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Integrated meta-omics reveals new ruminal 
microbial features associated with feed 
efficiency in dairy cattle
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Abstract 

Background:  As the global population continues to grow, competition for resources between humans and livestock 
has been intensifying. Increasing milk protein production and improving feed efficiency are becoming increasingly 
important to meet the demand for high-quality dairy protein. In a previous study, we found that milk protein yield 
in dairy cows was associated with the rumen microbiome. The objective of this study was to elucidate the poten‑
tial microbial features that underpins feed efficiency in dairy cows using metagenomics, metatranscriptomics, and 
metabolomics.

Results:  Comparison of metagenomic and metatranscriptomic data revealed that the latter was a better approach to 
uncover the associations between rumen microbial functions and host performance. Co-occurrence network analysis 
of the rumen microbiome revealed differential microbial interaction patterns between the animals with different feed 
efficiency, with high-efficiency animals having more and stronger associations than low-efficiency animals. In the 
rumen of high-efficiency animals, Selenomonas and members of the Succinivibrionaceae family positively interacted 
with each other, functioning as keystone members due to their essential ecological functions and active carbohydrate 
metabolic functions. At the metabolic level, analysis using random forest machine learning suggested that six ruminal 
metabolites (all derived from carbohydrates) could be used as metabolic markers that can potentially differentiate 
efficient and inefficient microbiomes, with an accuracy of prediction of 95.06%.

Conclusions:  The results of the current study provided new insights into the new ruminal microbial features associ‑
ated with feed efficiency in dairy cows, which may improve the ability to select animals for better performance in the 
dairy industry. The fundamental knowledge will also inform future interventions to improve feed efficiency in dairy 
cows.
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Background
Dairy cattle are an important source of high-quality 
animal protein for human consumption. Along with 
the increasing global population and competition for 
resources between humans and livestock, meeting the 

demand for high-quality dairy protein has become a 
global food security concern [1]. Hence, increasing milk 
protein production and improving feed efficiency have 
become the most coveted goals in the dairy industry [2]. 
Feed efficiency in ruminants is determined largely by the 
ability of the rumen microbiome to convert potentially 
digestible feedstuffs into metabolizable nutrients [3]. 
The ability to digest various plant masses differs among 
individual cows and is largely dependent on the diverse 
microbiomes in their digestive tracts, particularly in the 
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rumen [4, 5]. In recent years, the advancement of under-
standing of the associations between the rumen micro-
biome and feed efficiency has led to novel strategies 
to select high-efficiency animals based on their rumen 
microbiomes [6–9]. The rumen microbiome is respon-
sible for the deconstruction and fermentation of feed 
plant fibers and converts plant materials to volatile fatty 
acids (VFAs), which serve as the main energy source for 
ruminants [10]. Rumen microbes are also an important 
protein source for ruminants, as they are subsequently 
digested in the small intestine [11]. Therefore, under-
standing the microbe-dependent mechanisms underly-
ing feed efficiency microbial features associated with feed 
efficiency in dairy cows is of great importance.

In the past decade, compositional variation in the 
rumen microbiomes and their effects on host feed effi-
ciency and methane emissions have been investigated 
using PCR-denaturing gradient gel electrophoresis 
(DGGE) [6, 7, 12] and meta-taxonomics [8, 13, 14]. The 
functional potential of the rumen microbiome and its 
relationship with animal performance have also been 
extensively examined using metagenomics and metatran-
scriptomics [15, 16]. As expected, a recent study compar-
ing the rumen metagenomes and metatranscriptomes 
of beef cattle suggested that the metatranscriptomes 
can closely represent the active functions of the micro-
biomes [17]. However, the metabolic functions of the 
rumen microbiome are better conserved than the taxo-
nomic compositions [16, 18, 19], and microbial metabo-
lites make greater contributions to host phenotypes 
than taxonomic compositions [20]. These findings sug-
gest that the rumen metabolome should also be consid-
ered when associating the rumen microbiome with host 
feed efficiency. However, few studies have focused on 
the metabolic variation in the rumen microbiome and 
its relationship with host feed efficiency, especially in 
dairy cows [21]. This knowledge gap hinders the elucida-
tion of the rumen microbiome-dependent mechanisms 
underpinning feed efficiency in dairy cows and other 
ruminants.

To date, knowledge of the rumen metatranscriptomic 
and metabolomic profiles of dairy cattle remains lim-
ited, especially with respect to their linkages with host 
phenotypes. Therefore, integration of the compositional 
profiles and active functions, together with the metabo-
lites of the rumen microbiome, is needed to elucidate 
the microbiome-dependent mechanisms underlying the 
feed efficiency of dairy cattle. In the current study, mul-
tiple meta-omics approaches, including metagenomics, 
metatranscriptomics, and metabolomics of the rumen 
contents, were applied and integrated to address the fol-
lowing questions: (1) How do microbes interact with each 
other and function in the rumen of cows with different 

feed efficiencies? (2) Can some of the rumen microbial 
features be used as predictive markers for feed efficiency 
and potentially used in selecting cows with high feed effi-
ciency? The answers to these questions will advance our 
knowledge regarding the microbial features associated 
with host feed efficiency and help improve selecting cows 
for better performance in the dairy industry.

Methods
Animals and samples
The experimental protocol was approved by the Ani-
mal Care Committee of Zhejiang University (Hangzhou, 
China). The experimental design is presented in Fig.  1. 
A total of 60 mid-lactating Holstein dairy cows (parity 
= 2.48 ± 0.62) were selected from a herd of 323 dairy 
cattle (Hangzhou, China) and used for measurement of 
feed intake. The 60 cows were fed a total mixed ration 
that was formulated to produce 35 kg of milk per day 
with 3.25% milk protein [22]. The feed intake data were 
recorded using automatic weighting troughs (Roughage 
Intake Control System, Marknesse, The Netherlands) to 
calculate the dry matter intake (DMI) as described previ-
ously [22]. Rumen content samples were collected using 
oral stomach tubes [23] before morning feeding and pre-
served at −80°C until analysis in the present study. The 
feed conversion rate (FCR) of the 60 cows was calculated 
using their DMI and milk (3.5% fat-corrected milk) yield 
data, and 18 animals were then selected and divided into 
two groups: high-efficiency (HiEf) cows and low-effi-
ciency (LoEf) cows (Fig. 1). Power calculations revealed 
that the sample size enabled 99.67% power and a type 1 
error of 5% (effect size = 0.78, Cohen’s d = 2.53) based 
on a t test of FCR.

Metagenomic sequencing and data processing
The methods for DNA extraction from the rumen con-
tent samples, metagenomic sequencing, and data pro-
cessing were the same as reported previously [20]. In 
brief, total genomic DNA was extracted from the rumen 
contents using repeated bead-beating plus column puri-
fication [24]. Individual metagenome libraries were con-
structed using the TruSeq DNA PCR-Free Library Prep 
Kit (Illumina, San Diego, CA, USA). The metagenome 
libraries were sequenced (2 × 150 paired-end) on the 
Illumina HiSeq 3000 platform at Majorbio Bioinformat-
ics Technology Co., Ltd. (Shanghai, China).

Quality control of the metagenomic sequence reads 
was performed using Sickle (version 1.33, https://​
github.​com/​najos​hi/​sickle). The quality-filtered reads 
were then aligned to the bovine genome (bosTau8 3.7, 
DOI: 10.18129/B9.bioc.BSgenome.Btaurus.UCSC.bos-
Tau8) using BWA v0.7.1 (http://​bio-​bwa.​sourc​eforge.​
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net) to filter out the host DNA sequences [25], and 
the remaining reads were de novo assembled using 
Megahit v1.1.2 [26]. The assembled contigs were sub-
jected to prediction of open reading frames (ORF) 
using MetaGene v0.3.38 [27]. Nonredundant contigs 
were identified using CD-HIT at 95% sequence identity 
and 90% coverage [28]. The original sequencing reads 
were mapped to the predicted genes to estimate their 
abundance using SOAPaligner v2.21 [29]. The contigs 
were taxonomically assigned using DIAMOND [30] 
against the RefSeq database [31]. Taxonomic profiles 
were examined at the domain, phylum, genus, and spe-
cies levels, and relative abundances at those taxonomic 
ranks were calculated using HUMAnN v2.0 (https://​
hutte​nhower.​sph.​harva​rd.​edu/​human​n2/). For poten-
tial functional profiles, the contigs were annotated 
using DIAMOND against the KEGG database (http://​
www.​genome.​jp/​kegg/) with an E value of 1e−5. Abun-
dances of KEGG Orthology (KO), pathways, and KEGG 
enzymes were normalized into counts per million reads 
(CPM) for downstream analysis. Exogenous pathways 
were selected based on a previous study and were 
excluded from downstream analysis [19].

Metatranscriptomic sequencing and data processing
The microbial RNA was extracted from the rumen con-
tent samples as described previously [32], and RNA sam-
ples with an RNA integrity number (RIN) > 7.0 were used 
in generating metatranscriptome libraries after mRNA 
enrichment [33]. Metatranscriptomic sequencing (2 × 
150 paired-end) was performed on the Illumina HiSeq 
3000 platform at Majorbio Bioinformatics Technology 
Co., Ltd. (Shanghai, China).

The RNA-Seq reads were subjected to quality filtering 
using Trimmomatic (version 0.39) [34]. TopHat (version 
2.1.1) was used to remove host sequences by comparison 
against the bovine genome [35]. De novo assembly was 
performed using Meta-Velvet (version 1.2.01) [36]. Func-
tional annotation was performed using UBLAST that is 
implemented in USEARCH (version 11) [37] against the 
KEGG database, with an E value of 1e−5. The RNA-seq 
reads were mapped to the assembled sequences, and the 
mapping outputs were further converted to count files 
using HUMAnN v2.0 (https://​hutte​nhower.​sph.​harva​rd.​
edu/​human​n2/). Abundances of KEGG Orthology (KO), 
pathways, and KEGG enzymes were normalized into 
CPM for downstream analysis, and exogenous pathways 
were excluded [19]. Taxonomic profiles were analyzed 

Fig. 1  Workflow of the integrated rumen metagenomes, metatranscriptomes, and metabolomes
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using the MG-RAST pipeline against the RefSeq database 
[38] and the Simple Annotation of Metatranscriptomes 
by Sequence Analysis (SAMSA) software package [39]. 
Taxonomic profiles were examined at the domain, phy-
lum, genus, and species levels, and relative abundances 
were calculated for each taxonomic rank.

Metabolomic analysis and data processing
The rumen metabolome was analyzed using gas chroma-
tography (Agilent Technologies, Santa Clara, CA, USA) 
coupled to Pegasus HT time-of-flight/mass spectrometry 
(GC-TOF-MS; LECO Corporation, St. Joseph, MI, USA). 
Data processing was performed as previously reported 
[20]. The Chroma TOF 4.3X software (LECO Corpora-
tion, St. Joseph, MI, USA) and the LECO-Fiehn Rtx5 
database [40] were used for raw data filtering and pro-
cessing. Metabolite peaks that were present in > 50% of 
the samples or with a relative standard deviation < 30% 
and with a similarity value > 200 were used in down-
stream analysis. Metabolites were correlated with the 
FCR phenotypes using Spearman correlation to select 
FCR-associated rumen metabolites.

Bioinformatics and statistical analysis
Co-occurrence among the bacterial taxa was analyzed 
using the SparCC program with the default settings [41]. 
Spearman correlation analysis was performed to associ-
ate microbial taxa with the transcriptionally active func-
tions (active functions hereafter). Only the genus-level 
bacterial taxa with a relative abundance > 0.1% and prev-
alence > 50% were used in the co-occurrence and correla-
tion analysis, and only those with a correlation coefficient 
of > 0.5 or < −0.5 and a P value of < 0.05 were used in co-
occurrence network analysis. Networks were visualized 
using Cytoscape (Version 3.2.1, http://​www.​cytos​cape.​
org). The hubs of the microbes in the networks were cal-
culated using the “CytoHubba” function in the Cytoscape 
software based on the Maximal Clique Centrality (MCC) 
method (https://​apps.​cytos​cape.​org/​apps/​cytoh​ubba).

The randomForest package in R was used for the ran-
dom forest analysis [42], with the rumen metabolites 
being used as the inputs of the random forest model. The 
mean decrease accuracy (MDA) score, which reflects the 
importance of metabolites in the model, was given to 
each metabolite based on the increase in error caused by 
removing that metabolite from the predictors. The best 
predictive metabolites were identified based on the maxi-
mum area under the curve (AUC) using the UC-RF algo-
rithm. A 99-fold cross-validation scheme was applied for 
further evaluation of the model using the rfUtilities pack-
age in R (Version2.1-5, https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​rfUti​lities/​index.​html).

To reveal the relationship between the rumen microbes 
and metabolites detected, microbe-metabolite vectors 
(mmvec), which predict the entire metabolite abundance 
profile from a single microbial sequence, were applied 
[43], and the resultant mmvec neural network was 
used to learn the co-occurrence probabilities between 
microbes and metabolites. The interactions between 
microbes and metabolites were ranked and visualized 
through the standard dimensionality reduction inter-
face that is implemented as a plugin in QIIME2 (Version 
2020.8) [44].

Non-metric multi-dimensional scaling (NMDS) analy-
sis was performed based on Bray-Curtis dissimilarity 
using the Vegan package in R (https://​www.r-​proje​ct.​
org). Analysis of Similarities (ANOSIM) was performed 
based on the Bray-Curtis dissimilarity (999 permuta-
tions) using the Vegan package in R. Statistical analyses 
were performed using R. Phenotypic data were compared 
between the two groups using a t test. The relative abun-
dances of microbial taxa and CPM of metagenomic and 
metatranscriptomic functions were compared between 
the two groups using the Wilcoxon rank-sum test. The P 
values were adjusted by the false discovery rate (using the 
BH method of the stats package in R) [45]. Only the taxa 
with a relative abundance > 0.1% and only the functions 
with CPM > 5 were compared between the two groups of 
cows. Fold changes of CPM of microbial functions were 
presented. Differences with a P value < 0.05 were consid-
ered significant.

Results
Animal phenotypes, rumen fermentation characteristics, 
and metagenomic and metatranscriptomic data statistics
Dry matter intake was similar between the HiEf and the 
LoEf cows (P = 0.444), but milk yield, FCR, and N effi-
ciency were higher (P < 0.05) in the HiEf cows than in 
the LoEf cows (Fig. 2A and Supplementary Table S1). The 
HiEf cows also had a higher (P = 0.002) energy-corrected 
milk (ECM): DMI ratio than the LoEf cows (Supplemen-
tary Table S1). The two groups of cows did not differ in 
milk urea nitrogen or any of the determined rumen fer-
mentation characteristics.

A total of 138.52 Gb of data were obtained from the 
metagenomic sequencing, with 7.70 ± 0.46 Gb per sam-
ple (Supplementary Table  S2). A total of 137.16 Gb of 
data were retained after quality filtering and removing 
host DNA sequences. A total of 11,935,765 contigs were 
generated from de novo assembly (663,098 ± 145,797 per 
sample, N50 length of 778 ± 124).

Metatranscriptomic sequencing generated a total of 
162.34 Gb of data (9.02 ± 1.25 Gb per sample). A total 
of 127.58 Gb of data were remained after quality con-
trol, mRNA enrichment, and filtering out host RNA 
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reads (Supplementary Table S2). After de novo assembly, 
an average of 63,989 ± 22,058 contigs per sample were 
obtained (N50 length of 640 ± 122).

Rumen microbiome composition as determined 
by metagenomics and metatranscriptomics
The overall microbial NMDS based on metagenomic data 
showed two clusters between the two groups (stress = 
0.101, ANOSIM R = 0.325, P < 0.05, Supplementary Fig-
ure  S1A). From the metagenomic sequences of bacteria 
(26,591,712 ± 1,926,636 sequences per sample), a total of 
62 phyla, 1339 genera, and 5362 species of bacteria were 
identified (data not shown), of which 12 phyla, 24 genera, 
and 20 species were considered as predominant bacterial 
taxa (each with a relative abundance > 0.5% in at least one 
sample and a prevalence > 20%, Supplementary Table S3). 
None of these predominant bacterial phyla differed in 
relative abundance between the two cow groups (Fig. 2B). 
At the genus level, an unclassified Firmicutes genus was 
more abundant (P < 0.05) in the LoEf cows than in the 
HiEf cows, while Selenomonas showed the opposite trend 

(Fig.  2C). At the species level, three uncultured species 
of Firmicutes had a higher abundance (P < 0.05) in the 
LoEf cows than in the HiEf cows, but Selenomonas bovis 
showed the opposite abundance trend (Fig. 2D).

The archaeal metagenomic sequences (391,764 ± 
145,445 per sample) were taxonomically classified to a 
total of 6 phyla, 49 genera, and 117 species of archaea 
(data not shown), of which one phylum, 6 genera, and 
13 species were predominant (as defined above for the 
predominant bacterial taxa, Supplementary Table  S3). 
At the phylum level, only one low-abundance archaeal 
phylum (i.e., candidate Bathyarchaeota) was more abun-
dant (P < 0.05) in the rumen of the HiEf cows than the 
LoEf cows (Supplementary Table  S3). Methanobrevi-
bacter, which was the most abundant genus of archaea, 
showed a lower abundance (P < 0.05) in the HiEf cows 
than in the LoEf cows (Supplementary Table  S3). No 
species-level archaeal taxa differed in relative abundance 
between the two cow groups (Supplementary Table S3). 
An average of 582,310 ± 526,904 fungal metagenomic 
sequences were generated per sample. These sequences 

Fig. 2  Comparison of phenotypic data and rumen bacterial taxa identified in the metagenomes between cows with different feed efficiencies. 
Feed conversion rate (FCR), milk yield, nitrogen (N) efficiency, and dry matter intake (DMI) were compared using a t test (A). The 10 most abundant 
bacterial phyla (B), 10 most abundant bacterial genera (C), and 50 most abundant bacterial species (D). The Wilcoxon rank-sum test was used for 
mean comparison. *P < 0.05
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were taxonomically assigned to 10 phyla, 120 genera, 
and 146 species (data not shown), with 20 genera and 15 
species being predominant (as defined above for the pre-
dominant bacterial taxa, Supplementary Table S3). None 
of the detected fungal taxa differed in relative abundance 
between the two cow groups (Supplementary Table S3).

The overall microbial NMDS based on metatran-
scriptomic data showed clear separations between the 
two groups (stress = 0.072, ANOSIM R = 0.410, P < 
0.05, Supplementary Figure  S1B). Based on metatran-
scriptomic sequencing data, an average of 17,291,314 
± 823,431, 182,657 ± 105,195, and 361,030 ± 221,841 
sequences were generated per sample for bacteria, 
archaea, and fungi, respectively. Alpha diversity indexes 
of microbiome were compared based on metatranscrip-
tome data, only archaea had a higher Shannon index in 
the HiEf cows than in the LoEf cows (P < 0.05, Supple-
mentary Figure  S2). None of the predominant bacterial 
phyla showed any difference (P > 0.05) between the two 
cow groups (Supplementary Table S4). At the genus level, 
Selenomonas was more abundant (adjusted P < 0.05) in 
the HiEf cows than in the LoEf cows, while the opposite 
was true for Oscillibacter (Supplementary Table  S4). At 
the species level, five taxa differed in relative abundance 
between the two cow groups, with Selenomonas bovis 
being more abundant in the HiEf cows than in the LoEf 
cows, and four unclassified species having higher abun-
dances in the LoEf cows than in the HiEf cows, including 
two species of Firmicutes and one taxon each of Prevo-
tella and Lachnospiraceae (adjusted P < 0.05, Supplemen-
tary Table  S4). Of the identified archaeal taxa, only the 
genus Methanobrevibacter had different relative abun-
dance between the two cow groups (more abundant in 
the rumen of LoEf cows, adjusted P < 0.05). None of the 
fungal taxa were different between the two groups (Sup-
plementary Table S4).

Rumen microbial functions as determined 
by metagenomics and metatranscriptomics
The metagenomic sequences were mapped to a total 
of 249 KEGG level-3 pathways. After excluding exog-
enous pathways and pathways with low abundance and 
prevalence (CPM < 5 and prevalence < 20%), 218 KEGG 
level-3 pathways remained (Supplementary Table  S5). 
These pathways were assigned to four level-1 categories, 
including “Metabolism” (71.04%), “Genetic Informa-
tion Processing” (15.39%), “Environmental Information 
Processing” (6.87%), and “Cellular Processes” (6.70%). 
Comparison of the 20 most abundant microbial path-
ways between the two groups showed no difference (P > 
0.05) (Supplementary Figure S3). We further selected the 
key pathways involved in amino acid metabolism, carbo-
hydrate metabolism, energy metabolism, and cofactors 

and vitamin metabolism. Only one pathway, “Retinol 
Metabolism,” differed between the two cow groups, being 
less abundant (P < 0.05) in the rumen of the HiEf cows 
(Fig.  3A). The overall functional NMDS based on 
metagenomic data showed two clusters between the two 
groups (stress = 0.063, ANOSIM R = 0.367, P < 0.05, 
Supplementary Figure S1C).

In the rumen metatranscriptomes, 358 KEGG level-3 
pathways were identified. After excluding exogenous 
pathways and pathways with low abundances and prev-
alence (as defined above for the pathways identified in 
the metagenomes), 193 KEGG level-3 pathways were 
remained (Supplementary Table  S6). These microbial 
pathways were assigned four level-1 categories, including 
“Metabolism” (49.22%), “Genetic Information Process-
ing” (29.86%), “Environmental Information Processing” 
(13.07%), and “Cellular Processes” (7.84%). The overall 
functional NMDS based on metatranscriptomic data 
showed clear separations between the two groups (stress 
= 0.051, ANOSIM R = 0.472, P < 0.05, Supplementary 
Figure  S1D). Neither Shannon nor Simpson diversity 
index of the identified KEGG functions differed between 
the two cow groups (Supplementary Figure  S2C and 
S2D). Among the 20 predominant pathways, 10 were 
significantly enriched (P < 0.05) in the HiEf cows than 
in the LoEf cows (Supplementary Figure  S4A). A com-
parison of the abundances of all identified pathways 
between the two cow groups showed that a total of 34 of 
the 193 pathways were different (P < 0.05), with all being 
more abundant in the HiEf cows than in the LoEf cows 
(Supplementary Figure  S4B). These pathways included 
carbon metabolism, glycolysis/gluconeogenesis, pyru-
vate metabolism, carbon fixation, purine metabolism, 
butanoate metabolism, oxidative phosphorylation, starch 
and sucrose metabolism, quorum sensing, and fructose 
and mannose metabolism. We further selected the key 
pathways involved in amino acid metabolism, carbohy-
drate metabolism, energy metabolism, and cofactors and 
vitamin metabolism. Four amino acid metabolism path-
ways, 11 carbohydrate metabolism pathways, two energy 
metabolism pathways, and two vitamin metabolism path-
ways were more abundant (P < 0.05) in the HiEf cows 
than in the LoEf cows (Fig. 3B).

The pathways detected using metatranscriptom-
ics reflect the active metabolism, and they shall more 
closely reflect the actual functions at the time of sam-
pling and host feed efficiency compared with the 
potential functions identified using metagenomics. We 
therefore further focused on the active functions only. 
The key enzymes involved in VFA and methane metab-
olism detected in the transcriptomes are presented in 
Supplementary Figure  S5. A total of seven enzymes 
were significantly enriched in the HiEf cows (P < 0.05), 
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four of which were involved in the succinate pathways 
and one of which was involved in the acrylate path-
way of propionate formation, and the other two were 
involved in acetate and butyrate production. Three 
enzymes involved in the methanogenesis pathway were 
significantly enriched (P < 0.05) in the microbiome of 
the LoEf cows (Supplementary Figure S5).

Potential microbial interactions identified in co‑occurrence 
networks
Co-occurrence network analysis revealed a total of 228 
co-occurrence relationships, with distinct co-occurrence 
patterns being found in each group of the cows with dif-
ferent feed efficiencies. In the rumen microbiome of HiEf 
animals, 186 connections were found, with the most 

Fig. 3  Fold changes of metabolic pathways identified in the metagenomes and metatranscriptomes of the cows with high and low feed 
efficiencies. A Pathways identified in the metagenomes and B pathways identified in the metatranscriptomes. The Wilcoxon rank-sum test was used 
for mean comparison. *P < 0.05
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positive relationships existing among taxa of Firmicutes 
and the most negative relationships existing between taxa 
of Firmicutes and taxa of Bacteroidetes (Fig.  4A). Nota-
bly, Selenomonas, which was significantly enriched in the 
HiEf animals, had positive relationships with Succinivi-
brio, Succinimonas, and Ruminobacter. These three taxa 
were positively correlated with Aeromonas and Succinati-
monas. In the rumen microbiome of the LoEf animals, 99 
relationships were observed, with taxa of Firmicutes posi-
tively correlated with each other but negatively correlated 
with Prevotella (Fig. 4A).

The co-occurrence network also revealed relation-
ships between some rumen microbial taxa and func-
tions associated with feed efficiency (Fig. 4B). A total of 
16 positive and 24 negative correlations (P < 0.05) were 
found. Most of the feed efficiency-associated functions 
were those involved in carbohydrate metabolism and 
amino acid metabolism. The majority of the positive 
correlations (15 out of 16) were observed between Suc-
cinivibrio, Succinimonas, Ruminobacter, Aeromonas, 
or Succinatimonas and carbohydrate metabolism path-
ways (Fig. 4B).

Fig. 4  Co-occurrence networks of bacterial taxa. A The co-occurrence among rumen bacteria in the dairy cows with high and low feed efficiencies. 
B Relationships between rumen microbial taxa and feed efficiency-associated microbial functions. Only significant (P < 0.05) relationships are 
shown. Blue edges indicate positive relationships, and red edges indicate negative relationships. The node size is proportional to the mean 
abundance
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Microbe‑metabolite interactions associated with host feed 
efficiency
A total of 284 metabolites were identified in the rumen 
metabolomes (Supplementary Table  S7). These metabo-
lites were used in Spearman correlation analysis with the 
FCR phenotype to select the feed efficiency-associated 
metabolites. A total of 31 rumen metabolites were con-
sidered as efficiency-associated metabolites based on 
Spearman correlation (P < 0.05) and were used for pre-
dicting feed efficiency using the random forest model. Six 
of the feed efficiency-associated metabolites, including 
lactic acid, 5-aminovaleric acid, 2,4-diaminobutyric acid, 
lauric acid, 4-hydroxybutyrate, and 2-hydroxyvaleric 
acid, were selected by the random forest model, with an 
MDA > 4 (Fig. 5A). The receiver operating characteristic 

(ROC) curve represented an AUC of 0.9506 together 
with the inset confusion matrix. Of our cow cohort, 8 of 
the 9 HiEf animals were successfully predicted, and 6 of 
the 9 LoEf animals were successfully predicted. Cross-
validation (99-fold) of the model achieved a Kappa coef-
ficient of 0.71 and model error variance of 0.001.

To reveal meaningful relationships between genes and 
their products in the metabolomes, mmvec analysis was 
performed. Figure  5B and C show the different multi-
omics biplots of microbe-metabolite interactions of HiEf 
and LoEf cows, respectively. Metabolites were colored 
according to their correlation coefficients with feed effi-
ciency, showing no separation within metabolites in 
either efficient (Fig.  5B) or inefficient (Fig.  5C) animals. 
The heatmaps of the inferred conditional probabilities of 

Fig. 5  Prediction of host feed efficiency using rumen metabolites and microbe-metabolite interactions. Receiver operating characteristic 
(ROC) curve and the confusion matrix of the performance of the random forest model using the six selected metabolites (shown in red) whose 
mean decrease accuracy (MDA) was > 4 (A). Biplot drawn from the microbe-metabolite vectors (mmvec) conditional probabilities estimated 
for the dataset of high-efficiency (B) and low-efficiency (C) cows. Axes: principal components from the singular value decomposition of the 
microbe-metabolite conditional probabilities estimated using mmvec. Arrows: microbes, dots: metabolites, and colors of dots represent 
associations with host feed efficiency (blue: negative, red: positive). Heatmaps display the inferred conditional probabilities for various 
efficiency-associated metabolites given the presence of specific microbial taxa in the rumen of cows with high (B) and low (C) efficiencies
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specific metabolites indicated different interaction pat-
terns of microbes and metabolites in the efficient vs. inef-
ficient animals.

Discussion
Animal performance of dairy cows, including feed effi-
ciency, methane emissions, and milking traits, is largely 
determined or affected by the rumen microbiome [15, 16, 
46]. To date, most previous studies have focused on the 
associations of rumen microbes with these host perfor-
mance parameters using DNA-based analyses [2, 47, 48]. 
However, DNA-based analyses, including metagenomics, 
detect genes from both viable and dead microbes, and all 
genes irrespective of expression [49]. RNA-based analy-
ses, including metatranscriptomics, overcome the above 
issues, though they also have some limitations, such 
as only detecting gene expression at the time of sample 
collection and not being able to address the biological 
challenge: RNA concentrations may not necessarily cor-
relate with growth constantly [50]. Indeed, recent stud-
ies reported that different results could be obtained using 
metagenomics vs. metatranscriptomics [15, 17, 51]. A 
beef study concluded that transcriptionally active func-
tions revealed by metatranscriptomics better reflects the 
actual active functions of microbiomes than the potential 
functions revealed by metagenomics [17]. In our study, 
metatranscriptomics identified half of the top 20 active 
pathways differing in abundance between dairy cows 
with high or low feed efficiency, while metagenomics 
identified none. Our study on dairy cattle together with 
previous studies on beef [17] and sheep [15, 51] indicate 
that metatranscriptomics is better suited to uncover the 
associations between rumen microbial functions and 
host performance. To maximize the discovery of such 
associations, we also used metabolomics. The integration 
of the three meta-omics helped address the question of 
how rumen microbes may function and interact to affect 
feed efficiency in dairy cows.

Comparison of the rumen microbial compositions 
between the two groups of cows revealed that bacteria 
and archaea, but not fungi, have significant associations 
with host feed efficiency. Most of the published stud-
ies focused on the rumen prokaryotes, emphasizing the 
importance of bacteria and archaea in affecting feed effi-
ciency [8, 47, 52]. Rumen fungi play important roles in 
feed digestion [53, 54], but few studies have focused on 
their linkage to feed efficiency [9, 21]. Using metatran-
scriptomics, Zhang et  al. [9] characterized the rumen 
eukaryotic community in beef cattle and found signifi-
cant differences in protozoa and fungi among animals 
with different feed efficiencies [9]. The lack of difference 
in the fungal community between the two cow groups in 
our study contradicts the above study on beef cattle, but 

concur with a previous metagenomic study on dairy cat-
tle [21]. Such discrepancies may be due to differences in 
animal species (beef vs. dairy) and methodologies (DNA- 
vs. RNA-based) used in different studies. Regarding 
archaea, the higher abundance of Methanobrevibacter, 
which is the most abundant methanogen in the rumen, 
in the LoEf animals is consistent with previous stud-
ies on beef [19] and dairy cattle [21]. More interestingly, 
the methanogens pathway was also upregulated in the 
metatranscriptome of the LoEf cows. These results sug-
gest that more dietary energy might have been drained in 
the LoEf cows than in the HiEf cows. Breading for high-
efficiency cows may also result in low-methane emitting 
cows.

Because bacteria play the most important role in feed 
digestion and fermentation, and utilization of the soluble 
monomers (sugar and amino acids) and secondary fer-
mentation products (such as lactate, succinate, and H2) 
[55], their active metabolic functions and interactions 
with each other may determine or affect host feed effi-
ciency. In the present study, the co-occurrence networks 
did reveal different occurrence patterns, which sug-
gest potential interactions, in the bacterial communities 
between the two groups of cows with different feed effi-
ciencies. The larger number of connections in the HiEf 
animals than in the LoEf animals (186 vs. 99) suggests 
more microbe-microbe interactions in the bacteriome of 
the former than the latter. The network of the HiEf cows 
included several genera of prevalent rumen bacteria in 
the hubs, including Prevotella, Ruminiclostridium, and 
Oscillibacter (MCC score > 100). These bacteria might 
play potential roles in the microbial interactions in the 
rumen microbiome of the HiEf cows.

The genus Selenomonas had a higher abundance in 
the rumen of the HiEf animals than of the LoEf cows, 
and the differential abundance was attributed to that of 
Selenomonas bovis, which is a species first isolated from 
the rumen of yak [56], but its metabolic functions in 
the rumen remain to be determined. The co-occurrence 
network analysis revealed that Selenomonas is posi-
tively correlated with several genera of the family Suc-
cinivibrionaceae, including Ruminobacter, Succinivibrio, 
and Succinimonas. Members of these genera have been 
reported to utilize sugars and some fermentation prod-
ucts of other microbes to produce succinate, lactate, ace-
tate, and formate [55]. Most strains of Selenomonas can 
utilize starch producing primarily lactate, acetate, and 
propionate as end products [55, 57]. Members of Suc-
cinivibrionaceae primarily utilize hydrogen and produce 
succinate (a precursor of propionate), directing hydro-
gen away from methanogenesis [58]. Indeed, this taxon 
was found to be associated with high feed efficiency in 
cattle [52]. Taken the findings of the present study and 
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previous studies together, Selenomonas and members of 
Succinivibrionaceae might have positively interacted with 
each other and played an important role as functional-
keystone bacteria in the rumen of the HiEf animals owing 
to their ecological functions. The positive correlations 
between the abundances of these keystone members and 
their active metabolic functions further support their 
potential roles in the efficient utilization of feed in the 
HiEf animals.

In a previous study, we found that rumen metabo-
lites had a stronger association with lactation perfor-
mance (milk protein yield) in dairy cows than microbial 

compositions or functions [20]. Thus, in the present 
study, we also used metabolomics to explore the rela-
tionships between rumen microbial metabolites and 
feed efficiency. We found that six metabolites (mainly 
of carbohydrate metabolism) could predict host feed 
efficiency with an accuracy of 95.06%. Additionally, we 
found different microbe-metabolite interaction pat-
terns in the rumen microbiome cows with different 
feed efficiency, and interestingly, these six markers were 
important contributors and played key roles in differen-
tiating these microbe-metabolite interactions between 
the high- and low-efficiency cows. The development of 

Fig. 6  A working model to illustrate the microbial taxa, active carbohydrate metabolism, and metabolites that might be associated with feed 
efficiency in dairy cows
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machine learning methods facilitates the application of 
the microbiota to predict host phenotypes, including for 
the prediction of disease risk [59] and performance [60] 
in different animal species. However, to our knowledge, 
research is still limited on the prediction of host perfor-
mance based on rumen microbial metabolites, especially 
in ruminants. Notably, predicting phenotypes using 
omics data in practice is still challenging due to the dif-
ferent characterization methods used for the identifica-
tion of microbial or metabolic markers [61]. Therefore, 
further studies using standardized omics identification 
pipelines are required to test the robustness of these 
markers, which could help us apply our findings in prac-
tice in the near future.

Studies using multiple meta-omics are still costly, and 
thus, the several recent studies using multiple meta-
omics on ruminants all had a small sample size (3-10) 
[17, 51, 62]. The sample size (9 per cow group) of the 
present study was larger than those reported in similar 
studies, but still relatively small. As stated in the “Meth-
ods,” our sample size provided sufficient power with 
respect to animal phenotypic data (statistical power: 
99.67%, effect size: 0.78). The ANOSIM of the metagen-
omic and metatranscriptomic data indicate that the dif-
ferences between the two cow groups were significantly 
larger than the variations among individual animals in 
each group. Nevertheless, a larger sample size should be 
considered in future multi-omics studies aiming at inves-
tigating the microbial mechanisms contributing to host 
performances.

Taken together, integrating metagenomics, metatran-
scriptomics, and metabolomics, we uncovered some new 
features of the rumen microbiome that are potentially 
associated with feed efficiency in dairy cows (Fig.  6). 
The new insights into these rumen microbial taxonomic, 
functional, and metabolic features may improve the abil-
ity to select animals for better performance in the dairy 
industry. The fundamental knowledge will also inform 
future interventions to improve feed efficiency in dairy 
cows.

Conclusions
Compared to metagenomics, metatranscriptomics is a 
better approach to uncover the associations between 
rumen microbial functions and feed efficiency in dairy 
cows. Co-occurrence analysis revealed that differential 
interaction patterns might exist in the rumen micro-
biomes of animals with different feed efficiencies and 
that the microbiomes of the HiEf animals have stronger 
associations. Notably, in the rumen of HiEf animals, 
Selenomonas and some species of Succinivibrionaceae 
might interact positively with each other and play an 

important role as keystone bacteria. The six metabo-
lites (all derived from carbohydrate metabolism) identi-
fied by random forest analysis could potentially serve as 
metabolic markers to differentiate efficient and inefficient 
rumen microbiomes or dairy cows. The findings of the 
present study may help future research to breed or select 
high-efficiency cows and inform sourcing carbohydrate-
degrading enzymes from the rumen as feed additives or 
biocatalysts to harness bioenergy from lignocellulosic 
biomass.
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