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Taurine metabolism is modulated 
in Vibrio‑infected Penaeus vannamei to shape 
shrimp antibacterial response and survival
Zhongyan Wang1†, Jude Juventus Aweya2†, Defu Yao1, Zhihong Zheng1, Chuanqi Wang1, Yongzhen Zhao3, 
Shengkang Li1,4 and Yueling Zhang1,4* 

Abstract 

Background:  Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. 
Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes 
in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes 
can be modulated by exogenous metabolites in Penaeus vannamei remain unknown.

Results:  Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei 
in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and 
moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus 
and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in 
diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related 
enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, 
a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus 
and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increas-
ing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid 
decarboxylase (CSD).

Conclusions:  Our study revealed that taurine metabolism could be modulated by exogenous supplementation to 
improve crustacean immune response against pathogenic microbes.
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Introduction
The Pacific white shrimp, Penaeus vannamei, is the 
most cultured species globally, but various infections 
and diseases have impacted its farming and resulted in 

huge economic losses in recent years [1–3]. Shrimp are 
poikilothermic; hence, drastic changes in the ecosystem 
increase their susceptibility to bacterial [4–6], viral [7–9], 
and parasitic [10, 11] infections. Moreover, shrimp pos-
sess only an innate immune system [12] that employs 
mechanisms such as phagocytosis [13], apoptosis [14], 
immune effector molecules (see recent review [15]), 
and metabolic reprogramming [16–18] to respond to 
pathogens.

Generally, substantial metabolic changes occur dur-
ing pathogenic infections, which are either induced by 
the pathogens to optimize their survival in the host or as 
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a host response to restrict the replication and spread of 
the pathogens [16, 19]. Metabolic changes resulting from 
host–pathogen interactions establish a close relationship 
between metabolic systems and the immune system [20]. 
Modulation of metabolic pathways, therefore, impacts 
the development and progression of infections or dis-
eases. Indeed, most nutrients (i.e., lipids, organic acids, 
fatty acids, nucleic acids, vitamins, amino acids, etc.) 
and their metabolites serve both nutritional [21] and 
immune functions [22, 23]. For instance, intermediates 
or metabolites of glycolysis and the tricarboxylic acid 
(TCA) cycle also play crucial roles in cell signaling [24]. 
In Klebsiella pneumoniae-challenged mice, plasma lev-
els of d-glucose, glutamine, l-serine, and inositol in the 
survival group increased compared with the dead group, 
while exogenous addition of l-serine, l-valine, and 
l-leucine enhanced bacteria phagocytosis to increase 
mouse survival [19]. Similarly, when zebrafish were chal-
lenged with Vibrio alginolyticus, the surviving group 
had significantly high levels of malic acid in their body 
fluids compared with healthy and moribund groups 
[25]. In white spot syndrome virus (WSSV)-infected 
penaeid shrimp (P. vannamei), intestinal levels of lin-
oleic acid increased significantly, resulting in the activa-
tion of the extracellular signal-regulated kinase (ERK)/
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) signaling pathway to induce the expres-
sion of antibacterial peptides and Vago5 (an IFN-like 
gene), thereby inhibiting viral proliferation and enhanc-
ing shrimp survival [16]. Thus, through metabolic repro-
gramming, the host immune response against pathogens 
could be enhanced [26].

During host–pathogen interactions, some pathogens 
directly or indirectly skew host metabolism in their favor. 
For instance, in the Gram-negative bacterium Pseu-
domonas aeruginosa, the virulence factor and quorum 
sensing signaling molecule, pyocyanin, modulates some 
physiological processes in human cells, such as lysosomal 
dysfunction and protease release, to induce apoptosis 
and impair host defenses, thus allowing the bacterium to 
proliferate [27]. Similarly, during infection of mammalian 
cells, a secondary metabolite, gliotoxin (GT), produced by 
the saprophytic fungus Aspergillus fumigatus, enables the 
fungus to induce reactive oxygen species (ROS) produc-
tion by activating Bak (Bcl-2 family member) to promote 
apoptosis and cause high morbidity and mortality [28]. In 
aquatic animals, during infection of Chinese perch (Sin-
iperca chuatsi) with infectious spleen and kidney necro-
sis virus (ISKNV), the virus metabolizes high levels of 
glucose for replication in the early infection stages, but 
switches to the use of more glutamine (for lipid synthe-
sis) in the later stages to ensure viral maturation [29]. 
Similarly, in Vibrio parahaemolyticus-challenged mud 

crab (Scylla paramamosain), moribund crabs had ele-
vated plasma levels of saturated fatty acids (e.g., myris-
tic acid, palmitic acid, stearic acid, etc.) but low levels 
of unsaturated fatty acids (e.g., arachidonic and eicosa-
pentaenoic acids) and amino acids (e.g., hydroxyproline, 
arginino-succinic acid, and malate) compared with the 
survival group, suggesting that the bacteria attenuate 
host energy biosynthesis and decrease levels of metabo-
lites with immune-related functions to impair host bac-
terial clearance [30]. When infected by the strain of V. 
parahaemolyticus that causes acute hepatopancreatic 
necrosis disease (AHPND), increased levels of bile acids, 
pVA plasmid, and Pir toxin were found in the stomach 
of shrimp (Penaeus vannamei), suggesting that bile acid 
modulates the bacterium’s virulence [31]. The Warburg 
effect and glutamine metabolism are also triggered in 
WSSV-infected P. vannamei, indicating that both oxi-
dative and reductive glutamine metabolic pathways are 
activated to promote viral replication [32].

Various amino acids and their metabolites have been 
implicated in immunomodulation in mammals, while 
few studies have thus far explored the role of amino acids 
and/or their metabolites in the immune regulation of 
crustaceans [33]. Among the amino acids that play key 
physiological functions in mammals, taurine, the most 
abundant free nonproteinogenic amino acid [34, 35], has 
been implicated in various developmental and biological 
functions [36]. For instance, taurine and its metabolites 
play vital roles in mammalian immune response [37, 38], 
by inducing the release of IL-35 [39], inhibiting oxidative 
stress [40], regulating the release of pro-inflammatory 
cytokines [41], and modulating inflammatory responses 
[42, 43], through the AMPK-mTOR [44] or TLRs/NF-κB 
[45] pathways. However, in crustaceans, the role of 
endogenous taurine is unclear, although dietary taurine 
supplementation has been shown to modulate several 
physiological processes, including immune response, 
antioxidant capacity, inflammation, etc. in various marine 
organisms, such as juvenile yellow catfish Pelteobagrus 
fulvidraco [46, 47], zebrafish Danio rerio [48], Chinese 
mitten crab Eriocheir sinensi [49], European seabass 
Dicentrarchus labrax [50], and Carassius carassius [51].

Here, we report that, in an aquaculture pond contain-
ing Pacific white shrimp (P. vannamei) of different patho-
logical stages, most diseased shrimp were infected with 
Vibrio (mainly V. parahaemolyticus and V. harveyi) and 
key metabolites and their corresponding enzymes were 
dysregulated. Notably, the gastrointestinal tract (GIT) 
of diseased surviving shrimp expressed high levels of 
taurine and its related metabolism enzymes, whereas 
diseased moribund shrimp expressed low taurine but 
high levels of hypoxanthine and its related metabo-
lism enzymes. Most importantly, exogenous taurine 
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supplementation enhanced shrimp survival against V. 
parahaemolyticus challenge.

Materials and methods
Experimental animals, sample preparation, and pathogen 
challenge
Healthy (control), diseased (survival), and moribund 
adult shrimp (Penaeus vannamei) with a mean weight 
of 7 ± 0.5 g were obtained from Haosheng aquaculture 
Co., Ltd., Shantou, Guangdong, China (23.28 °N, 116.69 
°E). Tissues (i.e., hemolymph, hepatopancreas, stomach, 
and intestine) were collected from each group of shrimps 
(n=26) as previously described [52]. Samples for DNA, 
RNA, and protein determination were snap-frozen in liq-
uid nitrogen before being stored at −80 °C, while sam-
ples for metabolomics analysis were preserved in cold 
methanol. The samples used for bacterial determination 
with thiosulfate-citrate-bile salts-sucrose (TCBS) agar 
were stored on ice, while those for histological examina-
tion were directly placed into 4% paraformaldehyde for 
fixation.

Healthy P. vannamei (mean weight 5–8 g) were also 
purchased from Huaxun Aquatic Product Corporation, 
Shantou, Guangdong, China (23.36 °N, 116.66 °E) for 
pathogen challenge experiments. Shrimp were cultured 
in laboratory tanks (containing artificial seawater of 
salinity 10 ppm and temperature 23–26 °C) for 2 to 3 days 
and fed twice daily with commercial feed (34–37% pro-
tein). In the challenge and survival experiments, shrimp 
were injected with 100 μL of taurine (1.25, 2.50, and 
5.00 mg/mL) or control (solvent vehicle) for 24 h before 
being challenged with 5 × 105 CFU/shrimp of V. para-
haemolyticus (isolate PD-2), the strain that causes acute 
hepatopancreatic necrosis disease (AHPND). Shrimp 
used for the transcriptome analysis were injected with 
taurine (2.50 mg/mL) for 24 h followed by a challenge 
with 5 × 105 CFU/shrimp of V. parahaemolyticus (PD-2) 
or an equal volume of sterile saline (0.65%). Hepatopan-
creas samples were collected from five randomly selected 
shrimp from each group at 24 h post-challenge for total 
RNA extraction.

The bacteria used, i.e., Vibrio harveyi (MCCC1H00031, 
GenBank: X74706.1) and Vibrio parahaemolyticus 
(MCCC1H00057, GenBank: FJ161313.1), were purchased 
from the Marine Culture Collection of China (MCCC), 
while V. parahaemolyticus (PD-2) was a kind gift from 
Professor Lo Chufang (National Cheng Kung University, 
Taiwan, China) [53]. On the other hand, Streptococcus 
iniae (GenBank: NZ_JH930418.1) and Escherichia coli 
(K-12) (GenBank: NC_000913.3) were previously isolated 
from penaeid shrimp by our group. Bacteria were cul-
tured at 37 ° C in Tryptic Soy Broth (TSB) medium (17 g 
peptone, 3 g soybean peptone, 2.5 g glucose, 30 g sodium 

chloride, 2.5 g dipotassium hydrogen phosphate, pH 7.2) 
for 24 h. before being diluted to the required concen-
tration before use. In China, because no specific ethical 
approval is required for carrying out experimental work 
with shrimp or crustaceans (Regulations of Guangdong 
Province on the Administration of Experimental Animals 
http://​www.​gd.​gov.​cn/​zwgk/​wjk/​zcfgk/​conte​nt/​post_​
25245​45.​html and Regulations of the People’s Republic 
of China on the Administration of Experimental Animals 
https://​kyc.​jnmc.​edu.​cn/​2021/​0826/​c2735​a1229​33/​page.​
htm), all animal experiments were conducted in accord-
ance with these guidelines and the Animal Research and 
Ethics Committee of Shantou University, Guangdong, 
China.

Genomic DNA and total RNA extraction
Genomic DNA (gDNA) was extracted from shrimp 
hepatopancreas samples using the genomic DNA extrac-
tion kit for marine animal tissues (TIANGEN, Beijing, 
China) following the manufacturer’s protocol. The gDNA 
concentration was determined using a NanoDrop 2000 
spectrophotometer (Thermo Fisher Scientific, Wilm-
ington, MA, USA), and the quality and integrity were 
validated with an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA) and also using 1% 
agarose gel electrophoresis.

Total RNA was also extracted from hepatopancreas 
using TRIzol Plus RNA Purification Kit (Invitrogen, 
Carlsbad, CA) according to the manufacturer’s instruc-
tions. The total RNA concentration was measured using a 
NanoDrop 2000 spectrophotometer (Thermo Fisher Sci-
entific, Wilmington, MA, USA) followed by determining 
the RNA Integrity Number (RIN) using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). The quality of the total RNA was further ascer-
tained using the 260/280 ratio (>1.9) and also analyzed 
on 1% agarose gel electrophoresis. Only high-quality 
samples were used for downstream analyses.

Bacteria types and abundance determination using PCR
To identify bacteria types and abundance in shrimp tis-
sue samples, quantitative PCR-based methods were used. 
First, standard curves were prepared using different 
bacteria strains and gene-specific primers (Table S1)  as 
previously described [54–56] followed by qPCR analysis 
with 5 μL of 2 × RealStar Green Power Mixture (Gen-
star, Beijing, China), 0.5 μL(10 μM) each of the forward 
and reverse gene-specific primers (Table S1), 1 μL (50 ng/
μL) gDNA, and 3 μL ddH2O. The qPCR reaction was car-
ried out on the qTOWER 3 G RT-PCR system (Analytik 
Jena, Jena, Germany) using the following cycling condi-
tions: one cycle at 95 °C for 10 min, 45 cycles at 95 °C 
for 15 s, and 60 °C for 30 s. For the PCR-based bacteria 
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identification, gene-specific primers for the various bac-
teria (Supplemental Table S1) were used with gDNA (20 
ng/reaction) at the following conditions for each gene: 
16S rRNA (one cycle at 96 °C for 3 min; 28 cycles of 95 °C 
for 30 s, 55 °C for 30 s, and 72 °C for 30 s; and one cycle 
at 72 °C for 10 min); Vibrio (one cycle at 96 °C for 3 min; 
35 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 
s; one cycle at 72 °C for 5 min); V. harveyi (one cycle at 
96 °C for 3 min; 35 cycles of 95 °C for 30 s, 55 °C for 30 s, 
and 72 °C for 30 s; one cycle at 72 °C for 5 min); pirB (one 
cycle at 96 °C for 3 min; 35 cycles of 95 °C for 30 s, 55 °C 
for 30 s, and 72 °C for 30 s; one cycle at 72 °C for 5 min); 
AP4 (first PCR: one cycle at 96 °C for 6 min; 33 cycles of 
95 °C for 30 s, 55 °C for 30 s, and 72 °C for 90 s; one cycle 
at 72 °C for 10 min. Second PCR: one cycle at 95 °C for 3 
min; 33 cycles of 95°C for 30 s, 55 °C for 30 s, and 72 °C 
for 20 s; one cycle at 72 °C for 10 min) [57]; and tlh (one 
cycle at 95 °C for 3 min; 32 cycles of 95 °C for 30 s, 60 °C 
for 30 s, and 72 °C for 35 s; one cycle at 72 °C for 5 min) 
[58]. Bacteria used as control were directly subjected to 
PCR without extracting DNA.

Sample preparation, histological examination, 
and metabolomics profiling
Histological examination of hepatopancreas samples 
from healthy, diseased, and moribund shrimp was pro-
cessed and observed after H&E staining. First, the 
hepatopancreas samples were fixed with 4% paraform-
aldehyde for 48 h before being sliced and stained with 
hematoxylin and eosin (H&E) as previously described 
[59]. Samples were then observed and imaged with a 
Pannoramic MIDI light microscope (3DHISTECH, 
Budapest, Hungary).

To profile shrimp hepatopancreas metabolites, sam-
ples were prepared as previously described [25, 60] 
with some modifications. Briefly, 30 mg hepatopancreas 
were placed in 1000 μL ice-cold chromatographic grade 
(Sigma-Aldrich, St. Louis, MO, USA) before being lysed 
for 6 min with an ultrasonic cell disruptor (Xinyi 650E, 
Ningbo, China) and then centrifuged at 12000 rpm (10 
min at 4 °C) to collect the supernatant. As an internal 
standard, 10 μL of 0.1 mg/mL ribitol (Sigma-Aldrich, St. 
Louis, MO, USA) was added. After samples were concen-
trated and dried in a rotary vacuum centrifuge (Labconco 
Corporation, Kansas, MO, USA), they were analyzed by 
gas chromatography coupled with mass spectrometry 
(GC-MS) as previously reported [61, 62]. Briefly, sam-
ples were first methoxylated and derivatized to protect 
the carbonyl moieties by incubating samples at 37 °C for 
90 min on a shaker (200 rpm/min) with 80 μL of 20 mg/
mL methoxyamine hydrochloride (Sigma-Aldrich, St. 
Louis, MO, USA) in pyridine. Next, 80 μL of N-methyl-
N-trimethylsilyltri-fluoroacetamide (Sigma-Aldrich, St. 

Louis, MO, USA) was added before being incubated at 
37 °C for 30 min on a shaker to obtain the derivatized of 
acidic protons. The derivatized samples were then ana-
lyzed by GC-MS by split-less injection of samples into 
a 30 m × 250 μm i.d. × 0.25 μm DBS-MS column and 
detected by Agilent 5975C VL MSD detector (Agilent 
Technologies, Palo Alto, USA). The initial temperature of 
the GC oven was maintained at 85 °C for 5 min, before 
being increased to 270 °C at a rate of 15 °C/min, and 
maintained for another 5 min. The carrier gas (helium) 
was maintained at a constant flow rate of 1 mL/min and 
the MS data was obtained in full scan mode at an oper-
ating range of 50–600 m/z. Each needle was run for 55 
min, with a starting delay of 5 min, and electron impact 
ionization was applied to 70 eV at a scanning rate of 2 
scan/s. Duplicate samples were analyzed and repeated for 
two biological samples. All of the metabolomic raw data 
were deposited to MetaboLights (http://​www.​ebi.​ac.​uk/​
metab​oligh​ts/) [63]. The unique identifier is MTBLS4770, 
which can be found through the link www.​ebi.​ac.​uk/​
metab​oligh​ts/​MTBLS​4770.

The raw GC-MS data was analyzed using the auto-
mated mass spectral deconvolution and identifica-
tion system software (AMDIS, version 2.62) followed 
by searching in the National Institute of Standards and 
Technology (NIST 08) mass spectrometry library to 
identify metabolites. After normalizing metabolite abun-
dance with the internal standard (ribitol) to obtain a sin-
gle matrix data [64], data were analyzed using in silico 
tools before being log converted, normalized data, and 
used to perform hierarchical clustering and heat map 
analysis on R (version 3.6.1). Principal component analy-
sis (PCA) was performed on the normalized data using 
partial least squares discriminant analysis (PLS-DA), 
while S-plot analysis was performed on the normalized 
data using orthogonal partial least squares discriminant 
analysis (OPLS-DA) in SIMCA 14 software (Umetrics, 
Umea, Sweden). The data were also searched in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (http://​
www.​genome.​jp/​kegg/) database to obtain the pathways 
that the identified metabolites are enriched.

ELISA
Shrimp hepatopancreas lysates were prepared as previ-
ously described [65] and used for enzyme-linked immu-
nosorbent assay (ELISA) to validate the GS-MS data. 
Briefly, hepatopancreas samples were gently minced in 1 
mL of 0.01 M PBS (pH 7.2) before being strained through 
a 150-mm steel mesh and centrifuged at 200 g (4°C for 10 
min) to collect the cells. After being washed three times 
with PBS, cells were lysed at 4°C for 20 min with cell lysis 
buffer (25 mM Tris-HCl [pH 7.4], 1 mM EDTA, 150 mM 
NaCl, 1% NP-40, 5% glycerol) and centrifuged at 20,000 

http://www.ebi.ac.uk/metabolights/
http://www.ebi.ac.uk/metabolights/
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http://www.genome.jp/kegg/
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g (4°C for 10 min) to collect the supernatant, which was 
stored in aliquots at −80°C for later use. Next, the lev-
els of taurine, uracil, and hypoxanthine were determined 
using commercial ELISA kits (Yajikit, Shanghai, China) 
following the manufacturer’s protocols. Briefly, standard 
stock solutions of taurine (400 pg/mL), uracil (240 ng/L), 
and hypoxanthine (400 ng/L) were diluted as follows: 
taurine (200 pg/mL, 100 pg/mL, 50 pg/mL, 25 pg/mL, 
and 12.5 pg/mL), uracil (120 ng/L, 60 ng/L, 30 ng/L, 15 
ng/L, and 7.5 ng/L), and hypoxanthine (20 ng/L, 10 ng/L, 
5 ng/L, 2.5 ng/L, and 1.25 ng/L). Next, 50 μL diluted 
standard or sample was placed into antibody pre-coated 
ELISA plates before being mixed gently and incubated 
at 37°C for 30 min. After extensive washing, 50 μL HRP-
conjugate reagent was added and incubated at 37°C for 
30 min. After washing 5 times, 50 μL chromogen solution 
A and 50 μL chromogen solution B were added in succes-
sion, mixed gently by shaking, and incubated in the dark 
at 37°C for 10 min. Finally, 50 μL stop solution was added 
and the optical density (OD) was measured on a micro-
plate reader (Synergy H1, BioTek, Winooski, VT, USA) at 
450 nm within 15 min.

Proline and glycerol levels were assayed using differ-
ent commercial ELISA kits (Nanjing Jiancheng Bioen-
gineering Institute, Nanjing, China) according to the 
manufacturer’s protocols. For proline, a standard curve 
was first prepared by diluting the proline standard (100 
μg/mL) with reagent 1 into the following concentrations: 
1μg/mL, 2μg/mL, 4μg/mL, 8μg/mL, and 16μg/mL. The 
ODs of these dilutions were then measured and a stand-
ard curve was plotted (R2=0.9996). Next, the assay was 
validated by determining the limit of detection (LOD) or 
limit of quantification (LOQ). To do this, the ODs of 12 
blank samples were determined and the LOD was taken 
as OD greater than 0.043. Next, one of the test samples 
was diluted 10, 50, and 100 times, followed by measur-
ing the ODs, and the concentration of proline was then 
extrapolated from the standard curves, which was within 
1–9 μg/mL at the highest dilution (100 times). Based on 
this LOQ, all samples were diluted 100 times before test-
ing. To determine the proline content in the test samples, 
50 μL reagent 1 (blank), 50μL standard solution (proline 
5 μg/mL), and 50 μL hepatopancreas cell lysates (diluted 
100-fold) were added into 96-well plates, followed by the 
addition of 100 μL buffer and 100 μL chromogenic solu-
tion. Samples were incubated in a water bath at 100°C 
for 30 min, and after cooling with running water, the OD 
at 520 nm was measured. The ODs of the samples were 
then extrapolated to find the corresponding proline con-
centrations in the samples from the standard curve. For 
the determination of glycerol, the stock glycerol standard 
(4 mM) was first diluted (250 μmol/L, 125 μmol/L, 62.5 
μmol/L, 31.25 μmol/L, 15.625 μmol/L, 7.8125 μmol/L). 

Next, reagent R1 and reagent R2 were mixed at a ratio of 
4:1 to form the working solution, after which 10 μL dis-
tilled water (blank), 10 μL diluted standard solution, and 
10 μL hepatopancreas cell lysates were added to 96-well 
plates, followed by the addition of 190 μL working solu-
tion. After being incubated at 37°C for 10 min, the OD at 
550 nm was measured. The protein concentration of cell 
lysates was also measured using the Micro BCA protein 
assay kit (Nanjing Jiancheng Bioengineering Institute) 
according to the manufacturer’s instructions.

Sample preparation and transcriptomic analysis
In the shrimp hepatopancreas transcriptome analysis, 
three cDNA libraries (designated control, PD-2, and 
taurine+PD-2) were constructed using high-quality 
total RNA samples (see the section “Genomic DNA and 
total RNA extraction”). First, mRNA was enriched from 
the total RNA samples using Oligo (dT) beads that base 
pair (A-T) with the poly-A before being fragmented ran-
domly (into 100–400-bp fragments) with an ultra-son-
icator and reverse transcribed into first-strand cDNA 
using the MGIEasy RNA Directional Library Prep Set 
kit (MGI Tech Co., Ltd., Shenzhen, Guangdong, China, 
Cat #1000006385). The cDNA samples were diluted 
to 200 ng/μL and three samples per treatment group 
were pooled together before being sent to a commercial 
company (BGI, Shenzhen, Guangdong, China), where 
sequencing adapters are added to the short cDNA frag-
ments followed by paired-end RNA sequencing on the 
Illumina platform (Illumina Hiseq 4000). The assembled 
sequencing data has been submitted to GenBank under 
accession number PRJNA813696.

The obtained raw reads were filtered to remove adap-
tors, low-quality reads (more than 20% Q≤10 bases), 
and sequences with unknown nucleotides greater than 
5%, followed by comparing the clean reads with the ref-
erence genome (https://​www.​ncbi.​nlm.​nih.​gov/​genome/​
10710) using the Trinity software release-20130225 [66]. 
After obtaining unigenes from transcript predictions, 
the fragments per kb per million reads (FPKM) was used 
as the unit of quantification [67], and the expression 
levels of genes and transcripts were quantified by nor-
malized FPKM. The false discovery rate (FDR) control 
method was used to ensure the high quality of differen-
tially expressed genes (DEGs). A threshold of unigenes 
with FDR <0.05 and |log2Ratio|≥1 was used to identify 
the DEGs [68]. Correlation analysis between samples and 
principal component analysis (PCA) were performed, 
while DEG clustering was analyzed using TBtools soft-
ware version 1.089 [69]. Gene ontology (GO) func-
tional classification was performed on all DEGs using 
the web gene ontology (WEGO v2.0) software (http://​
wego.​genom​ics.​org.​cn/​cgi-​bin/​wego/​index.​pl) [70]. The 

https://www.ncbi.nlm.nih.gov/genome/10710
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biological functions of unigenes were analyzed by the 
online KEGG server (KAAS) (http://​www.​genome.​jp/​
kegg/​kaas/) [71].

Statistical analysis
Data are expressed as the mean ± standard error of the 
mean (SEM) unless otherwise stated. Statistical analy-
ses were performed on the SPSS software (version 20) 
using Duncan’s multiple range test, one-way ANOVA, 
or Tamhane’s T2 test with significance considered at p < 
0.05. Survival curves were analyzed by the Kaplan–Meier 
estimate, while Pearson correlation and linear regression 
were performed in GraphPad Prism 8.

Results
Gross signs, histopathological features, 
and gastrointestinal tract bacteria content
Gross examination of healthy and diseased penaeid 
shrimp (Penaeus vannamei) revealed that healthy shrimp 
had full and brown gastrointestinal tracts or GITs (stom-
achs, hepatopancreas, and intestine), whereas diseased 
and moribund shrimp had empty and pale GITs (Fig. 1A). 
Histopathological examination of hepatopancreas sec-
tions revealed exfoliation of hepatopancreatic tubular 
epithelial cells (arrow) and hemocyte infiltration (aster-
isk) in diseased and moribund shrimp but not in healthy 
shrimp (Fig. 1B). Moreover, the hepatopancreatic tubules 
of moribund shrimp were damaged, a characteristic fea-
ture of Vibrio infection [59]. To ascertain these results, 
GIT samples (stomach, hepatopancreas, and intes-
tine) and hemolymph were cultured on TCBS selective 
medium. As shown in Fig. 1C and D, Vibrio were found 
in the intestine and stomach samples, but not in the 
hemolymph and hepatopancreas of healthy shrimp. In 
diseased shrimp, Vibrio were not found in the intestine 
and hemolymph, but in the stomach and hepatopancreas. 
On the other hand, the stomach, intestine, and hepato-
pancreas of moribund shrimp all had Vibrio, while hemo-
lymph could not be withdrawn from moribund shrimp.

The rest of the experiments used hepatopancreas sam-
ples because it contains Vibrio in both diseased and mor-
ibund shrimp. To identify the Vibrio strains, PCR-based 
methods were used. Moribund shrimp had high total 
bacteria abundance compared with healthy (p<0.001) 
and diseased shrimp (p<0.001) (Fig.  1E and Fig. S1A). 
The absolute abundance of Vibrio was significantly high 

in diseased (p<0.05) and moribund (p<0.01) shrimp com-
pared with healthy shrimp (Fig.  1F and Fig. S1B). Next, 
the main pathogenic Vibrio strains of penaeid shrimp 
(i.e., V. parahaemolyticus (AHPND): the strain that causes 
acute hepatopancreatic necrosis disease (AHPND), V. 
parahaemolyticus, and V. harveyi) were screened and 
their relative abundance in hepatopancreas samples was 
determined using gene-specific primers. In both healthy 
and diseased shrimp, copies of the vhh gene (specific to 
V. harveyi) were found (Fig. 1G and Fig. S1C), while the 
tdh and tlh genes specific to V. parahaemolyticus were 
found in both healthy and diseased shrimp (Fig. 1H and 
Fig. S1D). On the other hand, copies of the pirB and AP4 
genes, which are specific to V. parahaemolyticus (AHPND), 
were mainly found in moribund shrimp (Fig. 1I, Fig. S1E 
and S1F).

Healthy and diseased shrimp display different global 
metabolic profiles
Untargeted metabolomics analysis was used to profile 
metabolite changes in the hepatopancreas of healthy, 
diseased, and moribund shrimp. In healthy, diseased, 
and moribund shrimp, 108, 107, and 106 metabolites, 
respectively, were identified (Table S2). All the identi-
fied metabolites have similar biological functions and 
were mainly grouped into the following metabolites cat-
egories (Fig.  2A) in descending order: amino acids and 
derivatives (29–31%), nucleic acids and derivatives (14–
16%), fatty acids (12–13%), organic acids and derivatives 
(9–12%), carbohydrates (10–12%), hormones and others 
(6–8%), amine compounds (5–6%), coenzymes and vita-
mins (4–5%), and lipids (3–4%).

Principal component analysis (PCA) and partial least-
squares discrimination analysis (PLS-DA) revealed that 
the metabolites in the three groups of shrimps clustered 
separately (Fig.  2B) with no marked differences within 
groups. Next, we screened for metabolites related to 
survival using orthogonal partial least-squares discrimi-
nation analysis (OPLS-DA) and S-plot models. Based 
on an absolute covariance p  ≥ 0.05 and a correlation  
p ≥ 0.5 as a cutoff, three S-plots (Fig. 2C–E) were con-
structed and used to identify key metabolites or bio-
markers in the three groups. When diseased and healthy 
shrimp were compared, 21 differential metabolites were 
identified, with 9 upregulated and 12 downregulated 
(Fig.  2C and Fig. S2A). Similarly, when moribund and 

Fig. 1  Pathological features of healthy, diseased, and moribund Penaeus vannamei. A Gross signs. B Cross-sectional histological micrographs of 
hepatopancreas after hematoxylin–eosin (HE) staining. Scale bar: 50μm. C Growth of Vibrio on thiosulfate–citrate–bile salts–sucrose (TCBS) agar 
selective culture plates. Green colonies: Vibrio parahaemolyticus and Vibrio fluvialis; yellow colonies: other Vibrio strains (i.e., Vibrio alginolyticus, Vibrio 
cholerae, Vibrio harveyi, and Vibrio anguillarum). D Quantified bacteria colonies (n=3). PCR-based quantification of the 16S rRNA gene in shrimp 
hepatopancreas. E Total bacterial abundance, F Vibrio abundance, G V. harveyi (vhh), H V. parahaemolyticus (tdh), and I V. parahaemolyticus (pirB). 
Results were reported as mean ± S.E.M (n = 3). ns, not significant, *p<0.05, **p < 0.01, ***p < 0.001 

(See figure on next page.)

http://www.genome.jp/kegg/kaas/
http://www.genome.jp/kegg/kaas/
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healthy shrimp were compared, 24 differential metabo-
lites were identified, 11 of which were upregulated and 
13 downregulated (Fig.  2D and Fig. S2B). On the other 
hand, when moribund and diseased shrimp were com-
pared, 27 differential metabolites were identified, includ-
ing 11 upregulated and 16 downregulated (Fig.  2E and 
Fig. S2C). When the significantly dysregulated metabo-
lites (Fig. S2A–S2C) were analyzed in terms of metabo-
lite types (Fig.  2F), seven metabolite categories were 
obtained (Fig. S2D). Amino acids and derivatives consti-
tuted the most (51.43%), followed by nucleic acids and 
derivatives (17.14%), with the least being organic acids, 
amine compound, fatty acid, and lipid (5.71%). Further 
analysis of the metabolic pathways involved in the sig-
nificantly altered metabolites using MetaboAnalyst, 
a pathway analysis tool [72], revealed that the top 25 
enriched pathways were mainly enriched in 9 categories, 
i.e., translation, metabolism of other amino acids, amino 
acid metabolism, carbohydrate metabolism, energy 
metabolism, lipid metabolism, metabolism of cofactors 
and vitamins, metabolism of terpenoids and polyketides, 
and nucleotide metabolism (Fig. S2E).

Significantly altered metabolites essential for shrimp 
survival
To screen for metabolites that are crucial for shrimp sur-
vival, altered metabolites that were significantly down-
regulated in moribund shrimp compared with healthy 
shrimp and/or healthy shrimp compared with diseased 
shrimp were selected. Eight significantly altered metab-
olites were identified (Fig.  3A). When the correlation 
between these 8 metabolites and bacteria (V. parahaemo-
lyticus (AHPND) or V. harveyi) infection was analyzed, a 
significant negative correlation was observed between 
these metabolites and the bacteria pathogens (Fig.  3B). 
For instance, taurine (p<0.001, R2= 0.5937) and proline 
(p<0.001, R2= 0.5883) had a strong negative correla-
tion with V. parahaemolyticus (AHPND). Similarly, glycerol 
(p<0.001, R2= 0.7325) and taurine (p<0.001, R2= 0.5963) 
had a strong negative correlation with V. harveyi. These 
results indicate that these metabolites are beneficial to 
the host and therefore important for survival against 
infection by these pathogens. Most importantly, taurine 
had a strong correlation with both V. parahaemolyticus 
(AHPND) (R2=0.5937) and V. harveyi (R2=0.5963).

The mRNA transcripts of some key enzymes involved 
in taurine metabolism, including cysteine dioxygenase 
(CDO) (p<0.01) and cysteine sulfinic acid decarboxy-
lase (CSD) (p<0.01) were significantly downregulated 
in moribund compared with healthy shrimp, whereas 
mRNA transcripts of CDO (p<0.001), CSD (p<0.001), 
and aspartate aminotransferase (AST) (p<0.01) increased 
in diseased shrimp compared with moribund shrimp 
(Fig.  3C–E). Similarly, several metabolites in taurine 
metabolism, such as l-cysteine (p<0.001), hypotau-
rine (p<0.001), and taurine (p<0.01) were significantly 
attenuated in moribund compared with healthy shrimp, 
while increased levels of l-cysteine (p<0.001), hypo-
taurine (p<0.01), and taurine (p<0.001) were observed 
in diseased compared with moribund shrimp (Fig.  3F). 
When the GC-MS metabolomics data (Fig.  3G–K) was 
validated using ELISA, similar results (Fig.  3L–P) were 
observed, except glycerol (Fig.  3N). Nonetheless, given 
that different sample sizes were used for the GC-MS 
analysis (i.e., 26 samples per group) and the ELISA vali-
dation (6 samples per group), there was a slight variation 
in the two datasets. For instance, while levels of hypox-
anthine (Fig. 3J, O) and uracil (Fig. 3K, P) were decreased 
in diseased shrimp, their levels increased in moribund 
shrimp (Fig. 2F and Fig. S3A), suggesting that these two 
metabolites are pro-bacterial because they could be used 
by the infecting bacteria to proliferate and cause harm to 
the host, as observed in diseased and moribund shrimp.

Taurine metabolism is essential for shrimp survival 
during Vibrio infection
To explore the role of taurine in shrimp immune 
response to V. parahaemolyticus (isolate PD-2) infec-
tion, hepatopancreas transcriptome analysis was per-
formed using three cDNA libraries, i.e., control, PD-2, 
and taurine+PD-2 (Fig. 4A). A total of 19,906 genes were 
identified (Fig.  4B) that clustered into three groups, as 
shown by PCA (Fig.  4C), with the control (saline) and 
taurine+PD-2 groups being closer. These results suggest 
that the hepatopancreas transcriptome could be modu-
lated by V. parahaemolyticus infection, while exogenous 
taurine attenuates the effect of the bacteria-induced met-
abolic changes.

Based on p<0.05 as the cutoff, 1891 differentially 
expressed genes (DEGs) were found when control and 

(See figure on next page.)
Fig. 2  Global metabolic profiles of healthy, diseased, and moribund shrimps. A Metabolite categories analyzed by heatmap (n=26). B Principal 
component analysis (PCA) based on Bray–Curtis distance. C S-plot generated from OPLS-DA for diseased vs healthy shrimp. Dots represent 
individual metabolites (red: upregulated and blue: downregulated metabolites in disease shrimp). D S-plot generated from OPLS-DA for moribund 
vs healthy shrimp. Dots represent individual metabolites (red: upregulated and blue: downregulated metabolites in moribund shrimp). E S-plot 
generated from OPLS-DA for moribund vs diseased shrimp. Dots represent individual metabolites (red: upregulated and blue: downregulated 
metabolites in moribund shrimp). Covariance p≥0.05 and correlation p (corr)≥0.5. F Significantly expressed metabolite categories related to survival 
identified from the S-plots and analyzed by heatmap (n=26)
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PD-2 groups are compared and 959 DEGs when PD-2 
and taurine+PD-2 are compared, while 1671 DEGs 
were found by comparing control and taurine+PD-2 

groups (Fig.  4D). Among these DEGs, 1169 were sig-
nificantly downregulated in the PD-2 vs control or 
taurine+PD-2 groups (Table S3). Thus, to explore 

Fig. 3  Changes in specific metabolites at different pathological stages of shrimp. A Immune-related metabolites analyzed by heatmap (n=26). B 
Correlation between different metabolites and V. parahaemolyticus (pirB) or V. harveyi (vhh) analyzed by heatmap. Relative C CDO gene, D CSD gene, 
and E AST gene expression in shrimp hepatopancreas. Results were reported as mean ±S.E.M (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001. F Schematic 
diagram showing changes in taurine metabolism-related enzymes and metabolites at different pathologic stages in shrimp (P. vannamei). Scatter 
plots showing the differential expression of G taurine, H proline, I glycerol, J hypoxanthine, and K uracil determined by GC-MS analysis. Each dot 
represents an independent sample (n=26). *p < 0.05; **p < 0.01; ***p < 0.001. Expression levels of L taurine, M proline, N glycerol, O hypoxanthine, 
and P uracil determined by ELISA. Results were reported as mean ± S.E.M (n = 6). *p < 0.05; **p < 0.01; ***p < 0.001 
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how dietary taurine supplementation could modulate 
the expression of these downregulated genes to boost 
shrimp survival against pathogens, we went on to fur-
ther analyze these 1169 significantly downregulated 

DEGs. Gene ontology (GO) analysis of the 1169 sig-
nificantly downregulated DEGs revealed that these 
genes were mainly enriched in cellular process and 
metabolic process (biological process category), 

Fig. 4  Analysis of genes modulated by taurine during vibrio infection. A Exogenous treatment of P. vannamei with taurine followed by V. 
parahaemolyticus (PD-2) infection. B Distribution of expressed genes. C Principal component analysis (PCA) based on princomp function. Dots 
represent independent biological samples. D Distribution of significant (p<0.05) differentially expressed genes (DEGs). E Gene ontology (GO) 
functional enrichment analysis of significantly downregulated DEGs (V. parahaemolyticus (PD-2) vs control or taurine + V. parahaemolyticus (PD-2)). 
F Metabolism-related genes identified by GO analysis and shown by heatmap (n=4)
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cellular anatomical entity and intracellular (cellular 
component category), and catalytic activity and bind-
ing (molecular function category) (Fig.  4E). To iden-
tify metabolites that modulate shrimp response to 
infection, genes involved in metabolic processes were 
selected (Fig. 4F).

When the 1169 DEGs were analyzed using the KEGG 
pathway analysis, they were enriched in five major 
pathways, i.e., cellular processes, environmental infor-
mation processing, genetic information processing, 
metabolism, and organismal systems (Fig. 5A). Moreo-
ver, most of these genes were enriched in metabolism 
pathways, especially, global and overview maps, carbo-
hydrate, amino acid, and lipid metabolism. Given the 
importance of amino acids and their metabolites in the 
immune response and immune-related signaling path-
ways in crustaceans [33, 73], we decided to focus on 
amino acid metabolism in the rest of the study. Thus, 
further analysis of the 48 genes enriched in amino 
acid metabolism (Fig.  5B) revealed that these genes 
were mainly enriched in the taurine metabolism path-
way (Fig. 5C). The mRNA transcript levels of cysteine 
dioxygenase (CDO), cysteine sulfinic acid decarboxy-
lase (CSD), and aspartate aminotransferase (AST), the 
rate-limiting enzymes in taurine synthesis, decreased 
significantly after shrimp were challenged with V. 
parahaemolyticus (PD-2) (Fig. 5D–F). However, when 
shrimp were treated with exogenous taurine followed 
by V. parahaemolyticus (PD-2) challenge, mRNA tran-
script levels of CSD and CDO, but not AST, increased 
significantly compared with taurine untreated shrimp 
challenged with PD-2 (Fig. 5D–F). These results indi-
cate that taurine and its metabolic products play essen-
tial roles in shrimp’s antibacterial immune response.

To further ascertain the role of taurine in shrimp 
survival upon vibrio infection, shrimp were injected 
with taurine (1.25, 2.50, and 5.00 mg/mL) before being 
challenged with V. parahaemolyticus (PD-2). Shrimp 
survival rates were 28.57, 52.38, and 41.67%, respec-
tively, compared with untreated shrimp challenged 
with PD-2 (Fig.  6A, B). The highest survival rate was 
observed when shrimp were injected with 2.50 mg/
mL of taurine (p<0.001). These results indicate that 
appropriate amounts of taurine supplementation could 
enhance shrimp survival against V. parahaemolyticus 
(PD-2) infection.

Discussion
The World Organization for Animal Health (OIE) has 
listed acute hepatopancreas necrosis disease (AHPND) 
as one of the seven most infectious bacterial diseases that 
impact shrimp aquaculture. Since its discovery, AHPND 
has become the most pathogenic and destructive disease 
that affects shrimp aquaculture due to its acute onset, 
high fatality rate, and widespread infection [4]. In the cur-
rent study, diseased and moribund penaeid shrimp (P. 
vannamei) displayed massive gross and histological dam-
age to their GITs (Fig.  1) and were found to be mainly 
infected with two strains of Vibrio, i.e., V. harveyi and V. 
parahaemolyticus (the strain that causes AHPND), which 
altered the levels of key metabolites essential for shrimp 
survival. Atrophied hepatopancreas, shedding of hepatic 
tubules, and empty GIT are the typical pathological char-
acteristics of AHPND in penaeid shrimp [59, 74]. Although 
these two Vibrio species (V. harveyi and V. parahaemolyti-
cus (AHPND)) seem to be responsible for the pathological fea-
tures in the diseased and moribund shrimp, none of these 
bacteria was found in the gut and hemolymph of diseased 
shrimp, which could be due to the gradual clearance of the 
bacteria by the host immune system, but their released tox-
ins could damage shrimp tissues [75]. The hepatopancreas 
was found to contain the highest relative abundance of 
Vibrio in both diseased and moribund shrimp, and since it 
is also the main metabolic organ in crustaceans [76, 77], it 
was used for the rest of the studies.

Some metabolites have direct immune functions [78], 
while others modulate immune response indirectly via 
other factors or pathways [79–81]. After metabolomic 
profiling of hepatopancreas samples from healthy, dis-
eased, and moribund shrimp, the metabolites that enhance 
shrimp survival against the bacterial pathogens (Vibrio) 
were identified as those that were significantly dysregu-
lated in diseased (resistant) and moribund (susceptible) 
shrimp. This criterion is based on the assumption that 
metabolites upregulated in diseased (resistant) shrimp but 
decreased in moribund (susceptible) shrimp should be 
crucial metabolites that enhance shrimp immune resist-
ance against the infection. Indeed, strong negative correla-
tions were observed between relative bacteria abundance 
(V. parahaemolyticus (PD-2) and V. harveyi) and several 
key metabolites, including taurine, proline, aspartic acid, 
glycerol, pinitol, malic acid, uridine, and inosine (Fig. 3B). 
These metabolites play important direct or indirect roles 
in shrimp immune response, given that dietary proline 

Fig. 5  Annotation of genes significantly downregulated by V. parahaemolyticus (PD-2) with or without taurine treatment. A KEGG pathway 
enrichment analysis and annotation of significantly downregulated DEGs (V. parahaemolyticus (PD-2) vs control or taurine + V. parahaemolyticus 
(PD-2)). B Amino acid metabolism-related genes identified from KEGG pathway enrichment analysis and shown by heatmap (n=4). C Schematic 
diagram showing the expression of key taurine metabolism-related enzymes with and without V. parahaemolyticus (PD-2) challenge. Relative 
expression of D CDO gene, E CSD gene, and F AST gene. Results were reported as mean ± S.E.M (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001 

(See figure on next page.)
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supplementation (2.29–2.34%) in low fishmeal diets could 
improve antioxidant capacity, immune response, and 
ammonia stress tolerance in P. vannamei [82]. Similarly, 
bioflocs grown on glycerol as the carbon source could pro-
tect brine shrimp (Artemia franciscana) larvae against V. 
harveyi infection [83]. Although malic acid and aspartic 
acid have not been implicated in shrimp immune response, 
they can increase the immune response of aquatic animals, 
such as common carp (Cyprinus carpio) [84] and zebrafish 
(D. rerio) [85]. The role of inosine and uridine in immune 
response has only been reported in mammals, including 
an anti-inflammatory effect of inosine in mice [86] and 
improved intestinal development and growth performance 
by uridine in piglets [87]. Thus, these metabolites (taurine, 
proline, aspartic acid, glycerol, pinitol, malic acid, uri-
dine, and inosine) could enhance the immune response of 
shrimp against pathogens, given that their levels increased 
in diseased shrimp but decreased in moribund shrimp 
(Fig. 3A).

In host–pathogen interaction, metabolome modula-
tion could be a strategy by the host to clear the invading 
pathogen [88] or that adopted by the pathogen to evade 
the host immune surveillance [89, 90]. Indeed, levels 
of some metabolites, including lactic acid, putrescine, 
cadaverine, hypoxanthine, xanthine, etc. that were down-
regulated in diseased (resistant) shrimp but increased 
in moribund (susceptible) shrimp, had a strong positive 
correlation with bacteria abundance (V. parahaemo-
lyticus (PD-2) and V. harveyi), suggesting that these 
metabolites are beneficial to the pathogens. This obser-
vation is consistent with previous studies, where P. van-
namei challenged with Vibrio campbellii had decreased 

oxygen uptake and increased lactic acid levels [91]. Given 
that most Vibrio species are facultative anaerobic bacte-
ria, anaerobic conditions and lactic acid are more con-
ducive to their growth and replication. Increased levels 
of lactic acid and putrescine have also been observed 
in the hepatopancreas of P. vannamei upon white spot 
syndrome virus (WSSV) infection [17]. Although no 
studies have thus far reported the role of hypoxanthine 
in shrimp, many Neisseria gonorrhoeae isolates from 
patients with disseminated gonococcal infection require 
arginine, hypoxanthine, and uracil for their growth [92]. 
Thus, levels of metabolites that increased in moribund 
shrimp are beneficial to the pathogens because they 
could be essential for their proliferation and or enable 
them to escape the host immune response.

In most animal tissues, taurine exists as an abundant 
free amino acid, involved in many crucial biological pro-
cesses [36, 93–97], including innate immune response 
[41–43]. In mammals, taurine mediates the AMPK-
mTOR [44] and TLRs/NF-κB [45] pathways to inhibit 
excessive activation of inflammatory responses to reduce 
cell damage. Similarly, the antioxidant properties of tau-
rine [98, 99] are important for cells’ protection under 
acute inflammatory conditions [100] and enhancement 
of immune and antioxidant responses [47, 49]. Most 
importantly, taurine improves mammalian host defense 
against pathogens [37, 101–103] by potentiating the 
immune defense abilities of lymphocytes [104], neutro-
phils [105, 106], and macrophages [107]. Although there 
is currently limited information on the role of taurine in 
shrimp immune response, dietary taurine supplementa-
tion could enhance the survival and immune response 

Fig. 6  Effect of exogenous taurine on shrimp survival. Shrimp survival rate after A exogenous taurine treatment and B exogenous taurine 
treatment plus V. parahaemolyticus (AHPND) challenge and recorded. The product-limit method of Kaplan–Meier was used to calculate shrimp survival 
rate and the significance compared using the log-rank test
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of several marine organisms. For instance, exogenous 
taurine can reduce ammonia toxicity in juvenile yellow 
catfish (Pelteobagrus fulvidraco) by regulating inflamma-
tory factors [46], improving immune response and anti-
oxidant indices [47], regulating the expression of innate 
immune genes to enhance antibacterial (Vibrio algino-
lyticus) response in zebrafish [48], and improving choles-
terol metabolism to enhance the antimicrobial immune 
response in yellowtail Seriola quinqueradiata [108]. Sim-
ilarly, exogenous taurine upregulates the expression of 
immune genes and enhances antioxidant capacity in the 
Chinese mitten crab Eriocheir sinensi [49], improves the 
antioxidant response of European seabass (Dicentrarchus 
labrax) [50], and enhances the survival rate of Crucian 
Carps against Edwardsiella tarda [51]. In the present 
study, mRNA transcript levels of rate-limiting enzymes 
of taurine metabolism, i.e., CDO, CSD, and AST, were 
attenuation by V. parahaemolyticus (PD-2) infection, 
while taurine supplementation could induce CDO and 
CSD expression, except AST, to enhance shrimp (P. van-
namei) survival against V. parahaemolyticus (PD-2) 
infection (Fig. 5).

Our present data indicate that taurine metabolism 
is dysregulated by bacterial (Vibrio) pathogens, while 

exogenous taurine restores taurine metabolism under 
pathogen infection. Nonetheless, our results do not rule 
out some effect of taurine on the host’s microbiota [38]. 
For instance, in mice, exogenous taurine enhanced the 
production of sulfides, cellular respiration inhibitors of 
most pathogens, to remodel microbiota functionally and 
enhance resistance to Klebsiella pneumonia [37]. Here, 
transcript levels of the enzymes that catalyze sulfide 
production, i.e., aspartate aminotransferase (AST) 
(p<0.001) and sulfite oxidase (SO) (p<0.05), were signifi-
cantly decreased after V. parahaemolyticus (PD-2) chal-
lenge. However, taurine supplementation followed by V. 
parahaemolyticus (PD-2) challenge improved taurine 
metabolism and increased the mRNA transcript levels 
of AST and SO, although not statistically significant. 
It is therefore conceivable that taurine could modulate 
microbiota and host immune system to enhance shrimp 
immune response against bacterial pathogens such as V. 
parahaemolyticus (PD-2). We illustrate diagrammati-
cally (Fig.  7), a proposed mechanism of the dysregula-
tion of taurine metabolism in diseased shrimp and how 
optimal taurine supplementation enhances shrimp sur-
vival against V. parahaemolyticus (AHPND-causing 
strain) and by extension other pathogenic bacteria.

Fig. 7  Proposed schematic illustration of the mechanism by which taurine metabolism is modulated during infection of shrimp by V. 
parahaemolyticus (AHPND strain)
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Conclusion
The present study reveals that diseased and moribund 
shrimp, displaying empty and atrophied GITs, were 
mainly infected with pathogenic vibrio (mainly AHPND 
causing V. parahaemolyticus). These bacteria induced 
the dysregulation of many metabolites, including taurine, 
which was upregulated in diseased shrimp but down-
regulated in moribund shrimp. Moreover, a certain con-
centration of dietary supplemented taurine, in this study, 
2.5 mg/mL, enhanced shrimp survival by more than 50% 
when stimulated with V. parahaemolyticus (PD-2), indi-
cating that an optimal amount of taurine could signifi-
cantly enhance penaeid shrimp’s antibacterial response. 
Therefore, these findings could be leveraged to improve 
the aquaculture of shrimp and other crustaceans.
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Additional file 1: Figure S1. PCR screening of 16S rRNA gene for 
identification of pathogenic bacteria in shrimp. PCR analysis of (A) total 
bacteria (16S rRNA gene), (B) Vibrio-specific (16S rRNA gene, (C) V. harveyi 
(vhh gene), (D) V. parahaemolyticus (tlh gene), (E) V. parahaemolyticus 
(pirB gene), and (F) V. parahaemolyticus (AP4 gene) expressed in shrimp 
hepatopancreas of P. vannamei. Numbers 1 – 13: individual shrimp (P. 
vannamei), i: Streptococcus iniae, ii: Vibrio harveyi, iii: Vibrio parahaemo-
lyticus (isolate PD-2). Figure S2. Global metabolic profiles of healthy 
and diseased shrimp. Heat maps showing significantly dysregulated 
metabolites in the hepatopancreas of (A) Healthy vs diseased shrimp, (B) 
Healthy vs moribund shrimp, and (C) Diseased vs moribund shrimp. The 
heat map scale shows green to red, representing low to high abundance. 
(n=26). (D) Proportion of metabolites categories significantly dysregulated 
among healthy, diseased, and moribund shrimp. (E) Top 25 KEGG pathway 
enriched differentially expressed metabolites associated with survival of P. 
vannamei. Figure S3. Distribution of metabolites essential for shrimp sur-
vival. (A) Immune-related metabolites upregulated in the hepatopancreas 
of moribund compared with healthy or diseased shrimp. The heat map 
scale shows green to red, representing low to high abundance. (n=26). 
(B) Correlation between significantly dysregulated metabolites and the 
expression of pathogen-specific genes (pirB of V. parahaemolyticus and 
vhh of V. harveyi). The heat map scale shows green to red, representing 
low to high abundance.

Additional file 2: Supplementary Table 1. List of primers used for 
molecular screening of pathogen in the infected shrimp samples along 
with its product size.

Additional file 3: Supplementary Table 2. Normalized area of metabo-
lites in P. vannamei hepatopancreas.

Additional file 4: Supplementary Table 3. Normalized area of metabo-
lites in P. vannamei hepatopancreas.
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