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Abstract 

Background:  Prokaryote-virus interactions play key roles in driving biogeochemical cycles. However, little is known 
about the drivers shaping their interaction network structures, especially from the host features. Here, we compiled 
7656 species-level genomes in 39 prokaryotic phyla across environments globally and explored how their interaction 
specialization is constrained by host life history traits, such as growth rate.

Results:  We first reported that host growth rate indicated by the reverse of minimal doubling time was negatively 
related to interaction specialization for host in host-provirus network across various ecosystems and taxonomy 
groups. Such a negative linear growth rate-specialization relationship (GrSR) was dependent on host optimal growth 
temperature (OGT), and stronger toward the two gradient ends of OGT. For instance, prokaryotic species with an OGT 
≥ 40 °C showed a stronger GrSR (Pearson’s r = −0.525, P < 0.001). Significant GrSRs were observed with the presences 
of host genes in promoting the infection cycle at stages of adsorption, establishment, and viral release, but nonsig-
nificant with the presence of immune systems, such as restriction-modification systems and CRISPR-Cas systems. 
Moreover, GrSR strength was increased with the presence of temperature-dependent lytic switches, which was also 
confirmed by mathematical modeling.

Conclusions:  Together, our results advance our understanding of the interactions between prokaryotes and provi-
ruses and highlight the importance of host growth rate in interaction specialization during lysogenization.
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Introduction
The structure of prokaryote-virus interaction networks is 
closely related to ecosystem functions [1], such as biogeo-
chemical cycles [2]. Specific host-virus pairs in networks 

are primarily established on the basis of their gene-for-
gene coevolution [1, 3], during which host serving as prey 
are often initiators to constantly update their antivirus 
(predator) mechanisms for survival [4]. This forwardly 
evolutionary strategy of hosts not only narrows their 
spectrum of viral susceptibilities but also enforces viruses 
to participate in an arms race and become specialists, 
especially at large phylogenetic scales of host-virus inter-
actions [5]. Such coevolutionary dynamics enhance the 
heterogeneity of species specialization in cross-infection 
patterns [1], which contributes to nonrandom networks 
with nested, modular, or nested-modular structures [5–
7]. However, previous studies have focused mostly on the 
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host range or specificity of viruses in exploring special-
ized host-virus interactions [6–8], while the host side 
is understudied. Complementary to the findings about 
viruses, the study of host features such as interaction 
specialization for host could provide a novel insight into 
host-virus network structure.

Host specialized on the set of viruses is primarily 
dependent on the alignments between its physiological 
status and the viral interests [9]. Such specific matches 
could lead to the phenomenon of the presence of provi-
ruses in prokaryotic genomes being associated with host 
life history traits [9, 10], aside from molecular interac-
tions from receptor to immune recognition [11]. The host 
growth rate could be one of the most important traits in 
determining host-virus interaction outcomes [12–16], 
and its high variability across species could result in the 
heterogeneous distributions of proviruses within certain 
prokaryotic clades [9]. Following this clue, we proposed 
that host specialization in host-virus interactions will be 
linked to the host growth rate based on the three lines 
of indirect evidences. First, an improved growth rate of 
the host could be accompanied with a reduced range of 
resistance to viruses [17, 18], which is partly contributed 
by the tradeoff between immunity and growth rate [19]. 

Second, high-host density stimulated by a high-growth 
rate cloud provide more chances of host cells encounter-
ing more virus species and enhances the virus adsorption 
rate [20], which may increase the probability in coinfec-
tion or even superinfection with diverse viruses in the 
host and generally modelled by Kill-the-Winner dynamic 
[21]. Third, slow-growing species favoring lysogeny [9] 
could allow proviruses to evolve competition strategies 
(e.g., surface modification) in host for inhibiting fur-
ther viral infection [22]. Inspired by above findings, we 
hypothesized that prokaryotic species attaining a fast 
growth rate (fast grower) may show less specificity on 
virus species than slow growers, that is, growth rate-spe-
cialization relationships (GrSRs) (Fig. 1).

We further expect that GrSRs could be influenced by 
the host growth environment and genetic traits [4, 23, 
24]. For example, in high-temperature environment, 
thermal stress has stronger effects on the host than its 
viruses [23], which would lead to the host changes in 
outer-membrane protein expression [25] and immune 
activities [26]. These host responses alter the host sus-
ceptibility or specificity to viral infection, revealing that 
a temperature-dependent infection structure is primar-
ily established by the host [23]. In saline environments, 

Fig. 1  Interaction specialization of host in host-virus network. A We hypothesized that interaction specialization for host in host-virus network is 
negatively related to host growth rate. It is noted that interaction specialization of host comprehensively considers both the number of different 
viral interactions and host range of viruses. Colors of triangles and circles represent different virus species and host species with gradient growth 
rates, respectively. B Adjacency matrix of host-virus interaction network (blue background) in plot A. C Formulation of interaction specialization of 
host in host-virus network, which is calculated by Shannon index d (see details in the ‘Methods’ section)



Page 3 of 13Liu et al. Microbiome           (2022) 10:92 	

ironic strength not only affect the host physiological sta-
tus [23] but also largely determines the infection activity 
of specialized viruses [27–30], implying the interactions 
of host-virus pairs could be constrained by environment 
salinity. Furthermore, host genetic traits are fundamental 
to their interaction specialization in infection networks 
during host-virus co-evolution. For instance, host resist-
ance to viruses could shift with the evolution of some 
genetic traits, including the mutations in surface recep-
tors, such as outer-membrane proteins and flagellum 
or pilin proteins [31], and the development of diverse 
immune systems, such as restriction-modification (RM) 
systems [32] and clustered regularly interspaced short 
palindromic repeats (CRISPR) and their associated pro-
tein (Cas) systems [33]. CRISPR-Cas systems, adaptive 
immune systems targeting specific viral sequences [34], 
could play a key role in shaping interaction specialization 
of host by mediating inefficient viral infection, or selec-
tively inactivating viruses and allowing hosts to employ 
specific viruses during evolution for adaptation to diverse 
environments [35]. Despite the guidance of above find-
ings, which and how environmental factors and host 
life history or genetic traits affect interaction specializa-
tion for host in prokaryote–virus networks are largely 
unknown and worth further investigations at global scale.

Compared with virulent viruses, proviruses as tem-
perate viruses could increase host fitness such as 
growth rate [36] and temperature tolerance [37] by reg-
ulating gene expressions of host cell population at lyso-
genic state. This suggests that the interactions between 
host and proviruses are more dependent on host traits 
and environment factors than virulent viruses, and we 
therefore focused on the host-provirus interactions to 
investigate the drivers shaping interaction specializa-
tion for host. Here, we compiled 7656 species-level 
genomes from approximately 170,000 strain-level 
genomes of bacteria and archaea [38] across 15 eco-
systems and 15 phyla and construct a host-provirus 
bipartite network based on the occurrences of provi-
ruses in host genomes. We used Shannon index d’ to 
quantify the interaction specialization for host within 
host-provirus network (Fig.  1). To uncover the role of 
host life history and genetic traits playing in its spe-
cialization in host-provirus interactions, we considered 
three main aspects of prokaryotic host: the growth rate 
estimated by the reverse of the minimal doubling time 
(DT), the optimal growth temperature (OGT), and the 
genes responsible for the infection cycle. We further 
established a mathematical model to explore the key 
determinants contributing to interaction specialization 
for host from the perspective of population dynamics. 
We had three main aims: (1) How does the host growth 
rate influences its interaction specialization across 

ecosystems and taxonomic groups? (2) What environ-
mental factors or (3) genetic traits potentially modulate 
the effects of host growth rate on interaction speciali-
zation? Our results suggest that host growth rate plays 
a key role in shaping their interaction specialization 
during lysogenization, which is strengthened by high or 
low temperature and potentially constrained by molec-
ular processes in the infection cycle.

Methods
Features of prokaryotes
We selected 7656 genomes as representative species 
from approximately 170,000 prokaryote strains com-
plied by Madin et  al. [38] and downloaded them from 
the NCBI according to accession numbers. The fil-
tered genomes included 390 archaea and 7266 bacte-
ria, and their completeness was greater than 90%. We 
considered species with the maximal genome size at 
the strain level as representative species. The natural 
environments were classified according to the proto-
cols of Earth Microbiome Project Ontology (EMPO) 
[39]. Coding sequences in prokaryote genomes were 
also detected by Prokka v1.14.6 [40] with default 
parameters. The minimal doubling times were pre-
dicted based on ribosomal protein genes via the “pre-
dictGrowth” function in the “gRodon” v1.0.0 package 
[41], the reverse of which was used to indicate the host 
growth rate in units of doublings per day. The OGTs 
were predicted by software Tome v1.0 software [42] 
using species coding sequences with default param-
eters. Phylogenetic tree of all prokaryotic species was 
constructed by GToTree v1.6.12 software [43] based on 
25 shared genes for bacteria and archaea (-H Bacteria_
and_Archaea) with default parameters.

Proviruses
Proviruses in prokaryote genomes were identified by 
Phispy v4.1.22 based on AT and GC skews [44] with 
default parameters, and prophage genomes with lengths 
less than 3 kb were removed. To generate viral clusters 
at genus level, the remaining provirus genomes were 
clustered and taxonomically assigned by vConTACT2 
v0.9.19 [45] against “ProkaryoticViralRefSeq201-Merged” 
reference via Diamond v0.9.24.125 [46] and ClusterONE 
(vcontact2 --rel-mode Diamond --pcs-mode MCL --vcs-
mode ClusterONE). Provirus coding sequences were 
clustered by MMseqs2 v12.113e3 [47] with 70% identity 
and 70% coverage (mmseqs easy-linclust --min-seq-id 
0.7 -c 0.7 --cov-mode 1). The completeness of provirus 
sequences were accessed by Checkv v0.8.1 software [48] 
with default parameters.
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Surface receptor proteins
Host genes encoding phage protein receptors were 
searched for by DIAMOND against the phageReceptor 
database [49] with 50% identity.

Immunity systems
CRISPR arrays and Cas genes were identified by CRISPR-
finder [50]. CRISPR-Cas systems were composed of 
CRISPR arrays and the closest Cas genes with distances 
less than 600 bp (bacteria: -cs -ccvr -vi 600; archaea: -ac 
-ccvr -vi 600). RM systems were identified by DIAMOND 
against the REBASE database [51] with 50% identity. The 
pair genes encoding restriction endonucleases and meth-
ylase were considered as a restriction-modification sys-
tem when there were less than 5 genes between this pair 
genes.

Lytic switches
Genes encoding the repressors CI and Cro were searched 
for by DIAMOND against sequences collected from the 
UniProt database [52] with 50% identity. Genes encoding 
the repressors FpsA and FpsR were searched for against 
sequences provided by a previous study [53].

Species specialization of viral infections
A host-provirus network was constructed according to 
the coexistence of host and viral clusters. Since the inclu-
sions of singletons and doubletons within host-provirus 
network would lead to a lot of perfect specialists dur-
ing calculating interaction specialization d’, we removed 
singletons and doubletons of hosts and viral clusters for 
downstream analyses. Interaction specialization of host 
was estimated by the standardized specialization index d’ 
at host level within host-provirus network with I hosts × 
J viruses, which was carried out by the “dfun” function in 
the “bipartite” v2.16 package [54]. The value d’ is derived 
from Shannon’s diversity index [55], which represents 
how specialized a given species is in relation to available 
interacting partners [56]. It is given by following formula:

where d′i represents standardized values derived from 
nonstandardized di of host i. p′ij denotes the proportion 
in the number of interactions between host i and virus j, 
calculated by p′ij = aij/

∑J
j=1aij , in which aij is the inter-

action frequency between host i and virus j (presence: 
1; absence: 0). qj denotes the proportion of all interac-
tions by virus j to the total number of interactions, given 

di =
∑J

j=1

(

p′ij • ln
p′ij
qj

)

and

d′i =
di−dmin

dmax−dmin
,

by qj =
∑I

i=1aij/
∑I

i=1

∑J
j=1aij . The value of d′i ranges 

from 0 for extreme generalization to 1 for extreme 
specialization.

Mathematical model of viral infection dynamics regulated 
by temperature
The presented mathematical model (Fig. S1) is an 
extended combination of previous works [57, 58]. We 
considered a spatially homogeneous habitat of unitary 
volume with a maximum capacity C, in which B+ and 
B− are presented as the population density of nonsus-
ceptible and susceptible cells to viruses, respectively, 
and P is the population density of viruses. For simplicity, 
we assumed that the growth of cells is described by the 
logistic function φ(N) multiplied by temperature fitness 
θ(T), where N and T are the population density of cells 
and environment temperature, respectively. We assumed 
that all viruses are ecological similar and adsorb to cells 
with an adsorption constant rate δ. The B− infected by i 
viral species is presented as B−

i  , the probability of which 
is Pr(X = i) and related to population density of cells and 
viruses. Here, we assumed B−

0  is lucky fellows escaping 
viral infection. The fraction α of B−

i  enters into lysogeny, 
whereas the remaining 1 − α release βvirus particles. The 
lysogen B−

i  could be induced to lyse and release β viral 
particles with an induction rate ξ(T). For lysogen B−

i  , 
secondary infections are invalid and result in the loss 
of infecting viruses. The total cell population density is 
denoted by N = B+ + B− +

∑

i �=0 B
−
i  . It is noted that 

host death due to lysis was considered in the term of B−. 
We assumed that there is a time delay (latent period) of τ 
between infection and lysis of lysogens.

Given the above assumptions, the model of viral infec-
tion dynamics regulated by temperature is given by delay 
differential equations, as follows:

The growth rates of B+ and B− are described by 
logistic functions of φ+(N(t)) = V+(1 − N(t)/C) and 
φ−(N(t)) = V−(1 − N(t)/C), respectively. The maximal 
growth rates of B+ and B− are presented by V+ and V−, 
respectively.

The temperature fitness of B+ and B− is described by 
Gaussian functions [59] of θ+(T ) = exp

(

−
(T−T+)

2

2σ 2
+

)

 

dB+(t)

dt
= �+(N (t))�+(T )B+(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Cell growth

,

dB−(t)

dt
= �−(N (t))�−(T )B−(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Cell growth

− �B−(t)P(t)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Infecting cell

+ �Pr(0|P(t),B−(t),N (t))B−(t)P(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Cells escaping infection

,

dB−
i
(t)

dt
= �−(N (t))�−(T )B−

i
(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cell growth

+ ��Pr(i|P(t),B−(t),N (t))B−(t)P(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Lysogenization

− �(T )B−

i
(t)

⏟⏞⏞⏟⏞⏞⏟
Induction

, i ≠ 0,

dP(t)

dt
=
∑

i≠0

(1 − �)��Pr(i|P(t),B−(t),N (t)) B−(t)P( t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Lysis

+
∑

i≠0

��(T )B−

i
(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Induction

− �N (t)P(t)
⏟⏞⏞⏟⏞⏞⏟
Adsorption

,

dN (t)

dt
=

dB+(t)

dt
+

dB−(t)

dt
+

dB
−
i
(t)

dt
.
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and θ−(T ) = exp
(

−
(T−T−)

2

2σ 2
−

)

 , respectively. The OGTs 
of B+ and B− are presented by T+ and T−, respectively. 
The temperature niche breadths of B+ and B− are pre-
sented by σ+ and σ−, respectively.

We assumed that host cells are infected by i viruses 
at time t occurs as a series of Bernoulli trials with the 
probability of success equal to p. Considering that the 
number of Bernoulli trials n is equal to viral particles 
and approximately infinite, the probability of a cell 
infected by i viruses at time t could be calculated by 
the Poisson formula and given by 
Pr(X = i) = �

i

i! e
−�, � = np . Here, λ is the average num-

ber of viruses infecting a host cell and fluctuating with 
the ratio of virus population density (P) to total cell 
population density (N). Since merely susceptible cells 
could be infected by viruses, the average number of 
viruses infecting a susceptible cell should be multiplied 
by the ratio of susceptible cell population density B− to 
the total cell population density N and formulized by 
� =

(

�0 +
P
N

)

B−/N  . Here, λ0 is the basic average num-
ber of viral species infecting host cell.

The temperature-dependent switch of lysogeny 
induction is described by a sigmoid function. We con-
sidered that there are heat- [60] and cold-activated 
switches [61], which are formulated by 
fh(T ) = 1

1+exp (k(Th−T ))
 and fc(T ) = 1

1+exp (k(T−Tc))
 . Th 

and Tc represent the temperatures of a half of the 
lysogeny events switching to lysis activated by heat 
and cold temperature, respectively. The parameter of k 
is a constant. Subsequently, the induction rate is 
described by ξ(T) = ξ0 max(fh(T), fc(T)), where ξ0 is the 
induction rate constant.

Species specialization of host d is calculated by the 
following equation:

where S is the population density of lysogens.
All constant parameters and initial states were listed 

in Tables S1 and S2, respectively. The system of delay 
differential equations was solved by Simon Wood’s 
solv95 program, which was conducted with “PBSd-
desolve” package [62] in R v3.6 environment [63]. We 
deposited the codes of the model on Github repository 
https://​github.​com/​zheng​hualiu/​GrSRs.

Statistical analyses
The linear relationships between host growth rate and 
interaction specialization d’ (GrSR) were estimated by 
a linear regression model [64]. To control the effects of 
phylogenetic structure in linear model for each phylum, 

S =
∑

i �=0
B
−
i

d = 1

∑

i �=0

B
−
i
×i

S

phylogenetically corrected linear regression was fur-
ther conducted by phylolm function with the Brownian 
motion model (BM) and the Pagel’s delta model from 
“phylolm” v2.6.4 package [65]. For multiple testing analy-
ses, P values were adjusted by Benjamini-Hochberg cor-
rection [66]. To detect the changes in GrSRs along with 
the OGT gradient, we used moving window approaches 
[67, 68] to locate sudden changes in the strength of 
relationships between host growth rate (log10-scaled) 
and d’. Specifically, dataset was divided into overlap-
ping bins by 10°C (e.g., 10–20°C, 11–21°C, and 12–22°C 
until 70–80°C) and 20°C moving windows (e.g., 10–30°C, 
11–31°C, and 12–32°C until 60–80°C) of OGT between 
10 and 80°C. The Poisson distribution of the multiplicity 
of infections in lysogens was estimated by the maximum-
likelihood method [69], and its significance was assessed 
by goodness-of-fit tests [70]. The above analyses were 
conducted in the R v3.6 environment [63].

Results and discussion
In total, we identified 11,798 provirus sequences in 5283 
and 166 species-level genomes for bacteria and archaea, 
respectively. The number of proviruses in genomes fol-
lowed the Poisson distribution with an average of 1.55 
(Fig. S2). The genomic length of provirus ranged from 
3.01 to 224.01 kb and averaged 32.94 (± 19.66, SD) kb. 
We accessed the completeness of provirus genomes by 
CheckV [48] and found that 2549 sequences had com-
pleteness > 50% and 3447 sequences had completeness 
≤ 50% while the others could not be determined. Based 
on gene-sharing network constructed by vContact2 
[45], all provirus sequences could be classified into 1581 
viral clusters, and 5.88% of which representing 7.65% of 
provirus sequences could be assigned with order-level 
taxonomies.

A host–provirus network was constructed based 
on the occurrence of proviruses in host genomes and 
used to further quantify interaction specialization of 
host (see details in the ‘Methods’ section). Interaction 
specialization of host was determined by the Shannon 
diversity index d and standardized by min-max scal-
ing (d’) [71]. It is noted that specialization d’ (interac-
tion specialization of host) comprehensively considers 
both the number of different viral interactions and host 
range of virus, and a higher value of d’ indicates that 
host is more specialized to interact with viruses (Fig. 1). 
Since the singletons and doubletons would introduce 
61% of potentially spurious proviruses into host-pro-
virus network due to their lack of genome complete-
ness (Fig. S3). If we included them in the calculation of 
interaction specialization d’, it led to 31% of the most 
specialized host with an extreme d’ value of 1 and 

https://github.com/zhenghualiu/GrSRs
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caused potential bias due to the non-normal distribu-
tion of d’ (Fig. S4A). In contrast, the exclusion of single-
tons and doubletons could result in an approximately 
normal distribution of d’ (Fig. S4B). Thus, to ensure the 
reliability in downstream analyses, we did not include 
the singletons and doubletons of viral clusters and host 
in host-provirus network. Consequently, we got a host–
provirus bipartite network of 3115 hosts × 548 viral 
clusters with 4339 links, where each host species aver-
agely interacted with 1.39 (± 0.68) viral clusters. Across 
the 39 phyla of bacteria and archaea, specialization d’ 
averaged 0.64 (± 0.15) and was significantly correlated 
with the reverse of viral cluster number, with a weak 
correlation of −0.045 (df = 3054, P = 0.013; Fig. S5). 
Furthermore, specialization d’ was significantly corre-
lated with the copy number of the 5S rRNA, 16S rRNA, 
and 23S rRNA genes (all P < 0.001; Fig. S5), which indi-
cates that interaction specialization of host is closely 
linked to the host growth rate (r = −0.119, P < 0.001; 
Fig. S5).

Host growth rate shapes interaction specialization
We found that there were significant linear relationships 
between host growth rate and specialization d’ across 
various ecosystems (Figs.  2 and S6) and phyla (Fig. S7). 

For instance, the negative linear growth rate-speciali-
zation relationships (GrSRs) were observed in natural 
environments such as terrestrial thermal systems (R2

adj 
= 0.19, P < 0.05; Figs. 2 and S6). There was also signifi-
cantly negative GrSRs in various phyla, such as Deino-
coccus-Thermus (R2

adj = 0.468, P < 0.05; Fig. S7, Table 
S3). Notably, one exception of a positive GrSR occurred 
for the abundant phylum of Actinobacteria (P < 0.05; 
Fig. S7), which may be caused by its higher susceptibil-
ity to diverse viruses than other phyla [72]. Moreover, we 
included phylogenetic structure in linear regressions and 
still found significant (P < 0.05) relationships between 
host growth rate and their interaction specialization d’ 
in host-provirus network (Table S4) for abundant phyla 
such as Actinobacteria (n = 745), Delta/epsilon subdivi-
sions (n = 60), Firmicutes (n = 776) and Proteobacteria 
(n = 1077), which may be contributed by the phylogeny 
signal of growth rate (supplementary material Note 1). 
Taken together, these results indicate that GrSRs are neg-
ative in some natural environments and specific taxono-
mies, and thus, in which fast growers are likely to show 
less specificity to virus clusters than slow growers.

Interestingly, we found that temperature could influ-
ence the GrSRs in host-provirus interaction network, 
which was supported by the following three lines of 

Fig. 2  Relationships between host growth rate and their interaction specialization (d’) across ecosystems. The host growth rates are log10-scaled. 
Solid lines denote significant linear GrSRs (all Padj < 0.05), while dashed lines are not linear GrSRs
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evidence. First, the slope or strength of negative linear 
GrSR in terrestrial thermal systems (slope = −0.19 ± 
0.07, P = 0.01) was generally larger than that in other rel-
atively low-temperature environments (all slopes < 0.12, 
P < 0.05; Figs. 2 and S6). Second, the GrSR strength indi-
cated by the linear slope increased toward high or low 
OGTs. For example, the result of multiple linear regres-
sion analyses showed that growth rate (P < 0.001) and 
OGT (P = 0.005) had independent effects on interaction 
specialization d’, while their interaction term was nonsig-
nificant (P = 0.803). Moreover, moving window analyses 
showed that the GrSR rapidly decreased until reaching 
a plateau phase when OGT gradually increased from 37 

to 40°C, (Fig. 3A, B). Consequently, the GrSR strength in 
host species with OGTs ≥ 40 °C (−0.23 ± 0.04, P < 0.001) 
was stronger than that in other species (−0.04 ± 0.01, P 
< 0.001; Fig. 3C). This temperature range of 37 to 40 °C 
has been empirically shown to have a wide physiological 
significance in host-virus interactions by elevating the 
synthesis of heat shock protein [73] and cell flagellum 
protein [74], decreasing the activities of the CRISPR-Cas 
systems in mesophilic bacterium [26] and introducing 
the lysogeny-to-lysis transition [60]. These physiological 
statuses are conducive to promoting the infection cycle 
and thus may strengthen GrSRs. Similarly, the GrSRs 
gradually decreased when OGT decrease from 20 to 13°C 

Fig. 3  Effects of temperature on GrSRs. The strength of the relationships between host growth rate (log10-scaled) and interaction specialization d’ 
was estimated based on 10°C (A) and 20°C (B) moving windows of the optimal growth temperature (OGT). Linear GrSRs across species OGTs (C) and 
growth temperature ranges (D). E Pearson’s correlations between host growth rate and d’ across the presence of various CSP genes. F The effects of 
the number of CSP genes on Pearson’s correlations of the GrSRs. Solid lines denote significant linear relationships (P < 0.05), while dashed lines are 
not linear relationships. Numerical labels represent the number of genomes for analyses. Black points denote statistical significance (P < 0.05), while 
white points indicate nonsignificance. Error lines of points denote standard error
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(Fig.  3A). In this temperature range, the expression of 
cold shock protein [75] and the outer-membrane recep-
tor OmpF was gradually upregulate [25]. Third, the sig-
nificantly negative GrSRs were stronger in thermophiles 
(−0.26 ± 0.06, P < 0.001; Fig.  3D) than other groups, 
which was supported by that Deinococcus–Thermus 
with an OGT range of 50.9 to 66.8 °C have larger GrSR 
slope (−0.13 ± 0.05, P = 0.05; Table S3, Fig. S7) than 
other phyla, such as Bacteroidetes and Proteobacteria 
(Fig. S7).

Molecular mechanisms underlying GrSRs
To mechanistically understand the temperature-depend-
ent GrSRs, we explored potential molecular processes 
from the perspectives of heat or cold shock responses and 
the key stages in the infection cycle. Our results showed 
that heat shock proteins (HSPs) or cold shock proteins 
(CSPs), protecting cells from lysis damage under high or 
low temperature stress [76, 77], respectively, potentially 
mediated the coupling of GrSRs. For HSPs, the presence 
of their genes (e.g., hsp40, hsp70, and hsp100) resulted in 
significantly negative GrSRs (Figs. S8 and S9), which were 
probably contributed by their chaperone activities for 
lysogeny development [78] and lysis [79].

For CSPs, the absence of their genes showed a non-
significant GrSRs (P > 0.05; Figs. 3E and S10), while the 
presence of their genes, such as csp7, cspA, cspB, and scof, 
generally led to significant GrSRs (all P < 0.05; Figs.  3E 
and S10). Furthermore, different CSP genes would cause 
negative or positive GrSRs. For example, on the one 
hand, GrSRs were significantly negative for the presence 
of cspC, cspD, and cspLA (all P < 0.05; Figs. 3F and S10), 
and the higher number of these three CSP genes would 
result in stronger negative GrSRs (Figs.  3F and S10), 
which may be associated with the upregulated expres-
sion of CSP genes during viral infections [80]. On the 
other hand, GrSRs were positive for the presence of csp7 
and scof genes (P < 0.05; Figs. 3E and S10) that were pri-
marily found in Actinobacteria genomes, which implies 
that both two genes are key genetic traits for the positive 
GrSR among Actinobacteria. However, at the order level, 
the abundant groups with csp7 genes, including Micro-
coccales, Rhizobiales, Streptomycetales, and Streptospo-
rangiales (all P > 0.1; Fig. S11), have no significant GrSR, 
while Micrococcales with scof showed a significantly 
positive GrSR (P < 0.05; Fig. S12). These results imply 
that the positive GrSR could be taxonomically depend-
ent regarding specific CSP genes, which needs to be fur-
ther supported by studying more genomes. Overall, we 
revealed that HSPs and CSPs contribute to the coupling 
of GrSRs, which may be due to their molecular chaper-
one activities assisting viral reproduction.

Considering that lysis–lysogeny decision of lysogens 
is obviously influenced by temperature [53, 60], we fur-
ther investigated how GrSRs are constrained by the 
genes responsible for the processes in the infection cycle, 
including key stages of virus adsorption, establishment, 
and release. For the adsorption stage, host receptors are 
diverse and play a key role in the specific matching of the 
host-viral pair [81]. Throughout all receptor proteins, we 
found that only the presence of genes encoding the flagel-
lum protein FliC or FljB and pilin protein MshA would 
lead to a significantly negative GrSR (all P < 0.05; Fig. 4, 
Table S5), while this was not the case for outer mem-
brane proteins (P > 0.05; Table S5). Compared with the 
outer membrane proteins, the structural proteins of fla-
gellum and pilus not only serve as viral receptors but also 
enhance cell motility and form biofilm formation [82] 
that increase host-virus encounters [16]. For the estab-
lishment stage, most of host defense systems generally 
decoupled GrSRs, including RM systems of types I and 
III (P > 0.05; Figs.  4 and S13) and CRISPR-Cas systems 
of types I, II, and III (P > 0.05; Figs.  4 and S14). This is 
likely because host defense prevents virus insertion into 
the host genome and blocks the infection cycle, which 
is partly supported by the effects of some anti-CRISPR 
proteins, which resulted in significant GrSRs (all P < 
0.05; Figs. 4 and S15). For the release stage, considering 
temperature-dependent GrSRs, we primarily focused on 
the temperature-dependent lytic switches, such as the 
CI/Cro repressor [60] and newly identified FpsR [53, 61] 
for high (≥ 36 °C) and low temperature inductions (≤4 
°C), respectively. As expected, the presence of repressor 
genes, including cI/cro or fpsR, led to a significantly nega-
tive GrSR (P < 0.05; Figs. 4 and S16), while their absence 
decoupled GrSRs (P > 0.05; Fig. S16). Together, these 
results highlighted that GrSRs were strengthened by the 
molecular processes in promoting the infection cycle at 
the stages of adsorption, establishment, and viral release 
(R2

adj = 0.182, P < 0.001; Fig. S17), but were decoupled by 
immune systems.

Mathematical modeling to explain GrSRs
To explore how temperature and population dynamic 
features modulate the GrSRs, we developed a mathemati-
cal model of the population dynamic in host-viral sys-
tems using realistic parameters (Fig. S1, Tables S1 and S2) 
based on the previous frameworks of delay differential 
equations [57, 58]. Briefly, host-virus systems contained 
five compartments including susceptible cells, nonsus-
ceptible cells, viruses, infected cell in lysogeny, and lytic 
state. The transitions between compartments dependent 
on host-virus infection dynamic in the infection cycle. 
We assumed that the processes of multiple infection 
are Bernoulli trails and the induction rate of lysogens is 
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temperature dependent. The temperature thresholds for 
heat and cold inductions were set as 37°C and 4°C (Fig. 
S18), respectively. It should be noted that the host growth 
rate in the modeling system was dependent on the envi-
ronmental temperature and was not the theoretical maxi-
mum value.

To simplify the questions, interaction specialization of 
host in modeling system was estimated by the reverse 
of number of viral species. Our simulation results con-
firmed the empirical observations showing that thermo-
philes have a stronger GrSR than mesophiles (Figs.  3D 
and 5), which may be caused by insufficient virus par-
ticles to infect susceptible cells due to the low induc-
tion rate at medium temperature. Meanwhile, there was 
a lag of GrSR curves between thermophiles and psy-
chrophiles toward high host growth rate (Fig.  5), which 
was consistent with the empirical results that GrSRs in 
potential psychrophiles harboring CSPs were lagger than 
those in thermophiles with OGTs ≥ 40°C (Fig. S19). This 
phenomenon implied that the coupling of GrSRs at low 
temperature may require a fast growth rate as compensa-
tion when the species OGT is greater than the environ-
ment temperature of cold induction. Furthermore, GrSR 
strength were regulated by the temperature-dependent 
lytic switches. When such lytic switches were removed 

from the host-virus system, the strengths of GrSR were 
decreased for thermophiles and psychrophiles (Fig. 5).

Challenges in testing growth rate‑specialization 
relationships
Based on the solid results of both genomic and mod-
eling analyses, we found that the linear GrSRs are widely 
existed in Earth’s ecosystems, and its strength is influ-
enced by environment types, host phylogenetic lineages, 
and traits, which implies that the host-virus interaction 
specialization at ecosystem levels may be further con-
strained by environmental factors, such as temperature 
and nutrient [56]. To confirm and extend these find-
ings, there are at least four challenges to be considered in 
future studies. First, the GrSR could be further supported 
by the inclusion of unculturable strains by culture-inde-
pendent sequencing technology, such as combined use of 
flow cytometry and single cell sequencing. All lysogenic 
genomes in this study were culturable isolates compiled 
from the presently largest dataset [38], which gives an 
unprecedented scale to investigate the prokaryote-pro-
virus interaction network. Nevertheless, the GrSR also 
needs an extension to unculturable strains, which may 
provide novel insights into infection structure due to 
the unculturable host relying on intercellular metabolic 

Fig. 4  Effects of genes on the negative GrSRs throughout the infection cycle, including the stages of adsorption, establishment, and viral release. 
The negative GrSRs were significantly (P < 0.05) strengthened by the presence of genes responsible for host viral receptors of flagellum and pili, 
temperature-dependent lytic switches, and phage anti-CRISPR systems but decoupled by host immune systems, including the CRISPR-Cas and RM 
systems. CRISPR-Cas system: clustered regularly interspaced short palindromic repeats arrays (CRISPR) and CRISPR-associated protein (Cas) system. 
RM system, restriction-modification system; HSP, heat shock protein; CSP, cold shock protein
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networks [83]. Notably, we have conducted similar 
analyses for metagenome assembled genomes (MAGs) 
collected from diverse habitats covering all of Earth’s con-
tinents and oceans [84]. Compared to isolate genomes, 
we found that the results of MAGs were far from reliable 
due to the following reasons: (1) The reconstruction of 
MAGs is largely dependent on tetranucleotide frequency, 
which would leave out many fragments of provirus 
genome in MAGs. (2) The incompleteness and contami-
nation of MAGs would decrease the prediction accuracy 
of maximal growth rate and optimal growth temperature. 
Thus, we expected that metagenome assembled genomes 
were not suitable for exploring the relationships between 
host growth rate and their interaction specialization d’ 
among unculturable strains.

Second, the host maximal growth rate could be esti-
mated by culture-dependent approaches but it is highly 
variant even under optimal growth conditions and 
in the absence of interspecific competition [85]. Our 
results are mainly based on the maximum host growth 
rate, which was theoretically predicted by the reverse 
of the minimal doubling time based on the number 
of genes encoding ribosomal proteins and the codon 
usage frequency [85]. In experimental systems, we 
could use the actual host growth rate in a given envi-
ronment, like our modeling system, to test whether it 
has a similar relation to interaction specialization of 
host during lysogenization. However, we should note 
that the experimental measured maximum host growth 
rates may largely dependent on the culture conditions 
and thus would be different from theoretical maximum 
host growth rates.

Third, it is challenging to establish and maintain a 
coculture system containing host species across a large 
phylogenetic scale. We used a host-provirus network 
consisting of 3115 host species across 39 phyla to inves-
tigate the GrSRs and found that growth rate-speciali-
zation relationships were phylogenetically scaled and 
easier to be found at the higher taxonomic level. For 
instance, such relationships were significant for 44% of 
phyla (4 out of 9), 35% of classes (7 out of 12), 19% of 
orders (10 out of 53), 9% of families (8 out of 88), and 
5% of genera (3 out of 56). Thus, GrSR is likely to be 
found for the groups with common genetic traits rather 
than specifically taxonomic groups.

Finally, gene manipulations could be used to verify 
the effects of host genetic traits on GrSRs but it is high 
cost to develop genetic manipulation system for a large 
number of species. Alternatively, host strains with a 
gradient of growth rates belonging to a certain taxo-
nomic group that display GrSRs in genomic analyses 
could be employed to explore more genes or molecu-
lar processes influencing GrSRs. Overcoming the above 
challenges is key to uncovering the global pattern in the 
prokaryote-provirus interaction network, which will 
lead the future researches in host-virus interaction spe-
cialization on during host-virus coevolution.

Conclusions
Exploring the drivers shaping prokaryote-virus network 
pattern is one of the most important issues in virus ecol-
ogy. Our study highlights that the prokaryote growth rate 
play a key role in determining interaction specialization 
for host in prokaryote-provirus network. The negative 
growth rate-specialization relationships are widespread 

Fig. 5  Numerical solutions for the growth rate-specialization relationships (GrSRs) of thermophiles, mesophiles, and psychrophiles. The solid curves 
represent GrSRs simulated by the mathematical model with a temperature-dependent lytic switch, while dashed curves have no this lytic switch. 
Thermophiles: OGT = 45°C, environmental temperature = 37°C. Mesophiles: OGT = 30°C, environmental temperature = 30°C. Psychrophiles: OGT 
= 20°C, environmental temperature = 4°C. Gray vertical lines are the growth rate of nonsusceptible cell population. All parameters used to run the 
model are listed in Tables S1 and S2
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in the Earth’s microbiome. Meanwhile, such relationships 
are temperature-dependent and strengthened by the 
presence of host genetic traits promoting the infection 
cycle at the stages of adsorption, establishment, and viral 
release, but are decoupled by immune systems. Over-
all, these results help us to uncover the determinants of 
prokaryote-virus interactions and mechanistically under-
stand their interaction specialization.
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(fliC, fljB or mshA), at least one pair of genes encoding heat lytic switch (cI 
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S18. Temperature-dependent induction. It is controlled by two lytic 
switches including the repressors of CI/Cro (for high temperature at 37°C) 
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