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Aging gut microbiota of wild macaques are 
equally diverse, less stable, but progressively 
personalized
Baptiste Sadoughi1,2,3,4*, Dominik Schneider3, Rolf Daniel3, Oliver Schülke1,2,4 and Julia Ostner1,2,4 

Abstract 

Background:  Pronounced heterogeneity of age trajectories has been identified as a hallmark of the gut microbiota 
in humans and has been explained by marked changes in lifestyle and health condition. Comparatively, age-related 
personalization of microbiota is understudied in natural systems limiting our comprehension of patterns observed in 
humans from ecological and evolutionary perspectives.

Results:  Here, we tested age-related changes in the diversity, stability, and composition of the gut bacterial com-
munity using 16S rRNA gene sequencing with dense repeated sampling over three seasons in a cross-sectional age 
sample of adult female Assamese macaques (Macaca assamensis) living in their natural forest habitat. Gut bacterial 
composition exhibited a personal signature which became less stable as individuals aged. This lack of stability was 
not explained by differences in microbiota diversity but rather linked to an increase in the relative abundance of 
rare bacterial taxa. The lack of age-related changes in core taxa or convergence with age to a common state of the 
community hampered predicting gut bacterial composition of aged individuals. On the contrary, we found increas-
ing personalization of the gut bacterial composition with age, indicating that composition in older individuals was 
increasingly divergent from the rest of the population. Reduced direct transmission of bacteria resulting from decreas-
ing social activity may contribute to, but not be sufficient to explain, increasing personalization with age.

Conclusions:  Together, our results challenge the assumption of a constant microbiota through adult life in a wild 
primate. Within the limits of this study, the fact that increasing personalization of the aging microbiota is not restricted 
to humans suggests the underlying process to be evolved instead of provoked only by modern lifestyle of and health 
care for the elderly.

Keywords:  Aging, Senescence, Stability, Gut bacteria, Commensals, Social transmission, Personalized, Primate, 
Microbiome, Dysbiosis
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Background
The relevance of gut bacterial communities to host 
health has gained increasing interest in the last decades 
[1–4]. Bacterial communities of the gut contribute to 

maturation of the immune system, defense against patho-
gens, production of essential amino acids, and acquisition 
of energy by facilitating the digestion of milk and fibers 
[3, 5–8]. Imbalance, following an increase in pathogenic 
bacteria or loss of beneficial taxa, has been associated 
with a growing list of conditions, including intestinal dis-
orders, sarcopenia, low-grade inflammation, progressive 
cognitive impairment, and accelerated pace of aging [6, 
7, 9–11]. Taking into account age-related modifications 
in microbiota composition improves our understanding 
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of the interplay between microbiota and health [9], but 
it remains unclear whether gut microbiota communi-
ties only contribute to or are, in turn, influenced by host 
aging. Indeed, age-associated changes in gut permeability 
[12], diet [8, 13], social relationships [14–17], deteriora-
tion of physiological systems [18, 19], especially immu-
nosenescence [5, 6, 20, 21], could contribute to a shift in 
microbiota composition with age.

Clinical studies in humans shed light on the changes 
in gut microbiota associated with host age. Several stud-
ies highlighted a reduction in bacterial diversity in the 
elderly, driven by a decrease in abundant or highly preva-
lent core taxa in favor of rarer taxa [2, 3, 22–24]. This age-
related dysbiosis [25, 26] is further characterized by an 
increase in pro-inflammatory and potentially pathogenic 
bacteria [26], and by a detrimental lack of composition 
stability resulting from reduced bacterial diversity [27, 
28]. However, patterns assumed to be universal across 
humans such as decreased diversity are increasingly 
linked to frailty, a state of increased vulnerability to vari-
ous diseases, rather than to age itself [4, 29, 30]. Disen-
tangling the effect of age and frailty is complicated by 
their strong covariation because age-related changes 
in diet, medication, lifestyle, location, and concomi-
tant diseases typically correlate [9, 23, 29, 31]. A second 
issue is the striking heterogeneity of microbiota compo-
sition between old subjects [2, 3, 9, 32], which reveals 
that age and frailty do not converge on a typical micro-
biota in terms of compositional characteristics, suggest-
ing the existence of various paths towards an aging gut 
microbiota.

This heterogeneity among the elderly recently became 
a new focus [2] and may strongly influence therapeu-
tic strategies [9]. If increasing interindividual variability 
with age results from an imbalance driven by a combi-
nation of environmental and individual factors, medical 
interventions aiming to “restore” a younger healthy gut 
microbiota profile (e.g., probiotics, microbiota transfer) 
will be of interest [7, 33]. On the contrary, such stand-
ardized interventions may have limited efficiency if a 
life-long association between a host and its microbiota 
shapes a personalized, stable, and healthy gut microbiota 
composition [11]. Individual genetics, history of diseases, 
and medication use could contribute towards increasing 
variability with age [9, 11, 34], but do not exclude more 
proximate drivers of variability. For example, reduced 
social contact associated with aging [14] could reduce 
the social transmission of gut bacteria [15–17, 35, 36], 
turning the gut of the elderly into isolated microbiota 
“islands.” The health consequence of this unique compo-
sition will depend on whether beneficial or pathogenic 
taxa are driving the pattern and its stability in the face 
of challenges (e.g., growth of opportunist pathogens). To 

date, no mechanisms explaining increasing interindivid-
ual variability with age have been proposed, and reports 
are limited to humans, narrowing our understanding of 
the origin of increased personalization with age.

Animal research on laboratory models has provided 
evidence for the causal influence of gut microbiota com-
position on host aging [10, 37]. However, laboratory ani-
mal models exhibit low genetic diversity, a gut microbiota 
composition strongly influenced by captivity [8, 10, 38, 
39], and cannot reflect the more gradual influence of host 
age on gut microbial composition expected for long-lived 
species like humans. Wild populations of long-lived ani-
mals offer an exciting opportunity because the gut micro-
biota composition is likely to play a central role for the 
health and fitness of wild animals, who are more exposed 
than modern-day humans and captive animals to vari-
ation in energy resources and pathogens [40]. Recent 
reports suggest that natural diurnal cycles are main-
tained in senescent individuals [41], and that transition 
to old age explains little of the variation in microbiota 
composition between individuals [36, 40, 42–45]. How-
ever, studies mainly focused on diversity and dissimilarity 
of composition between subjects, while the relationship 
between host age, bacterial composition stability, and 
heterogeneity has rarely been addressed.

Using a dense sampling regime on 51 adult female 
Assamese macaques (Macaca assamensis) in their natu-
ral environment over one and a half years (mean 11 ± 3 
samples per individual; Fig.  1), we expand on previous 
investigations by testing whether gut bacterial composi-
tion changes in stability and interindividual variability 
with age. Macaques live in multi-male multi-female social 
groups, and females remain in their group of birth for 
their entire life, whereas males migrate between groups 
repeatedly. This population of wild Assamese macaques 
has been observed for more than a decade, with detailed 
records on individual life histories and behavior. First, 
we tested whether two features of the aging gut bacte-
rial communities, namely (1) decreasing diversity and 
(2) depletion of core taxa, would be observed in a wild 
nonhuman primate population. Next, we investigated 
interindividual variability and personalization of the gut 
bacterial composition by testing whether (3) there is a 
personal signature, and (4) this signature is stable over 
time. We also focused on (5) age similarity as a predic-
tor of composition similarity between individuals. Finally, 
we tested (6) whether the composition becomes increas-
ingly personalized with age and (7) whether this could 
be explained by progressive social disengagement. We 
found no evidence linking age with a reduction of diver-
sity, but the observed changes suggest an increase in rare 
taxa relative abundance. Most changes in composition 
were not consistent between individuals, so that age did 
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not predict composition similarity. Rather, gut bacterial 
composition appeared personalized, decreasingly stable, 
and increasingly differentiated from the rest of the pop-
ulation as individuals aged. We discuss implications for 
our understanding of increasing personalization of gut 
microbiota composition with age in humans and other 
social mammals.

Results
Taxonomic characterization of the gut bacterial 
communities of adult female Assamese macaques
Samples contained on average 785 ± 115 ASVs (range 
= 342–1022), and an ASV was on average found in 305 
± 161 samples (i.e., prevalence; median = 302, range = 
3–543; Fig. S1-2; Tab. S1). More than 98% of the ASVs 
could be classified at the phylum level (11 different 

phyla). Those classified taxa were assigned to 37 orders 
(of which 36 were classified), 66 families (52 classified), 
and 147 genera (112 classified; Fig.  2 a–b; Tab. S2–3). 
Very few taxa could be assigned at the species level. The 
majority of ASVs belonged to the Firmicutes (mean per 
sample = 56.9%; range = 34–88%) mostly from the class 
Clostridia, followed by Bacteroidota class Bacteroidia 
(17.2%; 3–34%), Spirochaetota class Spirochaetia (11.1%; 
0–36%), and Proteobacteria (4.4%; 0–24%) mostly Gam-
maproteobacteria. At the family level, Lachnospiraceae, 
Spirochaetaceae, Prevotellaceae, Oscillospiraceae, and 
Ruminococcaceae were the 5 families above 5% abun-
dance. Members of the genus Treponema (10.5%) and 
Prevotella 9 (5.9%) were the two most abundant identi-
fied groups. These respective phyla, families, and genera 
were found in all samples (i.e., prevalence = 100%).

Fig. 1  Sampling schedule with one line per subject ordered from bottom by increasing age categorized into young adult (6–10), mid-aged (> 
10 and < 18), and old (≥ 18). The successive sampling windows correspond in chronological order to the rich, lean, and intermediate season, 
respectively. The lower panel shows food availability in the three sampling periods. Boxes represent the interquartile range (IQ), which contains the 
middle 50% of the records, and a line across the box indicates the median. Vertical lines extend from the upper and lower edges of the box to the 
highest and lowest values which are no greater than 1.5 times the IQ range. Circles represent outliers
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Diversity of the gut bacterial community does not vary 
with age
To test whether decreased diversity was a feature of the 
aging gut bacterial communities in our study females, 
we investigated age-related changes in diversity with 
three complementary measures while controlling for 
cumulative rainfall in the month preceding collec-
tion, whether a female is gestating, social group, and 
ID. We found no evidence that observed ASV richness 

was predicted by any of the terms included in the mod-
els, even when considering phylogenetic relationship 
among taxa and evenness (full-reference compari-
sons  likelihood ratio test: observed ASV richness, χ2 
= 2.09, Df = 2, p = 0.4; FDP, χ2 = 0.42, Df = 2, p = 
0.8; H, χ2 = 1.15, Df = 2, p = 0.6; Tab. S4 for details 
of full models’ estimates; Fig.  2c; Fig. S3). Results do 
not support our prediction that age is associated with a 
decrease in the diversity of gut bacterial communities.

Fig. 2  Relative abundance of the ten most abundant identified bacterial a phyla and b families in samples from female Assamese macaques 
representative of the adult lifespan. Boxes represent the interquartile range (IQ), which contains the middle 50% of the records, and a line across the 
box indicates the median. Vertical lines extend from the upper and lower edges of the box to the highest and lowest values which are no greater 
than 1.5 times the IQ range. Circles represent outliers. Two upper outliers in the Firmicutes and the Lachnospiraceae were excluded to improve 
displays. c Diversity (count of ASVs per sample) was not influenced by age in adult female Assamese macaques
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Relative abundance of rare bacterial taxa changes with age
Next, to test whether age was associated with evidence 
of dysbiosis, an increase in rare, opportunistic, or poten-
tially pathogenic taxa, we modeled relative abundance 
as a function of age while controlling for season of sam-
pling, whether a female is gestating, social group, and ID. 
Among phyla, only Desulfobacteria increased as females 
aged (Tab. S5), although it did not reach the significance 
level after correcting for multiple testing (p = 0.04, FDR-
p = 0.4). This change seemed driven by an increase in an 
unidentified family belonging to the Bradymonadales (p 
= 0.02, FDR-p = 0.5), whereas no change was observed 
among the only other identified family from this phylum. 
Two of the five families in the phylum Actinobacteriota, 
the Bifidobacteriaceae and the Coriobacteriaceae, signifi-
cantly decreased with age (FDR-p < 0.001 and FDR-p = 
0.04, respectively). In contrast to the hypothesis of age-
related dysbiosis, proportions of Proteobacteria, Bacte-
roidetes, and Firmicutes nor the Firmicutes/Bacteroidetes 
ratio (full-reference model comparison likelihood ratio 
test: χ2 = 1.28, DF = 1, p = 0.3) changed with age.

The relative abundance of most bacterial genera was 
not associated with host age (109 out of 136 genera with 
p ≥ 0.05). However, 27 genera (20% of the total num-
ber of genera) varied with age with 14 genera increas-
ing and 13 decreasing in relative abundance as female’s 
age increased (FDR-p < 0.05 for only 13 genera equal to 
9% of the genera). Age did not influence equally the core 
microbiota (those bacterial taxa present in at least 90% of 
the samples, meeting the concept of “common core” [24]; 
Tab. S6) compared to the noncore microbiota. Of the 
14 taxa increasing with age, 10 belonged to the noncore 
microbiota (Fig. 3 a–b, Fig. S4). The repartition between 
core and noncore microbiota was even among the taxa 
that decreased (7 vs. 6, respectively). In comparison, 
most taxa that remained stable with age belonged to the 
core microbiota (78 out of 109 taxa). Therefore, although 
few genera showed consistent change in relative abun-
dance with age across individuals, those that increased 
were mostly rare taxa, whereas common taxa were unaf-
fected or decreased.

Of the 13 genera reaching significance after correct-
ing for multiple testing (FDR-p < 0.05), five were from 
the family Lachnospiraceae (Anaerosporobacter and Cel-
lulosilyticum increased, whereas Eubacterium eligens, 
Lachnoclostridium, and Fusicatenibacter decreased; 
Fig.  3c). Seven genera were distributed across several 
families with Bifidobacterium, Ligilactobacillus, and Col-
linsella decreasing with age, whereas Alistipes, Rumino-
coccaceae CAG-352, and Acholeplasmataceae EMPG18 
(matching sequences assigned to Acholeplasma bras-
sicae sp. and Acholesplasma vituli) and Spirochaetaceae 
GWE23110 increased with age (Fig.  3c). Results also 

suggested a decrease in the relative abundance of Meg-
asphaera with age, but as this taxon was only observed 
in six samples (five from young or mid-aged females), 
this cannot be considered as a decrease in relative abun-
dance but possibly as a presence/absence effect. Among 
the taxa varying with age before correcting for multi-
ple testing (with full-reference model comparison and 
main effect of age being significant), we note a decrease 
in Roseburia, Holdemanella, Eubacterium ventrio-
sum, Enterococcus, and Libanicoccus and an increase in 
Eubacterium ruminantium. The decrease in Fusicateni-
bacter, Holdemanella, and Roseburia, three genera with 
anti-inflammatory properties [46–50], in contrast to the 
increase in Alistipes, which includes several species with 
pro-inflammatory properties [51], could have conse-
quences on host health. Among genera associated with 
diseases in nonhuman primates present in the dataset, 
namely Campylobacter, Helicobacter, Selomonas, Suc-
cinivibrio, Streptococcus, Phascolarctobacterium, and 
Intestinibacter [8, 52], only the latest increase with age. 
Shigella cannot be differentiated from other Escherichia 
by 16S rRNA gene sequencing, but Escherichia-Shigella 
did not vary with age. In conclusion, age was associated 
with an increase in the relative abundance of rare taxa 
without depletion of core taxa. Despite the absence of 
broad changes evocative of dysbiosis at the phylum level, 
noticeable changes at the genus level were consistently in 
favor of increased pro-inflammatory and decreased anti-
inflammatory taxa in older aged females.

Gut bacterial composition exhibits a personal signature 
and stability decreases with age
Individual identity explained the largest portion of 
composition dissimilarity (Tab. 1), with lower intra- 
than interindividual dissimilarity (mean ± SD of 
intraindividual vs. interindividual BC, 0.64 ± 0.11 vs. 
0.69 ± 0.08, r = 0.05, p < 0.001; Wunifrac, 0.29 ± 0.09 
vs. 0.30 ± 0.09, r = 0.01, p < 0.001; UWunifrac, 0.31 
± 0.08 vs. 0.33 ± 0.07, r = 0.02, p < 0.001: Fig. 4 a–b; 
Tab. S7). The effect translates into an average 3–8% 
lower intra- compared to interindividual dissimilarity. 
We predicted that if gut bacterial composition gradu-
ally changes over time, samples collected from the same 
individual further apart in time would display greater 
dissimilarity than samples collected within a short 
period of time. We found a significant positive associa-
tion between dissimilarity and time gap between col-
lection dates (n = 51 females; BC, r = 0.38, p = 0.002; 
Wunifrac, r = 0.23, p = 0.06; UWunifrac, r = 0.30, p 
= 0.01). Yet upon closer examination of the data, pair-
wise dissimilarity sharply increased in a 10-day period, 
before reaching a plateau. After removing pairwise dis-
similarity values from samples collected up to 10 days 
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apart (which removed 3 females from the dataset), to 
test for a gradual modification of the gut bacterial com-
position over a longer time, no association remained (n 
= 48 females; BC, r = 0.18, p = 0.7; Wunifrac, r = 0.04, 
p = 0.9; UWunifrac, r = 0.08, p = 0.9; Tab. S7). In other 
words, when all individuals were analyzed together, the 
rate of gut bacterial change over time appears rapid 
before reaching a steady state, possibly as the result of 
core taxa being retained throughout the year (Fig. 4b). 
However, the change of dissimilarity over time differed 
depending on the age of the individual. Correlation 
coefficients between dissimilarity of two samples from 
the same individual and time elapsed between sampling 
events were much higher in old than in mid-aged and 

Fig. 3  a Prevalence of the bacterial genera exhibiting a negative, positive, or no change in relative abundance with age. Boxes represent the 
interquartile range (IQ), which contains the middle 50% of the records, and a line across the box indicates the median. Vertical lines extend from the 
upper and lower edges of the box to the highest and lowest values which are no greater than 1.5 times the IQ range. Circles represent outliers. b 
Prevalence is qualitatively expressed as core and noncore taxa, and pie charts present the proportion of core and noncore taxa among the bacterial 
genera decreasing, showing no change, or increasing in relative abundance with age; core taxa are present in ≥ 90% of samples. c Relationship 
between female’s age and the relative abundance of bacterial genera associated with inflammation. The regression line and confidence interval 
are derived from generalized linear mixed models with beta error distribution, controlling for dummy-coded and centered social group, gestation 
status, and season of sampling

Table 1  Effect sizes of predictors of gut bacterial composition 
dissimilarity

p-values derived from 10,000 permutations. All p < 0.001 except for gestation (all 
p > 0.1). 1Model including only ID as a predictor. 2Model including ID as strata to 
account for repeated sampling of the individuals

R2 (%)

Predictor Df BC Wunifrac UWunifrac

ID1 50 19.60 14.34 18.00

Season2 2 6.78 7.03 6.81

Group2 2 3.24 1.77 2.59

Age2 1 0.52 0.38 0.55

Gestation2 1 0.27 0.16 0.35
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young adult females (n = 48 females, Kruskal-Wallis = 
6.04, DF = 2, p = 0.049); stability of gut bacterial com-
position decreased with age. Despite previous clinical 
reports on a relationship between composition diver-
sity and stability [27, 28], gut bacterial diversity did 
not predict composition stability, and therefore did not 
explain the reduced stability with age in this wild popu-
lation (details in supplementary material; Tab. S8; Fig. 
S5).

Age is not a strong predictor of gut bacterial composition
Next, we tested the influence of several predictors on the 
variation in the entire gut bacterial community compo-
sition, summarized in dissimilarity metrics (BC, WUni-
frac, UWUnifrac), using a PERMANOVA analysis. After 
accounting for the effect size of ID on composition dis-
similarity, season of sampling explained the largest pro-
portion of variation, followed by social group (Tab. 1). 
Whether the female was gestating or not did not influ-
ence composition. Age categorized into young adult, 
middle aged, and old had a minor influence on bacte-
rial composition. To illustrate, PCA components 1 and 
2 do not differ between age categories but only between 

seasons (Fig.  5 a–b). If age entered the PERMANOVA 
as a continuous predictor, it again did not explain much 
of composition (below 1% variance explained, Tab. 1). In 
other words, the age of a female could not be deduced 
from her gut bacterial composition. This suggests that 
most of the variation observed with age was not con-
sistent across females but may be rather unique to each 
individual.

Personalization of gut bacterial communities increases 
with age
We tested whether the absence of consistent changes in 
gut bacterial composition could be explained by the ten-
dency of older females to display a unique gut bacterial 
composition. Results tended to support the hypothesis 
that personalization was positively associated with age 
(Tab. 2). Personalization, measured as minimum inter-
individual dissimilarity, increased from 0.48 to 0.51 from 
the youngest to the oldest age (6–26 years in this study 
population) (Fig.  5c; Tab. 2). Personalization was also 
greater in the rich season, possibly in interaction with 
age, again indicating increasing personalization with age. 
In the absence of detailed feeding data, the mechanism 

Fig. 4  a Intraindividual dissimilarity in gut bacterial composition was lower than interindividual dissimilarity. b When all individuals were analyzed 
together, intraindividual dissimilarity expressed with the Bray-Curtis index increased rapidly over a few days before reaching a steady state when 
pairwise sample dissimilarity did not increase anymore, even for samples collected more than a year apart. c Composition stability expressed as 
the correlation coefficient between intraindividual dissimilarity and time gap between sample collection (measured in days). Female’s stability 
coefficients are depicted for young adult (6–10), mid-aged (> 10 and < 18), and old (≥ 18) females (boxes and whiskers), with more positive values 
indicating lower stability. Boxes represent the interquartile range (IQ), which contains the middle 50% of the records, and a line across the box 
indicates the median. Vertical lines extend from the upper and lower edges of the box to the highest and lowest values which are no greater than 
1.5 times the IQ range. Circles represent outliers
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exacerbating personalization in the rich season must 
remain unknown. Furthermore, the variance in mini-
mum dissimilarity decreased with age, which suggest that 
old females displayed more consistently increased mini-
mum dissimilarity than younger females. Although this 
tended to strengthen the positive association between 
age and personalization, this greater dispersion in young 
females was not predicted a priori and should be inter-
preted with caution. These effects were revealed by the 
models based on BC (full-reference model comparison 
likelihood ratio test: χ2 = 15.25, df = 5, p = 0.009) and 
Wunifrac (χ2 = 23.40, df = 5, p < 0.001), whereas the 
model on UWnifrac did not perform significantly better 
than the reference model (χ2 = 7.55, df = 5, p = 0.2; Tab. 
S9). BC and Wunifrac account for the relative abundance 
of ASVs, whereas UWnifrac only considers their pres-
ence or absence. Therefore, results reveal that increasing 
personalization with age arose from a shift in the relative 
abundance rather than in differences in presence/absence 
of the bacteria composing the gut microbiota.

Progressive decreasing social activity with age 
as a possible driver of gut bacteria personalization
Our final aim was to test whether social interactions 
between individuals promoted bacterial transmission 
which could tend to homogenize bacterial composition 
between dyads. Dyads grooming more frequently shared 
slightly closer bacterial composition (β = −0.01, 90 
CIlower = −0.02, 90 CIupper = 0.00, p− = 0.95), an effect 
also captured, but with much less certainty, by the dura-
tion of interaction (β = −0.01, 90 CIlower = −0.01, 90 
CIupper = 0.00, p− = 0.87; Tab. S10). This suggests that 
social transmission occurred but had a small influence on 
gut bacterial dissimilarity between individuals, with an 
average 2% decrease in dissimilarity from dyads belong-
ing to the highest percentile of the grooming frequency 
distribution compared to dyads in the lowest percentile.

From these results, we asked whether increasing per-
sonalization was associated with a tendency of old 
females to be socially less active, which would limit social 
transmission of gut bacteria. As females aged, and as pre-
dicted from literature, frequency of grooming interac-
tions with the closest (top) social partner decreased (F3,47 

= 5.917, p = 0.002; age, estimate ± SE = −0.27 ± 0.13, 
p = 0.04; Fig. 5d; Tab. S11A) as did the average groom-
ing frequency with all females in the social group (F3,47 
= 11.79, p < 0.001; age, estimate ± SE = −0.27 ± 0.11, 
p = 0.02; Tab. S11B). Using the duration of grooming 
instead of frequency produced similar results (Tab. S11 
C–D). Yet, introducing female’s top and average groom-
ing frequency in models testing gut bacterial personali-
zation (see “Personalization of gut bacterial communities 
increases with age” above) did not influence the relation-
ship between age and personalization, and neither top 
partner nor average grooming frequency was signifi-
cantly associated with personalization (Tab. S12). There-
fore, despite evidence for a decrease in social grooming 
interactions with age, there is no evidence that increas-
ing gut bacterial personalization with age is primarily 
driven by a reduction in close contact interactions with a 
female’s partners, possibly due to the weak link observed 
between social contact and gut bacterial composition in 
the population.

Discussion
Our findings are consistent with the hypothesis that 
age is associated with modifications in the composition 
and dynamics of the gut bacterial microbiota over the 
adult lifespan. Specifically, trajectories observed in wild 
female macaques revealed increasingly personalized gut 
bacterial composition with age, a pattern thought to be 
restricted to humans and attributed to pronounced dif-
ferences in lifestyle, medication, and concomitant dis-
eases among the elderly [1–3, 29, 31]. Gut bacterial 
communities of the study females carried a strong per-
sonal signature, whose stability decayed over time in old 
individuals possibly linked to an increase in the relative 
abundance of rare bacterial taxa with age. Bacterial diver-
sity could not explain this lack of stability, first because 
age was not associated with a decrease in diversity and 
second because there was no evidence for a causal rela-
tionship between gut bacterial diversity and stability. 
Finally, reduced direct transmission of bacteria resulting 
from decreasing social activity may contribute to, but not 
be sufficient to explain, increasing personalization with 
age.

(See figure on next page.)
Fig. 5  a and b Principal component analysis of BC dissimilarity between gut bacterial compositions of adult female Assamese macaques. 
Dissimilarity was influenced by a season (classified by food abundance) but not b age categorized into young adult (6–10), mid-aged (> 10 and < 
18), and old (≥ 18). Boxes represent the interquartile range (IQ), which contains the middle 50% of the records, and a line across the box indicates 
the median. Vertical lines extend from the upper and lower edges of the box to the highest and lowest values which are no greater than 1.5 times 
the IQ range. Circles represent outliers. One outlier was excluded to improve displays. c Personalization of gut bacterial communities increased with 
age. Personalization is expressed per sample as the minimum dissimilarity to any sample from another female in the same group and season. d 
The older females were the less often they groomed with their closest female partner. Regression lines and confidence intervals are derived from c 
a generalized linear mixed model with beta error distribution and controlling for gestation status, social group, and season of sampling or d from 
multiple linear regressions with Gaussian distribution, controlling for social group
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Fig. 5  (See legend on previous page.)
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Host identity arises as a strong predictor of microbiota 
composition [15, 32, 40, 41, 43, 45, 53–57], diversity, and 
even stability [11, 41, 54, 58, 59] in both humans and 
nonhuman animals. In our study population, individual 
identity explained the largest part of the variance in gut 
bacterial composition, and samples collected from the 
same host were more similar than samples from different 
hosts. The small effect size of the intra- vs. interindivid-
ual comparison is consistent with previous results show-
ing that personal signature is less obvious when samples 
collected from the same individuals long apart in time 
are compared with samples collected in the same period 
from different individuals [35, 43].

We propose two possible mechanisms leading to 
increasing personalization with age. First, it could be 
that the results of a lifetime of individualized selection 
pressures on hosts shape increasingly personal micro-
biota. For example in baboons, host’s genetic contribu-
tions to microbiota composition increase with age [34]. 

Such personalization should translate in a stable micro-
biota composition and could be associated with healthier 
aging for the host. In support, microbiota personaliza-
tion increased with age and was associated with healthier 
levels of serum markers and higher survival in a large 
human cohort study [11]. Under this scenario, a microbi-
ota composition tailored to the host’s way of living could 
help “make the most of an aging body” [1, 57, 60]. As dif-
ferent bacterial taxa may possess similar functions [11, 
61, 62], sequencing metagenomes of the gut communities 
will be needed to investigate how personalization may 
influence services provided to the host. Alternatively, it 
could be stochastic changes in the microbiota composi-
tion resulting from dysbiosis that cause gut microbiota of 
older individuals to appear more personalized. This could 
translate in a less stable composition characterized by 
more frequent and larger changes in taxa relative abun-
dance, possibly associated with an increase of rare taxa 

Table 2  Result of the models for gut bacterial composition personalization. Personalization expressed as minimum dissimilarity 
Bray-Curtis (BC) and weighted unifrac (Wunifrac) (n = 543 samples). Season is marginally significant in one model and significant in 
interaction with age in the other

1 Z-transformed to a mean of 0 and sd of 1; mean and sd of age on the original scale are 12.44 and 5.79 years, respectively. 2Categorical predictor with 3 levels: lean, 
intermediate, and rich, with the reference level set to the lean season. 3Categorical predictor with 3 levels MOT, MST, SST, with the reference level sets to group MOT. 
4Binary predictor with reference sets to non-gestating

Fixed effects Levels Estimate SE CIlower CIupper p

BC Intercept −0.04 0.04 −0.11 0.03 -

Age1 0.03 0.01 0.01 0.06 0.02
Season2 0.06

M (ref L) 0.03 0.04 −0.05 0.09

R (ref L) −0.06 0.04 −0.12 0.01

Group3 0.5

MST (ref MOT) 0.03 0.03 −0.02 0.09

SST (ref MOT) 0.04 0.04 −0.04 0.11

Gestation −0.08 0.04 −0.15 −0.00 0.05
Dispersion parameter Intercept 3.98 0.07 3.87 4.12 -

Age1 0.38 0.07 0.25 0.50 < 0.001
Wunifrac Intercept −1.68 0.03 −1.74 −1.62 -

Age1 −0.02 0.02 −0.05 0.02 -

Season2 -

M (ref L) 0.11 0.03 0.05 0.18

R (ref L) 0.06 0.03 0.00 0.11

Group3 0.6

MST (ref MOT) 0.01 0.02 −0.03 0.05

SST (ref MOT) 0.03 0.03 −0.02 0.08

Gestation4 −0.05 0.03 −0.11 0.01 0.08

Age1 × season2 0.04
Age × M (ref L) 0.01 0.03 −0.04 0.07
Age × R (ref L) 0.06 0.02 0.02 0.10

Dispersion parameter Intercept 4.99 0.07 4.89 5.15

Age1 0.28 0.07 0.17 0.43 < 0.001
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in older compared to younger subjects. We review our 
results in the light of these two possible scenarios.

The rapid increase in intraindividual composition dis-
similarity in our study aligns with findings in humans 
showing that samples collected a week apart were not 
more similar than those collected 3 months apart [58] 
rather than with evidence of a constant signature [56]. In 
humans, antibiotic medication may be a prominent cause 
of bacterial turnover [58, 63], whereas in wild nonhu-
man primates, natural environmental factors may cause 
the rapid decrease in individual microbiota signature [43, 
59]. For example, season had the second most impor-
tant influence on composition in our subjects, reflecting 
the previously established influence of diet, rainfall, or 
circadian rhythms on the microbiota [24, 40]. Although 
microbiota stability is influenced by the environment, it 
may also differ between individuals [27, 54, 58, 63], with 
lower stability linked to worsened health outcomes [27]. 
Here, intraindividual stability was lower in older sub-
jects which aligns with personalization stemming from 
dysbiosis. In elderly humans, microbiota composition 
is stable over a couple of months [32], but more recent 
evidence suggests stability may decrease with age when 
samples are collected years apart, although the effect did 
not reach significance [27]. This study is the first to inves-
tigate  the relationship between host age and microbiota 
stability in species other than humans and their ape clos-
est relatives.

In several clinical studies, gut bacterial diversity at one 
time was associated with stability to a subsequent period, 
which has been interpreted as diversity promoting health 
[27, 28, 58, 63]. Our results suggest that great care is 
needed in analyzing this relationship because the tempo-
ral correlation between diversity and stability indicating 
the causal relationship can be reversed. In this and other 
studies, bacterial diversity did not change with age [24, 
40, 42], suggesting that the decline observed in humans 
and captive animals may not be a biological inevitability 
but rather associated with lifestyle. Finally, poor stabil-
ity may not be linked to low diversity but rather to the 
increase in the relative abundance of rare opportunist 
taxa [27, 53, 64].

The consequences of an increase in rare taxa for host 
health is debated. It is linked to the notion of dysbiosis, 
when imbalance and depletion in the core bacterial com-
munities allow rare taxa to proliferate, often deemed 
to have negative consequences [61]. Thus, the increase 
in rare taxa relative abundance combined with higher 
composition turnover with age in wild macaques could 
suggest age-related dysbiosis. However, rare taxa may 
promote extreme aging [22] by replacing core mem-
bers and producing important metabolites essential to 
a senescent organism [11]. Services provided by the gut 

bacterial communities may become especially critical 
when old subjects face inflammaging [65]. In this context, 
taxa with anti-inflammatory properties and producing 
short-chain fatty acids (SCFAs) may contribute to healthy 
aging [66]. As seen in humans and captive macaques [22, 
65, 67], we found a decrease in Fusicatenibacter, Holde-
manella, Roseburia, and some members of the genus 
Eubacterium, all known for their anti-inflammatory or 
SCFAs producing properties [46–49, 66]. Those changes 
not only echo but may contribute to the increased 
inflammatory immune profile, or be promoted by senes-
cent macrophages activity, observed in aging macaques 
[20, 68]. At the same time, and also in accordance with 
changes observed in captive macaques [67], Ruminococ-
caceae (CAG-352) and other members of Eubacterium 
increased in abundance with age. These concomitant 
increase and decrease illustrate the difficulties to draw 
conclusions on resulting anti-inflammatory properties of 
the gut microbiota of individuals of different ages based 
on 16S rRNA gene sequencing. Rather than extrapolat-
ing health consequences of gut bacteria from laboratory 
studies to wildlife, insights could be drawn from link-
ing changes in bacterial abundance associated with age 
and those resulting from challenges relevant to the spe-
cies under study (e.g., adverse climatic events, social and 
physiological adversity).

Understanding the consequences of microbiota 
dynamics on host health has strongly relied on the search 
for age-related changes in the abundance or presence of 
specific taxa. Thus, Alistipes increased with age in wild 
macaques, echoing its increased relative abundance in 
the elderly [32, 65]. Nevertheless, identifying consistent 
changes with age across studies and species remains dif-
ficult [2], and some of our results contrast with dynamics 
observed in other macaques [42, 67, 69, 70]. For exam-
ple, captive macaques showed some parallels to humans, 
including the decrease of Firmicutes/Bacteroidetes ratio 
in old subjects [67, 69], although findings were, like in 
the present study, not always robust to corrections for 
multiple testing nor confirmed in our and another free-
ranging macaque population [42]. The opposite age 
trends reported for the health-associated Bifidobacte-
rium in this study versus a previous report on another 
macaque species [42] are representative of the conflicting 
results also reported in humans [2, 22]. Also, we found 
a decrease, not an increase like Wei et  al. [67], in Meg-
asphaera responsible for gastrointestinal disorders in 
primates [52]. The mucin degraders Akkermansia, scru-
tinized for their association to extreme longevity [2, 22] 
and increasing with age in wild lemurs [71], were isolated 
from infants in our study populations (data not shown), 
but not in adults. Importantly, the number of taxa associ-
ated with age appears much lower when comparing wild 
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to captive primates [40, 42, 67, 70, 71], which questions 
the insights gathered from each model. Beyond variation 
in a few taxa, the description of broader patterns offers a 
wider framework to test and refine.

Social animals acquire gut microbiota from conspecif-
ics [17] which translates into greater homogeneity within 
than between social groups [16, 36, 40, 43], also detected 
here. In humans, the size of an individual’s social network 
decreases with age, either due to the loss of similar-aged 
partners or to increasing social selectivity [14]. Evidence 
of similar decreasing social engagement has been gath-
ered from several nonhuman primate species [72]. There-
fore, we postulated that increasing personalization may 
result from decreasing social activity of older individuals. 
Although we found that social interaction rates decrease 
as females aged, no direct link between engagement in 
social interactions and gut bacteria personalization could 
be found. Failure to detect a social contact effect may 
result from our treatment of behavioral data for the anal-
ysis or from general activity decline overriding the social 
contact effect.

Both the overall weak effect size attributed to social 
transmission on bacterial composition in the population 
and the lack of a social contact effect on personalization 
may result from dyadic social interaction scores being 
calculated over the entire 1.5 years study period. This 
analysis was chosen to avoid biases associated with scarce 
records of interaction in wild animals [73] but came at 
the expense of precision in matching time windows of 
social interactions concurrent to the gut bacterial com-
position [15]. Alternatively, the general decline in activ-
ity above and beyond social activity may have driven the 
increase in microbiota personalization with age if aging 
individuals each sample a smaller and different portions 
of the environment when they rest more, feed less, and 
roam less. Furthermore, the physiological regulation of 
overall activity levels via hormones may affect the gut 
microbiota [74, 75] in more profound ways than a decline 
in social transmission of microbiota.

Our results also contribute to a more complete 
macaque model of senescence [68]. The gradual and 
linear increase in personalization of the gut bacte-
rial composition parallels the continuous decline in 
female macaque fertility [76]. Gut bacterial composi-
tion appeared stable in young and mid-aged females, but 
less so in the oldest group, which echoes the late onset 
around 18 years of age in loss of body mass [20], muscle 
mass [77], eyesight [78], and bone mineral density [79]. 
Our investigation of gut bacterial and social age-related 
changes was a first attempt to put senescence in per-
spective across different physiological systems. This is 
necessary to identify plausible drivers (e.g., tooth wear, 
immunosenescence) and fitness consequences (e.g., 

muscle loss, declining energy balance constraining fertil-
ity) of age-related changes in gut bacterial composition. 
The possibility that gut bacterial composition exhibits 
terminal senescence [80], independent of age, has not 
been investigated in this or previous studies on mammals 
due to lack of data on individual survival and remains 
open

Conclusion
Our study adds to a growing body of data elucidating 
the relationship between age and gut microbiota in non-
humans. Research in wild animal systems is essential to 
disentangle phenomena rooted in our long shared evo-
lutionary history from those driven by humans’ contem-
porary ways of living. The transition from an immature 
to an adult microbiota, the personal signature attached 
to microbiota composition, and now possibly also its 
increasing personalization with age are among the for-
mer. On the contrary, decreasing microbiota diversity 
with age is mostly reported in humans and captive ani-
mals, incriminating our humanized environment. The 
fact that personalization is observed in wild systems, 
despite flow of bacterial taxa between populations dur-
ing migration [43, 73] and social transmission through 
frequent body contact [16, 17], suggests that strong and 
conserved mechanisms are at play. Understanding the 
processes underlying this increasing personalization with 
age, its possible association with instability of the micro-
biota and inflammaging, is therefore critical to predict 
consequences for, and act on, host health.

Methods
Study site and study subjects
This research was conducted between July 2018 and 
December 2019, with an interruption from August to 
October 2019, in the Phu Khieo Wildlife Sanctuary 
(PKWS, 16° 05′–35′ N, 101° 20′–55′ E, 1573 km2), which 
is part of the Western Issan Forest Complex in north-
eastern Thailand [81], a contiguous protected forest area 
of > 6500 km2. Within the PKWS, the long-term study 
site Huai Mai Sot Yai (16° 27′ N, 101° 38′ E, 600–800 m 
above sea level) consists mostly of dry evergreen forest 
and bamboo stands at a mean annual temperature of 21.2 
°C [81, 82], with a clearly differentiated dry season from 
November to March and a rainy season from April to 
October [81, 82].

We collected data from three social groups of fully 
habituated and individually recognizable Assamese 
macaques from the morning to the evening sleep tree 
(from about 5 am to 6 pm). Assamese macaques are pri-
marily arboreal and typically occupy a 4 km2 home range 
[82]. Each study group was composed of several adult 
females (n = 9–23), their immature offspring, and several 
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adult and subadult males (n = 6–20) for a total group size 
between 41 and 97, with fluctuations within groups fol-
lowing births, emigrations, and disappearance of group 
members, and immigration of males. Females were con-
sidered adult from the mating season of first concep-
tion (usually at 5.5 years of age), and ages were either 
known from exact date of birth within days or weeks or 
inferred by experienced members of the research team 
based on morphological comparison with individuals of 
exactly known age. Assamese macaques are highly sea-
sonal breeders with 79% of births occurring in a 3-month 
period (JO and OS unpublished data), so female ages 
were expressed in years ranging between 6 and 26. When 
necessary for graphical representation, ages were catego-
rized as young adult (6–10), mid-aged (> 10 and < 18), 
and old (≥ 18) (Fig. 1c) based on the time at onset and 
acceleration of physical signs of senescence in macaques 
[77, 83].

Social behavior collection
Social behaviors were recorded during 40 min continu-
ous focal animal protocols [84] on all 51 adult females in 
the three study groups, resulting in a total of 2729 obser-
vation hours (53.5 ± 17.9 h per female). Frequency and 
duration of affiliative grooming interactions along with 
the identity of the giver and receiver were recorded. Indi-
viduals were in body contact during grooming which 
involves hand and mouth contact with a conspecific’s fur, 
which may promote transfer of microbiota between indi-
viduals [17].

Fecal sample collection
Fecal samples were collected during focal animal proto-
cols and opportunistically immediately upon defecation 
in the field. The identity of the individual and date and 
time of defecation were recorded. Samples were homoge-
nized, and ca. 500 mg was placed in 1 ml RNAlater buffer 
(ThermoFisher https://​www.​therm​ofish​er.​com/​conte​nt/​
dam/​LifeT​ech/​migra​tion/​en/​filel​ibrary/​nucle​ic-​acid-​purif​
icati​on-​analy​sis/​pdfs.​par.​18819.​file.​dat/​bp-​7020.​pdf ), 
shaken for ca. 1 min, and protected from sunlight in the 
field bag. Samples were incubated for a minimum of 24 
h away from sunlight at room temperature before they 
were frozen at −20 °C until transportation on dry ice to 
Germany where they were kept at −20 °C or −80 °C.

For this study, we selected a subset of 543 fecal samples 
collected from the 51 females in three seasons defined 
according to fruit availability (mean ± SD = 11 ± 3 sam-
ples per individual, median = 12, range = 3–13; mean = 
4 ± 0.4 samples per individual per season, range = 2–5) 
(Fig. 1 a–b; see also supplementary material for details on 
fruit phenology scores). For each sample, we calculated 

the cumulative rainfall in mm in the preceding 30 days 
from satellite recordings by the Tropical Rainfall Meas-
uring Mission available through the Goddard Earth Sci-
ences Data and Information Services Center [85].

DNA extraction, amplification of 16S rRNA genes, 
and sequencing
After thawing samples on ice, the RNAlater buffer was 
removed by centrifuging samples 3 min at 4000 rpm on 
a Thermo Electron Corp Heraeus Pico 21 (ThermoFisher 
Scientific). DNA was extracted from 150 mg of fecal mat-
ter with a DNeasy PowerSoil Pro Kit (QIAGEN, Cat. No./
ID: 47016) following manufacturer instructions. The 
quality of DNA extraction was assessed by spectropho-
tometry on a NanoDrop ND-1000 spectrophotometer 
(ThermoFisher Scientific) by visually inspecting the shape 
of the curve and peak at 260-nm wavelength. Samples 
yielding a DNA concentration lower than 6 ng/μl were 
discarded or extracted once more, when possible, but 
if again too low eventually discarded. DNA was diluted 
to a final concentration of 10 ng/μl, and then the V3-V4 
region of the 16S rRNA gene was amplified using PCR 
primers as described by Klindworth et  al. [86]. Primers 
included adapters for MiSeq sequencing (underlined, 
forward primer: S-D-Bact-0341-b-S-17 5′-TCG​TCG​
GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​-CCT​ACG​
GGNGGC​WGC​AG-3′, reverse primer: S-D-Bact-0785-
a-A-21 5′-GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​
GAG​ACAG​-GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′). Each 
PCR contained 10 μl of fivefold Phusion GC buffer, 0.2 
μl 50 mM MgCl2, 2.5 μl 5% DMSO, 1 μl 10 mM dNTPs, 
31.3 μl nuclease-free water (Ambion), 1 μl of forward and 
1 μl of reverse primers (equivalent to 0.2 mM), 0.5 μl of 
Phusion high-fidelity DNA polymerase (2 U/μl; Ther-
moFisher Scientific), and 2.5 μl of 10 ng/μl DNA extract 
for a total volume of 50 μl. PCR were performed in trip-
licate on a Labcycler Basic (SensoQuest) with an initial 
denaturation at 98 °C, followed by 25 cycles of denatur-
ation at 98 °C for 45 s, annealing at 55 °C for 45 s, and 
elongation at 72 °C for 30 s. The final elongation was at 
72 °C for 5 min, and samples were then maintained at 10 
°C until further processing. Amplification efficiency and 
purity were confirmed by visualizing PCR products by 
agarose gel electrophoresis and by inclusion of negative 
and positive controls on all runs.

Amplicon triplicates were pooled, and PCR products 
were used to attach indices and Illumina sequencing 
adapters using the Nextera XT Index kit (Illumina, San 
Diego) and the KAPA HiFi HotStart ReadyMix (Roche 
Diagnostics, Mannheim, Germany). Index PCR was 
performed using 5 μl of template PCR product, 2.5 μl 
of each index primer, 12.5 μl of 2x KAPA HiFi HotStart 
ReadyMix, and 2.5 μl PCR grade water. Thermal cycling 

https://www.thermofisher.com/content/dam/LifeTech/migration/en/filelibrary/nucleic-acid-purification-analysis/pdfs.par.18819.file.dat/bp-7020.pdf
https://www.thermofisher.com/content/dam/LifeTech/migration/en/filelibrary/nucleic-acid-purification-analysis/pdfs.par.18819.file.dat/bp-7020.pdf
https://www.thermofisher.com/content/dam/LifeTech/migration/en/filelibrary/nucleic-acid-purification-analysis/pdfs.par.18819.file.dat/bp-7020.pdf
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scheme was 95 °C for 3 min, 8 cycles of 30 s at 95 °C, 30 
s at 55 °C and 30 s at 72 °C, and a final extension at 72 °C 
for 5 min. Products were quantified using the Quant-iT 
dsDNA HS assay kit and a Qubit fluorometer (Invitrogen 
GmbH, Karlsruhe, Germany) following manufacturer’s 
instructions. Purification of the indexed products was 
performed using MagSi-NGSPREP Plus magnetic beads 
(Steinbrenner Laborsysteme GmbH, Wiesenbach, Ger-
many) as recommended by the manufacturer, and nor-
malization was performed with the JANUS Automated 
Workstation from Perkin Elmer (Perkin Elmer, Waltham 
Massachusetts, USA). Sequencing was conducted using 
Illumina MiSeq platform using dual indexing and MiSeq 
reagent kit v3 (600 cycles) as recommended by the man-
ufacturer. Five samples were extracted, amplified, and 
sequenced in triplicates giving a total of 15 replicates, 
which revealed that differences in bacterial composition 
arising from lab procedure are an order of magnitude 
lower than real biological differences between samples 
(Fig. S6).

16S rRNA gene sequence data deposition
The raw sequence data from the 16S rRNA gene ampli-
cons were deposited at the National Center for Bio-
technology Information and can be assessed under the 
BioProject accession number PRJNA795139.

Sequence processing, taxonomic assignment, and dataset 
preparation
Raw paired-end sequences were quality-filtered using 
fastp v0.20.0 [87] with a minimum phred score of 20, 
minimum sequence length of 50 bases and sliding win-
dow size of 4, read correction by overlap, and adapter 
removal of the sequencing primers. Quality-filtered 
reads were merged with PEAR v0.9.11 [88]; 16S rRNA 
gene primers were trimmed with cutadapt v2.5 [89]. 
VSEARCH v2.15.0 [90] was used to filter the sequences 
by size (min length ≥ 300 bp), remove duplicates 
(--derep_fulllength), and remove erroneous sequences 
(--cluster_unoise, UNOISE3 with default settings [91], 
following recommendations www.​drive5.​com/​usear​ch/​
manual/​cmd_​unois​e3.​html). We further performed de 
novo chimera removal (--uchime3_denovo) followed 
by referenced_based chimera removal (--uchime_ref ) 
against the SILVA SSU 138.1 NR database [92]. Finally, 
sequences were mapped to amplicon sequence variants 
(ASVs) with VSEARCH (--usearch_global) with default 
sequence identity threshold of 0.97. We assigned taxo-
nomic classification to ASVs using Bayesian-based lowest 
common ancestor (BLCA) algorithm [93] (version 2.1) 
against the SILVA SSU 138.1 NR database at the default 
90% identity threshold through BLAST (version 2.9.0+). 
ASVs comprising extrinsic domains, eukaryotes and 

archaea, were removed from the ASV table using amp_
subset_taxa. A total of 23,206,649 reads correspond-
ing to 5375 ASVs were obtained from the 543 samples, 
with all samples achieving high read counts (mean ± SD 
= 42,738 ± 24,849 reads per sample, median = 36,340, 
range = 10,839–150,307). Finally, we applied a thresh-
old of 0.25% on the relative abundance to filter spurious 
ASVs [94]. The final dataset included 1399 ASVs (Tab. S1; 
Fig. S7). No general agreement exists on the handling of 
spurious ASV sequences, and filtering efficiently reduces 
false-discovery rate at the expense of statistical power 
[94, 95]. To test the robustness of the findings to the 
inclusion or exclusion of spurious ASVs, analyses were 
repeated on the full and the filtered datasets (including 
5375 and 1399 ASVs, respectively). Results reported in 
the main text on the conservative filtered dataset agreed 
with conclusions drawn on the full dataset (Tab. S13–15).

Statistical analyses
Analyses were performed with a sample size of 543 
samples from 51 females, unless specified otherwise. 
Descriptive statistics, calculation of diversity metrics 
and analyses, bar plots, and graphs were done with R 
(R Core Team, 2020; version 4.0.2) through the RStudio 
interface (version 1.4.1106) using the packages ampvis2 
(v.2.7.5), ape (v.5.5), brms (v.2.16.1), car (v.3.0–11), cow-
plot (v.1.1.1), ggExtra (v.0.9), ggsci (v.2.9), ggpubr (v.0.4.0), 
glmmTMB (v.1.1.2.2), gridExtra (v.2.3), GUnifrac (v.1.3), 
janitor (v.2.1.0), lme4 (v.1.1–27.1), lmerTest (v.3.1–3), 
lubridate (v.1.7.10), picante (v.1.8.2), phangorn (v.2.7.1), 
plyr (v.1.8.6), reshape2 (v.1.4.4), tidyverse (v.1.3.1), and 
vegan (v.2.5–7) (referenced in supplementary material). A 
phylogenetic tree of ASVs was generated by aligning all 
sequences of the filtered dataset with MAFFT v7.407 [96] 
at a maximum of 100 iterations. The tree was calculated 
using FastTree 2.1.10 (OpenMP) [97], saved in newick 
format and midpoint rooted using FigTree (version 1.4.4) 
(https://​github.​com/​ramba​ut/​figtr​ee/). For linear mod-
els, continuous predictors were z-transformed (mean of 
0, standard deviation of 1), categorical predictors dummy 
coded as fixed terms and centered-dummy coded when 
included in random slopes. Two-sided p-values < 0.05 
were deemed significant. In graphical representation 
using boxplots, boxes represent the interquartile range 
(IQ), which contains the middle 50% of the records. Ver-
tical lines extend from the upper and lower edges of the 
box to the highest and lowest values which are no greater 
than 1.5 times the IQ range, and a line across the box 
indicates the median. Circles represent outliers, whereas 
datapoints are depicted by dots.

http://www.drive5.com/usearch/manual/cmd_unoise3.html
http://www.drive5.com/usearch/manual/cmd_unoise3.html
https://github.com/rambaut/figtree/
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Diversity of gut bacterial communities and age
To estimate sample diversity, we computed three comple-
mentary alpha-diversity measures: the observed ASV 
richness (count of ASVs per sample, amp_alphadiv func-
tion in ampvis2 relying on the diversity function from 
vegan), Faith’s phylogenetic diversity (FPD, function pd in 
picante) which uses phylogenetic distance to compute 
within-sample diversity, and as measure of evenness, the 
Shannon diversity index, defined as 
H = −

s
i=1

ps×log (ps)
log(N )

 with s ASV in a sample, p the pro-
portion of reads of s, and N the total number of ASVs in 
the sample. Season and cumulative rainfall were highly 
collinear (VIF = 5.2), and we therefore chose to include 
only cumulative rainfall as it was shown to influence 
alpha-diversity in another primate species [40].

We used generalized linear mixed models (GLMMs) 
on alpha-diversity to test the influence of female’s age 
while controlling for cumulative rainfall, whether the 
female was gestating at the time of sampling (i.e., date 
of parturition minus average gestation length; detailed 
definition in supplementary material), and social group 
identity. Gestation (binary term with reference 0 indi-
cating no gestation), and social group were included as 
fixed effects term, and the interaction age × cumulative 
rainfall was included as fixed effects term and as a ran-
dom slope within the random intercept of individual’s 
identity (ID) to account for repeated sampling and keep 
type I error rate at 5% [98]. We excluded the correlation 
between random intercept and slope to allow models to 
converge. To account for differences in sequencing depth, 
we included the total number of reads per sample as a 
fixed term in the model on FPD, and the log transformed 
read counts as an offset term in the model on richness. 
We used a negative binomial error distribution and log 
link function for richness and a beta error distribution 
and logit link function for H (values bound between 
0 and 1), fitted with the function glmmTMB from the 
eponym package. Significance of fixed effects terms was 
determined by likelihood ratio test using the function 
drop1 [99]. A Gaussian error distribution was fitted with 
the function lmer from the package lmerTest for FPD, 
which allows to assess significance of fixed effects terms 
by means of the Satterthwaite approximation [100] and 
a model fitted with restricted maximum likelihood. We 
determined model stability by dropping levels of random 
effects terms one at a time and compared the resulting 
model estimates to those derived from the full model, 
which revealed stability was no issue. Inspection of vari-
ance inflation factors (VIF) obtained with the function 
vif of the package car on corresponding linear models 
lacking the interaction and random terms did not reveal 
issues arising from collinearity (all VIF < 1.2). None of 
the assumptions on model error distribution was violated 

(normal distribution of residual in Gaussian models; 
lack of overdispersion in the negative binomial and beta 
models with overdispersion equal to 0.95 and 1.1, respec-
tively). Full models were compared to their respective ref-
erence models comprising only control predictors (here 
cumulative rainfall, gestation, and group), the random 
slope and intercept structures, with number of reads as a 
fixed or offset term when applicable. Such full-reference 
model comparison avoids “cryptic multiple testing” [101]. 
Full-reference model comparisons were performed in the 
function ANOVA, with parameter test set to “Chisq.” We 
computed 95% confidence intervals of model estimates 
with parametric bootstrapping (N = 1000 bootstraps; 
function bootMer in lme4).

Changes in bacterial taxa relative abundance 
and depletion of core microbiota with age
To determine whether changes in gut microbiota with 
age were associated with a depletion of the core (those 
taxa present in at least 90% of the samples [24]) in favor 
of a rise in opportunist and pathogen bacteria, we investi-
gated changes in relative abundance with age at the phy-
lum, family, and genus level. Read counts were summed 
from single ASVs counts at the desired level of analysis 
and transformed to relative abundance within sample. 
As a beta error distribution does not allow for values 
of exactly 0 or 1, we applied the transformation recom-
mended by Smithson and Verkuilen [102] to shrink the 
response towards 0.5, which avoids adding arbitrary 
pseudo-counts: f (x) = x∗(n−1)+0.5

n  with n = total number 
of data points in the sample and x the individual relative 
proportions.

We used a GLMM with beta error distribution (func-
tion glmmTMB in glmmTMB) to model the influence 
of age on a taxon’s relative abundance while controlling 
for season, gestation, and social group included as fixed 
effects terms. The model included the random slope of 
age and season within the random effects term ID. The 
beta distribution comprises a free dispersion param-
eter which usually is assumed to be constant across the 
entire dataset. However, this assumption is not always 
met, and, hence, we explicitly modeled the dispersion 
parameter as a function of age to overcome convergence 
problems. Sample’s read count was included as a weight-
ing term. Significance was assessed with likelihood ratio 
tests against the reference model excluding age (function 
ANOVA with argument set to “Chisq”). When signifi-
cant, p-values for the effect of age extracted from drop1 
were corrected for overdispersion [103] and multiple 
testing (function p.adjust with p.adjust.methods = fdr). 
The models for six families and eleven genera did not 
converge and were excluded from the results. The dis-
persion parameter was left free to allow the model for 
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the phylum Actinobacteriota to converge. Restricting 
the datasets to known genera (103 out of the 136 mod-
els that converged) did not modify the results regarding 
the repartition of core and noncore genera among those 
increasing, decreasing, or showing no change with age.

Relationship between age, personal gut bacterial 
signature, and stability over time
To estimate between sample dissimilarity in bacterial 
composition (i.e., beta diversity), we rarefied sequencing 
depth at minimum read counts (9653 reads; Fig. S8). We 
estimated dissimilarity with three standard and comple-
mentary metrics: Bray-Curtis (BC) dissimilarity (func-
tion vegdist in vegan) assessing composition dissimilarity, 
weighted unifrac weighting composition with the phylo-
genetic relationship between taxa, and unweighted uni-
frac comparing composition based on presence/absence 
of taxa (respectively Wunifrac and UWunifrac hereafter; 
function GUnifrac in the eponym package) on the rare-
fied dataset.

To test whether gut microbiota composition carried 
a host personal signature, we tested the influence of ID 
on dissimilarity. We calculated with a Mantel test the 
Spearman correlation between the dissimilarity matrix 
(pairwise comparison between all samples) and a matrix 
indicating whether samples were collected from the same 
or different individuals. To then focus on the change of 
intraindividual dissimilarity over time, we restricted dis-
similarity matrices to intraindividual pairwise compari-
sons and determined with a Mantel test the Spearman 
correlation between the intraindividual dissimilarity 
matrix and a second matrix indicating the time gap in 
days between collection of two samples. P-values for 
the Mantel tests were derived from 10,000 permutations 
which were restricted such that randomization took place 
only within individuals. To further investigate whether 
the change in microbiota composition over time could be 
associated with female’s age, we extracted for each female 
the correlation between intraindividual dissimilarity and 
time gap between sample collection. This gave one corre-
lation coefficient per individual ranging between −1 and 
1. This coefficient can be thought of as an estimate of the 
strength and direction of the evolution of intraindividual 
dissimilarity over time. The difference in intraindividual 
change of microbiota composition over time between age 
categories was assessed with a nonparametric Kruskal-
Wallis test.

Age as a predictor of gut bacterial composition
One underlying assumption in gut microbial research 
is that age could be associated with a specific compo-
sition across aging individuals. To assess the effect of 

age on dissimilarity in bacterial composition between 
samples, we ran permutational multivariate analyses 
of variance (PERMANOVA) with the function adonis 
in vegan (10,000 permutations) with first only ID and 
second season, gestation, group, and age on dissimilar-
ity, with ID as blocking factor (“strata”) to control for 
repeated sampling.

Personalization of gut bacterial communities and age
Then, to investigate whether individuals differed in 
the degree of personalization of their gut bacterial 
communities, we estimated the extent to which sam-
ple bacterial composition was unique to the individ-
ual. We restricted the dissimilarity matrix to pairwise 
comparisons between samples from different indi-
viduals from the same group and collected during the 
same season. For each sample, we kept only the lowest 
dissimilarity measured. This metric thus represents a 
measure of distance to “the closest neighbor,” in this 
case the sample collected from another individual in 
the same group and season with the least dissimilar 
composition [11]. We then fitted GLMMs with beta 
error distribution (function glmmTMB in glmmTMB) 
and logit link function to test the influence of age, 
season, gestation, and group on minimal dissimilar-
ity based on either BC, Wunifrac, or UWunifrac. We 
also included the interaction between age and season 
and again modeled the dispersion of the beta distri-
bution as a function of age after preliminary visuali-
zation of the relationship between age and minimal 
dissimilarity (confirmed by greater log likelihood of 
models including compared to excluding the disper-
sion argument). In essence, this effect estimates the 
extent to which the variability in the relative abun-
dance depended on age. ID was included as a random 
effect term to control for repeated sampling, with ran-
dom slopes of age and season within ID. We tested 
models’ stability by excluding levels of the random 
effect one at a time and comparing these estimates 
with those derived from the full dataset. Models did 
not show evidence of overdispersion (range = 0.88–
0.97), and VIFs were all under 1.5 which indicate that 
collinearity was no issue. We assessed the significance 
of full models against their respective reference mod-
els lacking the interaction and fixed effects terms for 
age and season with likelihood  ratio test (function 
ANOVA with argument set to “Chisq”) and extracted 
p-values for the fixed effects with the function drop1. 
The dispersion parameter was removed to allow drop1 
to converge for Wunifrac which does not modify 
interpretation of the results. We computed 95% con-
fidence intervals of model estimates using parametric 
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bootstrapping (N = 1000 bootstraps; function simu-
late of the package glmmTMB).

Progressive decreasing social activity with age 
as a possible driver of personalization
Sample size was 431 dyads for this analysis. Finally, we 
tested whether social interactions promote the transfer 
of gut microbiota between subjects and explain the age 
effects documented. To do so, frequency and duration of 
grooming interactions between pairs of females calcu-
lated over the entire study period (June 2018 to Decem-
ber 2019) were corrected for dyadic observation time, 
corresponding to the sum of observation time for each 
dyad member during which the other member of the 
dyad was also an adult and present in the group at the 
time. To test whether dyads interacting more frequently 
or for a longer time exhibited lower microbiota dissimi-
larity, we computed the average dissimilarity per dyad 
and used Bayesian regression multimembership mod-
els in brms. Such models are needed to account for the 
inherent dyadic nature of the data, which can be specified 
in the random term structure of the model [15, 104]. We 
fitted the model with beta error structure and logit-link 
function, including the fixed effects of dyadic grooming 
frequency or duration, controlling for group member-
ship, a random effects (multimembership) term for the 
IDs of the individuals of a dyad, and a random slope of 
the frequency or duration. To penalize extreme esti-
mates, we used regularizing priors β~normal (0, 1) for 
fixed effects terms, and the default priors student-t (3, 
0.7, 0.25) for the random intercept, student-t (3, 0, 2.5) 
for the random slope terms, and R—lkj (1) for the corre-
lation between the random intercept and slope. Evidence 
for a relationship between social interactions and micro-
biota dissimilarity is summarized by reporting estimates 
with estimated error, the lower and higher boundaries of 
the 90% credible interval (90CI), and the probability of a 
negative effect, i.e., the proportion of posterior samples 
smaller than 0 (p−). In this case, p− can be interpreted 
as the probability in support of a social transmission of 
microbiota between individuals, with increasing values 
towards 1 providing greater support for the hypothesis. 
We ran 4000 iterations, with 2000 warmup on 4 chains, 
with adapt_delta set at 0.91, and a max_treedepth of 20. 
All chains converged as shown by inspections of cater-
pillar plots and Rhats equal to 1. Posterior sampling was 
sufficient for accurately estimating the effect of interac-
tions on dissimilarity (both Bulk_ESS > 4000).

For the last analyses, sample size was 51 females. To 
further test whether microbiota personalization could 
be linked to the level of engagement in social inter-
actions, we extracted the frequency and duration of 

grooming with a female’s closest partner, i.e., the adult 
female with whom she groomed most frequently or 
longest (top partner), and a female’s average grooming 
frequency and duration with all females in her social 
group. We fitted multiple regression models with the 
function lm [99] to analyze the relationship between 
female age and the frequency or duration of top partner 
and average grooming while correcting for social group. 
Model assumptions on residuals, absence of influential 
cases, and absence of multicollinearity were checked 
with residuals plotted against fitted values, DFBetas 
and VIFs. None of these indicated issues regarding 
model assumptions of stability or collinearity problems. 
Inspection of predictors effect sizes and p-values was 
used to assess significance [101].
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Table S13-15. Results based on the unfiltered dataset for spurious 
sequences (see methods section of the main text for details).
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