific 
immunoglobulin heavy chains significantly associated 
with age (Supplementary Figure S2), suggesting the indi-
vidual variable regions may come from more than one 
antibody class. Neither the overall number nor inten-
sity of human and microbial proteins were associated 
with case-control status (Fig. 2A, B and data not shown). 
Principal component (PC) analysis of the stool proteome 
revealed a strong association of age-related variables with 
the first principal component (Fig.  2B, C). PC1, which 
explained 22% of the variance, correlated with age, rela-
tive abundance of Bacteroidetes, the richness and even-
ness of microbial OTUs, and the number of human and 
microbial peptides identified (Fig.  2C). The number of 
human proteins and antibody-variable regions detected 
appear to play an important role in the data structure, as 
these are correlated with PCs 1, 4, and 5. None of the first 
5 PCs were associated with case-control status.

Univariate analyses found 28 human and 45 microbial 
proteins were associated with the child’s age at sample 

collection (Supplementary Figure  S3). The majority of 
human proteins, including 19 of the 27 immunoglobu-
lins tested (p = 3 × 10−10), decreased with age, while the 
majority of microbial proteins increased. With the excep-
tion of the IG-κ and an IGλ-like constant chain, these 
immunoglobulin fragments were from antibody vari-
able regions. Additional host proteins included MUC1, 
CLCA1, DMBT1 (also known as SALSA), and lac-
totransferrin (TRFL, also known as lactoferrin) which 
are involved in the maintenance of the gut barrier and 
anti-microbial defense [27, 28, 31, 32]. The microbial 
proteins associated with age include 9/36 (p < 0.001) of 
the glutamate dehydrogenases tested and these were pre-
dominantly derived from the Firmicutes phylum. The 
microbial gene content of proteins involved in glutamate 
metabolism has been observed to increase in a large 
study of children between 3 and 36 months old [33] and 
glutamate synthase was increased between ages 0 and 
12 months in the TEDDY study [6]. Most of the other 
microbial proteins associated with age belong to ubiq-
uitous pathways including glycolysis and were predomi-
nantly from Firmicutes phylum members.

Gut microbiome and metaproteome associations with viral 
infections in early childhood
Next, we investigated the relationship between the gut 
virome, microbiome, and metaproteome using mixed-
effect models. Separate models were used to evaluate the 
presence of any virus, any enterovirus or any mastadeno-
virus with microbial abundance. Exploratory analyses of 
norovirus and parechovirus were limited due to their 
sparsity. Positivity for enterovirus, but not other viruses, 
was associated with younger age (enterovirus positive 
samples 1.9 ± 1.1 years, enterovirus negative samples 
3.6 ± 2.2 years, p < 0.001). Microbial diversity tended 
to be lower in virus positive samples, but these differ-
ences were not statistically significant when adjusted for 
age (q > 0.1, Supplementary Figure S4). A lower relative 
abundance of a Dorea OTU was associated with positiv-
ity to any vertebrate-infecting virus (q = 0.058, Fig. 3A). 
An OTU from Blautia and another from Sharpea were 
increased in enterovirus positive samples compared to 
those with no enterovirus (Fig.  3B). Individual micro-
bial abundance was not associated with the presence of 
mastadenovirus.

Protein groups were then investigated for association 
with the presence of viruses. No proteins were associ-
ated with the detection of any virus (N = 50) in a sam-
ple compared to those with no virus detected (N = 11). 
A single bacterial protein, a Gro-Es heat shock pro-
tein from Bacteroides, was associated with enterovirus 
infection (Fig.  3C). This Gro-Es protein was not associ-
ated with age. In contrast, 28 microbial proteins were 
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associated with the presence of mastadenovirus (Fig. 3D). 
These included 5 of the 36 tested glutamate dehydro-
genases (GLUD1s, p = 0.02, χ2 test) and 4 out of 20 of 
the Rubrerythrins detected (p = 0.005), which were 
under-expressed in samples with presence of mastad-
enovirus. Three ABC-type transport proteins were also 
over-expressed in mastadenovirus positive samples. The 
GLUD1 proteins associated with mastadenovirus were 

distinct from those associated with age, changed in a 
consistent direction, and originated from a number of 
different Firmicutes and Proteobacteria. This suggests a 
functional change occurs in the microbiota rather than 
a change in the abundance of specific bacteria. Further 
supporting this idea, some Faecalibacterium derived 
proteins decreased (Rubrerythrin) while others (2 ABC-
type transporters) increased in mastadenovirus-positive 

Fig. 2  Dynamics of the metaproteome during early childhood. A The number of human proteins, non-human proteins, immunoglobulin-variable 
regions detected, and the proportion of immunoglobulin (IG)-variable regions among total protein intensity. For each panel, the thick blue curve 
represents all samples, the grey shaded are represents the 95% confidence interval, and the thinner curves represent each sample group. B 
PCA of the metaproteome shows PC1 and PC2 with contributing human proteins labeled individually. Genus of microbial proteins identified in 
each quadrant are indicated. C The correlation of the first 5 principal components with metrics from amplicon sequencing (phylum abundance, 
observed, Shannon) and metaproteomics (n human proteins, n non-human proteins). *p < 0.05, **p < 0.01, ***p < 0.001
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samples. Nearly half (9 of 20) of the proteins which were 
decreased in these samples came from Bacteroides while 
none of the 8 elevated proteins came from Bacteroides, 
suggesting some of the differences observed might be due 
to altered abundance and not function. Of the human 
proteins tested, only the heavy chain of IgM was ele-
vated in samples with mastadenovirus. The large number 
of microbial proteins associated with mastadenovirus 

indicates that either this genus of viruses alters the func-
tional state of the microbiome, perhaps through direct 
interaction or changes in the host immune system, or 
that the microbiome influences susceptibility to mastad-
enovirus infection.

To further explore functional changes in the metapro-
teome associated with viral infection, all non-host pro-
tein groups (N = 22,564) were aggregated by the Cluster 

Fig. 3  Microbial features associated with viral infection. Linear mixed models were used to identify OTU associated with A detection of any virus 
and B samples with any enterovirus. Linear mixed models were used to identify C proteins associated with the detection of any enterovirus and D 
proteins associated with any mastadenovirus. The 28 proteins associated with mastadenovirus infection are shown in a heatmap grouped using 
non-hierarchal clustering. Taxonomic and functional characteristics of the variables associated with each protein are indicated by the color in the 
legend
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of Orthologous Group (COG) of the lead protein. In 
general agreement with the results from individual pro-
tein groups, multiple COGs (n = 9) were associated with 
mastadenovirus infection (Supplementary Figure  S5). 
This analysis confirmed the decrease of glutamate dehy-
drogenase observed in analysis of the individual protein 
groups with mastadenovirus as well as an increase in 
Glutamyl-tRNA synthetase. A number of microbial func-
tions, including GLUD, were also associated with age 
(data not shown), but the association with mastadenovi-
rus was independent of age. Together, these data suggest 
a functional remodeling of the gut microbiota accompa-
nies mastadenovirus infection.

Association of microbial abundance and metaproteome 
with islet autoimmunity
We investigated associations between islet autoimmunity 
and microbial or protein abundance. Univariate analysis 
identified a single unclassified Ruminococcaceae OTU 
was significantly more abundant in control children 
(Fig.  4A). An additional unclassified Ruminococcaceae 
OTU was identified in interaction tests to increase over 
time in controls but decrease post seroconversion in 
cases (Fig.  4B). Two proteins, human carcinoembryonic 
antigen cell adhesion molecule 7 (CEAM7, also known 
as CEA) and an ABC transporter from Faecalibacte-
rium Prausnitzii, were detected at increased levels in 
cases compared to control children (Fig.  4C). CEAM7 
(CEACAM7) is a cell adhesion molecule expressed on 
epithelial cells of the colon, rectum, and pancreatic duct 
[34, 35]. Three additional proteins were more abundant in 
case samples before seroconversion and decreased after 
seroconversion, while in control children they increased 
over time (case-time interaction q < 0.1, Fig. 4D). Two of 
these, a glucuronate isomerase and a SAICAR synthase, 
were from the Faecalibacterium genus within the Rumi-
nococcaceae family. Glucuronate isomerase is involved 
in glucose and secondary metabolite degradation. SAI-
CAR synthase is an enzyme involved in purine nucleo-
tide biosynthesis. The third protein, lipoprotein Med, 
is an ABC-type transport protein and originated from 
the Subdoligranulum genus also within the Ruminococ-
caceae family. Together, these changes indicate an altered 
functional response within several members of the Rumi-
nococcaceae family are associated with the onset of islet 
autoimmunity.

Multi‑omic factor analysis identifies latent factors 
associated with age, immunoglobulins, mastadenovirus, 
and islet autoimmunity
To explore broader relationships between the human 
proteome, the metaproteome, the virome, and micro-
bial abundance, these datasets were integrated using 

multi-omic factor analysis (MOFA) [36]. Initially, a 
“view” indicating the presence or absence of viruses at 
the rank of genus was included in this integration. How-
ever, the virome explained very little of the variance (< 
1%, Supplementary Figure S6) and was removed from 
subsequent models. Instead, the identified latent factors 
were tested for association with viruses in the same man-
ner as in the univariate analyses. In the resulting model 
(referred to as model 1), six latent factors were selected 
with R2 > 0.05 (Supplementary Figure S7A, B). The first 
latent factor was strongly associated with age (q < 0.001) 
and other age-related variables including the number of 
OTUs observed (q < 0.001), the number of non-human 
proteins detected (q < 0.001), and the number of anti-
body variable regions (IGV) detected (q < 0.001) (Supple-
mentary Figure S7B, C, Supplementary Table S3).

To account for the non-linear effect of age on the 
microbiome, human proteome, and microbial proteome, 
a second MOFA analysis was performed, first removing 
the variance due to age using the residuals from a cubic 
spline regression for each variable as previously reported 
in single-omic studies [5, 15]. This model (referred to 
as model 2), identified 8 latent factors with R2 > 0.05, 
(Fig. 5A, B). As expected, LF1 was no longer associated 
with age (Fig.  5B, R2 = 0.00), but it was still associated 
with the number of OTUs observed, the number of 
non-human proteins detected, and the number of IGV 
detected. A strong effect of individual IGV fragments on 
LF1 and LF2 was still apparent (Fig. 5B, C, Supplemen-
tary Table S4), suggesting antibodies play an important 
role in shaping the microbiome and metaproteome. LF1 
and LF2 were both associated with subjects that had a 
mastadenovirus infection at either timepoint while LF3 
was associated with samples that had a mastadenovirus 
infection (Fig. 5B, D, E). No latent factors were associated 
with birth delivery mode (vaginal versus Caesarian deliv-
ery). The distribution of LF6 differed between cases and 
controls (q = 0.09) and displayed significant case-time 
interaction (q = 0.06, Fig. 5F). The microbial abundance 
estimates from amplicon sequencing explained a negligi-
ble amount of the LF6 variance (R2 = 7 × 10−5). Closer 
inspection of the top 20 proteins in LF6 revealed strong 
representation of proteins from the genus Faecalibacte-
rium (11 proteins) and Bacteroides (3 proteins) (Fig.  6, 
Supplementary Table S5). Interestingly, while Faecali-
bacterium proteins tend to decrease post-seroconversion 
in cases and increase in controls over time, Bacteroides 
showed the opposite trend. Strikingly, there were 9 ABC-
type transport proteins within the top 20 proteins (Fig. 6, 
Supplementary Table S5), suggesting alterations in trans-
port of glycerol-3-phosphate or sugars in children that 
develop islet autoimmunity, possibly indicating altered 
substrate utilization by the bacteria. In summary, the 
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global expression profiles of microbial and human pro-
teins identified, in an unsupervised manner, latent factors 
which differ between children who develop islet autoim-
munity and those who do not. The fact that microbial 

proteins rather than microbial taxa, human proteins, or 
viruses associated with the onset of islet autoimmunity 
suggests that the functional activity of the microbiota 
may be a key factor associated with seroconversion.

Fig. 4  The microbiome and metaproteome are associated with islet autoimmunity. Linear mixed models identified A Ruminococceceae otu194951 
associated with case/control status overall and B Ruminococceceae otu591734 associated with case/control status dependent on timepoint. C 
Proteins associated with case-control designation and D proteins associated with case/control status dependent on timepoint. Case pre: IAb+ 
subjects prior to seroconversion, case post: IAb+ subjects after seroconversion, control pre: IAb− subjects at first timepoint, control post: IAb− 
subjects at second timepoint
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Discussion
Although both viruses and the gut microbiome are 
believed to play a role in the pathogenesis of T1D and 
both have been investigated in large cohorts such as the 
TEDDY study [6, 19, 37], integrated multi-omic analy-
ses of the two has not previously been reported. Here, 

we examined relationships between the metaproteome, 
microbiome, and virome in the stool of children col-
lected before and at the onset of islet autoimmunity. 
We have made the following observations: (i) while the 
increasing diversity of the gut microbiome in early child-
hood strongly correlated with increasing diversity within 

Fig. 5  Multi-omic factor analysis model identifies latent factors associated with immunoglobulins, mastadenovirus and islet autoimmunity. This 
model was developed after cubic spline regression on age. A The total variance explained for each omic. B The association of the latent factors 
(LFs) with other variables with q-values from a linear mixed model adjusted for age. C Hierarchical clustering of the weights for each LF for those 
with an absolute weight > 1 for any factor. Taxonomic and functional characteristics of the variables in C are indicated by the color in the legend, 
and clusters of variables with common features are apparent in the annotated dendrogram. D Scatterplots of LF1 versus LF2 and E LF1 versus LF3 
according to the presence of mastadenovirus in subjects or samples. D LF6 according to case-control designation and timepoint. Cases vs control q 
= 0.09, case-time interaction q = 0.062
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the metaproteome, there was a marked decline in the 
number and abundance of host antibodies in stool over 
the same time period; (ii) intestinal infection with mas-
tadenovirus but not with enterovirus was accompanied 
by a profound remodeling of the gut microbiome func-
tional response; (iii) the onset of islet autoimmunity was 
accompanied by a decline in the abundance of members 
of the Ruminococcaceae family as well as several proteins 
they produce; (iv) unsupervised latent factor integration 
methods revealed a network of proteins produced by the 
genus Faecalibacterium, with particular enrichment for 
ABC-type transport proteins that were initially elevated 
but decreased over time in the children that developed 
islet autoimmunity.

Multiple studies have shown previously that the over-
all diversity of the gut microbiota rapidly increases over 
the first years of life, stabilizing by 2–3 years of age to an 
‘adult-like’ consortia [24, 29, 30, 33]. For the first time, 
we show that this increase in overall microbial diversity 

is paralleled by an increase in the number of distinct 
microbial proteins detected and this is highly correlated 
with the number of OTUs observed. Strikingly, however, 
the number and total abundance of host antibody frag-
ments rapidly decreased across the same developmen-
tal period while human proteins overall did not display 
this pattern. One possible explanation for this decline is 
that the initial exposure to new microbe and food anti-
gens during infancy results in B cell activation and anti-
body secretion into stool. As the immune system matures 
and is tolerised to these commensal bacteria and harm-
less food antigens, antibody production in the gut may 
then be reduced. This idea is supported by evidence from 
others showing that the frequency of B cells expressing 
gut-homing receptors α4β7 is highest at 1–4 months of 
age and then declines with age [38]. In another study, the 
number of B cells per mL of peripheral blood peaked at 
4 months of age and then declined with increasing age, 
while CD27+ memory B cells peaked at 18 months of 

Fig. 6  Top 20 variables associated with LF6 from multi-omic factor analysis model associated with case-control status. Hierarchical clustering of 
normalized intensities of the 20 variables with the strongest influence on LF6. These were all microbial proteins and included 11 derived from 
Faecalibacterium, and 9 ABC-type transport proteins. Taxonomic and functional characteristics of the proteins are indicated by the color in the 
legend. ABC-type glycerol-3-phosphate transport system, periplasmic component (15818) includes this protein from five different members of the 
genus Faecalibacterium. 
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age and then declined by adulthood [39]. Colonization of 
infants with Escherichia coli and/or Bifidobacteria cor-
related with higher numbers of CD27+ memory B cells 
during infancy compared to those without these taxa, 
suggesting that colonization with these members of gut 
microbiota was influencing the systemic B cell response 
[39]. Our data support that there is an early, profound 
intestinal antibody response to the introduction of new 
antigens in the gut during early infancy.

In the TEDDY study, analysis of the gut virome of 
infants at risk of developing T1D found evidence of a 
protective effect of infection with human mastadeno-
virus C and risk of future development of islet autoim-
munity [19]. In addition, a large body of molecular and 
epidemiological data support the role of enteroviruses as 
key environmental triggers of islet autoimmunity and risk 
factor for T1D [4, 16, 19, 23]. Here, we show that mastad-
enovirus infection had a strong overall correlation with 
the structure of the stool metaproteome. While mastad-
enovirus is among the most common viruses detected in 
the gut of children [19], infections are typically asympto-
matic or cause only mild respiratory symptoms, account-
ing for 5% of symptomatic upper respiratory infections 
and 14% of symptomatic lower respiratory infections [40, 
41]. In the gut, human adenoviruses (which are all mas-
tadenoviruses) can cause persistent infection leading to 
shedding in stool [42] and can cause gastroenteritis [43], 
with type C adenoviruses most commonly associated 
with persistent infection [44]. To date, no studies have 
reported an association between mastadenovirus and the 
gut microbiome in humans. Recently it was shown that 
naturally occurring adenovirus infection in non-human 
primates was associated with a profound shift in the 
microbial community with 87 OTU significantly altered 
and an overall increase in the phyla Firmicutes and class 
Clostridia observed in infected animals [45]. The mecha-
nism behind a protective link between mastadenovirus C 
infection and the risk of islet autoimmunity is unknown 
with various mechanisms postulated including competi-
tive interactions between different viruses [19]. Our data 
raise the intriguing possibility of an interaction between 
the function of the gut microbiota and mastadenovirus 
infection playing a role in T1D risk.

Associations between the gut microbiota and the onset 
of islet autoimmunity have been described in multiple 
studies, with substantial variability in the specific taxa 
associated with disease risk in each cohort [6, 12, 13, 15, 
25, 26, 29]. This variation in species composition may 
be due to geographic differences between the cohorts. 
Another explanation is that common functional path-
ways are altered rather than specific taxa, which are 
highly variable. Here, we found altered abundance of 2 
OTU from the Ruminococcaceae family that were lower 

in children with islet autoimmunity. More profoundly, we 
identified a cluster of proteins associated with LF6 from 
Faecalibacterium and proteins involved in carbohydrate 
transport and metabolism that were initially elevated but 
then tended to decrease after the onset of islet autoim-
munity in contrast to the controls where these proteins 
increased over time. Previously, we used metaproteom-
ics to investigate functional changes which may underlie 
dysbiosis associated with islet autoimmunity or T1D in a 
cohort from Colorado [46]. In that cohort, we similarly 
identified a cluster of nine proteins derived from Faecali-
bacterium prausnitzii that were associated with features 
that distinguished healthy controls and first-degree rela-
tives without autoimmunity in comparison with individ-
uals with islet autoimmunity [46]. Of these F. prausnitzii 
proteins, three were involved in membrane-transport 
systems for sugars including the glycerol-3-phosphate 
transport system, similar to the Faecalibacterium derived 
proteins that contributed to the model we describe here. 
This suggests that similar relationships may exist between 
altered function of Faecalibacterium genus members and 
the onset of islet autoimmunity in this cohort.

The link with carbohydrate transport systems suggests 
there may be an alteration in carbon utilization by Fae-
calibacterium in children with islet autoimmunity. The 
ABC transporters identified were linked to sugar and 
glycerol-3-phosphate transport. Glycerol-3-phosphate 
can be derived from glycolysis or lipid metabolism [47, 
48]. Functional potential indicative of such behavior was 
observed by Kostic and colleagues using a densely sam-
pled case-control cohort of children under 3 years of age 
[25] and a second study which predicted increased ABC 
transport using PICRUST in children that later devel-
oped T1D [49]. In the Kostic study, the metagenome of 
children who developed T1D contained more genes for 
the multiple-sugar transport system and fewer genes for 
amino acid biosynthesis than the metagenomes of healthy 
children, leading the authors to speculate a functional 
shift had occurred from nutrient synthesis to nutrient 
uptake [25]. Of interest, mastadenovirus infection was 
also associated with elevation of three similar (but not 
identical) ABC-type transporters, two from Faecalibacte-
rium and one from an unknown taxon. This suggests that 
mastadenovirus may influence similar functional path-
ways to those associated with islet autoimmunity. Further 
studies are needed in larger and more densely sample 
cohorts to better understand these relationships.

Many other studies have implicated Faecalibacterium 
members, particularly F. prausnitzii as having a funda-
mental role in human health [50–52]. F. prausnitzii is one 
of the most abundant producers of the beneficial short-
chain fatty acid (SCFA) butyrate in the healthy human gut 
[53], in addition to producing other anti-inflammatory 
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secretory components [50]. A reduction in bacteria capa-
ble of fermenting dietary fiber to produce SCFAs has 
been identified as one of the most consistent features 
of dysbiosis associated with T1D [6, 11, 12, 15]. Fae-
calibacterium and unclassified Ruminococcaceae OTUs 
were observed at lower relative abundance in children 
who develop autoimmunity in some small case control 
studies [49, 54] and in the much larger TEDDY longi-
tudinal study [29]. After the onset of clinical T1D, Fae-
calibacterium abundance was negatively correlated with 
HbA1c [49, 55] and serum levels of zonulin, a common 
biomarker for gut barrier function [49]. Further investi-
gation is required to explore the association of specific 
Faecalibacterium functional changes with autoimmunity.

The main limitations of our study were the small sam-
ple size and availability of only two timepoints per par-
ticipant, some without a pre-seroconversion timepoint. 
This meant that the number of samples with a detected 
infection with any given virus was low. We may also have 
missed viral infections that were cleared rapidly but still 
had a lasting impact on the microbiota or the host. This 
limited our ability to investigate microbiome associa-
tions with many individual viruses such as norovirus or 
the various subtypes of mastadenovirus. We also did not 
investigate other parameters that may drive changes in 
the gut microbiota such as diet or antibiotic use due to 
the complexity of these types of data and small sample 
size. A limitation of shotgun proteomics is a low overall 
depth of coverage. Only a fraction of the bacterial pro-
teins predicted to be present are abundant enough for 
detection. Furthermore, we analyzed the ‘soluble’ frac-
tion of the stool as this is enriched for human proteins, 
but also bias’s the detection of microbial proteins toward 
those from gram-negative bacteria [56]. A strength of 
our study was the use of unsupervised data integration 
methods to uncover the relationships in the data with 
islet autoimmunity and viral infection. Providing greater 
confidence in our novel approach, this method validated 
some of the relationships we had previously identified 
in another cohort using a supervised approach [46]. We 
also present the first microbiome and metaproteome 
data from the southern hemisphere in children with islet 
autoimmunity.

Conclusions
In conclusion, we demonstrate the interrelationship 
between the gut microbiota, metaproteome and virome 
in young children. We have uncovered a previously 
unrecognized association of mastadenovirus infection 
with the function of the gut microbiota, which may play 
a role in disease risk. Strikingly, we found further evi-
dence of a switch in Faecalibacterium function may be 
associated with the onset of islet autoimmunity. This 

lends evidence that an altered gut microbiota is involved 
in the pathogenesis of T1D and therapeutic strategies 
aimed at re-training the gut microbiota may be a promis-
ing approach for a therapy for preventing T1D. Further 
studies in larger cohorts such as the TEDDY study or 
the Australian ENDIA study may further elucidate these 
findings.

Methods
Participant characteristics
Participants were from the Australian Viruses in the 
Genetically at Risk (VIGR) prospective birth cohort, a 
longitudinal observational study of children who had a 
first-degree relative with T1D [20, 23]. Feces were exam-
ined in twenty subjects positive for 1 or more islet cell 
autoantibodies to GAD65, insulin, or IA2 in 2 consecu-
tive visits (case subjects). A fecal sample was available for 
analysis following the detection of seroconversion and in 
the preceding ~ 1 year for 12 subjects; fecal samples were 
available only at the time of seroconversion for 5 subjects 
and only preceding seroconversion in 3 subjects (case 
subjects). For each case subject, an age-, gender-, and 
HLA-matched subject was selected and the correspond-
ing timepoints evaluated (control subjects). One case 
had an unknown HLA risk status, this was imputed to 
have low risk for models and graphs involving HLA sta-
tus. Virome sequencing using VirCapSeq-VERT for all 64 
specimens has been previously reported [20]. Three con-
trols did not have a specimen available corresponding to 
the post-seroconversion timepoint for metaproteomics 
or 16S amplicon sequencing. Sequencing was unsuccess-
ful in twelve additional pre-seroconversion case speci-
mens (described below), yielding a total of 49 samples 
available for analysis of the microbiome and 61 samples 
for metaproteomics. Fifty percent of subjects were male; 
40% had a high-risk HLA haplotype as previously defined 
[20]; islet auto-antibodies were detected at an average 
age of 3.4 (± 2.2) years; and on average 1.4 (± 0.6) years 
passed between the timepoints investigated (Supplemen-
tary Table S1). Samples were collected between 2006 and 
2015 and stored at − 80 °C.

Virome sequencing
Methods for virome sequencing and the association of 
specific viruses with islet autoantibodies in this cohort 
have been reported [20] and used a capture approach 
where viral sequences were captured by over 2 million 
probes designed to isolate DNA from viral taxa known to 
infect vertebrates (VirCapSeq-VERT) [57]. For the cur-
rent analysis, viruses with greater than 100 reads were 
considered detected. To investigate the association of 
the virome with the metaproteome and microbial abun-
dance, the following categories were considered for each 
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sample: (1) detection of any virus, (2) detection of any 
enterovirus, and (3) detection of any mastadenovirus. 
The same criteria were applied for each subject, giving a 
total of 8 possible classifications.

Protein extraction, digestion, and purification
The slurry remaining after preparation of viral DNA was 
thawed on ice and resuspended by gentle vortexing for 30 
s in an equal volume of ice-cold phosphate buffered saline 
(PBS). Each sample was then split into two new tubes 
using a wide-bore 1 mL tip to ensure solids were evenly 
distributed. Peptides were then prepared according to the 
human enrichment protocol as described [56] with minor 
modifications, most notably the exclusion of PNGase 
F digestion. The aliquot for proteomics was centrifuged 
at 8000×g for 10 min at 4 °C to pellet debris and intact 
bacterial cells. The supernatant was transferred to a new 
tube and centrifuged under the same conditions. Total 
protein (20 μg), as estimated by the direct detect spec-
trometer, were then solubilized, reduced, and alkylated 
at 95 °C for 5 min in a solution containing 1% sodium 
deoxycholate, 10 mM (tris[2-carboxyethyl]phosphine) 
and 40 mM 2-Chloroacetaldehyde in 100 mM Tris pH 8. 
This solution was diluted 1:10 in water and proteins were 
digested overnight at 37 °C by addition of modified pig 
trypsin (Promega Madison, WI, USA) at a protein:trypsin 
ratio of 50:1 (w/w). Detergents were precipitated by addi-
tion of 10% trifluoroacetic acid, the supernatant was 
transferred to a fresh plate, and salts were removed using 
C18 tips (Glygen, Columbia, MD, USA) on a Bravo liquid 
handler. The eluent was evaporated with centrifugation 
under vacuum and tryptic peptides were resuspended 
in 0.1 % formic acid for mass spectrometry. Assays were 
performed blinded to clinical information and results of 
virome sequencing.

Mass spectrometry and data processing
Tryptic peptides were used for liquid chromatography–
tandem mass spectrometry analysis on a Q Exactive 
mass spectrometer (Thermo Fisher Scientific, Waltham, 
MA, USA). Peptides were separated on an EASY-Spray 
analytical column (Thermo Fisher Scientific) using a 
90-min gradient from 3 to 25% acetonitrile. MS1 was 
acquired for ions with a mass/charge ratio of 350–1400 
and the top 20 ion were subjected to MS2. Each sample 
was analyzed in duplicate. Peptide spectrum matching, 
protein inference, grouping, and quantification were per-
formed using the MetaPro-IQ [58] strategy implemented 
in MetaLab version 1.1 [59] and MaxQuant version 
1.6.3.4. The integrated reference catalog of the gut micro-
biome from Li et al [60] was used for the initial search. 
Human proteins were retrieved from Uniprot. Spec-
tral clustering was disabled during database generation. 

Carbamidomethylation of cysteine and oxidation of 
methionine were included as fixed and variable modifi-
cations, respectively, during MaxQuant searches. Spectra 
from replicate runs were merged during the MaxQuant 
pipeline. Based on previous reports, proteins were fil-
tered to include those detected in at least 50% of samples 
[61], intensities were normalized by variance stabilization 
[62], and missing values were imputed with BPCA [63]. 
All proteins were included to determine the summed 
expression of Clusters of Orthologous Groups (COGs).

16S Amplicon sequencing and data processing
Bacterial abundance in stool was determined by ampli-
con sequencing of the V6–V8 variable region (nucleo-
tides 926-1392) of the 16S rRNA gene [64]. Lysis buffer 
containing 50 mM Tris-HCl, 500mM NaCl, 50mM 
EDTA, and 4% sodium dodecyl sulfate was added to each 
aliquot of fecal sample. A 50:50 mixture of 1 mm and 0.1 
mm silica beads (total 0.4 g, Daintree Scientific) was then 
added to each tube, and bacterial cells were lysed on a tis-
sue homogenizer using three rounds of shaking at 5000 
Hz for 45 s. DNA was prepared from the lysate using the 
automated Maxwell 16 Research System (Promega) with 
the Blood LEV kit (Promega) following the manufactur-
er’s instructions. Resulting nucleic acids were incubated 
at 37 °C for 30 min with 20 μg of RNAse A to remove 
RNA. The V6–V8 region of the 16S gene was then ampli-
fied using primers AAA​CTY​AAAKGAA​TTG​ACGG and 
ACG​GGC​GGT​GTG​RC with Illumina specific adapters 
(Integrated DNA Technologies, NSW, Australia) and Q5 
High-Fidelity DNA Polymerase (New England BioLabs, 
Inc.; Ipswich, MA, USA). Thirty-three cycles of PCR 
were performed using the following conditions: melt at 
95°°C for 30 s, anneal at 65 °C for 40 s, and extend at 72 
°C for 40 s. Amplicons were purified using AMPure XP 
beads and Nextera XT indices (Illumina) were added by 
10 rounds of PCR. Indexed amplicon libraries were then 
purified using AMPure XP beads (Beckman Coulter, Inc.; 
Brea, CA, USA), pooled to an equimolar concentration of 
10 nM, and sent to the Australian Center for Ecogenom-
ics (ACE, Brisbane, Australia) for sequencing on an Illu-
mina MiSeq. Assays were performed blinded to clinical 
information and results of virome sequencing.

Operational taxonomic units (OTUs) were identi-
fied using the UPARSE analysis pipeline for OTU call-
ing and taxonomy prediction with percent identity of 
0.97 and a minimum cluster size of 2. The GreenGenes 
16S RNA Gene Database version 13_8 was used for tax-
onomy prediction. Reads were filtered for quality control 
using a MAXEE score of 1. Filtered reads were used to 
generate the OTUs. Reads not passing quality control 
were truncated to a max length of 200 bases and used in 
the step assigning reads to OTUs. Ten samples showed 
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abnormally high levels of a Methanobrevibacter OTU, 
likely due to contamination of shared lab equipment. 
Multiple previous attempts to amplify these samples 
were unsuccessful. These ten samples and two additional 
samples with failed sequencing reactions (< 100 reads) 
were removed from downstream analyses. Methanobre-
vibacter abundance remained slightly higher than antici-
pated after this adjustment (0.5 ± 1.5%, < 0.1% in iHMP 
study [65]) and was excluded from further analysis.

Due to the small number of samples, the number of 
OTUs was reduced using an amalgamation approach 
based on taxonomic hierarchy for dimension reduction. 
The amalgamation method used is a simplified version of 
that proposed by others [66, 67]. The number of OTUs 
was reduced by combining those accounting for less than 
0.1% of the reads in at most 15% of samples to their com-
mon parent taxa. Resulting OTUs accounting for more 
than 0.1% of reads in at least 15% of samples were left 
unaltered while those that did not meet these criteria 
were combined to their common parent taxa. This pro-
cess of “collapsing” was repeated three times, and OTUs 
which still failed to meet these criteria were excluded, 
reducing the number of OTUs from 510 to 120. This 
strategy is intended to reduce the number of variables 
while minimizing the loss of potentially meaningful data.

Statistical analyses
The microbiome and metaproteome were first evalu-
ated separately to identify proteins or bacteria associated 
with the presence of autoantibodies (case vs control) or 
viruses (any vs none; any enterovirus vs no enterovirus; 
any mastadenovirus vs no mastadenovirus). After filter-
ing and collapsing as described above, each OTU (n = 
120) or protein (n = 730) was included in a linear mixed 
model. The metaproteomes of 61 specimens from 40 sub-
jects were analyzed. The 85,000 unique peptides detected 
were combined into 22,564 microbial protein groups and 
459 human protein groups. Participant ID was included 
as a random effect. Age at collection (years), HLA risk 
(high or low), and islet autoantibody outcome (case/
control) were included as fixed effects. An indicator for 
viral detection was included in separate models for each 
of the categories described above. False discovery rate 
(FDR) was used to correct for multiple hypotheses, and 
a q value of 0.1 was considered statistically significant. 
The arcsin of the square root of total-sum-scaled data 
was used for modeling of microbial abundances. Princi-
pal coordinate analysis of the Bray Curtis distances and 
principal components were used to visualize the micro-
bial and metaproteomic data, respectively.

Multi-omic factor analysis (MOFA) was applied to inte-
grate the datasets [36]. This method has several attrib-
utes which make it suited to this dataset. Firstly, MOFA 

allows inclusion of samples which are missing one of the 
data types. Secondly, it can model binary data types, such 
as the presence or absence of viruses, following a Ber-
noulli distribution. Thirdly, MOFA is an unsupervised 
technique which can identify shared dimensions across 
multiple omics. These linear combinations of variables, 
known as latent factors, are analogous to principal com-
ponents and allow a means of dimension reduction. To 
evaluate their association with autoantibodies and other 
phenotypes, latent factors explaining more than 5% of 
the variance were included in mixed models as described 
for the individual proteins and taxa. To account for the 
non-linear effect of age, a second MOFA model was 
developed using the residuals from a cubic spline regres-
sion and the resulting latent factors were evaluated in the 
same manner.
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Additional file 1: Supplementary Figure S1. The number of OTUs 
observed is correlated to the number of nonhuman proteins detected. 
Each color represents a subject, and the lines indicate repeated measures 
for representative individuals. Correlation (R=0.83) was determined for 
repeated measures (p<0.001). Supplementary Figure S2. Immuno‑
globulin heavy and light chain constant regions detected in stool related 
to age. For each panel, the thick blue curve represents all samples, the 
grey shaded are represents the 95% confidence interval, and the thinner 
curves represent each sample group. Case pre: IAb+ subjects prior to 
seroconversion, case post: IAb+ subjects after seroconversion, control 
pre: IAb- subjects at first timepoint, control post: IAb- subjects at second 
timepoint. IGLL5 and IGKC were significantly associated with age (q<0.1). 
Supplementary Figure S3. Stool proteins associated with age. Linear 
mixed models identified 45 microbial and 28 human proteins associated 
with age. Taxonomic and functional characteristics of the proteins are 
indicated by the color in the legend represented as a heatmap grouped 
using non-hierarchal clustering. Supplementary Figure S4. Microbial 
diversity is not altered in the presence of virus. The Observed number of 
OTUs and the Shannon index tend to be lower in samples which have 
an infection, but these differences are not significant when adjusted for 
age (all q>0.1). Supplementary Figure S5. Microbial functions associ‑
ated with mastadenovirus. Proteins were aggregated by their Cluster of 
Orthologous Group (COG) assignments and evaluated for association 
with viral infection. Summed protein intensity from nine COGs shown are 
associated with the presence of mastadenovirus (q<0.1). Supplementary 
Figure S6. The virome explains little of the total variance following data 
integration. MultiOmic Factor Analysis (MOFA) was used to integrate 
the virome, human proteome, microbial proteome, and 16S abundance 
estimates. (A) The total variance explained by each omic or “view”, and 
(B) the variance explained for each latent factor. Supplementary Figure 
S7. MultiOmic Factor Analysis model 1 identifies latent factors associated 
with age, mastadenovirus and islet autoimmunity. (A) The total variance 
explained for each view and contribution to each latent factor (LF), along 
with a representation of the weights for latent factor for those with an 
absolute weight >1 to any factor. (B) The association of the latent factors 
with other variables. Q-values from a linear mixed model adjusted for age.

Additional file 2: Supplementary Table S1. Cohort characteristics. 
Supplementary Table S2. OTU associated with age. Supplementary 
Table S3. MOFA loadings contributing to latent factors 1-6 for model 1. 
Supplementary Table S4. MOFA loadings contributing to latent factors 
1-8 for model 2. Supplementary Table S5. Top 20 loadings for latent 
factor 6 from model 2.
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