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Abstract 

Background:  Differential abundance analysis (DAA) is one central statistical task in microbiome data analysis. A 
robust and powerful DAA tool can help identify highly confident microbial candidates for further biological validation. 
Numerous DAA tools have been proposed in the past decade addressing the special characteristics of microbiome 
data such as zero inflation and compositional effects. Disturbingly, different DAA tools could sometimes produce 
quite discordant results, opening to the possibility of cherry-picking the tool in favor of one’s own hypothesis. To 
recommend the best DAA tool or practice to the field, a comprehensive evaluation, which covers as many biologically 
relevant scenarios as possible, is critically needed.

Results:  We performed by far the most comprehensive evaluation of existing DAA tools using real data-based 
simulations. We found that DAA methods explicitly addressing compositional effects such as ANCOM-BC, Aldex2, 
metagenomeSeq (fitFeatureModel), and DACOMP did have improved performance in false-positive control. But they 
are still not optimal: type 1 error inflation or low statistical power has been observed in many settings. The recent LDM 
method generally had the best power, but its false-positive control in the presence of strong compositional effects 
was not satisfactory. Overall, none of the evaluated methods is simultaneously robust, powerful, and flexible, which 
makes the selection of the best DAA tool difficult. To meet the analysis needs, we designed an optimized procedure, 
ZicoSeq, drawing on the strength of the existing DAA methods. We show that ZicoSeq generally controlled for false 
positives across settings, and the power was among the highest. Application of DAA methods to a large collection of 
real datasets revealed a similar pattern observed in simulation studies.

Conclusions:  Based on the benchmarking study, we conclude that none of the existing DAA methods evaluated can 
be applied blindly to any real microbiome dataset. The applicability of an existing DAA method depends on specific 
settings, which are usually unknown a priori. To circumvent the difficulty of selecting the best DAA tool in practice, we 
design ZicoSeq, which addresses the major challenges in DAA and remedies the drawbacks of existing DAA methods. 
ZicoSeq can be applied to microbiome datasets from diverse settings and is a useful DAA tool for robust microbiome 
biomarker discovery.
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Background
The human microbiome has received tremendous atten-
tion in the past decade due to its potential important 
role in health and disease [1]. A variety of conditions and 
diseases such as obesity, inflammatory bowel disease, 
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and colorectal cancer have been shown to be associated 
with changes in the human gut microbiome [2–4]. Gut 
microbiome has also been demonstrated to be predic-
tive of the cancer treatment outcome, spurring enthusi-
asm among cancer researchers in pursuit of a new cancer 
treatment paradigm [5, 6]. With the aid of high-through-
put genomic sequencing technologies, such as 16S 
rRNA gene-targeted amplicon sequencing and shotgun 
metagenomic sequencing, the microbiome composition 
can be easily profiled and analyzed [7]. After process-
ing the sequence reads using a bioinformatic pipeline of 
choice such as DADA2 [8] for 16S-targeted sequencing 
and MetaPhlAn2 [9] for shotgun metagenomic data, an 
abundance table, which records the frequencies of the 
detected microbial taxa, is generated. Downstream sta-
tistical analyses are then performed based on the taxa 
abundance table, together with the metadata capturing 
the sample-level characteristics. One central statistical 
task is differential abundance analysis (DAA), which aims 
to identify the microbial taxa whose abundance covaries 
with a variable of interest. The identified microbial taxa 
could offer biological insights into disease mechanisms 
and potentially be explored as biomarkers for disease 
prevention, diagnosis, and treatment [10]. A robust and 
powerful DAA tool is thus critically needed to yield reli-
able microbiome biomarkers, increase the reproducibil-
ity across microbiome studies, and ultimately reduce the 
development cost.

Due to the complex data characteristics of microbiome 
sequencing data, differential abundance analysis of micro-
biome data faces many statistical challenges [11, 12]. 
Firstly, the microbiome abundance data are highly vari-
able, and the abundance of a specific taxon could range 
over several orders of magnitude. Such large variability 
deteriorates statistical power, calling for powerful meth-
ods which could appropriately model the variance of the 
data. Secondly, the microbiome abundance data are zero 
inflated [12–14]. In a typical microbiome dataset, more 
than 70% of the values are zeros. Zeros could be due to 
either physical absence (structural zeros) or insufficient 
sampling effort (sampling zeros) [13, 14]. The different 
natures of zeros require careful treatment of the zeros 
in order to reach robust statistical inference [13, 14]. For 
those low-abundance taxa, when their abundance falls 
below the detection limit, they will appear absent in the 
data. Therefore, the presence/absence of a low-abundance 
taxon [13, 14] depends highly on the total read count 
(sequencing depth). This has significant implications for 
differential abundance analysis. When the sequencing 
depth is correlated with the variable of interest, those low-
abundance taxa may appear differentially abundant even 
after the read counts have been normalized [15]. Thirdly, 
microbiome data are compositional [15–17]. All we know 

are the relative abundances since the total read count does 
not reflect the microbial load at the sampling site [17, 18]. 
Increase or decrease in the (absolute) abundance of one 
taxon at the sampling site will lead to apparent changes in 
the relative abundances of other taxa in the sample. Such 
compositional effect makes identification of the “driver” 
taxa particularly challenging due to missing information 
on the total microbial load. Although all sequencing data 
are compositional in nature [19], the existence of several 
highly abundant taxa amid a large number of low-abun-
dance taxa makes the compositional effect more pro-
nounced for microbiome data.

Without any assumption, DAA for compositional data 
is not well defined. Consider a hypothetical community 
with four species, whose baseline absolute abundances 
at the sampling site are 7, 2, 6, and 10 million cells per 
unit volume. After experimental treatment, the abun-
dances become 2, 2, 6, and 10 million cells per unit vol-
ume, where only the first species is differential. The 
compositions before and after treatment are (28%, 8%, 
24%, and 40%) and (10%, 10%, 30%, and 50%), respec-
tively. Now assume that the absolute abundances for the 
four species before treatment are known (7, 2, 6, 10), the 
observed composition after treatment can be explained 
equally well by (2, 2, 6, 10), (7, 7, 21, 35), or (20, 20, 60, 
100) million cells per unit volume after treatment. There-
fore, based on the compositional data alone, it is equally 
possible that there are one, three, or four differential taxa. 
However, if we assume the signal is sparse (i.e., the num-
ber of differential taxa is small), we may conclude that the 
first species being differential is the most likely scenario. 
The sparsity assumption has been implicitly assumed for 
those methods addressing the compositional effects.

Over the past decade, quite a few DAA methods have 
been developed. These methods mainly differ in their 
way to address zero inflation and compositional effects. 
To address zero inflation, both over-dispersed count 
models and zero-inflated mixture models/hurdle mod-
els have been proposed. In over-dispersed count model, 
the counts are modeled by a parametric model with an 
overdispersion parameter, which controls the variabil-
ity of the data as well as the level of sparsity. Examples 
include the negative binomial model (edgeR [20] and 
DESeq2 [21]), beta-binomial model (corncorb [22]), and 
quasi-Poisson model [23]. These count models implicitly 
assume that all zeros are sampling zeros due to insuffi-
cient sequencing depth. While this assumption is rea-
sonable for the vast majority of low-abundance taxa [14], 
zeros for those abundant taxa may not be solely explained 
by under-sampling [24]. In contrast, mixture models, 
which include a mixture component at zero, are more 
flexible; it assumes both sampling and structural zeros 
exist in the data. The extra parameter for the structural 
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zero component significantly increases the modeling 
capability for zero-inflated counts. However, the draw-
backs of mixture models are the increased computational 
burden and potential loss of power due to overfitting 
when there is no truly zero inflation, i.e., the zero com-
ponent is not necessary. Overfitting could also lead to 
computational instability since there could be multiple 
optima in the parameter space. Examples of zero-inflated 
mixture models include zero-inflated log-normal/normal 
mixture model (metagenomeSeq [25] and RAIDA [26]), 
zero-inflated beta-binomial model (ZIBB [27]), and zero-
inflated negative binomial model (Omnibus test [24]). 
RioNorm2 [28] uses a data-driven approach to choose 
between zero-inflated Poisson model and zero-inflated 
negative binomial model. As an alternative to mixture 
models, hurdle models [29, 30] have also been proposed 
to perform DAA. Hurdle models lump the sampling and 
structural zeros together in the zero component and 
do not distinguish between these two types of zeros. 
Additionally, for methods working on proportion data, 
Bayesian methods have been used to impute the zeros, 
accounting for sampling variability and sequencing depth 
variation. For example, ALDEx2 [31] infers the underly-
ing proportions by assuming an uninformative prior Dir-
ichlet distribution on the proportions and a multinomial 
sampling process for the observed counts. eBay [32] uses 
an Empirical Bayes approach with an informative prior, 
which is estimated based on the data, to improve the 
estimation efficiency. On the other hand, MaAsLin2 [33] 
and ANCOM-BC [34] use the pseudo-count approach 
to impute the zeros. When a common pseudo-count is 
added to all counts, the process is equivalent to a Bayes-
ian approach assuming a non-informative prior. Finally, 
for methods without the involvement of log transforma-
tion, zeros may also be left untreated as in LDM [35] and 
DACOMP [36].

Compositional effects are another major challenge fac-
ing DAA [15–19]. The severity of compositional effects 
depends on the diversity of the microbial community, 
the percentage of differential taxa, and their abundances, 
effect sizes, and directions of change. Different strate-
gies have been used to address compositional effects. 
These strategies can be roughly divided into four catego-
ries. The first category is based on robust normalization 
(Table S1), where a normalizing factor or size factor is 
calculated to capture the sequencing effort for the non-
differential part as much as possible, assuming sparsity 
signals [37]. The normalizing factor can then be included 
as an offset in count-based models or be used as a divider 
to produce normalized abundance data. Compared to the 
total sum scaling (TSS) normalization, robust normali-
zation is less susceptible to compositional effects when 
a moderate number of taxa are differential [37]. Robust 

normalization has been used in edgeR [20], DESeq2 [21], 
metagenomeSeq [25], ALDEx2 [31], and Omnibus test 
[24], where the Trimmed mean of M-values (TMM), rela-
tive log expression (RLE), cumulative sum scaling (CSS), 
centered log-ratio transformation (CLR), and geometric 
mean of pairwise ratios (GMPR) [37] are used, respec-
tively. The Wrench [38] normalization corrects the com-
positional bias by an empirical Bayes approach, which has 
been recommended in metagenomeSeq [39]. The second 
category uses the reference taxa approach, which aims to 
find one taxon or a set of taxa that are relatively invari-
ant with respect to the condition of interest. The abun-
dance ratios to the reference taxon/taxa are then used 
to perform DAA. RioNorm2 [28] relies on a network-
based normalization to find the relatively invariant taxa. 
DACOMP [36] selects a set of reference taxa that are 
least likely to be differential before DAA, while RAIDA 
[26] finds one reference taxon that makes the least dis-
coveries in DAA. The differential ranking method [17] 
utilizes a similar reference taxa idea. The third category 
is based on analyzing the pattern of pairwise log ratios 
as implemented in ANCOM [18]. This strategy relies on 
the fact that the log ratios to other taxa for those non-
differential taxa are mostly non-differential, while the 
log ratios for those differential taxa are all differential, 
assuming distinct effect sizes. Therefore, by analyzing the 
pattern of pairwise log ratios, the differential taxa can be 
recovered with high confidence. DACOMP [36] also uses 
this approach to select the reference taxa. The last cat-
egory exploits the novel bias-correction idea. ANCOM-
BC [34] uses this approach to estimate an (unknown) 
sample-specific offset term to correct the bias caused by 
an unequal sampling effort due to compositional effects.

A wild choice of DAA methods dazzles the end users. 
Numerous questions arise regarding the best DAA method 
for one’s specific dataset. To date, no consistent recommen-
dations have been clearly provided to end users [15, 40, 41] 
and a comprehensive benchmarking study of existing meth-
ods is critically needed. In our opinion, an ideal DAA method 
should possess the following properties:

(1)	 Scalable: It should be able to scale up to a large 
number of taxa and samples, given the increased 
availability of large datasets [42, 43].

(2)	 Flexible: It should be able to adjust covariates and 
accommodate different study designs. Confounders 
are common for microbiome studies [44–48], and 
adjusting confounder is necessary to reach a valid 
conclusion.

(3)	 Robust: It should control for false positives under 
all relevant scenarios. The actual type 1 error rate 
should be close to the nominal level. This is the key 
to the reproducibility of microbiome studies.
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(4)	 Powerful: The power to identify true positives should 
not be sacrificed to preserve the type 1 error rate.

Although several evaluation studies were published 
years ago [41, 49], the fast development in this field calls 
for a re-evaluation of the old and new DAA methods in 
order to offer a practical guidance to the field. Therefore, 
the aim of the study is to perform a comprehensive evalu-
ation of existing DAA methods, identify their strength 
and weakness, recommend the optimal procedure to the 
field if any, and develop an alternative if no DAA meth-
ods can satisfy all the aforementioned properties.

The contribution of the study is threefold. First, we 
designed a real data-based semiparametric simulation 
framework, which facilitates a more realistic evaluation 
of the performance of DAA methods; second, we con-
ducted by far the most comprehensive benchmarking 
study and dissected the performance of existing meth-
ods; and finally, realizing no methods evaluated possess 
the optimal performance, we developed an optimized 
procedure, ZicoSeq, which combines the strength of 
DACOMP (good false-positive control) and LDM (high 
power). We implemented our semiparametric simulation 
framework and ZicoSeq in our Comprehensive R Archive 
Network (CRAN) GUniFrac package.

Methods
A semiparametric simulation framework
Traditional simulations are usually based on paramet-
ric models such as Dirichlet-multinomial model [50, 51] 
and logistic normal multinomial model [41]. The sample 
space is thus determined by a small set of parameters. 
Due to the complexity of the microbiome data, existing 
parametric models may fail to capture the full complex-
ity of the data. To correct the limitation of paramet-
ric models, our semiparametric simulation framework 
draws random samples from a large reference dataset 
(nonparametric part) and uses these reference samples 
as templates to generate new samples (parametric part). 
Specifically, for each drawn reference sample, we infer 
the underlying composition based on a Bayesian model 
and then add covariate/confounder effects to the compo-
sition vector, based on which a new sequencing sample is 
generated. Therefore, our method circumvents the diffi-
culty in modeling the intersubject variation of the micro-
biome composition.

The basic steps of the semiparametric simulation 
framework are depicted in Fig. S1. Specially, we use the 
following steps to simulate the data:

1.	 Build a reference dataset. The reference dataset is a 
collection of microbiome sequencing samples from a 

study population at a specific sampling site. It should 
be large enough to capture the main compositional 
variation in the population of interest. Microbiome 
datasets from those large-scale population-level stud-
ies such as Human Microbiome Project (HMP) [42] 
and American Gut Project (AGP) [43] are all good 
choices. The reference datasets used in the simula-
tion are the human stool and vaginal microbiome 
datasets from HMP with basic filtering to remove 
extremely rare taxa (prevalence < 10% or max pro-
portion < 0.002), resulting in 295 samples and 2094 
taxa, and 381 samples and 781 taxa for stool and vag-
inal datasets, respectively. The human stool and vagi-
nal microbiome are chosen to represent a high- and 
low-diversity microbial community, respectively.

2.	 Obtain posterior samples of the underlying composi-
tion based on an empirical Bayes model.

a.	 Assume an informative Dirichlet prior for the 
underlying composition. Estimate the Dirichlet 
hyperparameters (γj) based on the observed 
counts (Cij ,1 ≤ i ≤ n, 1 ≤ j ≤ m) using the maxi-
mum likelihood estimation (R package “dirmult”). 
The posterior distribution of the underlying com-
position for sample i is then a Dirichlet distribu-
tion with parameter γ′ij = Cij + γj 1 ≤ j ≤ m .

b.	 Obtain a posterior sample of the underly-
ing composition for each reference sample 
(Pij, 1 ≤ i ≤ n, 1 ≤ j ≤ m) based on the posterior 
Dirichlet distribution.

3.	 Generate the absolute abundance ( C ′
ij

)

 by multiply-
ing a factor Si representing the microbial load at the 
ecological site, i.e., C ′

ij = PijSi,where log(Si)~N(0, 1) 
without loss of generality.

4.	 Generate the confounder Zi~N(0, 1) and the covari-
ate of interest Xi= 

√

R2

1−R2
Zi + N (0, 1),where R is the 

desired correlation between the confounder and the 
covariate of interest. Binary Xi can be generated by 
dichotomizing Xi using some cutoff value to achieve 
the specified group sizes.

5.	 Add covariate (Xi) and confounder (Zi) effect to the abso-
lute abundance by C ′′

ij = C ′
ij exp

(

ajXi + bjZi + ǫij
)

,

where aj and bj are coefficients controlling the effect 
size and ǫij ∼ N

(

0, σ 2
ǫ

)

 is the random error. Non-dif-
ferential taxa are simulated by setting the corresponding 
coefficients to 0.

6.	 Calculate the new composition 
P′
ij

(

1 ≤ i ≤ n, 1 ≤ j ≤ m
)

based on C ′′
ij .Generate the 

sequencing depth Di  (1 ≤ i ≤ n) based on a negative 
binomial distribution. For bth simulated dataset 
(1 ≤ b ≤ B), generate the read counts Cb

ij

(

1 ≤ j ≤ m
)
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for sample i based on a multinomial distribution with 
parameters 

(

Di,P
′
ij

)

.

When assessing the model fit of the semiparametric 
approach, we used cross-validation, where half of the real 
data were used as the training set to generate simulated 
data and the other half of the real data served as the test 
set, upon which the simulated data were compared to.

Evaluation of differential abundance analysis methods 
based on simulations
Simulation settings
To comprehensively evaluate the performance of DAA 
methods, we simulate various settings covering a wide 
range of signal structures (Table 1). We focus the evalu-
ation on two-group comparison with equal group sizes 
(binary Xi). We study the performance for both low- and 
high-diversity data and investigate both the balanced and 
unbalanced differential settings, where the differential 
taxa have a random (“balanced”) or the same direction 
of change (“unbalanced”). The unbalanced setting cre-
ates strong compositional effects and is statistically more 
challenging than the balanced setting. Under the bal-
anced setting, we explore different signal structures (sig-
nal density and differential mode). We study three levels 
of signal densities (i.e., the percentage of differential 
taxa): 5%, 10%, and 20%, representing “low,” “medium,” 
and “high” densities, and two differential modes (“abun-
dant” and “rare”), depending on whether the signals 
come from abundant or rare taxa. In the “abundant” and 
“rare” differential mode, the differential taxa are drawn 
from the upper and the lower quartile of the abundance 
distribution, respectively. These two differential modes 
allow us to further dissect the performance of the DAA 
methods. When the differential taxa are abundant, the 
major challenge is proper false-positive rate control since 
these abundant taxa could create stronger compositional 
effects. When the differential taxa are less abundant or 
rare, the major challenge is low statistical power since 
rare taxa tend to have more sampling variability. Under 
the unbalanced setting, we only study the “abundant” dif-
ferential mode: this is used to create ultra-strong compo-
sitional effects to test the limits of the evaluated methods 
in addressing compositional effects. Under each setting/
signal structure, we study the effect of sample size (n = 
25, 50, and 100 per group) and the taxa number (m = 50 
and 500, roughly representing family- and species-level 
data). When confounders are included, we simulate one 
continuous confounder, and the correlation between 
covariate and confounder is set to 0.6. In these settings, 
the sequencing depths are generated from the same nega-
tive binomial distribution with mean depth 10,000, and 
the sequencing depth is similar between the two groups. 

To study the effect of the sequencing depth confounding, 
we also let the mean sequencing depth differ by four- or 
ninefold between the groups.

Differential abundance analysis methods evaluated
We evaluate the widely used and recently devel-
oped DAA methods including Aldex2 [31], eBay [32], 
DACOMP [36], ANCOM-BC [34], metagenomeSeq [25], 
generalized linear model with quasi-Poisson family [23], 
Wilcoxon rank-sum test, DESeq2 [21], edgeR [20], LDM 
[35], Omnibus test [24], MaAsLin2 [33], RAIDA [26], and 
corncob [22]. The summary of the methods is given in 
Table  2 and Table S2. For Aldex2, eBay, and DACOMP, 
we choose the Wilcoxon rank-sum test in these pack-
ages and label them as “Aldex2(Wilcox)”, “eBay(Wilcox),” 
and “DACOMP,” respectively. For datasets with con-
founders, we use the “glm” test in Aldex2 and label it 
as “Aldex2(glm).” For ANCOM-BC, we set “conserve 
=TRUE,” since it is recommended if the sample size 
is small, and/or the number of differentially abundant 
taxa is believed to be large as indicated in the software 
tutorial. For metagenomeSeq, we use “fitFeatureModel” 
with the recommended Wrench normalization method 
as described in the package tutorial [39]. We label 
the resulting procedure as “MSeq(Wrench).” We also 
include the traditional generalized linear model (glm) 
with a quasi-Poisson family and a log link function. To 
account for library size variation, we calculate the geo-
metric mean of pairwise ratios (GMPR) size factor [37] 
and use the log(GMPR size factor) as the offset. Wald 
test is used for significance testing. We label this proce-
dure as “GMPR + glm.” For Wilcoxon rank-sum test, we 
compare three different normalization strategies includ-
ing total sum scaling (TSS), rarefaction, and GMPR nor-
malization. They are labeled as “TSS + Wilcox,” “Rarefy 
+ Wilcox,” and “GMPR + Wilcox,” respectively. edgeR 
and DESeq2, which have been widely used for microbi-
ome data [40], are also compared. Instead of using their 
native size factor, which is not appropriate for microbi-
ome data due to zero inflation, we use the GMPR size 
factor instead, and the resulting procedures are denoted 
as “GMPR + DESeq2” and “GMPR + edgeR.”

For all simulated datasets, taxa with prevalence less 
than 10% or the maximum proportion less 0.2% are 
excluded from testing as is usually done in practice. For 
consistency, all filtering steps in the evaluated methods 
are disabled, and the same preprocessed datasets are 
used as the input to all methods.

Performance evaluation
We evaluate the performance of DAA methods based on 
their ability to control for false positives and their power 
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to detect the true positives after applying false discovery 
rate (FDR) control (BH procedure [52]) at the 5% target 
level. False-positive control was assessed based on the 
observed FDR, which is the false discovery proportion 
(FDP) averaged over 100 simulation runs (1000 simula-
tion runs for the global null). Power was assessed based 
on the average true positive rate (TPR). FDP and TPR are 
defined as follows:

where FP, TP, and FN are the number of false positives, 
true positives, and false negatives, respectively. To facili-
tate assessment and interpretation, we use a scoring sys-
tem to summarize the performance across settings (Table 
S3):

False‑positive control scoring system  Observed FDR ∈ 
(0, 0.05), (0.05, 0.1), (0.1, 0.2), and (0.2, 1) scores 3 stars 
(***, blue), 2 stars (**, yellow), 1 star (*, red), and 0 star 
(“×”, gray), respectively. The total score is the number of 
stars the method receives for each setting.

Power scoring system  We rank the methods based on 
their average TPRs (higher rank, better power). The total 
score is the sum of the ranks for each setting.

FDP =
FP

TP + FP
,TPR =

TP

TP + FN

Overall score  To produce an overall score, we first con-
vert the total FDR and TPR scores into ranks (“TPR rank” 
and “FDR rank”) so that equal weights are put on false-pos-
itive control and power. These ranks are summed for each 
method to produce an “overall score.” The order of the meth-
ods displayed in the figures is based on the overall score.

Performance summary criteria
To have an overview of the performance of the evalu-
ated DAA methods, we summarize the performance 
using different evaluation metrics (Fig.  6). For each 
metric, the performance of each method is considered 
either “good,” “intermediate,” or “poor” based on the 
criteria stated in Table S4. Stability is assessed based 
on the Spearman correlation of p-values for those com-
mon taxa when no filtering or strict filtering (preva-
lence < 40% or max proportion < 0.2%) was imposed.

Evaluation of differential abundance analysis methods 
based on experimental datasets
The experimental datasets consist of 106 datasets 
retrieved from curatedMetagenomicData [53] (48 data-
sets), HMP16SData [54] (54 datasets), and others [17, 55] 
(4 datasets) (Table S5). For datasets with multiple groups, 
we split them into multiple two-group comparison 

Table 2  Differential abundant analysis methods evaluated in this study

Method Addressing compositional effects Handling zeros Model Covariate/
confounder 
adjustment

GMPR + Wilcox GMPR None Wilcoxon rank-sum test ✗
TSS + Wilcox Total sum scaling (TSS) ✗
Rarefy + Wilcox Rarefaction (TSS equivalent) ✗
GMPR + DESeq2 Geometric mean of pairwise ratios (GMPR) Model (overdispersion) Negative binomial model ✓
GMPR + edgeR GMPR Model (overdispersion) Negative binomial model ✓
Wrench + MSeq Wrench Model (zero inflation) Zero-inflated log-normal model ✗
RAIDA Reference Model (zero inflation) Zero-inflated log-normal model ✗
ANCOM-BC Bias correction Pseudo-count Log-linear model ✓
DACOMP Reference None Wilcoxon rank-sum test ✗
LDM TSS None Linear model ✓
Omnibus GMPR Model (zero inflation) Zero-inflated negative binomial model ✗
Aldex2(Wilcox) Centered log-ratio transformation (CLR) Bayes Wilcoxon rank-sum test ✗
Aldex2(glm) Generalized linear model (GLM) ✓
GMPR + glm GMPR Model (overdispersion) GLM (quasi-Poisson) ✓
Corncob TSS Model (overdispersion) Beta-binomial model ✓
MaAsLin2 TSS Pseudo-count Log-linear model ✓
eBay(Wilcox) CLR Empirical Bayes Wilcoxon rank-sum test ✗

ZicoSeq Reference Empirical Bayes Linear model ✓
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datasets. Samples with less than 100 reads are excluded. 
Since most methods are sensitive to depth confounding, 
we rarefy the datasets if we detect a significant difference 
in sequencing depth between groups (Wilcoxon p-value 
< 0.05). Specifically, if the minimum sequencing depth of 
the dataset is larger than 30,000, we rarefy the dataset to 
its minimum depth; otherwise we rarefy to 30,000. Taxa 
with prevalence less than 10% or the maximum propor-
tion less than 0.2% are excluded from testing to reduce 
the number of the tests. We apply the 16 DAA meth-
ods evaluated in simulations to these datasets, and taxa 
with FDR-adjusted p-values less than 0.05 are considered 
significant.

ZicoSeq: an optimized procedure for differential 
abundance analysis
An omnibus F‑statistic to capture diverse relationships 
between the covariates and the taxa abundance
Suppose the sequencing data consists of n samples and m 
taxa. Denote the Cij (i = 1, ⋯, n; j = 1, ⋯, m) the observed 
count for taxon j in sample i  and Ni = ∑jCij  the number 
of total counts in sample i. Let Yij = Cij/Ni be the observed 
proportion for taxon j in sample i, and μij is the true (unob-
served) proportion. Let Xn × p  the design matrix for the 
covariate(s) of interest and Zn × q the design matrix for 
the covariates we need to adjust. For ease of notation, we 
assume the intercept is contained in Z. With some abuse of 
notation, we also use X and Z to represent the random var-
iables. We assume the following linear model for taxon j:

where g  (; ρ) is a transformation function with a param-
eter ρ, which allows flexible modeling of the relationship 
between the taxa abundance and the covariates, and µc

i  
is the cumulative proportion of a reference set of taxa, 
which are assumed to be non-differential to X, Xi, and Zi 
are the ith row vector of the design matrices, αj and βj are 
the regression coefficients for jth taxa (column vectors), 
and εij  is the error term with mean 0. Here, we use the 
reference approach to address compositional effects, sim-
ilar in spirit to the strategy used in DACOMP [36]. Under 
the linear model setup, we use the traditional F-statistic 
to assess the association between the taxon  j and the 
covariate of interest:

g

(

�ij

�C
i

;�

)

= Xi�j + Zi�j + �ij
(

i = 1,… , n, j = 1,… ,m
)

,

Fρ,j =

(

yTρ,j(HX ,Z−HZ)yρ,j
p

)

(

yTρ,j(I−HX ,Z)yρ,j
n−p−q

) ,

where yρ,j = g
(

µj

µc ; ρ

)

 , μj,and μc  are column vectors for 
μij and µC

i across samples, HX, Z, HZ are the projection 
matrices into the space spanned by (X, Z) and Z, respec-
tively, and I is the identity matrix. Traditional models for 
taxa abundance data usually use a log link/transforma-
tion function, which implicitly assumes that the covariate 
has an exponential effect on the abundance. However, the 
log function puts too much weight on the rare taxa, 
whose measurements are subject to larger measurement 
errors. Moreover, in real scenarios, the actual relation-
ship could be more complex than the log relationship, 
and the relationship could also be taxon-specific. We 
thus propose to use a power transformation function 
g(x; ρ) = xρ, which is similar to the Box-Cox transforma-
tion [56], and could potentially capture a diverse relation-
ship between the taxa abundance and the covariates by 
using different ρs. When ρ is extremely small, it approxi-
mates a log relationship. In order not to miss important 
associations by relying on a single power function, we 
could examine multiple power functions with different 
ρs. An omnibus F-statistic Fo, j can then be defined by tak-
ing the maximum of F-statistic for different ρs:

In the simulation, we used ρ = 0.5, which already pro-
duced satisfactory performance.

Permutation‑based false discovery rate control preserving 
the correlation structure of the abundance data
Due to the use of multiple ρs, the analytical distribution 
of Fo, j under the null is difficult to obtain. We propose to 
use a permutation-based false discovery rate (FDR) con-
trol procedure to identify significant taxa at a target FDR 
level. When there are covariates Z, permutation is not as 
straightforward as the case without Z. Multiple permu-
tation strategies to account for Z have been compared 
in terms of type 1 error control and power [57]. Among 
these, the procedures by Freedman-Lane [58] and Smith 
[57] permutation strategies were found to be overall the 
best. Here, we use the Smith procedure [57], which can 
be described in the following basic steps:

•	 Regress X on Z to obtain the fitted values X̂ and 
residuals Ê.

•	 Permute the residuals Ê , denoted as Êb (b = 1, 2, ⋯, 
B), and add Êb to X̂ to obtain Xb.

•	 Calculate Fb
O,j based on Xb and Z.

FO,j = max
ρ

(

yTρ,j(HX ,Z−HZ)yρ,j
p

)

(

yTρ,j(I−HX ,Z)yρ,j
n−p−q

) .
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Since the permutation strategy does not use the abun-
dance data, it effectively keeps the correlation structure 
of the taxa abundance data. For a given FO, j  cutoff, we 
estimate the FDR based on the permuted data sets. We 
select the FO, j  cutoff to achieve the desired FDR level 
using the steps below:

•	 Order FO, j (large to small): FO, (1), FO, (2), …, FO, (m)
•	 Let Fb

O,k be the omnibus F-statistic for taxon k in bth 
permutation (k = 1, …, m, b = 1, 2, ⋯, B).

•	 For a cutoff FO, (j),we conservatively estimate the FDR 
by the following:

•	 For a given FDR level α, we reject taxa with indices 
less than or equal to the following:

Inference about the underlying true proportions using 
an empirical Bayes approach with an informative beta 
mixture prior
Instead of using an uninformative prior or a beta prior to 
infer the underlying true proportions, we propose to use 
an informative beta mixture prior as follows:

for the underlying true proportions μij. The mixture model 
is motivated by the observation that some taxa show two 
modes in the abundance distribution [59]. The bimodal dis-
tribution could also result from a specific sampling scheme 
such as case-control design, where the cases and controls 
have different distributions. Moreover, excessive zeros could 
be efficiently modeled by using a mixture component close to 
0. Even in those taxa with a unimodal distribution, the mix-
ture distribution tends to fit the data better due to the 
increased modeling power with more parameters. With the 
mixture prior, we use the empirical Bayes (EB) approach to 
obtain the posterior distribution, from which we generate 
posterior samples. These posterior samples can then be used 
in the procedures stated above. The EB approach estimates 
the hyper-parameters of the mixture prior by maximizing the 
marginal likelihood of the data. Expectation-maximization 
(EM) algorithm can be used to obtain the estimates. With the 
hyper-parameter estimates 

(

π̂j , âj1, b̂j1, âj2, b̂j2

)

j=1,2,...m
 , we 

sample μij from the posterior distribution:

q̃(j) =

∑

k ,b #
(

Fb
O,k ≥ FO,(j)

)

/B

j

argmaxj
(

q̃(j) ≤ α
)

�ij ∼ �jBeta
(

aj1, bj1
)

+

(

1 − �j
)

Beta
(

aj2, bj2
)

, i = 1,… , n;j = 1,… ,m

where

Figures S2 and 3 show the fit of the estimated beta mix-
ture prior to the observed proportions for several rep-
resentative taxa from two real datasets. We can see the 
beta mixture prior fits better than the beta prior based 
on the COMBO [60] (n = 98) and AGP [43] (n ≈ 10, 000) 
datasets.

The posterior inference of the underlying true propor-
tions can be regarded as a new approach for normali-
zation. When the sequencing depth is associated with 
the variable of interest, using the posterior proportions 
instead of the observed proportions reduces type 1 error 
inflation for rare taxa. Figure S4a shows the p-value dis-
tributions based on Wilcoxon rank-sum test (10,000 
runs) using different normalization methods when a 
low-abundance taxon (0.4% relative abundance, 25% 
physical absence) is not differentially abundant between 
groups (n = 100), but the sequencing depth differs by 
tenfold (500 vs 5000). Our approach controls the type 
1 error at the nominal level, similar to the rarefaction 
approach (Fig. S4a). In contrast, the test based on the 
observed proportions has severe type 1 error inflation. 
Using the beta prior reduces the type 1 error infla-
tion but could not bring it down to the nominal level. 
Therefore, our posterior inference strategy addresses 
the sequencing depth variation effectively by exploit-
ing the full distributional information in the data. On 
the other hand, the control for false positives does not 
affect the power much as shown in Fig. S4b when the 
abundance of the same taxon (0.4% relative abundance, 
25% physical absence) increases by 25% in one group. 
As expected, our approach is more powerful than the 
rarefaction approach due to using more information 
in the data. For abundant taxa, the new approach does 
not inflate the type 1 error or significantly decreases the 
power. Figure S5 shows the p-value distributions for an 
abundant taxon (9% relative abundance, 25% physical 
absence) under the null (Fig. S5a) and the alternative 
(Fig. S5b).

We therefore use the posterior proportions instead of 
the observed proportions in FO, j. To reduce the variabil-
ity, we draw K posterior samples (default: 25) and derive a 
new test statistic averaging over FO, j.

𝜇∗

ij
∼ 𝜋̂ijBeta

(

Cij + âj1,Ni − Cij + b̂j1

)

+

(

1 − 𝜋̂ij
)

Beta
(

Cij + âj2,Ni − Cij + b̂j2

)

,

𝜋̂ij =

𝜋̂jBeta
(

Cij + âj1,Ni − Cij + b̂j1

)

𝜋̂jBeta
(

Cij + âj1,Ni − Cij + b̂j1

)

+

(

1 − 𝜋̂j
)

Beta
(

Cij + âj2,Ni − Cij + b̂j2

) .
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where ykρ,j is defined based on the kth posterior sample.

Reference taxa selection based on the pairwise log ratios
Motivated by the idea of DACOMP [36] and ANCOM 
[18], we address the compositional effects using the ref-
erence taxa approach. The reference taxa are assumed to 
be less likely to be differential with respect to the covari-
ate of interest. Based on the observation that the log ratios 
to other taxa for a differential taxon are mostly differential 
with respect to the covariate of interest while the log ratios 
for a non-differential taxon are mainly non-differential, we 
select the reference taxa based on pairwise log ratios. To 
accommodate the covariates Z, we regress each pairwise 
log ratio (add 1 to all counts to avoid 0 s) on Z using linear 
regressions and obtain the variance estimate for the error 
term. The error variances for those log ratios involving 
the differential taxa are expected to be larger than those 
non-differential taxa since the error term also contains the 
effect from the covariate of interest. For each taxon, we 
then take the median of the error variance estimates based 
on the log ratios to all other taxa and use the median sta-
tistic to rank the taxa. Finally, we select 50% taxa with the 
lowest error variances as the reference set. This approach 
uses a similar idea of DACOMP but is more flexible and 
can address covariates. To further improve the robustness 
of ZicoSeq for strong compositional effects, we exclude 
taxa with the lowest p-values (default: 20%) in the refer-
ence set and repeat running ZicoSeq for several iterations 
(default: 6). The 50% and 20% thresholds are determined 
empirically, and they generally lead to satisfactory perfor-
mance in most settings. Some deviations from these two 
default thresholds only affect the results slightly (see Fig. 
S6, where we select 40% taxa with the lowest error vari-
ances as the reference set and further exclude 10% most 
significant taxa from the reference set in each iteration).

Results
A semiparametric simulation framework for realistic 
microbiome data generation
Our semiparametric framework starts with randomly 
drawing samples from a large reference dataset (e.g., data 
from the Human Microbiome Project (HMP)) [42], and 
these reference samples then serve as templates to gener-
ate new samples. For each reference sample, we infer its 
true composition, and the covariate/confounder effects 
are then added parametrically (“Methods”, Fig. S1). We 

F∗
O,j = maxρ

1

K

∑K

k=1

(

ykρ,j
T
(HX ,Z−HZ)ykρ,j

p

)

(

ykρ,j
T
(I−HX ,Z)ykρ,j
n−p−q

) .

compare the sample- and taxon-level characteristics of 
the microbiome data generated by our semiparametric 
approach to those by the Dirichlet-multinomial (DM) 
model. Sample-level characteristics are assessed by the 
percentage of zeros (sparsity), alpha diversity (Shannon 
diversity index), and β-diversity (Bray-Curtis distance). 
Taxon-level characteristics are assessed by taxa preva-
lence, mean and variance of the taxa relative abundance, 
and between-taxa correlation of the relative abundances.

For sample-level characteristics, the distribution of sam-
ple sparsity (Fig. S7a) of the simulated data by our sem-
iparametric approach is close to that of the real dataset. In 
contrast, DM produces a significantly lower sparsity level 
suggesting DM tends to underestimate the sparsity. The 
distribution of the Shannon diversity index by the semipar-
ametric approach also resembles that of the real data, while 
DM results in a slightly higher Shannon diversity index 
(Fig. S7b). We also compare the β-diversity (Bray-Curtis 
distance) of the simulated data to that of the real data based 
on the first two principal coordinates from principal coor-
dinate analysis [61] (Fig. S7c). A clear overlap between the 
data simulated by the semiparametric approach and the 
real data indicates that the inter-sample relationship is well 
preserved by the proposed approach. In contrast, DM-sim-
ulated data lack the variability, and the distance between 
samples is significantly smaller than that in the real data.

For taxon-level characteristics, the distribution of the 
taxa prevalence in the simulated data by the semipara-
metric approach is similar to that of the real data, while 
the DM-simulated data has a slightly higher taxa preva-
lence (Fig. S7d). The semiparametric approach also cap-
tures well the distribution of the mean and variance of 
the taxa relative abundance observed in the real data 
(Fig. S7 e–f). In contrast, the corresponding distribution 
for the DM-simulated data significantly deviates from 
the real data, especially for vaginal data (Fig. S7e). Spe-
cifically, DM tends to overestimate the mean abundance 
for those less abundant taxa and underestimates the 
mean abundance for those abundant taxa (Fig. S8). Thus, 
DM-simulated data have a higher evenness, explaining a 
larger Shannon diversity index observed in the sample-
level characteristics. In terms of the variance of the taxa 
relative abundance, the DM model severely underesti-
mates the variance (Fig. S7f ), indicating that a common 
dispersion parameter for all taxa is far from realistic. 
The heat map based on the taxa relative abundance data 
also shows a high similarity between the semiparametric 
approach-simulated data and the real data (Fig. S9). For 
between-taxa correlations of the relative abundances, 
the semiparametric approach largely preserves the cor-
relation structure observed in real data; the distribution 
of the Spearman correlation coefficients shows a high 
agreement with that of the real data (Fig. S7g). However, 
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the correlation structure in the DM-simulated data is 
very different, the range of the correlation coefficients 
is much narrower, and the distribution is almost sym-
metrical around 0 with slightly more negative values. For 
real data, the distribution of the correlation coefficients 
has more positive values for both the stool and vaginal 
data, and the distribution is bimodal for the vaginal data. 
Therefore, we conclude that semiparametric approach 
could capture both the first- (prevalence, mean, and 
variance) and second-order (correlation) characteristics 
observed in the real microbiome data.

A benchmark study of differential abundance analysis 
methods using the semiparametric simulation framework
Next, we evaluate the performance of DAA methods 
using the proposed semiparametric simulation frame-
work. We select methods from well-known labs and 
methods that have shown competitive performance. 
A total of 16 methods are included in the evaluation 
(Table  2, Table S2). We focus on the two-group com-
parison problem since all the DAA methods could be 
applied to this setting. To dissect DAA methods’ per-
formance, we simulate data from both a high-diversity 
community (stool) and a low-diversity community 
(vaginal) and include three levels of signal densities 
(“low,” “medium,” “high”) and two differential modes 

(“abundant” and “rare”) depending on whether the dif-
ferential taxa are relatively rare or abundant. To study 
the robustness of DAA methods to compositional 
effects, we simulate both “balanced” and “unbalanced” 
changes depending on whether the direction of change 
is random or the same. False-positive control (observed 
false discovery rate, FDR) and power (true positive rate, 
TPR) after false discovery rate (FDR) control at 5% level 
are used to measure the performance. The configura-
tions of the studied settings are summarized in Table 1.

Performance of differential abundance analysis methods 
under the global null setting
We first study the global null setting, where there are no 
differential taxa between the two groups (setting 1). In 
this case, FDR is equivalent to the family-wise error rate 
(FWER), which is the probability of making any false 
claims in multiple testing. We compare the FDR control 
of different DAA methods at 5% nominal level (Fig. 1, Fig. 
S10). For stool data, most methods could control the FDR 
close to the target level (Fig. 1, left, Fig. S10). Omnibus, 
ANCOM-BC, and GMPR + glm show some FDR infla-
tion (5–20%) when the sample size is small (n = 50). In 
contrast, GMPR + edgeR and GMPR + DESeq2 could 
not control the FDR properly (FDR > 20%) (Fig.  1, Fig. 
S10). The false-positive control becomes even worse 
when the native normalization methods are used (RLE 

Stool Vaginal
Taxa number 50 500 Score 50 500 Score
Sample size 50 200 50 200 50 200 50 200

Aldex2(Wilcox) *** *** *** *** 12 *** *** *** *** 12
corncob *** *** *** *** 12 *** *** *** *** 12
DACOMP *** *** *** *** 12 *** *** *** *** 12

eBay(Wilcox) *** *** *** *** 12 *** *** *** *** 12
GMPR+Wilcox *** *** *** *** 12 *** *** *** *** 12
Rarefy+Wilcox *** *** *** *** 12 *** *** *** *** 12
TSS+Wilcox *** *** *** *** 12 *** *** *** *** 12
MaAsLin2 *** *** *** ** 11 *** *** *** *** 12

Wrench+MSeq *** *** *** *** 12 ** *** ** *** 10
LDM *** *** *** ** 11 *** ** *** *** 11
RAIDA *** *** *** *** 12 *** *** x *** 9

GMPR+glm ** *** *** *** 11 * x *** ** 6
ANCOM-BC ** *** * *** 9 ** ** x *** 7
Omnibus * *** * *** 8 x ** x ** 4

GMPR+DESeq2 x x x x 0 x x x x 0
GMPR+edgeR x x x x 0 x x x x 0

Fig. 1  Performance of differential abundance analysis methods under the global null setting. Performance is assessed by the observed false 
discovery rate (FDR) level calculated as the percentage of the 1000 simulation runs making any false discoveries. The blue, yellow, red, and gray 
colors indicate the observed FDR level in (0, 0.5), (0.05–0.1), (0.1, 0.2), and (0.2, 1), respectively. Blue, yellow, red, and gray receive three (***), two (**), 
one (*), and zero (X) stars, respectively. The last column “score” indicates the total number of stars (*) each method receives
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and TMM for DESeq2 and edgeR, respectively) (Fig. 
S11). For vaginal data, more methods fail to control the 
FDR within 20% (Fig. 1, right, Fig. S10). Wrench + MSeq, 
GMPR + glm, RAIDA, Omnibus, and ANCOM-BC all 
show decreased performance. Particularly, Omnibus and 
ANCOM-BC do not control the FDR for small sample 
sizes (n = 50), while GMPR + glm does not perform well 
when the taxa number is small (m = 50).

Performance of differential abundance analysis methods 
under balanced changes
We next study the performance when there are differential 
signals between the groups (n = 100, m = 500, setting 2). We 
first evaluate the performance where the changes are bal-
anced, i.e., the abundance of the differential taxa increases or 
decreases in one group randomly. In this setting, the compo-
sitional effects are considered to be very moderate since the 
effects of those differential taxa tend to balance out.

For stool data, all the methods, except GMPR + edgeR, 
GMPR + DESeq2, and RAIDA, could control the FDR 
at the target level across signal densities and differential 
modes (Fig.  2a, Fig. S12a). In terms of statistical power, 
LDM is the most powerful, followed by ANCOM-BC, 
Omnibus, Wrench + MSeq, and MaAsLin2. The three 
variants of Wilcoxon rank-sum test with different nor-
malization strategies (Rarefy + Wilcox, TSS + Wilcox, 
GMPR + Wilcox) perform equally well and are only 
slightly less powerful than the most powerful methods. 
In contrast, eBay(Wilcox), DACOMP, Aldex2(Wilcox), 
corncob, and GMPR + glm are less powerful especially 
when the differential taxa are rare.

For vaginal data, the FDR control performance decreases 
substantially for many methods (Fig.  2b, Fig. S12b). 
Although LDM, Omnibus, and ANCOM-BC remain pow-
erful, FDR inflation has been observed under some set-
tings, particularly when the differential taxa are abundant. 
In contrast, Wrench + MSeq is overall the best; it controls 
the FDR at the target level across settings, and the power is 
among the highest. GMPR + Wilcox, DACOMP, and TSS 
+ Wilcox also control the FDR at the target level, but their 
power is very low for rare differential taxa. Interestingly, 
rarefaction (Rarefy + Wilcox) significantly improves the 
power to detect rare differential taxa, while the power to 
detect abundant differential taxa remains similar, indicat-
ing that rarefaction can reduce the variability in detection 
power due to uneven sequencing depth for those rare taxa.

Performance of differential abundance analysis methods 
under unbalanced changes
When the compositional effects are moderate as in 
the balanced change scenario, most methods have 

satisfactory FDR control. Next, we study the performance 
of DAA methods under strong compositional effects (n = 
100, m = 500) (setting 6). This is achieved by simulating 
unbalanced changes, i.e., the abundance of differential 
taxa increases in one group only and letting the differen-
tial taxa be relatively abundant. Such extreme scenarios 
may not be common in practice, but it could be used to 
test the limit of DAA methods.

For stool data, most methods do not control for 
false positives across signal densities, and the FDR 
control performance worsens as the signal becomes 
denser (Fig.  2c, Fig. S12c). For those methods based 
on TSS normalization or equivalent (LDM, MaAsLin2, 
TSS + Wilcox, Rarefy + Wilcox, GMPR + Wilcox, 
and eBay(Wilcox)), their FDR control is acceptable 
(< 20%) only when the signal density is low. In con-
trast, methods that explicitly address compositional 
effects (Aldex2(Wilcox): CLR, Omnibus/GMPR + glm: 
GMPR, Wrench + MSeq: Wrench, RAIDA/DACOMP: 
reference taxa, ANCOM-BC: bias correction) indeed 
have improved FDR control performance. However, 
as the signal density increases to 20%, only Wrench 
+ MSeq, DACOMP, and RAIDA could control the 
FDR within a reasonable range (< 10%). Among these 
methods, DACOMP and Wrench + MSeq offer the 
strongest FDR control with DACOMP being the only 
method that controls the FDR across signal densities. 
Both Wrench + MSeq and DACOMP are powerful 
in this setting. For vaginal data, FDR control further 
deteriorates for most methods (Fig.  2d, Fig. S12d). 
Overall, Wrench + MSeq and DACOMP still outper-
form other methods. While DACOMP is less powerful 
than Wrench + MSeq, its FDR control performance is 
superior.

Impact of the sample size and the number of taxa
For pilot microbiome studies, the sample size is usu-
ally small. It is interesting to see how the DAA meth-
ods perform when the sample size is small. We thus 
simulate datasets with a sample size of 50 (25 in each 
group) (settings 3 and 7). As we decrease the sample 
size, we see a significant decrease in power as expected 
(Fig. S13). When the changes are balanced, we see a 
significant decrease in FDR control performance for 
ANCOM-BC and Omnibus (Fig. S13 a–b). In contrast, 
LDM controls the FDR across signal densities and is 
the most powerful method for both stool and vagi-
nal data. Wrench + MSeq also performs well, but the 
power is slightly lower than LDM for stool data. When 
the changes are unbalanced, Wrench + MSeq remains 
robust and powerful across settings and has overall 
the best performance (Fig. S13 c–d). While DACOMP 
controls the FDR at the target level across signal 
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densities for both vaginal and stool data, its power for 
vaginal data is extremely low.

DAA has also been performed at higher taxonomic 
levels such as the family and genus level to identify clus-
tered signals. As the number of analyzed taxa becomes 
smaller, the compositional effect becomes stronger. To 
study the impact of a small taxa number, we perform 
additional simulations by including only 50 most abun-
dant taxa in DAA (settings 4 and 8, Fig. S14). When the 
changes are balanced, many methods have deteriorated 
FDR control performance, compared to their perfor-
mance with 500 taxa (Fig. S14 a–b). FDR inflation is 
more severe when the differential taxa are abundant. 

In particular, LDM, Omnibus, and GMPR + glm could 
not control the FDR properly (> 20%) for vaginal data 
(Fig. S14b). The performance of Wrench + MSeq is not 
as remarkable in this setting; some FDR inflation has 
been observed for both stool and vaginal data, and the 
power is surprisingly low for stool data when the dif-
ferential taxa are abundant. Overall, ANCOM-BC and 
Aldex2(Wilcox) are the two recommended methods in 
this setting. When the changes are unbalanced, FDR 
control becomes even more challenging (Fig. S14 c–d). 
For stool data, only RAIDA and ANCOM-BC could 
control the FDR under a reasonable level (no gray color, 
< 20%) when the signal density is high. Their power is 

Fig. 2  Performance of differential abundance analysis methods under the balanced change setting for a stool and b vaginal data and unbalanced 
change setting for c stool and d vaginal data (sample size = 100, taxa number = 500). Performance is assessed by the observed false discovery 
rate (FDR) level and average true positive rate (TPR). The color of the bar indicates the FDR control performance. The blue color indicates that the 
method controls the FDR at the 5% target level (the 95% confidence interval covers 5%). Yellow, red, and gray colors indicate the observed FDR level 
in (0.05–0.1), (0.1, 0.2), and (0.2, 1), respectively. The length of the bar is proportional to the TPR, and the actual TPR is shown in the bar. FDR and TPR 
ranks are based on the average FDR and TPR score across signal densities and differential modes. The order of the method is arranged based on the 
sum of the FDR and TPR ranks
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also among the highest. For vaginal data, Wrench + 
MSeq, DACOMP, and RAIDA have the overall best 
FDR control performance. Among the three, DACOMP 
is the only method that controls the FDR at the target 
level across signal densities. In terms of power, Wrench 
+ MSeq and DACOMP are substantially more powerful 
than RAIDA.

ZicoSeq: an optimized procedure for differential 
abundance analysis of zero‑inflated compositional 
sequencing data
According to the evaluation above, we found that none 
of the existing DAA methods is robust and powerful 
across settings. For example, those TSS-based methods 
such as TSS + Wilcox, Rarefy + Wilcox, LDM, MaAs-
Lin2, and corncob do not control the FDR well under 
strong compositional effects, ANCOM-BC and Omni-
bus have severe FDR inflation under small sample sizes 
or strong compositional effects, and Aldex2(Wilcox) and 
DACOMP tend to be less powerful for rare differential 
taxa. Therefore, there is no optimal method that can be 
applied in all settings, and the best method depends on 
the specific setting. In practice, we do not know a pri-
ori which specific setting the real data belongs to. This 
makes the selection of the suitable DAA method difficult 
for end users. Although Wrench + MSeq is overall the 
most robust and powerful, it is not flexible; currently, it 
only supports two-group comparison and cannot adjust 
for covariates. This is a major drawback since microbi-
ome studies are subject to many confounders [44–48], 
and confounder adjustment is necessary to reach a valid 
conclusion. In addition, some aberrant behavior has been 
noted under small numbers of taxa. Therefore, an opti-
mized procedure to perform DAA is still highly desirable.

Based on the observation that DACOMP offers the 
best FDR control under strong compositional effects 
and LDM has the highest power when the compositional 
effect is moderate, we design an optimized procedure, 
ZicoSeq, drawing the respective strength of DACOMP 
and LDM. Specifically, we use a similar reference-based 
normalization strategy in DACOMP to address composi-
tional effects and select the reference taxa based on pair-
wise log ratios. To perform association testing, we follow 
LDM by using a linear model-based permutation test. 
Permutation test, which assesses the statistical signifi-
cance by permutations, depends on fewer assumptions 
and is expected to be more robust to model misspecifica-
tion. To address zero inflations, we develop a new zero 
imputation method exploiting the full distributional 
information in the abundance data. The method assumes 
that the underlying proportion follows a beta mixture dis-
tribution and uses an empirical Bayes approach to draw 
posterior samples of the underlying true proportions 

(“Methods”). The test statistic is then averaged over the 
posterior samples.

ZicoSeq robustly and powerfully detects differential taxa 
across settings
We apply ZicoSeq to the same simulated datasets used to 
evaluate the performance of existing DAA methods. For 
the global null setting, ZicoSeq effectively controls the 
FDR at the targeted level for both vaginal and stool data 
(Fig. S15). We then compare the performance of ZicoSeq 
to the top-ranking method in various differential settings 
(Fig. 3, Fig. S16). When the changes are balanced (Fig. 3a, 
Fig. S16a), ZicoSeq controls the FDR across settings for 
both stool and vaginal data. The power of ZicoSeq is 
similar to that of LDM, but ZicoSeq offers better FDR 
control than LDM for vaginal data when the differential 
taxa are abundant. When the changes are unbalanced 
(Fig.  3b, Fig. S16b), we do observe some FDR inflation 
for ZicoSeq, but the overall performance is compara-
ble to Wrench + MSeq. When the sample size is small 
(n = 50), ZicoSeq remains as powerful as LDM when 
the changes are balanced and is comparable to Wrench 
+ MSeq when the changes are unbalanced (Fig.  3 c–d, 
Fig. S16 c–d). A larger sample size (n = 1000) retains 
the same trend (Fig. S17). Remarkably, when the num-
ber of tested taxa is small (m = 50), ZicoSeq controls the 
FDR even under the unbalanced change setting, and its 
power is similar to the most powerful method (Fig. 3 e–f, 
Fig. S16 e–f ). Based on these results, we conclude that 
ZicoSeq is more robust than existing methods, and its 
performance is always close to or slightly better than the 
best-performing method.

ZicoSeq improves over existing methods in the presence 
of confounders
Although all the existing DAA methods can be applied 
to the two-group comparison problem, some methods 
including Wrench + MSeq are unable to adjust covari-
ates. ZicoSeq is based on linear models, and covariate 
adjustment is straightforward in its framework. We 
next compare the performance of ZicoSeq to those 
DAA methods capable of adjusting covariates when 
there are confounders. We simulate one continuous 
confounder (“Methods”), which is correlated with both 
the group membership and the abundances of a ran-
dom subset of taxa (settings 9 and 10). We compare 
ZicoSeq to GMPR + DESeq2, GMPR + edgeR, GMPR 
+ glm, Aldex2(glm), ANCOM-BC, corncorb, LDM, 
and MaAsLin2 (Fig.  4, Fig. S18). When the changes 
are balanced (Fig. 4 a–b, Fig. S18 a–b), most methods 
could control the FDR well, except GMPR + edgeR, 
GMPR + DESeq2, and GMPR + glm. Among methods 
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that control the FDR, ZicoSeq, ANCOM-BC, MaAs-
Lin2, and LDM are the most powerful for stool data, 
while ZicoSeq and ANCOM-BC are the most power-
ful for vaginal data. Aldex2(glm) and corncob, on the 
other hand, are much less powerful. For LDM and 
MaAsLin2, their performance deteriorates for vaginal 
data. When the changes are unbalanced (Fig.  4 c–d, 
Fig. S18 c–d), Aldex2(glm) has the best FDR control 
performance, but its power is extremely low. In con-
trast, ZicoSeq offers reasonable FDR control across 
settings for both stool and vaginal data and is substan-
tially more powerful than Aldex2(glm). Other methods 
do not control FDR properly when the signal density is 
medium/high for both stool and vaginal data. There-
fore, when there are confounders, ZicoSeq stands out 
among its competitors.

ZicoSeq controls for false positives when the sequencing 
depth differs between groups
In microbiome sequencing, when the samples are not 
fully randomized, the sequencing depth likely differs 
between groups [15]. This can happen, for instance, 
when different groups of samples are placed on different 
sequencing plates. As the detection probability depends 
highly on the sequencing depth, such depth confounding 
could lead to potential false positives if not appropriately 

taken care of [49]. We thus simulate two groups of sam-
ples whose sequence depth differs by fourfold (setting 
5). From Fig. 5 and Fig. S19, we can see that most evalu-
ated methods have impaired FDR control in the presence 
of sequencing depth confounding. Rarefaction effec-
tively controls FDR when Wilcox rank-sum test is used. 
DACOMP and corncob also control the FDR at the target 
level, while LDM and MaAsLin2 control the FDR within 
10%. Other methods have severely inflated FDRs. When 
the sequencing depth difference increases to ninefold 
(Fig. S20), DACOMP starts to have inflated FDR. In con-
trast, Rarefy + Wilcox and corncob are still able to con-
trol the FDR at the target level. ZicoSeq, by using the new 
zero-imputation approach, effectively controls the FDR 
without the need for rarefaction, and its power is among 
the highest.

Computational efficiency, stability, and performance 
summary
With the increasing scale of microbiome studies [42, 43], 
a computationally efficient DAA procedure is more likely 
to be adopted by the field. We thus compare the com-
putational speeds of the evaluated DAA methods (Fig. 
S21). For the majority of the DAA methods, computa-
tion will not be a hurdle for their adoption. For a typical 
microbiome dataset (n = 100, m = 500), most of them 

Fig. 3  Comparison of ZicoSeq to the top-scoring method under different settings for stool and vaginal data. a Balanced and b unbalanced change 
setting (sample size = 100, taxa number = 500). c Balanced and d unbalanced change setting (sample size = 50, taxa number = 500). e Balanced 
and (f ) unbalanced change setting (sample size = 100, taxa number = 50). Performance is assessed by the observed false discovery rate (FDR) level 
and average true positive rate (TPR). The color of the bar indicates the FDR control performance. The blue color indicates that the method controls 
the FDR at the 5% target level (the 95% confidence interval covers 5%). Yellow, red, and gray colors indicate the observed FDR level in (0.05–0.1), 
(0.1, 0.2), and (0.2, 1), respectively. The length of the bar is proportional to the TPR, and the actual TPR is shown in the bar
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can complete the analysis within 1 min on our computer 
system (×86_64-pc-linux-gnu (64 bit) Red Hat Enter-
prise Linux Server 7.9, Intel(R) Xeon(R) CPU E5-2698 v4 
@ 2.20GHz, 8GB running memory), with LDM requiring 
longer computation than others (146.1s vs 1.2–57.8 s). 
For large sample sizes, ZicoSeq can complete the analy-
sis at an average of 5 and 25 min for n = 1000 and 5000, 
respectively (Fig. S22). Based on the Green Algorithms 
(green-algorithms.org v2.1 [62]) and the geographic 
location of Minnesota, USA, ZicoSeq has a carbon foot-
print of 0.06 g CO2e, 0.59 g CO2e, and 3.16 g CO2e for n 
= 100, 1000, and 5000, respectively.

We also evaluate the stability of the DAA methods. 
Ideally, a stable DAA method should produce similar 
results regardless of the filtering criterion used, i.e., we 
would expect highly similar p-values for those common 
taxa regardless of whether we exclude 20% or 40% less 
prevalent taxa. To test for stability, we calculate the aver-
age Spearman correlation of the p-values based on two 
filtering criteria (0% vs 40% prevalence filtering) for each 
method. Most methods produce highly correlated p-val-
ues (mean Spearman ρ range: 0.93–1, Fig. S23) except 
DACOMP and RAIDA, which appear to be less stable 

than the other methods (mean Spearman ρ: 0.52 for both 
RAIDA and DACOMP).

Finally, we summarize the DAA performance using 
different metrics based on our simulation studies 
(Fig.  6). For each evaluation metric, we classify each 
method as “good,” “intermediate,” or “poor” (Table S4). 
Although it is difficult to capture the full complexity of 
the evaluation based on a crude categorization, the heat 
map in Fig. 6 provides a convenient way to convey the 
major findings in the simulation studies. We can see 
that DACOMP offers the best FDR control, while LDM 
is among the most powerful. ZicoSeq, on the other 
hand, has overall the best performance; its FDR control 
is satisfactory across settings (no “red”), and the power 
is as high as LDM (all “blue”).

Detection pattern on real datasets
It is informative to see how these methods perform on 
real datasets. We thus compare the evaluated DAA meth-
ods on 106 experiment datasets with binary outcomes 
collected from different sources (sample size range: 
15–1688, taxa number range: 52–2281, Table S5). Since 
the ground truth is unknown, we focus on the detection 

Fig. 4  Performance of ZicoSeq in the presence of confounders under balanced change setting for a stool and b vaginal data and unbalanced 
change setting for c stool and d vaginal data (sample size = 100, taxa number = 500). Performance is assessed by the observed false discovery rate 
(FDR) level and average true positive rate (TPR) in comparison with methods capable of covariate adjustment. The color of the bar indicates the 
FDR control performance. The blue color indicates that the method controls the FDR at the 5% target level (the 95% confidence interval covers 5%). 
Yellow, red, and gray colors indicate the observed FDR level in (0.05–0.1), (0.1, 0.2), and (0.2, 1), respectively. The length of the bar is proportional 
to the TPR, and the actual TPR is shown in the bar. FDR and TPR ranks are based on the average FDR and TPR score across signal densities and/or 
differential modes. The order of the method is arranged based on the sum of the FDR and TPR ranks
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pattern and to see if the pattern reflects what we have 
observed in simulations.

We find that the number of differential taxa detected 
by DAA methods varies tremendously (Fig.  7a). Hierar-
chical clustering based on the number of detected dif-
ferential taxa vaguely groups the 16 methods into 4 main 
groups. RAIDA, corncob, GMPR + glm, DACOMP, and 
Aldex2(Wilcox) (groups 1 and 2) tend to find less signifi-
cant taxa than other methods, while GMPR + DESeq2 
and Omnibus (group 4) are on the opposite side. The 
results are overall similar to those in the simulation 
studies, where we found that GMPR + DESeq2 is usu-
ally the most powerful among the evaluated methods, 
and RAIDA, corncob, GMPR + glm, DACOMP, and 
Aldex2(Wilcox) tend to be less powerful. Group 3 con-
sists of the rest nine methods including ZicoSeq.

Next, we study the overlap of the significant taxa 
between methods across the 106 datasets (Fig.  7b). The 
average overlap with other methods ranges from 0.31 
(RAIDA) to 0.58 (GMPR + Wilcox) at 5% FDR. We also 
see a cluster of methods, which have relatively large over-
laps with each other (lower left corner). Overall, the over-
laps are considered to be moderate, and it is expected that 
different methods will produce quite discordant results. 

The median percentages of taxa detected by at least one 
method are 85%, 91%, and 94%, for 5%, 10%, and 20% FDR, 
respectively (Fig.  7c). The surprisingly high coverage of 
taxa detected by at least one method raises concerns about 
potential cherry-picking if one does not declare the DAA 
tools they have tried in advance. It is very likely to find the 
taxa in favor of one’s hypothesis after trying out multiple 
DAA tools. Therefore, in order to increase the reproduc-
ibility of microbiome research, it is imperative for the field 
to have a consensus DAA tool, which is robust and power-
ful across settings so the end users could use it without the 
need for choosing the “best” tool themselves.

Finally, we evaluate the FDR control of DAA methods 
under the global null by shuffling the outcome labels 
for the 106 datasets. Using the 5% FDR cutoff, an ideal 
DAA method should control the FDR at or under that 
level. As a result, most methods perform well with a rea-
sonable observed FDR and a small number of detected 
taxa (Fig.  7d, Fig. S24). However, GMPR + edgeR and 
GMPR + DESeq2 show the highest false-positive rates 
as indicated by larger numbers of significant taxa and 
highly observed FDRs. Among the rest methods, RAIDA 
and Omnibus have significantly elevated FDR levels, 
while Wrench + MSeq, corncob, GMPR + glm, and 

Fig. 5  Performance of ZicoSeq when the sequencing depth differs by fourfold between the groups. The results are based on stool data under the 
balanced setting (sample size = 100, taxa number = 500). Performance is assessed by the observed false discovery rate (FDR) level and average true 
positive rate (TPR) in comparison with all evaluated methods. The color of the bar indicates the FDR control performance. The blue color indicates 
that the method controls the FDR at the 5% target level (the 95% confidence interval covers 5%). Yellow, red, and gray colors indicate the observed 
FDR level in (0.05–0.1), (0.1, 0.2), and (0.2, 1), respectively. The length of the bar is proportional to the TPR, and the actual TPR is also shown in the bar. 
FDR and TPR ranks are based on the average FDR and TPR score across signal densities and differential modes. The order of the method is arranged 
based on the sum of the FDR and TPR ranks
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ANCOM-BC show slight inflation. These results gener-
ally agree with the simulation for the global null setting.

Discussion
Differential abundance analysis (DAA) is one of the most 
fundamental statistical tools for microbiome data analysis 
[63]. Given the importance of this topic, numerous DAA 
tools have been proposed addressing the statistical chal-
lenges facing microbiome data such as zero inflation and 
compositional effects [17, 18, 24–26, 28, 31]. Recently, 
there have been a surge of new statistical methods includ-
ing LDM, DACOMP, corncob, MaAsLin2, and ANCOM-
BC. Although each method has demonstrated its superior 
performance to its predecessors using its own evaluation 
framework, it is unknown which method should be used 
in practice. Trying multiple DAA methods and selecting 
the method in favor of one’s own hypothesis increase the 
risk of false findings and reduce the reproducibility of the 

study [64]. Based on the 106 real datasets, we show that 
the median percentage of taxa detected at least by one 
DAA method (coverage) could be as high as 85% when 
the 5% target FDR level was used (Fig.  7c). Relaxing the 
target FDR level, the coverage can go even higher. For 
some datasets, the coverage could be 100%, meaning that 
one can always find a DAA tool, which declares a random 
taxon to be differential. Therefore, it is imperative for the 
field to reach some consensus about the optimal DAA 
tool or procedure. To achieve this goal, a comprehensive 
evaluation, which covers as many biologically relevant 
scenarios, is critically needed.

In this study, we performed a comprehensive assess-
ment of the performance of the major existing DAA 
methods using the proposed semiparametric simulation 
framework. We show that the semiparametric simulation 
framework was able to recapitulate the essential sample- 
and taxon-level characteristics of the real data and was 

Fig. 6  Performance summary of differential abundance analysis methods based on various evaluation metrics. The first and second parts include 
metrics for false-positive control (false discovery rate, FDR) and power (true positive rate, TPR), respectively. The third part consists of general metrics 
related to the usability of the method. For each metric, the performance is categorized into “poor,” “good,” and “intermediate” (Table S3). “Basic 
setting,” “small number of taxa,” and “small sample” refer to the setting with 100 samples and 500 taxa, 100 samples and 50 taxa, and 50 samples and 
500 taxa, respectively
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suitable for benchmarking the performance of DAA meth-
ods. Due to potential distinct characteristics of microbi-
ome data from different sampling sites, we simulated data 
from both a high-diversity community (stool) and a low-
diversity community (vaginal). To dissect the performance 
of DAA methods, we studied diverse simulation settings. 

We found that the false-positive control was still a major 
issue for most methods, especially when the compositional 
effects were strong and the community diversity was low. 
The two methods developed for RNA-Seq data, DESeq2, 
and edgeR had the worst FDR control and thus were not 
recommended for DAA. Those methods based on total 

Fig. 7  Evaluation of differential abundance analysis (DAA) methods based on 106 experimental datasets. a Heat map showing the numbers of 
significant taxa discovered by each DAA method in each dataset. Each row represents one dataset. The sidebars on the left show the sample 
size and taxa number for each dataset. The color scale for detection power is based on the standardized (scaled and mean centered) number of 
findings for each dataset. Datasets are hierarchically clustered based on Euclidean distance with the complete linkage. Box plots at the bottom 
show the distribution of the standardized number of findings across all datasets for each method. b Overlap of significant taxa (5% FDR) between 
DAA methods. Color and dot size indicate the percentage of overlap. Methods are hierarchically clustered based on Euclidean distance with the 
complete linkage. c The distribution of the percentage of taxa detected by at least one method at FDR 5%, 10%, and 20%. d The distribution of the 
observed false discovery rate (FDR) across the 106 real datasets when the group labels are randomly shuffled. The observed FDR level is calculated 
as the percentage of the 1000 repetitions making any false discoveries
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sum scaling (TSS) such as MaAsLin2, corncob, and LDM 
were more susceptible to FDR inflation due to composi-
tional effects. ANCOM-BC, Aldex2, and Omnibus test did 
improve over those TSS-based methods in FDR control, 
but their performance under strong compositional effects 
was still not satisfactory. Both ANCOM-BC and Omnibus 
test did not work well under a small sample size. Although 
DACOMP offered the best FDR control, its power was 
low under many settings, especially for rare taxa. metage-
nomeSeq with the wrench normalization controlled the 
FDR well across settings, and the power was also decent, 
but currently, it only supports two-group comparison, 
which limits its practical use in real data analysis. When 
the sequencing depth differed between groups, most 
methods failed to control the FDR, indicating rarefaction 
may be still needed for these methods. Based on the evalu-
ation, we conclude that the existing methods still fall short 
of being simultaneously robust, powerful, and flexible, and 
each method only works under specific settings.

To obtain a list of highly confident differential taxa, one 
natural idea is to use ensembling, i.e., running multiple 
methods and using consensus to select the differential 
taxa. We explored the feasibility of this strategy by declar-
ing differential taxa at different consensus levels (20%, 
40%, 60%, and 80%). Figure S25 shows that the ensem-
ble method still could not control the FDR under strong 
compositional effects unless a very high consensus level 
(80%) was used. However, in this case, the power was 
very low. Another idea is to select the best-performing 
method according to the data characteristics and poten-
tial signal structure (signal density, effect size, abundance 
of the affected taxa, and their direction of change). How-
ever, in practice, it is challenging to identify the specific 
setting where a DAA method is optimal.

We thus designed a new procedure, ZicoSeq, which draws 
on the strength of the existing methods, to meet the analy-
sis needs. In the simulation, we found that DACOMP had 
the best FDR control under strong compositional effects, 
while LDM was generally the most powerful (Fig.  6). We 
thus adopted the reference-based approach (DACOMP) to 
address the compositional effects and a linear model-based 
permutation test (LDM) to conduct association testing. Dif-
ferent from the procedure in DACOMP, our reference-based 
approach could adjust for covariates when selecting the 
reference taxa. In the permutation test, we used the Smith 
permutation instead of the Freedman-Lane permutation as 
implemented in LDM for faster computation [57]. In addi-
tion, we proposed a novel zero imputation method based 
on beta mixture prior, exploiting the distributional charac-
teristics of the abundance data. We show that ZicoSeq was 
overall more robust and powerful than existing methods; 
its FDR control and power were all close to or slightly bet-
ter than the top-ranking method across settings. Therefore, 

microbiome researchers can apply ZicoSeq to their datasets 
without worrying about a potential high false-positive rate or 
low power of a specific method for their datasets. Our new 
zero-imputation method, which takes into account the sam-
pling variability and sequencing depth variation, provides 
a new way of addressing excessive zeros. In the presence of 
depth confounding, ZicoSeq was the only method that could 
control the FDR at the target level while maintaining high 
power without the need for rarefaction. ZicoSeq is also flex-
ible. Due to the use of linear models, covariate adjustment 
in ZicoSeq is straightforward. ZicoSeq also allows omnibus 
testing by using different transformations of the abundance 
data. Omnibus testing may improve the power when there 
are diverse relationships between the differential taxa and the 
covariate of interest. It will be an interesting research topic 
to determine the appropriate transformation functions for a 
specific dataset. The permutation-based FDR control proce-
dure in ZicoSeq keeps the correlation structure among the 
taxa abundance data during permutations and thus is adap-
tive to the correlation structure in the data. The traditional 
BH-based FDR control, on the other hand, assumes inde-
pendence among the hypotheses and is shown to be con-
servative when there are positive correlations [65]. Although 
the posterior sampling and permutation are used, ZicoSeq is 
still computationally efficient; it could complete the analysis 
of a typical dataset (e.g., n = 100, m = 500) within seconds.

There are limitations for ZicoSeq. First, the beta mixture-
based imputation procedure was implemented for each 
taxon and did not impose the sum-to-one constraint by 
jointly considering all taxa. Although this simple approach 
works well in practice, a more sophisticated method, 
which considers the compositional constraint, may further 
improve the imputation performance. Second, mild FDR 
inflation was still observed when the compositional effects 
were strong. To design a better reference selection strategy 
or come up with a new way to address compositional effects 
is an interesting direction to pursue. Third, the current 
implementation does not consider the phylogenetic related-
ness among the taxa. Phylogenetically related taxa usually 
share biological traits, and their association pattern with the 
covariate of interest is expected to be similar [66–68]. Such 
prior knowledge may be leveraged to improve the power 
of ZicoSeq as demonstrated in our phylogeny-based FDR 
control procedure [69]. Fourth, due to the use of data trans-
formation and permutation, ZicoSeq is not as interpretable 
as those parametric methods, whose coefficient can usually 
be interpreted as the log fold change in response to one unit 
change of the covariate. Finally, the current implementa-
tion can only be applied to independent samples. Given the 
increasing popularity of longitudinal microbiome studies 
and studies involving repeated measurements, correlated 
microbiome data are now prevalent [70]. Thus, a DAA tool 
for correlated microbiome data is highly desirable.
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During the review of the manuscript, several new 
methods for microbiome differential abundance testing 
methods were published including LinDA  [71], fastAN-
COM [72], and ZINQ [73]. It is thus interesting to com-
pare ZicoSeq to these methods.  Fig. S26 summarizes the 
results under Settings 2&6 (Table  1).  We can see that 
ZicoSeq still has a competitive edge over these methods. 

In conclusion, the problem of differential abundance 
analysis of microbiome data still has not been fully solved 
by existing methods. To meet the analytical needs and 
improve the reproducibility of microbiome research, we 
present a more robust and powerful procedure for differ-
ential abundance analysis.

Conclusions
We performed the most comprehensive benchmarking 
study of DAA methods to date and found that none of 
the DAA methods was simultaneously robust, powerful, 
and flexible. The applicability of an existing DAA method 
depends on specific settings, which are usually unknown 
a priori. To circumvent the difficulty of selecting the best 
DAA tool that suits one’s dataset, we develop ZicoSeq, 
which remedies the drawbacks of existing methods. 
ZicoSeq can be applied to DAA of microbiome data from 
diverse settings.
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physical absence) increases by 25% in one group. Figure S5. P-value 
distributions based on 10,000 simulation runs (a) when the abundance 
of an abundant taxon (9% relative abundance, 25% physical absence) 
is the same between two groups, (b) when the abundance of the same 
taxon (9% relative abundance, 25% physical absence) increases by 25% in 
one group. Figure S6. Comparison of the FDR control and power using 
different thresholds to select the reference set under (a) balanced and 
(b) unbalanced settings (settings 9 and 10 shown in Table 2). Figure S7. 
Comparison of sample- and taxon-level characteristics between the sem-
iparametric approach and Dirichlet-multinomial (DM) model simulated 
data. Figure S8. Dirichlet-multinomial model tends to (a) overestimate the 
mean abundance for those less abundant taxa and (b) underestimate the 
mean abundance of those abundant taxa in vaginal data. Figure S9. Heat 
maps showing the relative abundance data generated by Dirichlet-multi-
nomial model and the proposed semiparametric approach, in comparison 
to the real data for (a) stool and (b) vaginal. Figure S10. Performance of 
differential abundance analysis methods under the global null setting, vis-
ualized using bar plots corresponding to Fig. 1. Figure S11. Performance 
comparison of DESeq2 and edgeR using its native normalization method 
(RLE and TMM) and the GMPR normalization under the global null setting. 
Figure S12. Performance of differential abundance analysis methods 
under the balanced change setting for (a) stool and (b) vaginal data, and 

unbalanced change setting for (c) stool and (d) vaginal data (sample size 
= 100, taxa number = 500), visualized using bar plots corresponding to 
Fig. 2. Figure S13. Performance of differential abundance analysis meth-
ods under a small sample size (sample size = 50, taxa number = 500). (a) 
Balanced change setting, stool data. (b) Balanced change setting, vaginal 
data. (c) Unbalanced change setting, stool data. (d) Unbalanced change 
setting, vaginal data. Figure S14. Performance of differential abundance 
analysis methods under a small number of taxa (sample size = 100, taxa 
number = 50). Figure S15. Performance of ZicoSeq under the global 
null setting for stool and vaginal data with different numbers of samples 
and taxa. Figure S16. Comparison of ZicoSeq to the top-scoring method 
under different settings for stool and vaginal data. (a) Balanced and (b) 
unbalanced change setting (sample size = 100, taxa number = 500). (c) 
Balanced and (d) unbalanced change setting (sample size = 50, taxa num-
ber = 50). Figure S17. Comparison of ZicoSeq to the top-scoring method 
in Fig. S16ab under different settings for stool and vaginal data at the 
sample size of 1000. Figure S18. Performance of ZicoSeq in the presence 
of confounders under balanced change setting for (a) stool, (b) vaginal 
data, and unbalanced change setting for (c) stool, (d) vaginal data (sample 
size = 100, taxa number = 500), visualized using bar plots correspond-
ing to Fig. 4. Figure S19. Performance of ZicoSeq when the sequencing 
depth differs by 4-fold between the groups, visualized using bar plots 
corresponding to Fig. 5. Figure S20. Performance of ZicoSeq when the 
sequencing depth differs by 9-fold between the groups. Figure S21. Run 
times (x86_64-pc-linux-gnu (64-bit) Red Hat Enterprise Linux Server 7.9, 
Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 8GB running memory) of the 
evaluated differential abundance analysis methods over simulation runs 
(unbalanced setting, vaginal data, 100 samples and 500 taxa). Figure S22. 
Run times (x86_64-pc-linux-gnu (64-bit) Red Hat Enterprise Linux Server 
7.9, Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 8GB running memory) 
of ZicoSeq over simulation runs when sample size increases to 1000 and 
5000 (unbalanced setting, vaginal data, 500 taxa). Figure S23. Box plots 
showing the distribution of Spearman correlation of p-values between 
no filtered datasets and filtered datasets (prevenance less than 40% or 
minimal abundance less than 0.002 are excluded for analysis) based on 
unbalanced change setting for vaginal data. Figure S24. The average 
percentage of significant taxa at 5% FDR of the 106 real datasets when the 
group labels are randomly shuffled. Figure S25. Ensemble methods at a 
consensus level of 20%, 40%, 60% and 80% (denoted as “pct20”, “pct40”, 
“pct60” and “pct80”). Figure S26. Performance comparison to recently 
developed methods - LinDA, fastANCOM and ZINQ under settings 2&6. (a) 
Balanced, stool, (b) Balanced, vaginal, (c) Unbalanced Stool, (d) Unbal-
anced, vaginal. Table S1. Normalization methods reviewed in this study. 
Table S2. Package version and source link for the differential abundance 
analysis methods evaluated in this study. Table S3. Performance scoring 
system. Table S4. The evaluation metrics used in the performance sum-
mary. Table S5. Details of the experimental datasets
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