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Abstract 

Background:  In nature, microbial communities undergo changes in composition that threaten their resiliency. Here, 
we interrogated sourdough, a natural cereal-fermenting metacommunity, as a dynamic ecosystem in which players 
are subjected to continuous environmental and spatiotemporal stimuli.

Results:  The inspection of spontaneous sourdough metagenomes and transcriptomes revealed dominant, subdomi-
nant and satellite players that are engaged in different functional pathways. The highest microbial richness was asso-
ciated with the highest number of gene copies per pathway. Based on meta-omics data collected from 8 spontane-
ous sourdoughs and their identified microbiota, we de novo reconstructed a synthetic microbial community SDG. We 
also reconstructed SMC-SD43 from scratch using the microbial composition of its spontaneous sourdough equivalent 
for comparison. The KEGG number of dominant players in the SDG was not affected by depletion of a single player, 
whereas the subdominant and satellite species fluctuated, revealing unique contributions. Compared to SMC-SD43, 
SDG exhibited broader transcriptome redundancy. The invariant volatilome profile of SDG after in situ long-term back 
slopping revealed its stability. In contrast, SMC-SD43 lost many taxon members. Dominant, subdominant and satellite 
players together ensured gene and transcript redundancy.

Conclusions:  Our study demonstrates how, by starting from spontaneous sourdoughs and reconstructing these 
communities synthetically, it was possible to unravel the metabolic contributions of individual players. For resilience 
and good performance, the sourdough metacommunity must include dominant, subdominant and satellite players, 
which together ensure gene and transcript redundancy. Overall, our study changes the paradigm and introduces 
theoretical foundations for directing food fermentations.
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Background
Microbiomes are vital components of natural ecosystems 
whose functions are typically performed not by single 
species but by metacommunities [1]. The structure, func-
tion, resilience, and stability of these metacommunities 
result from a dynamic interplay of natural selection, his-
torical contingency, and chance events in a manner that 
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remains poorly understood. The ability to predict and 
reconstruct large multispecies communities requires an 
understanding of how such microbiomes shape, behave 
and coexist in natural niches to ultimately design de novo 
functional microbiomes [2–4]. These concepts translate 
easily to food microbiomes, and specifically to the sour-
dough microbiome, or “fermentome” (fermenting meta-
community), as we prefer to define this highly variable 
ecosystem. Here, we experimentally interrogated sour-
dough as a model dynamic microbial ecosystem. As one 
of the oldest examples of a natural starter, sourdough is 
increasingly used for making baked goods, and almost 
30 years of research has been carried out to understand 
and define its performance under abiotic and biotic 
stresses [5]. The main secret to sourdough performance 
lies in its microbial diversity. Up to 59 bacterial genera 
were culturable in sourdoughs, with Lactobacillus, under 
its former taxonomic nomenclature, as the most abun-
dant genus, comprising 82 species, mostly nomadic and 
heterofermentative [5]. Yeasts are also irreplaceable play-
ers in the sourdough metacommunity, with Saccharo-
myces cerevisiae being the most frequently identified [5]. 
The house microbiota, that of the flours, with resilient 
and resistant bacteria, also behave as cereal plant endo-
phytes, and those of the other eventual ingredients in the 
dough serve as the main sources of microbial contamina-
tion and spontaneous sourdough fermentation [6]. Fre-
quent back slopping, as a self-renewing community-scale 
inoculum, and an acidic environment generate a complex 
microbiome of interacting players (dominants, subdomi-
nants and satellites), and the structure and metabolic 
network of this microbiome are constantly influenced by 
consistent biotic pressure and spatiotemporal changes. 
As a result, in most cases, sourdough is prone to insta-
bility such that the metabolic networks are constantly 
threatened. Metacommunity interplay is, therefore, criti-
cal in maintaining stability as a precondition for ensuring 
sourdough functionality. Consequently, sourdough com-
position and function cannot be estimated or predicted 
simply by summing its single parts or monitoring the 
most abundant species [6]. Basic approaches are needed 
to anticipate the response of the metacommunity, to steer 
coexisting species to more desirable and resilient states 
and to design microbiomes de novo[1]. The synthetic 
microbial communities (SMCs) approach constitutes 
the only route to confirm or invalidate the hypotheses 
of our study [1, 7]. SMCs allow a more detailed study of 
the resilience and performance of the metacommunity in 
simple and well-controlled habitats, where selective and 
nonselective forces shape the microbiome in mechanis-
tic and quantitative ways. We assume that subdominant 
players cooperate synergistically with dominant species 
by expressing accessory genes that are critical for key 

metabolic pathways and that, although not encoding 
key functions, satellite members may be metabolically 
active and equipped with unique genes and enzymes. 
More generally, gene redundancy should prevent the loss 
of specific metabolic pathways in the case of microbial 
perturbance.

Using a multiomics workflow (Fig.  1), we first deci-
phered the taxon composition and the functional 
redundancy of spontaneous sourdoughs at both the 
metagenomics and metatranscriptomics levels; then, 
based on these data, we reconstructed the main meta-
bolic pathways that are able to exert key functions within 
themselves. Subsequently, we used this backbone knowl-
edge to design specifically depleted synthetic micro-
bial communities (SMCs) (where one species at a time 
was subtracted from the consortium) that guided us in 
monitoring transcript profile changes during microbial 
species interactions. As milestones in the workflow, we 
reconstructed two additional de novo SMCs. The first 
mimicked a spontaneous sourdough, whereas the second 
resulted from the funnel selection of species based on 
omics results. The comparison of their two volatilomes at 
different back slopping times allowed us to validate the 
good performance of our selected communities, which 
could be measured in terms of resiliency, stability, and 
robustness.

The meta-omics inspection proposed here was useful 
in laying a theoretical foundation for steering the meta-
community by reconstructing a sourdough fermentome 
that is as resilient as possible to in situ perturbations.

Methods
Traditional and spontaneous sourdoughs
Traditional and spontaneous sourdoughs were obtained 
from the International Sourdough Library (Puratos, St. 
Vith, Belgium, https://​www.​purat​os.​com/​commi​tments/​
next-​gener​ation/​produ​ct-​herit​age/​sourd​ough-​libra​ry), 
the only one recognized worldwide. In particular, the 8 
sourdoughs used were from Italy (SD1 and SD69), the 
USA (SD43, SD102 and SD104), Spain (SD88 and SD93) 
and France (SD44). SD69, SD93 and SD102 were pro-
duced with soft wheat flour, with final dough yields (DY) 
of 143, 160 and 200, respectively. SD43 (DY = 150) and 
SD104 (DY = 200) were produced with strong soft wheat 
flour; SD1 (DY = 209), with durum wheat flour; SD44 
(DY = 200), with type 80 (specific residual of ash content) 
soft wheat flour with added honey; and SD88 (DY = 200), 
with type 80 soft wheat flour with added beer. All sour-
doughs were considered mature (constant acidifying 
capacity) after two back slopping steps, in which the first 
step included 40% (w/w) inoculum, while the second step 
used a percentage unique to each sourdough, ranging 
from 8 to 50%. The back slopping temperature was also 
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unique to each sourdough (from 8  °C up to 28  °C), and 
the fermentation time ranged from 2 to 24 h. These sour-
doughs were the most representative of the International 
Sourdough Library because of their broad use for mak-
ing leavened baked goods, and the different geographic 
provenances reflect countries with a long history and 
tradition of using sourdough. Supplementary Table  S1, 
Additional File 1 summarizes their origin, ingredients, 
and technology parameters.

Culturomics
The eight mature spontaneous sourdoughs were sub-
jected to analyses in triplicate using M17 (30  °C, 48  h), 
mostly for coccus-shaped lactic acid bacteria, and SDB, 
mMRS and MRS5 (30 °C, 48 h), mostly for dominant lac-
tobacilli and Weissella. Slanetz & Bartley agar (spread 
plate method, 37 °C, 24–48 h) was used for enterococci, 
Baird-Parker agar (spread plate method, 30 °C, 48 h) for 
staphylococci and micrococci, VRBGA for total coli-
forms, and WA and SDA (30  °C, 48  h) for yeasts. For 
all media, colonies of bacteria and yeasts with different 
morphologies were picked and isolated from the penul-
timate dilution, with the exception of the subdominant 

culturable lactobacilli, which was isolated from 140 mm 
diameter plates and considering several decimal dilu-
tions. Isolated colonies were cultivated in broth media 
and then restreaked onto agar medium (MRS for all 
lactic acid bacteria and SDA for yeasts) until they were 
purified. Bacterial and yeast isolates were identified 
by partial sequencing of the 16S rRNA and 26S rRNA 
genes, respectively [8, 9]. The identified strains com-
prising the sourdough biobank were further used upon 
selection to reconstruct the de novo synthetic microbial 
communities.

Shotgun metagenomics and metatranscriptomics 
sequencing
The DNeasy PowerFood Microbial Kit (Qiagen, Hilden, 
Germany) was used for DNA extraction [10]. To improve 
the DNA yield, 100  μl lysozyme (10  mg/ml), 10  μl 
mutanolysin (20 U/μl [11] and 2  μl Zymolyase (5 U/μl) 
[12] were added. All library preparations, NGS and qual-
ity control steps were performed through RTL-Genom-
ics (Lubbock, Texas). Sequencing was performed on the 
Illumina MiSeq platform (Illumina Inc., San Diego, CA) 
applying a depth of coverage of 70X and a fragment size 

Fig. 1  Overview of the multiomics workflow used to decipher the functional redundancy in spontaneous sourdoughs at the metagenomics and 
metatranscriptomics levels. The inspection of spontaneous sourdough evidenced the metabolic pathways relevant to sourdough biotechnology 
that guided the phase of de novo reconstruction to obtain a stable and resilient synthetic microbial community
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of 300X2 bp paired end (PE) reads. The sequence qual-
ity was assessed by inspecting raw read data with FastQC 
software (https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​
proje​cts/​fastqc/). Starting from the fastq raw sequencing 
files, within the SqueezeMeta automated bioinformat-
ics pipeline [13], we used Trimmomatic [14] for adapter 
removal, trimming and filtering the reads by quality. 
The details of the bioinformatics workflow are provided 
below in this section.

Total RNA was extracted using the RNeasy Power-
Microbiome Kit (Qiagen, Hilden, Germany). For each 
RNA sample, a directional library was prepared using 
the TruSeq Stranded Total RNA Sample Prep Kit with 
Ribo-Zero Plus rRNA Depletion Technology (Illumina, 
San Diego, CA, USA). In detail, RNA-Seq libraries were 
prepared from 100  ng of total RNA following the man-
ufacturer’s instructions. The cDNA libraries obtained 
were validated using the High Sensitivity  DNA  assay 
(Agilent Technologies, Santa Clara, CA, USA) on a Bio-
analyzer 2100 instrument (Agilent Technologies, Santa 
Clara, CA, USA) and quantified by fluorimetry with the 
Quant-iTTM PicoGreen® dsDNA Assay Kit (Invitrogen, 
Carlsbad, CA, USA) on a NanoDrop™ 3300 fluorospec-
trometer (Thermo Scientific, Waltham, MA, USA). 
Finally, RNA-Seq libraries were pooled in equimolar 
ratios and sequenced at a concentration of 1.3  pM on 
the Illumina NextSeq 500 platform (Illumina, San Diego, 
CA, USA), generating ca. 20–25 M paired 75 bp reads for 
each sample.

SqueezeMeta bioinformatics parameters and nested 
software
The sequencing data of the 8 sourdough metagenomes/
metatranscriptomes were analyzed in silico by using the 
SqueezeMeta pipeline Version 1.0, July 2019 (https://​
github.​com/​jtama​mes/​Squee​zeMeta) plus other related 
ad hoc custom utilities developed to handle the assem-
bly of metagenomes and to obtain genome bins. A step-
by-step bioinformatics pipeline comprising software for 
assembly, annotation and bin statistics was used for sour-
dough gene and transcript annotation and quantification.

The inspection of annotation data was fundamental for 
the retrieval of unique/shared functions up to the spe-
cies taxonomic level. As a dedicated option, we chose to 
run the metagenome and  metatranscriptome assembly 
using the “coassembly” mode. This procedure allowed 
us to pool reads from all samples, thus performing a 
single assembly. Therefore, the derived per sample gene 
abundances come from mapping the singular read sam-
ple set against the coassembly. The assembly was per-
formed using Megahit (v1.1.2) [15], which makes use 
of succinct de Bruijn graphs [16] to take full advantage 
of multiple k-mer sizes, optimizing both sensitivity and 

accuracy. Contig statistics were determined using prin-
seq [17], which performs rapid quality control and data 
preprocessing of genomic and metagenomic datasets. 
The locations of the ribosomal RNA genes in genomes 
were predicted using Barrnap (BAsic Rapid Ribosomal 
RNA Predictor) [18], which supports bacteria (5S, 23S, 
and 16S), archaea (5S, 5.8S, 23S, and 16S) and eukaryotes 
(5S, 5.8S, 28S, and 18S). The 16S rRNA sequences were 
taxonomically classified using the RDP classifier [19]. 
tRNA/tmRNA sequences were predicted using Aragorn 
[20]. ORFs were predicted using Prodigal [21]. Similar-
ity searches for GenBank [22], eggNOG [23], and KEGG 
[24] were performed using Diamond [25]. HMM homol-
ogy searches were performed by HMMER3 [26] for the 
Pfam database [27]. Read mapping against contigs was 
performed using Bowtie2 [28], and binning was per-
formed using MaxBin2 [29] and Metabat2 [30]. The com-
bination of binning results was performed using DAS 
Tool [31]. Bin statistics were computed using CheckM 
[32]. Pathway prediction for the KEGG [24] and MetaCyc 
databases was performed using MinPath [33].

Construction of metagenomics and metatranscriptomics 
project databases
SqueezeMeta outputs were used to build customized 
databases viewable in the R environment. Specifically, 
a set of integrated functions implemented within the 
SQMtools R package Version 0.3.3 (https://​github.​com/​
jtama​mes/​Squee​zeMeta/​wiki/​Using-R-​to-​analy​ze-​your-​
SQM-​resul​ts) allowed us to query specific KEGG output 
results. The whole metagenomics and metatranscriptom-
ics projects were used to create the two relative databases 
and then inspected for gene and transcript content and 
abundances, respectively.

Synthetic microbial community (SMC) study design
A meta-omics approach was used to design SMCs from 
the 8 spontaneous sourdoughs. Quantitative data (cell 
densities) from culturomics were confirmed by the 
genomic potential and expression levels derived from 
the metagenomics and metatranscriptomics analy-
ses. By inspecting and merging all these omics data, the 
sourdough members were classified as core dominant, 
subdominant (core or dispensable) or satellite species. 
Starting from this classification, we aimed to de novo 
reconstruct a potentially stable and resilient SMC (Sour-
dough Global, SDG). Here, dominant and subdomi-
nant species were those harboring at least 20 key genes 
belonging to carbohydrate/pyruvate and nitrogen metab-
olism and, at the same time, were shared by at least 50% 
(4 out of 8) of traditional sourdoughs. Thirteen species 
out of 49 dominant and subdominant lactic acid bacte-
ria and yeasts met these criteria. Upon considering this 
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filter, further considerations dealing with the overall met-
abolic capabilities, and worldwide frequency of isolation, 
SDG comprised 1 core (Sac. cerevisiae) and 1 dispensable 
dominant yeast (Pichia kudriavzevii), 2 core dominant 
(Lactiplantibacillus plantarum and Limosilactobacil-
lus fermentum) and 2 core subdominant (Furfurilacto-
bacillus rossiae and Pediococcus pentosaceus) lactic acid 
bacteria, and 1 satellite species (Staphylococcus epider-
midis) (Table 1). The species selected to reconstruct the 
SDG originated from the sourdough biobank and more 
specifically from SD104, which was the traditional spon-
taneous sourdough with the highest species biodiversity 
and functional potential. Strains within the same spe-
cies from SD104 were selected randomly. Another SMC 
(SMC-SD43), comprising all the species encompassed 
by sourdough SD43, was reconstructed with the aim of 
mimicking the potential of a spontaneous sourdough. 
The cell densities of all species used to reproduce the 
SMCs corresponded to those found in traditional sponta-
neous sourdoughs, as estimated by culturomics (Table 1). 
One experiment with these 2 SMCs involved their daily 
propagation at 30 °C for 30 days under in vivo sourdough 
conditions. Plate counts and isolation for RAPD-PCR 
profiling [34] were performed every 10 days. Analysis and 

comparison of biotypes were performed with BioNumer-
ics software (v. 8.0, Applied Maths) using the reference 
profiles of each bacterial and yeast species belonging to 
the 2 SMCs. Metabolomics analyses allowed the charac-
terization of volatile organic compounds (VOCs) after 1 
and 30 days of propagation. To simulate the sourdough-
like environment under sterile conditions, another 
experiment used WFH (wheat flour hydrolyzed) liquid 
medium [35]. The 2 SMCs were inoculated with 7 log 
cfu/mL of core dominant bacteria, 5 log cfu/mL of core 
subdominant bacteria and satellites, and 6 log cfu/mL of 
yeasts. The fermentation lasted for 12  h at 30  °C. With 
the aim of assessing how the elimination of microbial 
members might affect the transcriptomic profile of SDG, 
7 SMCs were reconstructed by depleting the consortium 
1 member at a time (SDG1 to SDG7). Acidification and 
growth kinetics were recorded using a benchtop online 
pH meter with a food probe (Hanna Instruments, Woon-
socket, RI, USA) and a Tecan Infinite M NANO + spec-
trophotometer (Tecan Ltd., Switzerland). The growth 
kinetics were modeled according to the Gompertz Eq 
[36].. Metatranscriptomes were sequenced at exponen-
tial (6 h) and stationary (12 h) phases of growth. The bio-
informatics pipeline described in the previous section 

Table 1  Composition of synthetic microbial communities (SMCs). De novo reconstructed Global sourdough (SDG) mimicking 
a natural sourdough from all omics data and SMC-SD43 mimicking the natural species composition of sourdough SD43. Final 
composition of SMC reporting the species, cell density found by culturomics in sourdoughs, their classification based on their 
proportions, and final number of included species

SDG SMC-SD43

Taxa Cell 
density 
(cfu mL−1)

Group n. of species Taxa Cell 
density 
(cfu mL−1)

Group n. of species

Lactic acid bacteria Lactic acid bacteria
Lactiplantibacillus 
plantarum

9.96 Core dominant Lacticaseibacillus 
paracasei

2.11 Core subdominant

Limosilactobacillus 
fermentum

8.45 Core dominant Lactiplantibacillus 
plantarum

6.48 Core dominant

Furfurilactobacillus 
rossiae

5 Core subdominant 4 Lacticaseibacillus 
rhamnosus

2.48 Core subdominant 7

Pediococcus pentosa-
ceus

3.23 Core subdominant Fructilactobacillus 
sanfranciscensis

9.96 Core dominant

Lactococcus lactis 2.7 Core subdominant

Leuconostoc citreum 3.18 Core subdominant

Weissella confusa 8.48 Core dominant

Other bacteria Other bacteria
Staphylococcus epi-
dermidis

2.48 Satellite 1 Staphylococcus sp. 2 Satellite 1

Yeasts Yeasts
Saccharomyces 
cerevisiae

6.23 Core dominant 2 Saccharomyces 
cerevisiae

6.26 Core dominant 1

Pichia kudriavzevii 5.85 Dispensable domi-
nant
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(SqueezeMeta bioinformatics parameters and nested 
software) and the bioinformatics approach described 
above allowed the annotation and quantification of tran-
scripts. An ad hoc reconstructed database allowed us to 
query the transcriptome project data and to extract per-
species contributions.

Metabolic networking of sourdough core, dispensable 
and satellite microbial members
Based on the importance of sourdough performance, 
we selected the following metabolic mega-pathways: 
carbohydrate metabolism, pyruvate/energy production-
conversion and nitrogen metabolism. Core enzymatic 
pathways, including enzymes detected in all sourdough 
metagenomes, were identified. In addition, dispensa-
ble/accessory genes encoding for the enzymatic portfo-
lio among sourdough metagenomes were identified by 
inspecting the ad hoc build up sourdough SqueezeMeta 
database. KEGG abundance values (expressed as tran-
scripts per million (TPM) values after normalizing for 
both sequencing depth and gene length) were used for 
a two-sample G-test (w/Yates’ + Fisher test) with Ben-
jamini–Hochberg multiple test correction in STAMP 
(statistical analysis of taxonomic and functional profiles) 
software [37]. Metatranscriptomics was used together 
with metagenomics to find the active pathways within 
sourdoughs.

GC–MS measurements
The VOC profile was analyzed by gas chromatography–
mass spectrometry (GC–MS). A PAL COMBI-xt autosa-
mpler (CTC combiPAL, CTC Analysis AG, Zwingen, 
Switzerland) was used to standardize the headspace 
solid-phase microextraction (HS-SPME) procedure 
according to Liu et al. (2020) [38]. A Clarus 680 (Perkin 
Elmer, Beaconsfield, UK) gas chromatograph equipped 
with a Rtx-WAX column (30 m × 0.25 mm i.d., 0.25 μm 
film thickness) (Restek Superchrom, Milano, Italy) was 
used to thermally desorb and separate the headspace 
VOC [39]. Each chromatogram was analyzed for peak 
identification by comparing (i) the retention time (RT) 
of the detected compound with those of the provided 
pure standard for HPLC (Sigma–Aldrich, St. Louis, MO, 
USA) and (ii) experimental mass spectra with those of 
the National Institute of Standards and Technology data-
base (NIST/EPA/NIH Mass Spectral Library with Search 
Program, data version NIST 05, software version 2.0d). 
A peak area threshold larger than 1 M and a match per-
centage higher than 85% were used as the criteria for 
identification. VOCs were quantified by using 2-methyl-
4-pentanol (final concentration of 33 mg/l) as the inter-
nal standard.

Data analysis
Metagenomics and metatranscriptomics data belonging 
to eight spontaneous sourdoughs and sixteen metatran-
scriptomics datasets from seven depleted SMCs plus one 
complete reconstructed SMC (at the exponential and sta-
tionary phases of growth) were analyzed. Two de novo 
reconstructed SMCs (SDG and SMC-SD43) were propa-
gated for 30 days, and the single contributions of domi-
nant, subdominant and satellite species were used to 
populate the subset of the investigated metabolic pathway 
functions. In turn, these data have been compared with 
those of the reconstructed sourdough (SDG1-SDG7). 
Statistically significant gene and transcript comparisons 
were obtained using an ANOVA Tukey–Kramer post 
hoc comparison test (corrected for multiple tests with 
the Benjamini–Hochberg procedure) in STAMP (statisti-
cal analysis of taxonomic and functional profiles) v2.1.3 
software [37]. The input file matrices from the metagen-
omics and metatranscriptomics data and the relative 
metadata were customized to fit the STAMP software 
requirements. Culturomics analyses were carried out on 
2 biological replicates for the same length of time (up to 
30 days) as for VOC analyses.

Results
Sourdough richness in culturable bacteria and yeasts
Our isolation, purification and characterization proce-
dures resulted in the creation of a sourdough biobank 
comprising a total of 1,661 isolates (1,488 bacteria and 
173 yeasts). Spontaneous sourdoughs harbored presump-
tive lactic acid bacteria at ca. 2.0 to ca. 9.9 log cfu/g. Pre-
sumptive staphylococci and micrococci ranged from ca. 
2.0 to ca. 7.0 log cfu/g. Presumptive coliforms were iden-
tified only in SD1 (ca. 2.5 log cfu/g) and SD69 (ca. 4.5 log 
cfu/g). All sourdoughs harbored ca. 6.5 log cfu/g yeasts. 
Partial sequencing of the 16S rRNA and 26S rRNA genes 
of all 1,661 isolates allowed the taxonomic identification 
of 36 species. The sourdough richness in culturable bac-
teria and yeast species varied from 8 (SD93) to 15 (SD44 
and SD104), with differences in cell densities and preva-
lence. The sourdough species prevalence was calculated 
as the number of isolates identified per species divided 
by their total number. This percentage varied from 1 to 
67%, mostly depending on the abundance level of each 
species (Table  2). Following this culturomics approach, 
the sourdough biobank also allowed us to obtain an over-
view of the ratio among players. Based on the correla-
tion between back slopping steps and LAB cell density 
until sourdough reaches its maturity, we defined a spe-
cies to be dominant or subdominant based on whether 
its cell density was greater or lower than 6 log cfu/g [40]. 
In addition, considering commensal interaction as a 
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Table 2  Cultivable bacteria and yeasts identified in the eight spontaneous sourdoughs. Total number of isolates identified per 
sourdough, percentage of prevalence and cell density (log cfu/g)

Sourdough Species N° of isolates Percentage of 
prevalence %

Cell density 
(log cfu/g)

Total all sourdoughs 1661
SD1 Subtotal SD1 190

Lactic acid bacteria subtotal SD1 161
Lactiplantibacillus plantarum 17 9 8.23

Lacticaseibacillus rhamnosus 7 4 6.85

Fructilactobacillus sanfranciscensis 128 67 9.97

Weissella confusa 2 1 6.30

Leuconostoc citruem 2 1 2.30

Enterococcus faecalis 3 2 6.48

Lactococcus lactis 2 1 2.30

Other bacteria subtotal SD1 4
Staphylococcus sp. 2 1 2.30

Enterobacter sp. 2 1 2.30

Yeasts subtotal SD1 25
Saccharomyces cerevisiae 23 12 6.36

Saccharomyces sp. / Naumovozyma castellii 2 1 5.30

SD43 Subtotal SD43 163
Lactic acid bacteria subtotal SD43 147
Lacticaseibacillus paracasei 3 2 2.11

Lactiplantibacillus plantarum 20 12 6.48

Fructilactobacillus sanfranciscensis 98 60 9.96

Lacticaseibacillus rhamnosus 3 2 2.48

Lactococcus lactis 5 3 2.70

Leuconostoc citreum 15 9 3.18

Weissella confusa 3 2 8.48

Other bacteria subtotal SD43 1
Staphylococcus sp. 1 1 2.00

Yeasts subtotal SD43 15
Saccharomyces cerevisiae 15 9 6.26

SD44 Subtotal SD44 234
Lactic acid bacteria subtotal SD44 206
Lactiplantibacillus plantarum /Lactiplantibacillus pentosus 35 15 7.54

Limosilactobacillus fermentum 7 3 6.85

Latilactobacillus curvatus 8 3 6.95

Leuconostoc citreum 36 15 7.56

Leuconostoc mesenteroides 2 1 6.00

Leuconostoc pseudomesenteroides 7 3 6.85

Weissella cibaria 45 19 7.67

Weissella confusa 39 17 7.59

Pediococcus pentosaceus 17 7 3.23

Enterococcus sp. 4 2 2.60

Enterococcus faecalis 2 1 2.30

Enterococcus faecium 4 2 2.60

Other bacteria subtotal SD44 4
Staphylococcus sp. 2 1 2.30

Staphylococcus aureus 2 1 2.00

Yeasts subtotal SD44 24
Saccharomyces cerevisiae 24 10 6.15
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Table 2  (continued)

Sourdough Species N° of isolates Percentage of 
prevalence %

Cell density 
(log cfu/g)

SD69 Subtotal SD69 186

Lactic acid bacteria subtotal SD69 162

Lactiplantibacillus plantarum 60 32 8.78

Fructilactobacillus sanfranciscensis 60 32 7.88

Lacticaseibacillus rhamnosus 5 3 4.70

Furfurilactobacillus rossiae 2 1 2.00

Lactococcus lactis 25 13 6.36

Leuconostoc citreum 6 3 4.78

Leuconostoc sp. 4 2 6.60

Other bacteria subtotal SD69 6

Enterobacter sp. 3 2 4.48

Staphylococcus warneri / Staphylococcus pasteuri 1 1 2.00

Staphylococcus epidermidis 2 1 2.30

Yeasts subtotal SD69 18

Saccharomyces cerevisiae 18 10 6.23

SD88 Subtotal SD88 229
Lactic acid bacteria subtotal SD88 195
Lactiplantibacillus plantarum 140 61 8.16

Lactiplantibacillus pentosus 5 2 6.70

Lacticaseibacillus rhamnosus 4 2 5.60

Lactobacillus sp. 2 1 2.00

Weissella confusa 4 2 6.60

Leuconostoc citreum 30 13 7.43

Enterococcus sp. 5 2 2.70

Enterococcus faecium 5 2 2.70

Other bacteria subtotal SD88 4
Staphylococcus aureus 2 1 2.00

Staphylococcus epidermidis / Staphylococcus caprae 2 1 2.30

Yeasts subtotal SD88 30
Pichia kudriavzevii 30 13 6.48

SD93 Subtotal SD93 205
Lactic acid bacteria subtotal SD93 182
Lactiplantibacillus plantarum 24 12 8.32

Limosilactobacillus fermentum 90 44 8.94

Leuconostoc citreum 43 21 7.63

Weissella confusa 14 7 7.15

Enterococcus faecium / Enterococcus durans 9 4 2.95

Enterococcus faecalis 2 1 2.30

Other bacteria subtotal SD93 3
Staphylococcus epidermidis 3 1 2.48

Yeasts subtotal SD93 20
Saccharomyces cerevisiae 20 10 6.30
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primary impacting factor, the natural selection of species 
until sourdough is mature is dependent on cell load and 
other technological parameters whose impacts can be 
even more important [40].

Moreover, we consider satellite species to be those non-
lactic acid bacteria that are occasionally found in sour-
dough. Lac. plantarum was dominant or codominant in 
all sourdoughs. Leuconostoc citreum was also identified 
in all sourdoughs, with cell densities varying from ca. 3.2 
to 9.0 log cfu/g. Except for SD1, enterococci were present 
at low cell density (ca. 2 log cfu/g) only in some sour-
doughs. Except for SD104, staphylococcal species were 

mostly identified as satellite members. Sac. cerevisiae was 
the dominant yeast found in all spontaneous sourdoughs, 
with cell densities ranging from 6.1 to 6.4 log cfu/g. The 
only exception was SD88, which harbored Pic. kudri-
avzevii (ca. 6.5 log cfu/g).

Sourdough richness in bacteria and yeasts as estimated 
by metagenomics
Approximately 6.9 M contigs, for a total of 2.8 Gbp, led 
to the assembly combining all sourdoughs (Supplemen-
tary Table S2, Additional File 2). The longest contig was 
ca. 245 Kbp. The assembled N50 and N90 values were 

Table 2  (continued)

Sourdough Species N° of isolates Percentage of 
prevalence %

Cell density 
(log cfu/g)

SD102 Subtotal SD102 234

Lactic acid bacteria subtotal SD102 209

Lactiplantibacillus plantarum 51 22 8.66

Limosilactobacillus fermentum 6 3 6.78

Fructilactobacillus sanfranciscensis 3 1 5.00

Leuconostoc citreum 99 42 9.00

Weissella confusa 45 19 8.53

Enterococcus faecium 5 2 2.70

Other bacteria subtotal SD102 5

Staphylococcus warneri 3 1 2.48

Staphylococcus epidermidis / Staphylococcus caprae 2 1 2.00

Yeasts subtotal SD102 20

Saccharomyces cerevisiae 20 9 6.30

SD104 Subtotal SD104 220
Lactic acid bacteria subtotal SD104 189
Lactiplantibacillus plantarum 98 45 9.96

Fructilactobacillus sanfranciscensis 32 15 9.41

Limosilactobacillus fermentum 29 13 8.45

Lacticaseibacillus paracasei /Lacticaseibacillus rhamnosus 5 2 6.70

Furfurilactobacillus rossiae 2 1 6.00

Lacticaseibacillus rhamnosus 2 1 3.00

Weissella confusa 10 5 7.00

Leuconostoc citreum 3 1 6.48

Enterococcus faecalis 8 4 2.85

Other bacteria subtotal SD104 10
Staphylococcus epidermidis / Staphylococcus capitis 7 3 6.85

Staphylococcus epidermidis / Staphylococcus caprae 3 1 1.48

Yeasts subtotal SD104 21
Saccharomyces cerevisiae 12 5 6.08

Pichia kudriavzevii 7 3 5.85

Pichia sp. 2 1 5.30
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813 and 516 base pairs, respectively. Looking at the rank 
assignation for the whole assembly, 195, 333 and 385 
contigs were assigned to family, genus and species ranks, 
respectively. Among prokaryotes, sourdoughs harbored 
202 genera and 275 species (Supplementary Table  S3, 
Additional File 3). Eukaryotic taxa (yeasts) accounted 
for 30 genera and 31 species (Supplementary Table  S4, 
Additional File 4). The high biodiversity we detected was 
ultimately reflected in the species relative abundances, 
ranging from 0.0001 to 80%. For metagenomics data, 
considering those species that were present in at least one 
sourdough, we defined dominant or subdominant species 
based on whether their percentage of relative abundance 
was greater or lower than 5%, as normalized to the total 
metagenome content. Similarly, in other metagenomics 
studies, dominance/subdominance was defined based 
on species richness and relative abundance level [41, 42]. 
Regardless of the relative abundance, we defined core 
or dispensable species according to whether they were 
shared by all sourdoughs or not (Fig. 2). Within the core 
microbiome set of species, Lac. plantarum, Fru. sanfran-
ciscensis, Lim. fermentum, Leuc. citreum and Weissella 
confusa were dominant in 1 or more sourdoughs, which 
agreed with culturomics data (Table  2). Eighteen sub-
dominant species of lactic acid bacteria were also found. 
The core sourdough microbiome also harbored other 
bacterial species. The core yeast microbiome (Saccharo-
mycodes ludwigii and Sac. cerevisiae) was dominant in all 
sourdoughs except for SD1 and SD69, in which Saccharo-
myces eubayanus was dominant. Dispensable dominant 
yeasts included Pichia kudriavzevii, Clavispora lusita-
niae and Saccharomyces bayanus, which were shared by 
5 and 4 sourdoughs, respectively (Supplementary Figure 
S1, Additional File 5).

Inspecting gene annotation and deciphering 
the functional redundancy of sourdough genomes
To decipher the extent of functional redundancy in sour-
dough genomes, we retrieved the gene abundances in 
each sample by mapping a single set of reads (from each 
individual sample) against the total assembly obtained by 
pooling reads from all samples in a single bin (Supple-
mentary Table  S5, Additional File 6). The highest map-
ping percentage (84.47) was found for SD43. To detect 
missing genes and correct errors in gene prediction, we 
used a double-pass step procedure named “extrasensitive 
ORF prediction”, which consisted of gene prediction as a 
first step and BLASTX search as a second step.

The total predicted ORF number was nonhomogene-
ous (Supplementary Table S6, Additional File 7). Consid-
ering the Prodigal results, SD1, SD69 and SD93 showed 
comparable numbers (over 1  M ORFs, with SD1 hav-
ing a peak of approximately 2  M ORFs). SD43, SD44, 

SD88, SD102 and SD104 exhibited fewer than 1 M total 
predicted ORFs. On the other hand, the number of 
predicted KEGG functions was more homogeneously 
distributed, with the lowest and highest numbers (ca. 
61 K and 551 K) found in SD102 and SD104, respectively. 
The set of KEGG functions shared among all spontane-
ous sourdoughs (core metagenome) spanned 1163 genes 
(Supplementary Table  S7, Additional File 8). The other 
accessory genes were heterogeneously distributed. A 
set of unique genes was found in each sourdough, rang-
ing from 33 (SD43) to 684 (SD1) unique genes. Adher-
ing to the concept that housekeeping gene functions were 
always maintained by every species, sourdoughs with a 
higher number of species showed a much higher num-
ber of copies per pathway for these functions (Supple-
mentary Table  S8, Additional File 9). The requirements 
for fermentation, in terms of biochemical pathways, for 
all sourdoughs are related to carbohydrates, pyruvate and 
energy production and conversion, nitrogen (proteolytic 
systems, transport and catabolism of amino acids) and 
stress response. The majority of genes that we found in 
our sourdough metagenomics data are related to these 
main pathways.

Players actively engaged in sourdough metabolism
With the aim of identifying metabolically active species, 
we performed a metatranscriptomics experiment. Tran-
script profiles and comparison with metagenomics data 
were performed only for those species with a relative 
abundance higher than 0.1% in at least 1 sourdough. As 
a result, all metagenomics data from Lactobacillus (for-
mer taxonomy) and Weissella species, were confirmed 
in terms of taxa viability and relative expression profiles 
by culturomics and metatranscriptomics experiments 
(Fig. 2). Notably, species of Lactococcus and Enterococcus, 
as identified by metagenomics, were culturable but not 
transcriptionally active. Moreover, all Leuconostoc, Oeno-
coccus and Pediococcus species identified by metagen-
omics were transcriptionally active, and almost all were 
culturable. Conversely, most of the other nonlactic acid 
bacteria were transcriptionally inactive and noncultur-
able. Staphylococcus aureus, Staphylococcus epidermidis 
and Staphylococcus warneri were culturable but tran-
scriptionally inactive. Except in SD88, Sac. cerevisiae was 
always transcriptionally active and cultivable. Some yeast 
species were transcriptionally inactive and/or noncultur-
able (Fig. 2).

Reconstruction of the main metabolic pathways 
underlying player functionality
We aimed to capture the potential contribution of those 
players involved in the metabolic pathways that have a 
key role in sourdough functionality and thus impact 
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resilience and stability. The investigation of genes and 
transcripts related to the main pathways relevant to 
sourdough biotechnological properties allowed us to 
determine the contributions of species belonging to 
dominant, subdominant and satellite groups (Supple-
mentary Figure S2, Additional File 10). Starch, non-
starch polysaccharide and sucrose pathway core genes 

(shared by all sourdoughs), together with those het-
erogeneously represented by a few species (accessory 
genes), are listed in Table  3. More specifically, higher 
gene and transcript numbers were harbored by core 
dominant species, such as Fru. sanfranciscensis, Lim. 
fermentum, Lac. plantarum, Leuc. citreum and Weis-
sella confusa and Sac. cerevisiae, whereas subdominant 

Fig. 2  Core and dispensable species found in the 8 spontaneous sourdoughs by shotgun metagenomics. Pseudoheatmap displaying the core 
(OTUs shared by the eight sourdoughs) and dispensable (OTUs variously detected in at least one sourdough) microbiomes under sourdough 
conditions. Dominant species are defined with a relative abundance of ≥ 5% of the total bacterial metagenome in at least one sourdough and are 
subdominant below. Samples are clustered at the top based on species relative abundances using the Euclidean distance. The color bar on the right 
describes the species prevalence
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and dispensable species contributed fewer genes and 
transcripts.

The pathways involved in hexose fermentation (Emb-
den-Meyerhof-Parnas and phosphoketolase pathways), 
pentose metabolism (phosphoketolase pathways), and 
the alternative fate of pyruvate are shown in Table  4.. 
Additionally, in this case, the selected core metagen-
ome encoded all transcripts needed to ferment hexoses 
and pentoses (Table  4.). With few exceptions, all the 
basic functions at both the genomic and transcriptomic 
levels are performed by the dominant species. Among 
subdominant species, most of the genes for the pentose 
phosphate pathway were found in Lev. brevis, Fur. ros-
siae, Ped. pentosaceus, and/or Pic. kudriavzevii genomes. 
Key genes, such as transaldolase (EC:2.2.1.2) and tran-
sketolase (EC:2.2.1.1), were detectable in all sourdoughs. 
The genes encoding enzymes to synthesize acetate were 
detected in the dominant species of each sourdough, 
except for Fru. sanfranciscensis. The acetate pathway 
was also present in subdominant species Fur. rossiae, 
Lev brevis, Ped. pentosaceus and Leu. mesenteroides. 
Some strains of Sac. cerevisiae harbored the gene encod-
ing acetyl-CoA synthetase (EC:6.2.1.1). This activity was 
found in all sourdoughs except for SD102. Additionally, 
for this pathway, the core dominant group contributed 
the highest number of genes and relative transcripts 
(Table 4.).

All sourdough metagenomes contained the bacterial 
and yeast genes responsible for peptide catabolism (Sup-
plementary Table S9, Additional File 11). As evidenced by 
the species abundance in each sourdough, gene redun-
dancy markedly varied in terms of transcript number. 
The core metagenome comprises a pattern of peptidases 
with different substrate specificities, such as 5 endopepti-
dases, 4 aminopeptidases, a tripeptide aminopeptidase 
and 3 dipeptidases, whose genes were expressed in all 
sourdoughs. The only exception was found for lactocepin 
EC:3.4.21.96. The core metagenome of all sourdoughs 
also harbored several proline-specific peptidases. Various 
other accessory peptidases were identified. Overall, Sac. 
cerevisiae and Pic. kudriavzevii have few proline-associ-
ated peptidases. The genes and transcripts relevant to the 
catabolism of branched chain amino acids (BCAAs), aro-
matic amino acids (ArAs) and free amino acids (FAAs) 
are listed (Supplementary Table S10, Additional File 12). 
Core dominants showed the highest gene and transcript 
contributions. The branched chain amino transferase 
(BcaT EC:2.6.1.42) was encoded by Lac. plantarum, Lim. 
fermentum, Leuc. citreum and one yeast (Sac. cerevi-
siae). Aminotransferases for aromatic amino acids (ArAT 
EC:2.6.1.57, EC:2.6.1.58 and EC:2.6.1.1) were only related 
to Sac. cerevisiae and/or Pic. kudriavzevii. Genes encod-
ing L-asparaginase (EC:3.5.1.1) were widely distributed 

and active within the genome of dominant and sub-
dominant lactic acid bacteria. Genes encoding arginine 
deiminase [EC:3.5.3.6], which is relevant to arginine deg-
radation, were found to be active within the genome of 
Lac. plantarum, Leuc. citreum, Wei. confusa and Ped. 
pentosaceus.

De novo design of synthetic microbial communities
We de novo reconstructed a synthetic microbial com-
munity (Sourdough Global, SDG) by merging the 
results from all meta-omics. The biobank was used as 
the resource of the dominant and subdominant species, 
which were eligible to be included if they harbored at 
least 20 key genes and transcripts for each of the above 
pathways and were present in 4 out of 8 spontaneous 
sourdoughs. Satellite members were selected based on 
their frequency of isolation[5]. The SDG comprised 7 
species (Table 1). The factorial approach we used allowed 
us to investigate whether the depletion of one species at 
a time affected the functions of the remaining members, 
implying sourdough performance and stability.

Players contributing to the metabolic resilience of de novo 
SDG
The dominant KEGG function number for Lac. plan-
tarum and Lim. fermentum did not vary between the 
exponential and stationary phases of growth, and it was 
not influenced by the depletion of a single species within 
the SDG (Fig. 3). Although the absolute value of KEGG 
transcripts was lower than that of the dominant species, 
the same stability was also observed for the subdomi-
nant Ped. pentosaceus. In contrast, the KEGG numbers 
for other bacteria and yeasts decreased upon reaching 
the stationary phase of growth and showed differential 
expression depending on the SDG composition. Spe-
cies interactions modified the KEGG profiles when any 
single species was removed from the pools. The number 
of KEGG functions of the subdominant Fur. rossiae was 
driven by dominant species: the highest number of tran-
scripts was observed in the pool without Lim. fermentum 
and Lac. plantarum. The opposite trend was observed 
during the stationary phase of growth without Sta. epi-
dermidis or Ped. pentosaceus. The satellite Sta. epider-
midis had the lowest KEGG transcript number when 
Fur. rossiae was absent and, more generally, showed a 
decreased number of KEGG functions when entering the 
stationary phase of growth. Nevertheless, its contribution 
during the exponential phase of growth was not negligi-
ble. The core dominant Sac. cerevisiae and the dispensa-
ble dominant Pic. kudriavzevii had the highest number 
of KEGG transcripts during the exponential phase of 
growth and when Sta. epidermidis and Ped. pentosaceus 
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were absent (Fig. 3). Sac. cerevisiae had a higher number 
of transcripts than Pic. kudriavzevii in all SMCs.

The SDG had the capability to mimic all the functions 
needed to express carbohydrate metabolism. The poten-
tial contribution of each species to the starch, nonstarch 
polysaccharide and sucrose pathways was reconstructed 
(Fig.  4a, b). Key enzymes for starch, cyclodextrin and 
maltodextrin hydrolysis were encoded by core and dis-
pensable dominant species of SDG. Lac. plantarum was 
the only species involved in the pathways leading to malt-
ose formation (e.g., alpha-amylase, EC:3.2.1.1 and cyclo-
maltodextrinase/neopullulanase, EC:3.2.1.54), while the 

other two core dominant species (Lim. fermentum and 
Sac. cerevisiae) showed the ability to modify the starch/
amylose structure by releasing D-glucose-1P. Concomi-
tant activity on the D-glucose-1-P pathway was also 
detected for the dispensable dominant Pic. kudriavzevii.

Sac. cerevisiae was the only species capable of 
directly hydrolyzing starch in D-glucose (glucoamyl-
ase, EC:3.2.1.3). The core subdominant Fur. rossiae did 
not possess starch-hydrolyzing enzymes but showed the 
capability to ferment dextrin/isomaltose and maltose 
through oligo-1,6-glucosidase (EC:3.2.1.10) and alpha-
glucosidase (EC:3.2.1.20). β-D-Glucosidase (EC:3.2.1.21) 

Fig. 3  Total transcript KEGG function as bar plot histograms. Per-species contribution in terms of KEGG transcript presence/absence in both 
the exponential (T1) and stationary (T2) phases within each depleted synthetic microbial community (SMC-SDG1 without Pichia kudriavzevii; 
SMC-SDG2 without Saccharomyces cerevisiae, SMC-SDG3 without Staphylococcus epidermidis, SMC-SDG4 without Pediococcus pentosaceus, 
SMC-SDG5 without Furfurilactobacillus rossiae, SMC-SDG6 without Limosilactobacillus fermentum and SMC-SDG7 without Lactiplantibacillus 
plantarum)

(See figure on next page.)
Fig. 4  Reconstruction of carbohydrate and pyruvate pathways in SMCs. Schematic representation of metabolic pathways, according to the KEGG 
database, involved in a) carbohydrate metabolism, b) pentose and pyruvate metabolism, c) aminotransferases and c) deaminases and lyases for 
each synthetic microbial community (SDG, SMC-SDG1 without Pichia kudriavzevii; SMC-SDG2 without Saccharomyces cerevisiae, SMC-SDG3 
without Staphylococcus epidermidis, SMC-SDG4 without Pediococcus pentosaceus, SMC-SDG5 without Furfurilactobacillus rossiae, SMC-SDG6 
without Limosilactobacillus fermentum and SMC-SDG7 without Lactiplantibacillus plantarum) reconstructed based on metatranscriptomics data. 
Each species presence/absence contribution of a single enzymatic (EC number) reaction is reported in each concentric circle, wherein each slice 
refers to a single SMC and each color to a different species. The color flag underneath each EC number refers to the classification of species as 
dominants, subdominants and satellites. The circular diagram (bottom left) explains the SMC placement within circles
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B

Fig. 4  (See legend on previous page.)
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gene transcripts were unique to Fur. rossiae. Arabinoxy-
lan metabolism leading to D-xylose and arabinose was 
exclusively found in Fur. rossiae.

Maltose phosphorylase (EC:2.4.1.8), glucokinase 
(EC:2.7.1.2) and β-phosphoglucomutase (EC:5.4.2.6) were 
encoded by all core dominant and subdominant lactic 
acid bacteria. Concomitantly, Sac. cerevisiae contributed 
to the metabolism of dextrin via maltose phosphorylase 
and uniquely showed the capability to catabolize malt-
ose by amylomaltase (E. C 2.4.1.25). Lac. plantarum and 
Ped. pentosaceus showed the capability to use alterna-
tive energy sources such as trehalose and cellobiose via 
trehalose phosphorylase (EC:2.4.1.64) (only Lac. plan-
tarum), 6-phospho-beta-glucosidase (EC:3.2.1.86) and 
trehalose-6-phosphate hydrolase (EC:3.2.1.93). The gene 
encoding β-fructofuranosidase (EC:3.2.1.26), which par-
ticipates in fructan metabolism, was detected in all the 
core dominant species and Sta. epidermidis. Fructoki-
nase (EC:2.7.1.4), which metabolizes fructose, was shared 
by all lactic acid bacteria. Within the fructose pathway, 
supplementary activity was shown by yeasts through 
hexokinase (EC:2.7.1.1). As observed downstream of the 
UDP-glucose intermediate, the contribution of Sac. cere-
visiae was often redundant with that of Pic. kudriavzevii. 
The synergistic activity of endo-xylanase (EC:3.2.1.8), 
β-d-xylosidase (EC:3.2.1.37), β-glucosidase (EC:3.2.1.21) 
and α-arabinofuranosidase (EC:3.2.1.55) was mainly 
expressed by Fur. rossiae (Fig.  4b). Regarding the 

fermentation of hexoses and pentoses and the alternative 
fate of pyruvate (Fig.  4b), the genes encoding members 
of the pyruvate dehydrogenase complex [pyruvate dehy-
drogenase (EC:1.2.4.1), dihydrolipoamide dehydrogenase 
(EC:1.8.1.4), pyruvate dihydrolipoamide acetyltransferase 
(EC:2.3.1.12)] were detected in core dominant and sub-
dominant strains as well as in Sta. epidermidis. This latter 
also provided a supplementary contribution with D-lac-
tate dehydrogenase (EC:1.1.1.28). L-lactate dehydroge-
nase (cytochrome) (EC:1.1.2.3), D-lactate dehydrogenase 
(cytochrome) (EC:1.1.2.4) and (R)-2-hydroxyglutarate-
pyruvate transhydrogenase (EC:1.1.99.40) activities were 
detected only in yeasts. Yeasts and Sta. epidermidis 
encompassed the encoding gene for acetyl-CoA syn-
thetase (EC:6.2.1.1), an enzyme using acetate to synthe-
size acetyl-CoA. Another alternative pathway leading 
to the synthesis of acetate was detected. This included 
pyruvate decarboxylase (EC:4.1.1.1) and aldehyde dehy-
drogenase NAD( +)/NADP( +) (EC:1.2.1.3/1.2.1.5). 
Sac. cerevisiae encodes a mannitol 2-dehydrogenase 
(EC:1.1.1.67) that reduces D-fructose to D-mannitol. An 
alternative mechanism for NAD+ regeneration was found 
in Lac. plantarum, involving mannitol-1-phosphate 
5-dehydrogenase (EC:1.1.1.17), which reduces D-fructose 
6-phosphate to D-mannitol 1-phosphate.

Transcriptomic evidence of unique species-specific 
contributions also emerged for nitrogen metabolism 
(Fig.  5). The contribution of Sta. epidermidis is mainly 

Fig. 5  Peptidase gene transcripts in SMCs. SMC peptidase KEGG gene transcripts at exponential (T1) and stationary (T2) phases: a) permutation 
matrix of endo-, amino- and dipeptidases. Normalized transcript (TPM) abundances ranged from –6.99 (green) to + 6.99 (red). b) Stacked bar-plot 
histograms reporting the per-species gene transcripts encoding peptidases within each synthetic microbial community; and c) permutation matrix 
of proline-specific peptidases. Normalized transcript (TPM) abundances ranged from –4.12 (green) to + 4.12 (red)
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related to tripeptide aminopeptidase (EC:3.4.11.4) and 
Xaa-pro aminopeptidase (EC:3.4.11.9). Despite the few 
genes transcribed, this satellite species showed higher 
expression levels than the other SDG species (Fig. 5a and 
c), whereas its global contribution was lowest (Fig.  5b). 
The SDG analysis showed that most nitrogen metabo-
lism functions were shared among bacteria, while this 
redundancy might be extended to yeasts for only some 
pathways. Analysis of the BCAA metabolism pathway 
revealed that various enzymes were actively transcribed 
only in Sac. cerevisiae and Pic. kudriavzevii, which, 
together with Sta. epidermidis, contributed to several 
indispensable pathways. This is the case for glutamate 
dehydrogenase (EC:1.4.1.2) and aldehyde dehydrogenase 
(NAD +) (EC:1.2.1.3) (Fig.  4c). Gdh was encoded only 
by Lac. plantarum, Sta. epidermidis and yeasts. Aspar-
tate ammonia-lyase (EC:4.3.1.1), the enzyme that con-
verts aspartate into fumarate, was uniquely transcribed 
by Lac. plantarum (Fig.  4d). The 2 routes for arginine 
degradation, the arginine-urease and ADI pathways, 
were detected. The gene encoding arginase is present in 
Lim. fermentum, Sac. cerevisiae and Pic. kudriavzevii. 

Clustered genes for the ADI pathway were found in Lim. 
fermentum, Fur. rossiae and Ped. pentosaceus.

The de novo synthetic community shows transcriptome 
redundancies
Together with de novo SDG, we reconstructed another 
synthetic microbial community (SMC-SD43) to com-
pare transcriptomics data in exponential and stationary 
growth conditions. SMC-SD43 comprised all bacterial 
and yeast species that were detected by culturomics in 
the spontaneous sourdough SD43. Both SDG and SMC-
SD43 were cultivated in WFH, and their levels of tran-
scripts assigned to KEGG functions (including copies of 
each transcript) were assessed (Fig. 6 a and b). The data 
focused on the robustness of the SDG with respect to 
SMC-SD43. The number of total KEGG transcripts in 
SDG was 4 times higher than that in SMC-SD43. This 
overall trend was also confirmed for each of the main 
reconstructed pathways. The highest number of gene 
transcripts in SDG belonged to carbohydrate metabo-
lism, which was represented by more than 2500 gene 
copies.

Fig. 6  Comparison of KEGG transcripts and copy numbers between SDG and SMC-SD43. The annotated functions from the metatranscriptomes 
were used to assess the robustness of SDG- and SD43-reconstructed synthetic microbial communities. The occurrence (presence/absence) of 
transcribed functions in terms of KEGG enzymes and relative copy number have been evaluated in terms of the whole metabolic pattern (panel a) 
and four selected submetabolisms (panel b), inclusive of carbohydrates, amino acids, stress, and peptidases. The transcript and copy numbers are 
shown in purple and dark green, respectively
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The de novo synthetic community shows steady state 
under in situ conditions
Next, we assessed SDG and SMC-SD43 during 30  days 
of daily back slopping under in  situ sourdough condi-
tions. Both stabilized at similar pH values (4.3 ± 0.03 
and 4.2 ± 0.02) after 5 days of propagation. The kinetics 
of acidification remained almost constant throughout 
30 days. The cell densities of presumptive lactic acid bac-
teria were also steady, reaching similar values (ca. 8.51 
to 8.65 log cfu/g). Presumptive staphylococci and mic-
rococci (ca. 3.0 log cfu/g) and enterobacteria (ca. 3.9 to 
4.9 log cfu/g) did not vary significantly. Yeasts slightly dif-
fered, at ca. 6.82 to 6.86 ± 0.02 log cfu/g for SMC-SD43 
and 7.3 to 7.70 ± 0.04 log cfu/g for SDG. Biotype profil-
ing (Fig. 7b and c) showed the sudden disappearance of 
Fru. sanfranciscensis, Lac. lactis and Staphylococcus sp. 
strains from SMC-SD43. After 10  days of propagation, 
other biotype members, such as Lac. paracasei and Lac. 
rhamnosus, were no longer detectable. At 30 days, SMC-
SD43 harbored only 4 of the initial strains. In contrast, 
all strains inoculated in SDG persisted throughout back 
sloping (Fig.  7a). The only exception was Pic. kudri-
avzevii, which was no longer detectable after 10 days of 
propagation. The GC–MS data showed a profile of fifty-
four VOCs, which reflected the stability of the sourdough 
metacommunities. Indeed, the levels of VOCs varied 
substantially during the propagation of SMC-SD43, while 
they remained almost constant for SDG. The statistical 
comparison (Welch test with BH correction) between 
sampling revealed variations of 45 VOCs in SMC-SD43 
and only 3 VOCs in SDG (Supplementary Table  S11, 
Additional File 13). Based on the linear distance of the 
principal component analysis plot, the two sampling 
times of SDG almost overlapped in the same quadrant 
(third), while those from SMC-SD43 were plotted in the 
second and fourth quadrants (Fig. 8).

Discussion
Deterministic drivers render the sourdough microbiome/
fermentome highly variable, dynamic and often unpre-
dictable in terms of evolution, stability and performance 
[43]. As further evidence of this, the representative spon-
taneous sourdoughs used in this study had a heterogene-
ous richness in culturable bacterial and yeast species that 
could not be appreciated simply by evaluating the cell 

densities of dominant members and the ratio between 
lactic acid bacteria and yeasts [5].

As we discussed in an earlier systematic review [5], 
lactic acid bacteria usually act as dominant players in 
sourdoughs, but we have also been able to detect several 
subdominant species, which together accounted for the 
majority of genes/transcripts. Deterministic drivers dur-
ing sourdough back slopping promote the dominance of 
competitive species with ecological fitness over a pool of 
less abundant members, the role of which must not be 
neglected [44]. Overall, we confirmed the constant domi-
nance of Sac. cerevisiae among the yeasts [45]. Acting as 
satellite members, other bacterial genera (e.g., staphylo-
cocci and few enterobacteria) completed the sourdough 
metacommunity. Repeated back slopping provides the 
opportunity for even unlikely contaminants to become 
significant members of the sourdough microbiome [46].

Deciphering the functional redundancy of sourdough 
genomes and the main players actively engaged 
in the main metabolic pathways
Sourdoughs shared a very high number of genes in 
common, although numerous unique genes were also 
assigned to unique sourdoughs. Biochemical pathways 
relevant to the main properties of sourdoughs, such as 
carbohydrate, pyruvate, energy and nitrogen metabo-
lism, accounted for the highest number of genes. Based 
on metatranscriptomics, we might assert that higher 
microbial richness is accompanied by higher sourdough 
gene redundancy. The contribution of taxonomically 
close members was redundant in terms of functions [47]. 
This evidence confirmed the findings from other micro-
bial ecosystems, such as those of the human gut [48], 
animals [49], foods [50] and plants [51]. We succeeded 
in assigning almost all functions to reconstructed path-
ways, which were fundamental for the resilience and 
performance of the sourdough. At the same time, we 
underlined the individual contributions of many play-
ers within the metacommunity that are actively part of 
dominant, subdominant and satellite groups. As already 
reported when describing the interactions between 
Lac. plantarum and Sac. cerevisiae  [52], we demon-
strated, in a more complex metacommunity, how single 
enzyme activities might rely on unique or multiple con-
tributions from detectable species. All Weissella spp. and 

Fig. 7  Biotypes of lactic acid bacteria and yeasts comprising SDG and SMC-SD43 during daily back slopping, as identified by RAPD-PCR. Cumulative 
representation of the composition and evolution of SDG and SMC-SD43 during the persistence experiment (a); pink font indicates species that 
were lost during back slopping. DNA fingerprinting profiles of lactic acid bacteria isolates obtained by using P4 and M13 arbitrary primers (b). DNA 
fingerprinting profiles of yeasts obtained by using mM13 and RP11 arbitrary primers (c). The size of the bands (base pair number) compared to 
the reference lane has been reported for each primer pair. On the horizontal axis, the cluster analysis of the composite profiles using the UPGMA 
method (BioNumerics) is given. Information about the last day the biotype was identified and in which penultimate dilution (expressed as log 
cfu/g) have been shown as tables. The first profile of each different strain is the reference profile of the strains used

(See figure on next page.)
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Lactobacillus spp. (former taxonomic nomenclature) 
detectable at the metagenomics level were also transcrip-
tionally active in sourdoughs, whereas Lactococcus and 
Enterococcus were not. Although frequently harbored 
by spontaneous sourdoughs, these last two mentioned 
genera might have been displaced by lactobacilli dur-
ing back slopping [46]. Some other culturable bacteria 
(e.g., Enterobacteriaceae) also did not exhibit transcripts, 
probably because of acid inhibition and/or their inability 
to transcribe at low cell densities. Staphylococcus spp. are 
commonly isolated from cereal flours, but they do not 
show sufficient competitiveness for maintenance during 
sourdough back slopping [53]. Nevertheless, when Sta. 
epidermidis was inoculated at higher cell densities and 
grown in the WFH model medium, it expressed gene 
transcripts, even within a heterogeneous metacommu-
nity. To complete the critical analysis of this finding, we 
must acknowledge that by capturing single snapshots at 
specific timepoints, metatranscriptomics may suffer from 
specific biases relevant to transcript detection and quan-
tification. Overall, the dominant and subdominant taxa 
were distinguished by the difference in numbers of genes 
and transcripts. Fru. sanfranciscensis, Lac. plantarum, 
Lim. fermentum, Ped. pentosaceus, Leu. citreum and Wei. 
confusa actively contributed to almost all reactions of all 
reconstructed pathways. This set of species was shared by 
several spontaneous sourdoughs, in particular those with 
the highest genetic potential and numbers of transcripts. 
Key enzymes such as fructose-1,6-bisphosphate aldolase 
(EMP pathway) and phosphoketolase (phosphogluconate 
pathway) are broadly distributed within the sourdough 
metatranscriptomes [54, 55]. Phosphoketolase was invar-
iably present, which also indicated a role for anabolic 
reactions. NADH-dependent mannitol dehydrogenase 
activity contributing to additional cofactor regeneration 
was found only in Sac. cerevisiae. Since this enzyme is 
also pivotal for lactic acid bacteria competitiveness, the 
lack of the encoding gene might be ascribed to its high 
sequence similarity with alcohol- and L-threonine dehy-
drogenases [56]. In addition, all sourdoughs harbored the 
gene encoding mannitol-1-phosphate 5-dehydrogenase, 
which was exclusively ascribed to Lac. plantarum  [56]. 
Specific reactions leading to the synthesis or release of 
amylose, 1–3 β-glucans and trehalose were exclusively 
contributed by Sac. cerevisiae and P. kudriavzevii. As 
confirmed by constructing the synthetic microbial com-
munity, Sac. cerevisiae was also unique in contributing 

to starch breakdown through amyloglucosidase activ-
ity (EC: 3.2.1.3). Another parallel pathway leading to the 
synthesis of D-glucose from β-D-glucoside revealed the 
unique contribution of Fur. rossiae.

De novo design of synthetic microbial communities 
and their players contributing to metabolic resilience
Based on the taxonomic classification, functional anno-
tation and pathway inspection, we established the 
groundwork for selecting those species most suitable 
to reconstruction of a synthetic resilient and high-per-
forming sourdough metacommunity. According to our 
hypotheses, subdominant genes synergistically cooper-
ate with dominant players to express key genes, and sat-
ellite members are equipped with unique genes that are 
also important for the stability of the metacommunity. 
In summary, gene complementarity and redundancy 
are the main prerequisites to guarantee sourdough effi-
ciency. The engineering of a multispecies consortium 
relies on a simplified and controlled environment [57], 
and therefore, WFH [35] was chosen as the model sys-
tem. To unravel the contribution of each player to the 
de novo SDGs, the metatranscriptomics assessment was 
repeated. All the pathways reconstructed from spon-
taneous sourdoughs were confirmed, and the roles of 
individual players were deepened. Growth phases and 
depletion of single members from SDG did not influ-
ence the number of transcripts of Lac. plantarum, Lim. 
fermentum and Ped. pentosaceus, which contributed 
redundant functions, particularly for carbohydrate path-
ways. These species constitutively expressed enzymes 
for maltose utilization (e.g., maltose phosphorylase, 
β-phosphoglucomutase and glucokinase), which indi-
cated an adaptation to the sourdough ecosystem, as 
maltose is the most abundant fermentable carbohydrate 
in cereal flours, but also a physiology and ecology that 
matched their phylogenetic placement [58]. The com-
parison of exponential and stationary phases of growth 
revealed an adaptation in terms of species contribu-
tion. Specifically, when entering the stationary phase of 
growth, the number of transcripts from Sac. cerevisiae 
and Pic. kudriavzevii decreased; this behavior might be 
related to a quiescence state because of the lack of car-
bon sources [59]. Moreover, slightly influenced by the 
phase of growth, the number of transcripts of Fur. ros-
siae increased when the dominant players were depleted 
from SDG. Fur. rossiae was the only species contributing 

(See figure on next page.)
Fig. 8  Principal component analysis of VOC and metabolic delta of chemical classes in SDG and SMC-SD43. The volatile profile normalized data 
matrix for SDGlobal and SMC-SD43 communities at one (T0) and thirty (T30) days of propagation was used to calculate the principal components 
(Dim—1 and Dim —2) reported in the PCA graph (panel a). The contributions of variables to both dimensions are reported in panels c and d. 
Only statistically significant VOC differences ( g/g) were used to calculate the metabolic delta of the two timepoints (T30 minus T0). The resulting 
metabolic delta of VOC abundances was grouped according to chemical class, e.g., alcohols, aldehydes, esters, organic acids and others (panel b)
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to some pathways (e.g., arabinoxylans) and enzyme 
activities (e.g., β-D-glucosidase), which are fundamental 
for the rheologic, sensory and nutritional attributes of 
sourdough [60, 61]. Even though staphylococci are not 
competitive enough to grow under sourdough condi-
tions [62], we highlighted some fundamental contribu-
tions from these bacteria, mainly to nitrogen metabolism. 
Staphylococci have already been used as alternatives 
to lactobacilli [4] to leverage their nitrogen metabolism 
(e.g., converting arginine into ornithine) [63] and, in gen-
eral, for the uptake and release of free amino acids.

The de novo synthetic community shows steady state 
under in situ conditions
Compared to another reconstructed synthetic microbial 
community (SMC-SD43), which mimicked the composi-
tion of a spontaneous sourdough and had a higher num-
ber of bacterial and yeast species (9 vs. 7), the SDG more 
reliably maintained all the functions needed to resiliently 
express carbohydrate and nitrogen metabolism. The 
robustness of the SDG was attributable to its higher gene 
expression in terms of total KEGG pathways and copy 
numbers. The last proof to confirm our hypotheses was 
based on the in  situ resilience and performance, which 
we monitored under perturbations that occurred during 
the daily sourdough back slopping. As expected, the two 
synthetic microbial communities did not show variation 
in terms of acidification or numbers of presumptive lactic 
acid bacteria and yeasts. It has been widely demonstrated 
that contaminant species may replace the initial ones and 
that these qualitative changes within the metacommunity 
are not observable using simple determinations such as 
pH and plating [64]. Here, much more finely tuned bio-
type profiling revealed how the metacommunity of SDG 
remained stable during 30 days of propagation, while that 
of SMC-SD43 lost most of its species members. These 
changes might affect sourdough performance in terms 
of flavor, where VOC synthesis may be a suitable indica-
tor. In fact, the VOC profiles of SDG overlapped during 
30 days of propagation, while those of SMC-SD43 drasti-
cally changed.

Conclusions
In our complex workflow, we envisioned the sourdough 
as a specialized social structure from which members 
colonize the new flour environment in a complemen-
tary manner that is orchestrated strategically to cover all 
accompanying metabolic pathways. Our study demon-
strates how, by starting from spontaneous sourdoughs 
and reconstructing the synthetic community, it was pos-
sible to unravel the metabolic contributions of individual 
players. For resilience and good performance, the sour-
dough metacommunity needed to include dominant, 

subdominant and satellite players, which together 
ensured gene and transcript redundancy. Overall, our 
study changes the paradigm and introduced theoretical 
foundations for directing food fermentations.
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matrices were used to compute a Welch corrected test (Benjamini–Hoch-
berg). Mean rel. freq. = mean relative frequency; std.dev. = standard 
deviation; CI = confidence interval.
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