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Specific metabolites drive the deterministic 
assembly of diseased rhizosphere microbiome 
through weakening microbial degradation 
of autotoxin
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Abstract 

Background:  Process and function that underlie the assembly of a rhizosphere microbial community may be 
strongly linked to the maintenance of plant health. However, their assembly processes and functional changes in the 
deterioration of soilborne disease remain unclear. Here, we investigated features of rhizosphere microbiomes related 
to Fusarium wilt disease and assessed their assembly by comparison pair of diseased/healthy sequencing data. The 
untargeted metabolomics was employed to explore potential community assembly drivers, and shotgun metagen-
ome sequencing was used to reveal the mechanisms of metabolite-mediated process after soil conditioning.

Results:  Results showed the deterministic assembly process associated with diseased rhizosphere microbiomes, and 
this process was significantly correlated to five metabolites (tocopherol acetate, citrulline, galactitol, octadecylglyc-
erol, and behenic acid). Application of the metabolites resulted in a deterministic assembly of microbiome with the 
high morbidity of watermelon. Furthermore, metabolite conditioning was found to weaken the function of autotoxin 
degradation undertaken by specific bacterial group (Bradyrhizobium, Streptomyces, Variovorax, Pseudomonas, and 
Sphingomonas) while promoting the metabolism of small-molecule sugars and acids initiated from another bacterial 
group (Anaeromyxobacter, Bdellovibrio, Conexibacter, Flavobacterium, and Gemmatimonas).

Conclusion:  These findings strongly suggest that shifts in a metabolite-mediated microbial community assembly 
process underpin the deterministic establishment of soilborne Fusarium wilt disease and reveal avenues for future 
research focusing on ameliorating crop loss due to this pathogen.

Keywords:  Microbial community assembly, Phylogenetic pattern, Rhizosphere metabolomics, Fusarium wilt disease, 
Integration analysis metadata
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Background
While the rhizosphere microbial community plays an 
important role in both plant growth and health [1], alter-
ations in the rhizosphere microbiome that negatively 
impact diversity and/or composition can result in soil-
borne disease with concomitant negative effects on plant 
productivity [2–5]. Among the soilborne plant diseases, 
Fusarium wilt, caused by the fungal pathogen Fusarium 
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oxysporum, is highly destructive and has a broad host 
range in agricultural production systems [6, 7]. Infection 
is initiated in root tips followed by migration into imma-
ture xylems, ultimately resulting in plant symptoms such 
as root rot, vascular wilt, and damping off [8]. Changes in 
the composition of the rhizosphere microbial community 
due to the presence of fusarium wilt disease have been 
documented previously [9–11], with attempts to iden-
tify the underlying mechanisms that drive the emergence 
of the disease [10]. However, due to the complexities of 
the soil ecosystem and interactions between plant and 
soil type, legacy effects, climate, pH, and other factors, 
literatures on the relationship between the rhizosphere 
microbiome and fusarium wilt disease are incongru-
ent. Nevertheless, a metadata analysis approach under-
taken by integrating publicly available sequencing data 
can be used to address these discrepancies and identify 
common responses across systems and plant types [12]. 
Our previous study examined fusarium wilt in relation 
to the bacterial and fungal communities of healthy and 
diseased soils by using a machine-learning approach. 
Results showed that the communities were significantly 
different in compositions and further identified 45 bacte-
rial and 40 fungal OTUs that predicted the health status 
of the soil with high accuracy [13], while little is known 
about how microbial community assembly processes in 
diseased rhizosphere microbiome.

A myriad of abiotic and biotic factors can impact the 
assembly of a rhizosphere microbial community. Root 
exudates, which act as both a source of nutrients and 
signaling molecules, are expected to play a significant 
role within the rhizosphere environment [14, 15]. How-
ever, root exudates can impart both beneficial and harm-
ful impacts on plant-microbe interactions. For example, 
some metabolites have the capacity to recruit beneficial 
microbes as a defense against pathogens, while others 
negatively impact the composition of the rhizosphere 
microbial community [15, 16]. This negative impact can 
lead to a pathogen-dominated “diseased” microbiome, 
especially under long-term continuous cropping condi-
tions [15]. Among the metabolites exuded from the root, 
cinnamic acid specifically has been reported to promote 
the incidence of Fusarium wilt in Cucumis by increasing 
pathogen abundance [17, 18]. Though metabolites were 
recognized to be important for rhizosphere microbial 
community assembly, the composition of rhizosphere 
metabolites was affected by various factors such as host 
plant species, soil types and growth status of host plant 
[19]. However, metabolites that regulate microbial com-
munity assembly in relation to a healthy host plant are 
yet to be identified.

In order to address these questions, we merged 
sequencing data originating from Fusarium wilt diseased 

and healthy plant rhizospheres and then evaluated the 
assembly process of the microbial communities by cal-
culating the β-nearest taxon index (βNTI). In addition, 
untargeted metabolomics was used to identify specific 
metabolites that influence rhizosphere microbiome 
assembly. Identified “key” metabolites were then used to 
induce a microbial community that reflects a “diseased” 
state. Overall, we aimed to address the following: (1) 
whether the phylogenetic patterns of the microbial com-
munity are different between diseased (Fusarium wilt) 
and healthy rhizosphere soils and (2) what processes do 
rhizosphere metabolites drive the phylogeny of a diseased 
rhizosphere microbial community. We hypothesized 
that certain metabolites in root exudates could drive the 
assembly process of rhizosphere microbial communities, 
resulting in a “susceptible” microbiome under pathogen 
attack.

Results
The deterministic assembly process of microbial 
community was found in diseased rhizosphere soil
We performed three experiments to evaluate the assem-
bly process of diseased rhizosphere microbial communi-
ties. Firstly, four crops of rhizosphere soil samples, both 
diseased and healthy, were collected to assess the assem-
bly process (Fig.  1a). The β-nearest taxon index (βNTI) 
between sample pairs was calculated.  Consistent vari-
able selection was observed across all the diseased rhizo-
sphere bacterial communities (βNTI > 2), while various 
directions were shown within healthy samples (2 pairs 
of βNTI > 2, 2 pairs of |βNTI| < 2) (Fig. 1 b–c). Further-
more, a stochastic process (|βNTI| < 2) dominated the 
phylogenetic turnover in the healthy rhizosphere bacte-
rial communities (Fig. 1b). Secondly, a total of 1722 sam-
ples from 45 individual bacterial studies (Supplementary 
Fig. 1; Supplementary Table 2) were collected to further 
validate assembly process, and results showed a variable 
selection of diseased rhizosphere microbiome (βNTI > 
2). The stochastic process (|βNTI| < 2) dominated the 
phylogenetic turnover in the healthy rhizosphere micro-
biome (Fig. 1 d–f), and homogenizing dispersal (RCbray 
< −0.95) was found to be dominant among the stochastic 
processes (Fig. 1f ).

To further determine the variable selection dominated 
by the assembly process of the bacterial community, we 
conducted a pot experiment for simulation of the forma-
tion process of disease conducted soil, and rhizosphere 
was sampled from each generation of plant for 16S rRNA 
gene sequencing. With the increasing generations of con-
tinuous cropping, the level of fusarium wilt gradually 
increased (Fig. 1 g) from 1st generation to 8th generation, 
and the value of βNTI was also gradually increased to 
βNTI > 2 at 8th generation (Fig. 1 h–i).
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Fig. 1  a Schematic picture for the location of rhizosphere soils sampling. b Contributions of deterministic and stochastic processes in community 
assembly within collected rhizosphere soil samples. βNTI calculation of phylogenetic turnover among diseased and healthy samples indicates 
that variable selection was more consistent in diseased soils. c The relative influence of each community assembly process among diseased and 
healthy samples was defined by the percentage of site pairs governed by each process. BD, diseased banana; BH, healthy banana (from Hainan); CD, 
diseased cucumber; CH, healthy cucumber (from Guangdong); WD, diseased watermelon; WH, healthy watermelon (from Beijing); LD, diseased lily; 
LH, healthy lily (from Hunan). e Contributions of deterministic and stochastic processes on community assembly within diseased and healthy soils 
of collected metadata. βNTI calculations of phylogenetic turnover between diseased and healthy soils indicate that variable selection has greater 
effects on disease than health. f The relative influence of each community assembly process between diseased and healthy soils as defined by the 
percentage of site pairs governed by each process. g Disease incidence of the first, fifth, and eighth generation. h Contributions of deterministic 
and stochastic processes on community assembly within pot experiment. i The relative influence of each community assembly process of 
rhizosphere soil samples from pot experiment
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Excavation of special metabolites driving rhizosphere 
microbial community assembly process
Four pairs of rhizosphere soil samples from Hainan, 
Guangdong, Beijing, and Jiangsu province were analyzed 
by GC-TOF-MS, resulting in a total of 798 chromato-
graphic peaks with 265 identified metabolites across all 
samples. This included 45 amino acids and amides, 23 
alcohols, 21 long-chain carbon organic acids, 27 short-
chain carbon organic acids, 5 nucleotides, 36 sugars, 
7 sugar acids, 4 sugar alcohols, 8 esters, and 89 others 
(Supplementary Table  5). Principal coordinates analysis 
(PCoA), based on Bray-Curtis distances, illustrated that 
the rhizosphere metabolites were dissimilar among all 
samples (p = 0.001, PERMANOVA by Adonis) (Supple-
mentary Fig. 2), and pairwise comparisons with samples 
from each site confirmed significant differences between 
the diseased and healthy (Supplementary Table 6).

A random forest model was then used as a classifier in 
order to distinguish the metabolites associated with the 
diseased and healthy rhizosphere soils. Two models were 
able to identify two major groups of metabolites (Fig.  2 
a–b; Supplementary Figs.  3 and 4), with a total of 100 
metabolites found to be the best biomarkers. By  using 
a nonparametric test, 130 metabolites were found to 
exhibit significant differences (p < 0.05) between the 
diseased and healthy groups. A total of 46 metabolites 
were selected by combining the results of random forest 
and variation analysis, which accounted for the major-
ity of the significant difference between the two groups 
(Supplementary Table  7). We selected the metabolites 
enriched in diseased groups and finally identified five 
metabolites (tocopherol acetate, citrulline, galactitol, 
octadecylglycerol, and behenic acid) which were signifi-
cantly correlated with βNTI, based on a Mantel test (Fig . 
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2c, p < 0.05). These five metabolites were used for further 
validation of their effect on microbial community assem-
bly and disease occurrence.

Special metabolites drive deterministic process of diseased 
microbial community assembly
For the validation experiment, two soils were condi-
tioned by using the five previously identified metabo-
lites at two application concentrations (1 μM and 100 
μM). After 8 weeks, cultured soils were used for a dis-
ease incidence validation experiment. Fusarium wilt 
incidence of watermelon was significantly higher in 

the treatments with soil slurries which had been condi-
tioned with the metabolites at a concentration of 1 μM 
and 100 μM (Fig.  3a). Compared with the control, the 
incidence of fusarium wilt was increased about 25.33 
(C1)–37.11% (C2) for seedlings grown in soil 1 and 
26.88 (C1)—38.44% (C2) in soil 2. We then analyzed 
the bacterial communities of soils after conditioning 
with the metabolites. There were significant differences 
(Adonis, p = 0.04, R = 0.78, PERMANOVA) between 
the composition of the bacterial communities among 
treatments (Supplementary Fig. 5). This was accompa-
nied by a decrease in alpha diversity, especially in the 
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100 μM treatment (Fig.  3b). Both 1 μM and 100 μM 
treatments (C1, C2), deterministic processes, domi-
nated with βNTI > 2, while |βNTI| < 2 was found in the 
two controls (Fig. 3 c–d)

Functional profiles and their microbial contributors 
of both metabolite‑driven and plant‑driven diseased soil
To explore the functional variations of soil microbi-
ome after conditioned by special metabolites, soil sam-
ples were shotgun metagenome sequenced, and 1080G 
raw data from 36 samples with about 30G per sample 
were obtained. The PCoA with Bray-Curtis distance 
showed a significant (MRPP: delta: 0.06; p = 0.001) dif-
ference among treatments (Supplementary Fig. 6). GSVA 
enrichment analysis was conducted between pair of two 
groups (S1C1 vs S1CK; S1C2 vs S1CK; S2C1 vs S2CK; 
S2C2 vs S2CK), and the functional pathways signifi-
cantly (p < 0.05, two-sided unpaired limma) enriched in 
multiple pairs (3/4) were considered as the “important 
pathway”.  These pathways included mainly autotoxin 
degradation (such as nitrotoluene degradation, ara-
chidonic acid metabolism), the small-molecule sugars 
metabolism (such as fructose and mannose metabolism), 
organic acids metabolism (such as citrate cycle metabo-
lism, fatty acid degradation, pyruvate metabolism), and 
amino acids metabolism (such as valine, leucine, and iso-
leucine degradation, cysteine and methionine metabo-
lism) (Supplementary Figs. 7, 8, 9, and 10). Then, up- and 
depleted pathways after special metabolite application 
were summarized separately. The ability of autotoxin 
degradation (e.g., nitrotoluene degradation, arachidonic 
acid metabolism, polycyclic aromatic hydrocarbon deg-
radation, naphthalene degradation, xylene degradation, 
toluene degradation, styrene degradation, and dioxin 
degradation) was significantly depleted by special metab-
olite application (Fig. 4a; Supplementary Figs. 7, 8, 9, and 
10). Those functions were primarily mediated through 
a feature microbial group (FM1), including Bradyrhizo-
bium, Streptomyces, Variovorax, Pseudomonas, and 
Sphingomonas (Fig.  4a). The metabolism pathway of 
small-molecule sugars (fructose and mannose metabo-
lism) and organic acids and amino acids (citrate cycle 
metabolism; fatty acid degradation; pyruvate metabolism; 
valine, leucine, and isoleucine degradation; cysteine and 
methionine metabolism; glycine, serine, and threonine 
metabolism) was significantly enriched by metabolites 
application (Fig.  4b). Those functions were primarily 
mediated through another feature microbial group (FM2) 
including Anaeromyxobacter, Bdellovibrio, Conexibacter, 
Gemmatimonas, and Flavobacterium (Fig. 4b and Fig. 5).

Then, in order to further confirm the functional fea-
tures of diseased rhizosphere soil, samples from the 
first generation (1st, recognized as health) and eighth 

generation (8th, recognized as disease) were also shot-
gun metagenome sequenced and showed a significant 
(MRPP: delta: 0.051; p = 0.028; Supplementary Fig.  11) 
difference. GSVA enrichment analysis confirmed the 
functions of polycyclic aromatic hydrocarbon degrada-
tion, and arachidonic acid metabolism was driven by 
FM1 and depleted, while the metabolism of small-mole-
cule sugars, organic acids, and amino acids was driven by 
FM2 and enriched in 8th rhizosphere soil (Supplemen-
tary Fig. 12). Variation analysis of microbial composition 
showed the relative abundances of bacteria in FM1 were 
increased from health to disease (from 1 to 8), while the 
relative abundances of bacteria in FM2 showed the oppo-
site trend (Supplementary Fig. 13). Besides functionality 
of autotoxin degradation and other functions (ubiqui-
none and other terpenoid−quinone biosynthesis, biosyn-
thesis of vancomycin group antibiotics, and biosynthesis 
of enediyne antibiotics) were enriched in healthy rhizos-
phere microbiome (Supplementary Fig. 12).

Discussion
In this study, we combined global bacterial high-through-
put sequencing data of fusarium wilt rhizosphere-associ-
ated soil samples from multiple independent studies and 
crops for the identification of microbial community char-
acteristics associated with disease. Lower bacterial com-
munity diversity was associated with disease, in concert 
with earlier findings [20]. Based on network analyses, a 
low number of connections were associated with the dis-
eased network, reflecting less robust microbe-microbe 
interactions within the community. Previous studies also 
associated disease with lower connectivity in microbial 
networks. For instance, the number of network edges 
decreased in a fusarium wilt diseased microbial network 
in banana [21], and more connections were present in a 
network associated with healthy rhizosphere soils rather 
than diseased samples [22]. The presence of Kaistobacter, 
Mesorhizobium, Bacillus, Anaeromyxobacter, Bdellovi-
brio, Conexibacter, and Flavobacterium in the diseased 
samples was determined as the microbial feature that dis-
tinguished the diseased rhizosphere microbiomes. How-
ever, the majority of the top 50 most abundant microbial 
taxa identified through cross-validation were also more 
abundant in diseased rhizosphere soils than in healthy 
soils. This indicates that a diseased microbiome may have 
more uniform characteristics than that of a healthy and 
diverse microbiome. Diseased communities also exhib-
ited lower variation in community composition among 
samples, compared to larger variations exhibited by the 
healthy samples. This infers a homogenization effect 
associated with biotic stress from fusarium wilt disease 
that is similar to the impact of abiotic stresses such as 
drought and salinity [23]. This homogenization effect 
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served as a basis to examine the rhizosphere microbiome 
assembly processes under fusarium wilt disease pressure.

Four basic processes (diversification, dispersal, selec-
tion, and drift) can contribute to microbial community 
assembly [24] and subsequently can be used to describe 
the microbial assembly process under different environ-
mental scenarios [25–27]. In this study, we explored the 
assembly process of the rhizosphere microbial community 
under fusarium wilt disease versus that in “healthy” soils. 
We found that variable selection process dominated in dis-
eased rhizosphere bacterial communities, while stochastic 

processes dominated the assembly process within healthy 
sample microbiomes. This suggests the presence of a 
strong microbial selection pressure within the diseased 
plant rhizosphere. Recent advances in metabolomics have 
greatly advanced our understanding of plant-microbe 
interactions. Within the rhizosphere soil, plants exude 
organic metabolites to support microbial activity and, in 
turn, receive beneficial services from soil microbes [28]. 
A multistep model for root microbiome assembly from 
bulk soil has been proposed and supported with rice [29] 
and grapevines [30]. Dynamic root exudate profiles were 

r et cabosyL

N
ap

ht
ha

le
ne

 d
eg

ra
da

tio
n 

St
yr

en
e 

de
gr

ad
at

io
n 

To
lu

en
e 

de
gr

ad
at

io
n 

Xy
le

ne
 d

eg
ra

da
tio

n 

D
io

xi
n 

de
gr

ad
at

io
n 

N
itr

ot
ol

ue
ne

 d
eg

ra
da

tio
n 

Po
ly

cy
cl

ic
 a

ro
m

at
ic

 

hy
dr

oc
ar

bo
n 

de
gr

ad
at

io
n 

Ar
ac

hi
do

ni
c 

ac
id

 m
et

ab
ol

is
m

 

S
tr

ep
to

m
yc

es

R
ub

ro
ba

ct
er

 

N
itr

os
pi

ra

M
yc

ob
ac

te
riu

m

B
ra

dy
rh

iz
ob

iu
m aripsosorti

N

sidiriv-orgin_airotallics
O

aropsono
morci

M

A
m

yc
ol

at
op

si
s senal podoh

R

air edl ohkr u
B

muibozihroni
S

xarovoira
V

sano
modues

P

sano
mognihp

S

muibozih
R

S1CK

S1C1

S1C2

S2CK

S2C1

S2C2

C
itr

at
e 

cy
cl

e 
(T

C
A 

cy
cl

e)

C
ar

bo
n 

m
et

ab
ol

is
m

Va
lin

e,
 le

uc
in

e 
an

d 
is

ol
eu

ci
ne

 d
eg

ra
da

tio
n

P
yr

uv
at

e 
m

et
ab

ol
is

m

Fr
uc

to
se

 a
nd

 m
an

no
se

 m
et

ab
ol

is
m

Tw
o-

co
m

po
ne

nt
 s

ys
te

m

C
ys

te
in

e 
an

d 
m

et
hi

on
in

e 
m

et
ab

ol
is

m

G
ly

ci
ne

, s
er

in
e 

an
d 

th
re

on
in

e 
m

et
ab

ol
is

m

Fa
tty

 a
ci

d 
de

gr
ad

at
io

n

r
etc

a
b

oxy
m

or
e

a
n

A

oi r
bi v

oll
e

d
B

r
et c

a
bi x

e
n

o
C

m
uir

et c
a

b
ov

al
F

s
a

n
o

mit
a

m
m

e
G

S1CK

S1C1

S1C2

S2CK

S2C1

S2C2

a b

S1CK

S1C1

S1C2

S2CK

S2C1

S2C2

Relative Abundance (%)

0.01

0.5

> 1

Relative Abundance (%)

0.01

0.5

> 1

Relative Abundance (%)
0.

1

0.
5

>
 1

0.
1

0.
5

>
 1

S1CK

S1C1

S1C2

S2CK

S2C1

S2C2

Relative Abundance (%)

Fig. 4  a Consort diagram with heatmap and bubble plot showed the depleted pathways after metabolites application. Heatmap part showed the 
pathways enriched in S1CK and S2CK, while bubble plot showed their contributed microbes. b Consort diagram with heatmap and bubble plot 
showed the enriched pathways after metabolites application. Heatmap part showed the pathways enriched in S1C1, S1C2, S2C1, and S2C2, while 
bubble plot showed their contributed microbes
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associated with microbial community assembly patterns 
in a reference plant: wild oat (Avena barbata) [21]. These 
interactions appear to be two-way, as microbiomes were 
shown to condition soils by reprogramming root exuda-
tion profiles [31]. Specific root exudates have been associ-
ated with F. oxysporum disease spread in Lisianthus [20]. 
In this study, rhizosphere metabolites differed between 
diseased and healthy samples across multiple sites. Five 
metabolites (tocopherol acetate, citrulline, galactitol, octa-
decylglycerol, and behenic acid), enriched in the diseased 
rhizosphere soil, were considered to be “key” components 
that drove microbial community assembly. Several lines of 
evidence in literature indicate that these metabolites are 
associated with biotic stresses. Among these, citrulline has 
been found to be enriched in plants when exposed to mul-
tiple stressors [32] and also in the rhizosphere of fusarium 
wilt-diseased watermelon [33]. Tocopherol acetate is a 
member of the vitamin E family and is increased in host 
plants under multiple stresses [34]; meanwhile, behenic 
acid was enriched in sesame upon salinity stress [35]. 
We found higher abundances of tocopherol acetate and 
behenic acid in diseased rhizosphere soils, which appeared 
to be vital to the deterministic process of assembly within 
the diseased microbial community in our validation 

experiment. Thus, we suggest that the  enrichment of 
some exudate constituents may be a common response 
of host plants to biotic and abiotic stresses. Nonetheless, 
not all rhizosphere metabolites alter microbial community 
assembly processes. For example, in a previous study [36], 
four organic acid exudates from cucumber (citric acid, 
pyruvate acid, succinic acid, and fumarate) were shown 
not to affect the microbial community assembly process 
(Supplementary Fig.  14). Collectively, the enrichment of 
five selected metabolites here within diseased rhizosphere 
soils may play an important role in the process of rhizos-
phere microbial community assembly as well as plant sus-
ceptibility to disease.

We found the ability of autotoxin degradation was 
decreased in diseased rhizosphere soil, which would be one 
of the mechanisms of disease happening as previous stud-
ies have shown that autotoxin accumulation would cause 
continuous cropping obstacles by nutrient imbalance and 
microbial dysfunction [7, 37, 38]. We further found that 
these functional abilities decline due to the decrease of rela-
tive abundance within Bradyrhizobium, Streptomyces, Var-
iovorax, Pseudomonas, and Sphingomonas. These bacterial 
groups have been reported to play multiple beneficial roles, 
such as antibiotics production, root colonization, and ISR 

Streptomyces

Bradyrhizobium

Variovorax

Pseudomonas

Sphingomonas

Citrulline

Tocopherol acetate
Galactitol 

Octadecylglycerol
Behenic acid

Anaeromyxobacter

Bdellovibrio

Conexibacter

Flavobacterium

Gemmatimonas
Autotoxin

degradation

Sugars, 
organic acids, 
amino acids 
metabolism

DiseasedHealthy

Fig. 5  Schematic model of metabolites drives the deterministic community assembly of Fusarium wilt-diseased rhizosphere microbiome through 
weaken microbial degradation of autotoxin
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activation, to maintain plant health [3, 39–42]. Conversely, 
the metabolic of “readily available carbon” (small-molecule 
sugars and organic acids) was significantly enriched in dis-
eased soil. These could promote the readily available car-
bon metabolism and, thus, increase the emergence and 
abundance of pathogens [43, 44]. Small-molecule organic 
acids could help plants defend against Fusarium wilt in sev-
eral ways, such as pathogen growth inhibition [45], resist-
ance improvement [45], and beneficial microorganisms 
recruitment [46]. However, the enhancement of organic 
acids metabolism leads to the weakness of the above poten-
tial beneficial function. Five feature microbes, Anaero-
myxobacter, Bdellovibrio, Conexibacter, Gemmatimonas, 
and Flavobacterium, were the main contributors to small-
molecule organic acids metabolism. Previously, all of the 
five bacterial groups have been uncovered in soil and/or 
rhizosphere environments, with one, Conexibacter,  even 
being recognized as a pathogen [47]. Hence, both FM1 and 
FM2 may have important ecological roles in maintaining 
the health status of plants. However, further research is 
needed to verify the roles of these “potentially important” 
species in maintaining plant health or in the formation of 
the fusarium wilt-diseased microbial community.

Conclusion
In this study, metabolites that were more abundant in dis-
eased soils shaped the mechanisms by which microbial 
communities assemble and correspondingly the commu-
nity compositions. The characteristics of the soils treated 
with these exudates were similar to natural diseased soils 
surveyed from many locations and cropping systems. This 
was consistent both in terms of the relative abundances of 
the distinguishing taxa and with regard to deterministic 
processes driving community assembly. Soils with these 
characteristics exhibited  a higher disease incidence of 
fusarium wilt in watermelon. Together, our study revealed 
inherent differences in the composition of diseased and 
“healthy” rhizosphere microbiomes and identified domi-
nant rhizosphere metabolites that drove the assembly of 
metabolite-responsive microbial groups contributing sig-
nificantly to the characteristics of a diseased rhizosphere 
microbiome. This study provides a theoretical frame-
work for the underlying causes in the establishment of a 
“diseased-state” rhizosphere microbial community that 
informs future control of fusarium wilt disease.

Materials and methods
Assessment of rhizosphere microbiome assembly process 
using sampling data
Rhizosphere soil collection from field
Rhizosphere soils of banana (B), cucumber (C), water-
melon (W), and lily (L) were collected from Hainan, 
Guangdong, Beijing, and Jiangsu provinces, respectively 

(Supplementary Table  1). For diseased samples, plants 
with typical symptoms of fusarium wilt as necrotic, vas-
cular, and root wilts were selected from plots cropped 
continuously for at least 3 years. Then, diseased root tis-
sue was ground, diluted, and coated in on Nash-Snyder 
Fusarium-selective growth medium. The plates were 
incubated at 28 °C for 2 days, and the plate with distinct 
Fusarium colonies was visible and finally confirmed as 
diseased samples. Newly reclaimed plots without evi-
dence of wilt disease were selected for the  sampling of 
healthy rhizosphere soils. The healthy plots were gener-
ally selected proximal to the diseased plots in order to 
avoid biases due to geographical factors. Fifteen plants 
were obtained that represented healthy and diseased 
rhizosphere soils. Soils from three plants were pooled as 
one replicate, for a total of five replicates for each group. 
Finally, four pairs of diseased/healthy samples were 
obtained: BD/BH, diseased/healthy samples of banana; 
CD/CH, diseased/healthy samples of cucumber; WD/
WH, diseased/healthy samples of watermelon; and LD/
LH, diseased/healthy samples of lily. The rhizosphere soil 
was obtained as follows: soil loosely adhered to the plant 
roots was shaken off and discarded, and then the root tis-
sues with their associated rhizosphere soil were cut into 
1 cm segments by using a sterile scalpel under aseptic 
conditions. Soil tightly bound to the root segments was 
rinsed using sterile water. Half of the suspension from 
four pairs of samples was lyophilized for the rhizosphere 
metabolome analysis; another half of the suspension was 
centrifuged at 10,000 g for 10 min, and the pellet was col-
lected for DNA extraction.

Rhizosphere soil collection from pot experiment
A continuous cropping pot experiment was conducted 
to mine the process from health to disease. The soil used 
in this experiment was collected with top soil (20 cm) 
from a field without a  history of cucumber cultivation 
in Baimao town of Changshu city, China (31°35′36.19″N, 
120°54′54.93″E). Soil chemical properties were as fol-
lows: pH 7.2, available P 21.60 mg/kg, available K 23.11 
mg/kg, C/N 8.60, total K 1590.72 mg/kg, total N () 1.64 g/
kg, total C 14.12 g/kg, and total P 0.54 g/kg. The collected 
soil was sieved (2-mm sieve) to remove plant debris and 
rocks after being  air-dried, subsequently homogenized 
and stored at room temperature. The watermelon seeds 
were surface sterilized with 75% ethanol for 30 s and then 
2% NaClO for 5 min before germination. Then, three 
seedlings were planted in each pot (length × width × 
height = 10 × 10 × 12 cm, containing 300 g soil) and ran-
domly placed in a growth chamber (28/26 °C day-night, 
70% relative humidity, 180 μmol light m−2 s−1). Plant 
tissues were removed from the soil 50 days after trans-
plantation, and rhizosphere soil samples were harvested. 
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Subsequently, the soils were placed back into the same 
pots for the next generation without cross mixing. The 
experiment was terminated at the eighth generation 
when serious Fusarium wilt symptoms occurred. Finally, 
original soil and the rhizosphere soils from the  first, 
fifth, and eighth generations were used for microbiome 
analysis.

Rhizosphere microbiome analyses
Genomic DNA from 0.5 g soil was extracted with the 
PowerLyzer PowerSoil DNA Isolation Kit (Qiagen, Ger-
many) following the manufacturer’s protocol. DNA qual-
ity and quantity were evaluated on a 1% agarose gel and 
with a NanoDrop 2000 spectrophotometer (Thermo Sci-
entific, Waltham, MA, USA). For taxonomic profiling, 
PCR products that targeted the V4 region of the bacterial 
16S rRNA gene were amplified with the primers 515F: 
GTG​YCA​GCMGCC​GCG​GTAA and 806R: GGA​CTA​
CNVGGG​TWT​CTAAT) [48] to yield an amplicon of 292 
bp. The 50 μL reaction mixtures contained 25 μL 2× Pre-
mix Taq (Takara Biotechnology, Dalian Co. Ltd., China), 
1 μL each primer (10 μM), 3 μL DNA (20 ng/μL), and 20 
μL of sterilized ultrapure water. PCR amplification was 
performed by using a Bio-Rad S1000 (Bio-Rad Labora-
tory, CA, USA) with the following cycles: 95 °C for 5 min, 
then 30 cycles of 94 °C for 30 s, 52 °C for 30 s, and 72 °C 
for 30 s with a final extension at 72 °C for 10 min. Prod-
ucts were run on a 1% agarose gel, and The DNA marker 
used was DNA Marker (100–2000 bp; B500350 Sangon 
Biotech (Shanghai) Co., Ltd.), and those with clear bands 
between 290 and 310 bp were combined for sequencing. 
PCR products were mixed at equal densities according 
to the GeneTools analysis software (version 4.03.05.0, 
SynGene), and the mixture was purified with an E. Z. N. 
A. Gel Extraction Kit (Omega, USA). Sequencing librar-
ies were generated using the NEBNext® Ultra™ DNA 
Library Prep Kit for Illumina® (New England Biolabs, 
USA) following the manufacturer’s recommendations. 
Indexing barcodes were added, and the library quality 
was assessed with a Qubit® 2.0 Fluorometer (Thermo 
Scientific) and an Agilent Bioanalyzer 2100. Finally, the 
library was sequenced on an Illumina Hiseq 2500 plat-
form  (Magigene, Guangdong). The 250-bp paired-end 
reads were filtered to obtain high-quality clean reads 
using Trimmomatic (V0.33, http://​www.​usade​llab.​org/​
cms/?​page=​trimm​omatic), and sequences were assigned 
to each sample based on its unique barcode. For micro-
bial community analysis, Bray-Curtis similarity matrices 
were prepared with the beta_diversity.py script. Principal 
coordinate analysis (PCoA) plots were generated from 
Bray-Curtis similarity matrices by using the R package 
“ggplot2” [49].

Analysis of the microbial community assembly processes
We used two approaches to examine bacterial commu-
nity phylogeny. First, the neutral model was applied [50] 
with the R code contributed by Burns et al. [51]. We esti-
mated each OTU’s abundance in the metacommunity 
(pi) by averaging its relative abundance across all samples 
with the detection threshold (d) set to 1/N. The model 
was generated using the function pbeta from package 
“stats” (R Core Team 2018) and fit to data using func-
tion nlsLM from package “minpack.lm” [52]. The func-
tion binconf from the “Hmisc” package [53] was used to 
calculate a 95% prediction interval. Next, the null mod-
eling approach was used to evaluate phylogenetic pat-
terns of the rhizosphere microbiome by calculating the 
β-nearest taxon index (βNTI) between pairs of samples 
as described in Stegen et al. [54]. Before the βNTI calcu-
lation, we determined the observed weighted abundances 
of β-mean-nearest taxon distances (βMNTD) with the 
function comdistnt using the R package “picante” [55] 
and then generated the βMNTD null model by randomly 
shuffling the tips of the phylogenetic tree. The pairwise 
βMNTD values were recalculated 999 times to gener-
ate a null distribution for each pair. Then, the βNTI was 
calculated for each pairwise sample comparison among 
the entire metacommunity. Sample pairs with |βNTI| 
> 2 are expected to result from deterministic processes 
[54], while |βNTI| < 2 values indicate that selection pres-
sure is weak and community assembly is likely governed 
by stochastic processes [55]. Values derived from βNTI 
analyses reflect the driving force of factors that influence 
community assembly processes as phylogenetic turno-
ver correlates with environmental dissimilarity. Mantel 
tests (package “vegan” [56]) were performed to evaluate 
whether βNTI values were significantly different.

In order to examine the role of dispersal in the process 
of community assembly, we examined OTU turnover 
using the weighted abundance based on the Raup-Crick 
metric (RCbray), as reported by Stegen et al. [54]. RCbray 
determines whether OTU turnover between sam-
ples deviates from the expectations of ecological drift 
alone. We first determined the Bray-Curtis dissimilarity 
between each pair of samples. For each sample, we then 
randomly generated a null-model community with the 
same size and richness. Each null model was constructed 
by selecting OTUs randomly (weighted by frequency 
across all samples) with their relative abundance deter-
mined by their relative abundance in the metacommu-
nity. We then determined the Bray-Curtis dissimilarity 
between all pairs of simulated communities. This process 
was repeated 999 times to generate a null-model distri-
bution. RCbray was calculated by adding the number of 
simulated communities with a Bray-Curtis dissimilarity 

http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
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greater than the observed dissimilarity (Nsim > obs) to 
one-half of the number of simulated communities with a 
Bray-Curtis dissimilarity equal to the observed dissimi-
larity (Nsim = obs) and dividing this by the total number 
of simulations (999). Sample pairs with a |βNTI| < 2 and 
an |RCbray| > 0.95 indicated that bacterial community 
turnover was dominated by dispersal. More specifically, 
limited dispersal was determined to be dominant when 
RCbray > 0.95, while RCbray < −0.95 indicates homog-
enizing dispersal [54]. We combined the results from 
the βNTI and RCbray analyses to determine the relative 
proportion of the overall community assembly governed 
by deterministic and stochastic processes within each 
sample.

Assessment of rhizosphere microbiome assembly process 
using integrated sequence data
Data collection and description
Bacterial/archaeal 16S rRNA sequencing results and 
metadata related to fusarium wilt disease in healthy and 
diseased rhizosphere samples were collected from 45 
studies with 1722 samples (Supplementary Table  2) by 
searching the keywords “Fusarium wilt microbiome,” 
“Fusarium wilt community,” and “Fusarium wilt struc-
ture” in Google Scholar and the NCBI SRA database. 
These datasets included samples from the rhizosphere 
soils of healthy plants without symptoms of fusarium wilt 
and diseased samples collected from the rhizospheres of 
plants with symptoms of fusarium wilt. Sequencing data 
were generated from the Roche 454 (11.1%) and Illumina 
sequencing platforms (88.9%) (Supplementary Table 2). In 
total, eleven different primer pairs (515F:806R; 515F:907R; 
338F:806R; 520F:802R; 799F:1193R; 27F:533R; 563F:802R; 
341F:785R; 341F:805R; 27F:533R; and 27F:518R) were 
used that accounted for 82% of the samples, with the 
majority (55.6%) reflecting amplification from the V4 or 
V3-V4 regions of the 16S rRNA gene (Supplementary 
Table 2; Supplementary Fig. 1).

Exploring microbial features and characterizing phylogenic 
patterns
The processing procedure for the sequencing data was 
detailed in our previous publication [13]. Briefly, the high 
quality of all of the sequencing reads was verified using 
FastQC v.0.11.5 [57], and paired-end reads were merged 
and then trimmed with usearch [58]. Due to the differ-
ent amplified regions of the 16S rRNA gene among the 
collected sequencing data, all sequencing data from mul-
tiple studies were clustered using unoise3 in usearch 
[58], respectively. Species annotation was performed 
on the OTUs representative sequence from each study 
through the SSUrRNA database of SILVA (version: 138; 
http://​www.​arb-​silva.​de/). Then, the OTUs representative 

sequence was aligned to the greengene database (ver-
sion: 13.8), and the best match sequencing ID was used 
for building an evolutionary tree by filtering subtree from 
the rep_set_99.tree in the greengenes database.

To address PCR biases, OTU filtration was per-
formed with two strategies based on our previous 
publication [13]. Relative abundance was used to stand-
ardize the OTU profiles by scale_micro script in R 
package “ggCLusterNet.” For alpha diversity analysis, 
the OTUs were rarefied to 2000 reads per sample, and 
Chao1, Shannon, and Pielou_evenness indices were cal-
culated in R using the “vegan” package. Bray-Curtis dis-
similarity matrices were prepared with the beta_diversity.
py script (Qiime-1.9.1) for beta diversity calculation 
and ordination (principal component analysis, principal 
coordinate analysis, nonmetric multidimensional scal-
ing) plots were generated from Bray-Curtis dissimilarity 
matrices by using the R package “ggplot2.” Cluster analy-
sis, based on ordination data sets, was performed with 
the cluster R package, and ellipses for each cluster were 
added with the “ggplot” package. Significant correla-
tions between the relative abundances of bacterial OTUs 
were calculated using the sparse correlations for com-
positional data algorithm implemented in the R package 
“SpiecEasi” and plotted using the R package “ggCluster-
Net” [59]. Only the absolute values of correlation coeffi-
cient (“R-corr”) were greater than 0.6, and p-values less 
than 0.05 were plotted. In order to describe the topology 
of the resulting network, a set of measures (average node 
connectivity, average path length, diameter, cumulative 
degree distribution, clustering coefficient, and modu-
larity) were calculated [60]. All statistical analyses were 
carried out in the R environment (http://​www.r-​proje​ct.​
org) using the “vegan” [60] and “igraph” packages [59]. 
To assess nonrandom patterns in the resulting network, 
we compared our network against its randomized ver-
sion using the “igraph” package. Structural attributes of 
this network, such as the clustering coefficient and char-
acteristic path length, were compared with those in the 
random network with equal nodes and edges. Analyses of 
microbial community assembly followed the protocol as 
described above.

Rhizosphere metabolome detection
To identify rhizosphere metabolites that could drive 
microbiome assembly in the rhizosphere of diseased 
plants, rhizosphere metabolites were extracted with 
four pairs of samples (BD/BH, CD/CH, LD/LH, WD/
WH) and analyzed according to our previous method 
with some modifications [61]. Briefly, rhizosphere soils 
were extracted twice with methanol solution (Vmetha-

nol: VH2O = 3:1) and ethyl acetate. The extractions were 
combined for drying by adding 20 μL methoxyamination 

http://www.arb-silva.de/
http://www.r-project.org
http://www.r-project.org


Page 12 of 15Wen et al. Microbiome          (2022) 10:177 

hydrochloride, followed by incubation for 30 min at 80 °C 
before being treated with 30 μL of BSTFA (bis (trimethyl-
silyl) trifluoroacetamide) reagent (1% trimethylchlorosi-
lane, v/v). The mixture was then incubated for 1.5 h at 70 
°C and finally analyzed with a gas chromatograph (Agi-
lent 7890) coupled with a GC-TOF-MS (Shanghai Biotree 
Biotech Co. Ltd.). Raw peak analyses were performed as 
reported by Wen et al. [36].

For the differences among groups, relative abundances 
were used to standardize the metabolite profiles, and 
Bray-Curtis similarity matrices were prepared using the 
R package “vegan.” Permutational multivariate analysis 
of variance (PERMANOVA; Adonis, transformed data 
by Bray-Curtis, permutations = 999) was used to deter-
mine significant differences in beta diversity, and prin-
cipal coordinate analysis (PCA) plots were generated 
from Bray-Curtis similarity matrices using “ggplot2” in 
R. Network analyses were performed using the R package 
“ggClusterNet” [62].

In order to determine metabolites that may drive the 
process of microbial community assembly in the diseased 
rhizosphere, machine learning was used to distinguish 
the rhizosphere metabolites associated with diseased 
and healthy rhizosphere soils. Because we found lower 
model accuracies when the models were built with all of 
the detected rhizosphere metabolites, we then trained 
a series of random forest models based on cutoff val-
ues for enriched metabolites characterized by relative 
abundances ranging from 1 to 90% and found the great-
est accuracy in those trained with metabolites at > 3% 
(Supplementary Table  4). To avoid omitting important 
metabolites, we also trained a series of models from low-
abundance metabolites (< 3%) and found that the greatest 
accuracy occurred with metabolite abundances at < 1% 
(Supplementary Table  4). The “important” metabolites 
were selected by cross-tabulations in R with “randomFor-
est.” Wilcoxon tests (“stat” package) were conducted in 
order to detect the differences in rhizosphere metabolites 
between the diseased and healthy samples. Metabolites 
deemed as “important” from the classifiers and those that 
were significantly different between the two groups were 
selected for correlation analysis (the maximum-entropy 
approach) with their relative abundance and βNTI value 
in the diseased samples. Those metabolites significantly 
associated with the process of microbial community 
assembly were selected for further confirmation.

Effects of specific metabolites on the soil microbial 
assembly process and fusarium wilt disease occurrence
Soil condition experiment
To evaluate the effects of specific rhizosphere metabo-
lites on the soil microbial assembly process and fusarium 

wilt disease occurrence, two soils were  collected from 
fields without a history of fusarium wilt disease occur-
rence (one from Lvliang, Shanxi province, recorded as 
S1. The other from Yulin, Shanxi province, recorded as 
S2) were used for incubations with the potentially active 
metabolites selected above (tocopherol acetate, citrul-
line, galactitol, octadecylglycerol, and behenic acid). 
Physicochemical properties of soils are detailed in Sup-
plementary Table 3. Prior to the incubations, 50 g of soil 
was introduced into 9-cm-diameter Petri dishes and 
incubated in a growth chamber at 28 °C, 2 weeks for soil 
microbiome equilibration. Indigenous seeds were ger-
minated by irrigation with 5 mL autoclaved water twice 
a week and removed. Following the incubation, 5 mL of 
solution containing the selected metabolites was added 
to each plate twice a week for 8 weeks.

Two solutions containing equal proportions of tocoph-
erol acetate, citrulline, galactitol, octadecylglycerol, and 
behenic acid were prepared at final total concentrations 
of 1 μM (C1 solution) and 100 μM (C2 solution). The 
C1 mixture contained 0.2 μM each of tocopherol ace-
tate, citrulline, galactitol, octadecylglycerol, and behenic 
acid, whereas the C2 mixture contained 20 μM each of 
those same metabolites. For each soil, there were two 
treatments and one control that were amended with 
autoclaved water (S1C1, S1C2, and S1CK; S2C1, S2C2, 
and S2CK). Each treatment contained ten plates, and 
all plates were randomly arranged during the incuba-
tion. Soil moisture was maintained by determining the 
mass twice a week and adjusting to 70% of water hold-
ing capacity using sterile deionized water. After 8 weeks, 
soils from all ten plates of each treatment were collected. 
Per plate, 45 g of soil was stored at 4 °C and used for the 
soil culture experiment. Subsamples of 5 g soil were ran-
domly selected from six of the ten replicate plates and 
stored at −80 °C for 16S rRNA sequencing. The process 
of raw sequencing data, diversity estimations, and deter-
mination of the microbial community assembly was iden-
tical to the aforementioned process.

Impacts of metabolites on fusarium wilt disease incidence
Fifty pots (3.5 × 3.5 × 5 cm), each containing 10 g fresh 
steam-sterilized vermiculite, were established for each 
treatment and divided into 5 replicates. Next, 1 g of soils 
that were conditioned with the selected metabolites was 
suspended in 9 mL sterile water, filtered through ster-
ile Whatman 42 filter paper to remove the large par-
ticles of soil, and then irrigated to each pot. Growth 
chamber conditions for seed germination and the pot-
ted experiment were as follows: 16 h light at 25 °C, 46% 
relative humidity and 8 h darkness, and 18 °C at 37% 
relative humidity. Watermelon seeds “8424” (Xinjiang 
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Farmer Seed Technology Co., Ltd.) were sterilized with 
NaClO solution (0.75%, v/v) for 30 min and sown on MS 
medium supplemented with 1% sucrose for 5 days before 
being transferred to the pots. After 7 days of watermelon 
seedling growth, 5 mL of Fusarium oxysporum spores 
at a concentration of 2 × 105 CFU mL−1 was irrigated 
into each pot. Autoclaved water and MS medium solu-
tion were added to maintain the growth of watermelon, 
and fusarium wilt disease incidence was monitored dur-
ing the course of the experiment for 20 days based on the 
reported strategy [63]. Disease incidence was expressed 
as a percentage of diseased plants per the total number 
of plants and was based on observations of typical wilt 
symptoms [64].

Metagenomic sequencing and data analysis
Samples from the soil condition experiment (S1C1; 
S1C2; S1CK; S2C1; S2C2; S2CK) were used for metagen-
omic sequencing. All the samples were subjected to 
shotgun metagenomic sequencing by using an Illu-
mina HiSeq 2500 (2 × 150) instrument. The paired-
end metagenomics shotgun sequencing data were then 
trimmed of adaptors, and low-quality (length less than 
50 bp, with a quality score less than 20, had N bases) 
paired-end reads were filtered to remove with Kne-
adData (https://​hutte​nhower.​sph.​harva​rd.​edu/​knead​
data/). The assembly of metagenomics data was per-
formed by MEGAHIT [65]. Contigs over 300 bp were 
used for further gene prediction and annotation. Open 
reading frames (ORFs) from assembled metagenomes 
were predicted using MetaGeneMark. The predicted 
ORFs with lengths longer than 100 bp were retrieved 
and translated into amino acid sequences through the 
NCBI translation table. A nonredundant gene catalog 
was constructed using CD-HIT [66] with criteria of 95% 
sequence identity combined with 90% coverage, and 
then gene abundance in each sample was evaluated. For 
taxonomic annotation, the representative sequences of 
the nonredundant gene catalog were searched against 
the nonredundant protein database of NCBI with an 
e-value cutoff of 1e-5 using DIAMOND. Lowest com-
mon ancestor method was applied to estimate the 
assignment of genes to specific taxa. Annotation of the 
functional genes was performed using the “emapper.py” 
function in EggNOG [67]. The count number of KEGG 
annotation was filtered for downstream comparison. 
Gene abundances were normalized into reads per kilo-
base million counts. The GSVA analysis was performed 
using R package GSVA [68]. The bubble plots were gen-
erated using the R package ggplot2. Heatmap of func-
tional pathways and relative taxonomic abundances were 
generated by ggplot2.
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