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Abstract 

Background:  Given the lack of genetic background, the source tracking unknown individuals of fish species with 
both farmed and wild populations often cannot be robustly achieved. The gut microbiome, which is shaped by both 
deterministic and stochastic processes, can serve as a molecular marker of fish host source tracking, particularly as an 
alternative to the yet-to-be-established host genetic marker. A candidate for testing the feasibility is the large yel-
low croaker, Larimichthys crocea, which is carnivorous and ranks the top mariculture fish in China. Wild resource of 
this fish was depleted decades ago and might have potential problematic estimation because of escaping of farmed 
individuals.

Results:  The rectums of wild (n = 212) and farmed (n = 79) croakers from multiple batches were collected for the 
profiling of their gut bacterial communities. The farmed individuals had a higher alpha diversity and lower bacterial 
load than the wild individuals. The gut microbiota of the two sources exhibited divergence and high inter-batch vari-
ation, as featured by the dominance of Psychrobacter spp. in the wild group. Predicted functional capacity of the gut 
microbiome and representative isolates showed differences in terms of host source. This difference can be linked to 
the potential diet divergence between farmed and wild fishes. The non-stochastic distribution pattern of the core gut 
microbiota of the wild and farmed individuals supports the feasibility of microbiota-based host source tracking via the 
machine learning algorithm. A random forest classifier based on the divergence and non-stochastic assembly of the 
gut microbiome was robust in terms of host source tracking the individuals from all batches of croaker, including a 
newly introduced batch.

Conclusions:  Our study revealed the divergence of gut microbiota and related functional profiles between wild and 
farmed croakers. For the first time, with representative datasets and non-stochastic patterns, we have verified that gut 
microbiota can be robustly applied to the tracking of host source even in carnivorous fish.
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Introduction
Microbes living in animal gastrointestinal tracts play 
important roles in the nutrition and health of their 
hosts through extensive metabolic and immune interac-
tions [1–4]. With the development of next-generation 
sequencing techniques, the diversity and function of the 
gastrointestinal microbiomes in many fish species have 
been unprecedentedly explored in the last decade [1, 5, 
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6]. Fish usually have much more dynamic and less diverse 
gut microbiomes than terrestrial vertebrates [7]. A vari-
ety of factors, such as source (i.e., domesticated or wild), 
habitat, diet, size, life-stage or age, and geographic origin, 
have a strong impact on the microbiomes in fish gut [5, 
8–10] Moreover, herbivorous and omnivorous fishes usu-
ally have higher selectivity in their intestine compared 
with carnivorous fish [11, 12], while host selectivity in 
certain microbial taxa has also been reported for carnivo-
rous Atlantic salmon [13].

Among the gut microbiota, core microbial taxa, which 
can be detected in most or all host individuals, can help 
to elucidate the patterns of physiological interactions and 
evolutionary relationships between microbes and hosts 
[6, 12, 14, 15]. In most of those studies, the core taxa 
were proposed on the basis of limited sampling batches 
despite the high dynamics of fish gut microbiota. From 
an ecological point of view, the assembly of microbiomes 
is underpinned by two factors: deterministic and neutral 
(or stochastic) processes [16–18]. Reasonably, core taxa 
are more likely to be selected by deterministic factors 
(e.g., certain host-specific factors, [19]) than by stochastic 
processes. Deciphering the dominant factor is a basis for 
the further examination of specific host–microbe rela-
tionships or potential applications.

Understanding the divergence of gut microbiota 
between conspecific wild and farmed fishes can contrib-
ute to the improvement of diet efficiency, farming mode, 
and probiotics development [20–24]. Moreover, the 
divergence of gut microbiota between wild and farmed 
fishes may be informative for host source tracking. The 
continuously increasing production of mariculture fish 
species and the interaction between farmed and wild 
fishes [25, 26], coupled with divergent selling price, risk 
of food safety [27–29], have accentuated the need of host 
source tracking. Another possible application is to dis-
criminate fishes escaping from farmed cages and seedling 
release individuals from true wild individuals. For fish 
species with sufficient historical specimens and genetic 
background, such as salmon, the genetic marker from the 
host showed good performance in terms of source track-
ing [30]. However, for most mariculture fish species with 
poor genetic markers requiring an identification of wild 
and farmed populations, the gut microbiome, as the sec-
ondary genome of corresponding host, can serve as an 
alternative biomarker of host source.

The large yellow croaker Larimichthys crocea (here-
after called “croaker”) is an economically important 
marine carnivorous fish species in China [31]. Long-term 
overfishing since the 1950s has resulted in the severe 
depletion (> 95%) of wild stocks. Currently, the major-
ity of sales is from mariculture, exceeding 220,000 tons 
in 2019 (the top mariculture fish in China, [32]). Wild 

stock enhancement through the release of tens of mil-
lions of fry has been performed annually for over a dec-
ade. However, the yield from the wild stock continued to 
show minimal increase, possibly because of fishing pres-
sure, human interference on habitats, niche occupation 
by mariculture, loss of genetic diversity, and poor adapta-
tion of released juveniles [33]. Moreover, wild resources 
are likely overestimated. Croakers captured in coastal 
regions may overlap with or are adjacent to the mari-
culture region of the species; in other words, the wild 
resources may be directly derived from escaped farmed 
individuals. Given the insufficient accumulation of “true” 
wild individuals, to our knowledge, the host genetic bio-
markers that can be used to distinguish wild croakers 
from domesticated ones have not been well established 
[34].

The divergence of gut microbiomes between wild and 
farmed croakers has not been characterized. For car-
nivorous species with multiple geographic populations 
[35], the inter-batch variations may be high in their gut 
microbiota. Therefore, this species seems to be a suitable 
candidate for testing the feasibility of microbiota-based 
host source tracking. In this study, we profiled the bacte-
rial community and core taxa obtained from the rectums 
of farmed and wild croakers. The croaker specimens 
were sampled from various geographical populations and 
batches. First, we confirmed the divergence between the 
gut microbiome of wild and farmed fishes in terms of the 
alpha- and beta-diversity. Then, the fitness of the neu-
tral model was evaluated, and a classifier was established 
using the random forest model. Finally, a machine learn-
ing approach that is suitable for unbalanced distribution 
data with noise features and less prone to overfitting [36, 
37] was implemented, and the feasibility of using the 
divergence of the microbiota between captive and wild 
individuals in source tracking was verified.

Materials and methods
Sample collection and preparation
Ten batches (designated as A, B, C, F, H, N, S, T, W, and 
X; n = 291) of croakers from diverse locations and of dif-
ferent sizes were collected from wild catching (C, F, S, 
and W; n = 212) and raft farming sites (A, B, H, N, T, 
and X; n = 79). The details of the sampling sites and the 
batches are shown in Fig. S1. Batch S, a unique wild batch 
collected from a bay with a high-density mariculture of 
croakers, was only used to test the host source tracking 
classifier. Notably, large wild individuals (> 300 g) are dif-
ficult to obtain because their natural stocks have depleted 
since the 1980s. Farmed fishes were mainly fed with arti-
ficial formulated feed and occasionally with fresh fish 
meals during the sampling period. All individuals were 
frozen at − 20 °C immediately after they were removed 
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from seawater. In this study, we sampled the gut micro-
biome of the rectum section (also called hindgut) for the 
future application of the non-invasive sampling strategy 
(e.g., by inserting a swab through the anus). Approxi-
mately 1–2 cm of the rectum was aseptically removed 
from the abdominal cavity by using sterile scissors 
and tweezers (see Fig. S2 for the details of the digestive 
organs and the typical sampled section). Then, the tissue 
samples were transferred to centrifuge tubes and stored 
at − 20 °C prior to the DNA extraction.

DNA extraction
The DNA extraction was performed using a commercial 
kit (QIAamp PowerFecal DNA Kit, QIAGEN, Germany). 
Before extraction, the tissues with rectum contents were 
aseptically homogenized with a tissue homogenizer after 
adding 200 μL of Solution CD1 (a buffer of the kit). Both 
the rectum and content were processed together for DNA 
extraction. Then, by using MilliQ water as the extrac-
tion blank, the DNA extraction was performed accord-
ing to kit instructions. To minimize DNA contamination 
from the extraction buffers, we used freshly prepared 
MilliQ water to elute the DNA in the final step. After 
extraction, the quantity and quality of the yielded DNA 
were examined with a micro-spectrophotometer (Nan-
oDrop ND-1000, Thermo Scientific, USA). The OD260nm/
OD280nm ratios ranged from 1.7 to 2.0 for all samples.

PCR and high‑throughput sequencing
The PCR targeting the V4 region of the bacterial 16S 
rRNA gene was conducted according to a previously 
described method [38] except for the addition of adap-
tor sequences during library construction. To minimize 
potential cross-talking contamination, as suggested by a 
previous study [39], we applied unique barcodes to link 
the forward and reverse primers during multiplexing (i.e., 
no barcode was shared by any sample in a library). The 
number of PCR cycles was set to 30, under which the 
DNA extraction blank and PCR blank (MilliQ water) did 
not produce visible bands during electrophoresis. The 
purified PCR products were pooled together at equal 
mass before sequencing for library construction (TruSeq 
DNA PCR-Free Library Preparation Kit, Illumina, USA). 
Then, a high-throughput sequencing was performed in 
the Illumina Hiseq2500 sequencing platform with the 
PE250 strategy (commercial service provided by Novo-
gen, China).

Quantitative PCR for determining bacterial load
To determine the bacterial load in the rectum, randomly 
picked 20 samples from both wild (batches C and F) 
and farmed (batches H and T) were analyzed by quanti-
tative PCR (qPCR). Due to the relatively long length of 

the V4 amplicon, the region of V3 was amplified using 
the primer sets of 341F and 534R [40]. For each sample, 
5 ng of the DNA template was added to 25 μL of PCR 
solution (final volume, SYBR GreenER™ qPCR SuperMix 
Universal, ThermoFisher Scientific, USA). A standard 
curve (R2 > 0.99) generated by the 10-fold dilutions of a 
plasmid DNA containing a full-length 16S rRNA gene 
from Escherichia coli was used in absolute quantifica-
tion. qPCR was performed in triplicate for each sample. 
To calculate the bacterial load per unit of host tissue, by 
referring to the standard curve, we quantified 16S rRNA 
gene copy number per ng of DNA because most of the 
extracted DNA was derived from the host tissue (indi-
cated by the low copy number of bacterial 16S rRNA 
gene per ng DNA). The difference in bacterial loads 
between the farmed and wild samples was determined by 
the Wilcoxon test.

Analysis of 16S rRNA gene high‑throughput sequencing 
data
Raw high-throughput sequencing data were cleaned 
using TRIMMOMATIC [41]. USEARCH v10 was used 
to remove the suspicious sequences (i.e., chimeras and 
rare sequences with frequency of less than 8 across all 
samples) and determine the 0.97-level operational taxo-
nomic units (OTUs) by means of the UNOISE algorithm 
and UPARSE, respectively [42, 43]. Then, the table of 
OTU abundance generated in the USEARCH platform 
was introduced into Mothur v1.39.5 for alpha-diversity 
and beta-diversity analyses and taxonomic classification 
[38]. Data normalization was performed by subsam-
pling 10,000 valid readings for each sample [38]. For the 
beta-diversity analysis, the weighted Unifrac distance 
was calculated following the Mothur Miseq SOP [44]. A 
Wilcoxon test was conducted to compare the alpha- and 
beta-diversity analyses. We used the EzBioCloud 16S 
database as the taxonomic reference [45]. The effect of 
four factors (body weight, season, source, and batch) on 
the bacterial community was estimated using analysis of 
variance [46]. We conducted an analysis of molecular var-
iance (AMOVA) in Mothur to determine the significance 
of inter-group differences among community structures. 
The heatmap with the sample and OTU-level clustering 
was realized in R code by using the pheatmap v1.0.10 
and vegan v2.5-3 packages [47, 48]. Given the high inter-
batch variation, the core microbiota at the OTU level was 
defined as the taxa detected in > 70% individuals for wild 
or farmed samples.

To determine the importance of the stochastic process 
in the assembly of gut microbiomes, the Sloan neutral 
model was tested using the R v3.5.1 code [16, 49]. Addi-
tionally, the relative importance of stochastic and deter-
ministic processes in the community assembly, nearest 
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taxon index (NTI), and beta nearest-taxon index (βNTI) 
were calculated using the Picante v1.8.2 and MicEco 
v0.9.15 R package (OTUs: abundance > 0.01%, abun-
dance.weighted = True) [50, 51]. The 16S rRNA gene-
based MetaCyc pathway profiling were inferred using 
PICRUST2, and the differently abundant MetaCyc path-
ways of the farmed and wild croakers were identified 
using the ALDEx2 v1.14.1 R package [52, 53].

Isolation of typical gut bacteria and genome analysis
Three farmed (batch T) and three wild (batch C) indi-
viduals were used for gut bacterial isolation. The micro-
organisms in freshly prepared rectums (~ 0.5 g) were 
rigorously washed off prior to serial 10-fold dilution in 
sterile 0.9% NaCl. Then, the dilutions were spread on 
2216E agar plates (Hope Bio-Technology Co., Ltd., Qing-
dao, China) and cultivated for 48 h at 20 °C. The colonies 
with different morphologies and colors were selected, 
and the respective taxonomy was determined via full-
length 16S rRNA gene sequencing. Only the isolates affil-
iated with Photobacterium (n = 7) and Psychrobacter (n 
= 7), which form the representative taxa of farmed and 
wild croakers, respectively, were kept for downstream 
analysis.

The genomic DNA of the isolates was extracted and 
sequenced using the Illumina HiSeq X Ten platform. An 
assembly was performed with SPAdes v3.9.0 (param-
eters: -t 50, -k 55, 77, 99 -careful) [54]. Only the scaf-
folds of > 1000 bp were used to predict the open reading 
frames by using Prodigal v2.6.3 [55]. The carbohydrate-
active enzyme (CAZyme) families were annotated using 
dbCAN2 v2.0.11 under default parameters, and the sig-
nal peptides were predicted using SignalP v4.0 [56, 57]. 
The optimal pH of the CAZymes was predicted using 
the AcalPred online server [58]. The capability of organic 
acid production of the Photobacterium and Psychobacter 
isolates was annotated using DRAM [59].

Assays of pH measurement for rectum content 
and bacterial biofilm formation
The pH of the rectums of croakers was measured by 
transferring each freshly prepared rectum (~ 0.5 g; con-
taining content) from the wild (n = 27) and farmed (n = 
15) individuals into a 15-mL centrifuge tube and gently 
and thoroughly washing the specimens in 5 mL ddH2O. 
Then, the pH values of the suspensions were measured 
using a pH measurer. To test the capability of biofilm for-
mation of the isolates, we inoculated each of the isolates 
into replicate wells (n = 6) of a 96-well plate containing 
200 μL of 2216E broth (approximately 106 cells per well). 
After growth for 48 h, the OD600 of the cell suspension 
was measured with a microplate reader (CLARIO Star® 
Plus, BMG LABTECH Inc., USA). Then, the biofilm was 

stained with 0.1% crystal violet, and the OD550 of the eth-
anol elution was measured [60]. The OD550/OD600 ratio 
was used to determine the capability of biofilm forma-
tion. The images of the stained biofilms were recorded 
under an inverted light microscope.

Random forest classification for wild and captive 
individuals
To distinguish the wild and farmed individuals via the 
machine learning approach, we used the random for-
est algorithm to construct a classifier. The dataset (nine 
batches except for batch S, n = 276) was pre-processed 
by removing the rare OTUs (< 20% frequency). The sam-
ples were split into two partitions, namely the training 
and testing datasets, under different proportions with 
10 iterations. We built the classifier with the random for-
est v4.6.14 R package with 5001 trees and default mtry 
number on the training samples and then validated it on 
the test samples [61]. The receiver operating character-
istic curve was obtained via the pROC v1.16.2 R pack-
age [62]. The top 15 OTUs in terms of mean decrease in 
accuracy were used to rebuild an optimized classifier, and 
the accuracy of the model was accessed via leave-one-out 
cross-validation by using the caret v6.0.86 R package [63]. 
We also tested the reliability of the classifier by using new 
wild samples (batch S, n = 15) that were caught in a bay 
where the farmed individuals of A, B, H, T, and X were 
collected (Fig. S1).

Results
Divergence of bacterial alpha diversity, abundance, 
and high‑rank taxa in the rectums of wild and farmed 
croakers
Given a sampling depth of 10,000 sequences, the Shan-
non index of the bacterial community in the rectums of 
the croakers ranged from 1.17 to 4.96, with a median 
value of 3.80. Interestingly, the wild individuals pre-
sented a lower diversity than the farmed ones (Fig. 1A, P 
= 4.06e−14, Wilcoxon test). As the copy number of 16S 
rRNA gene per ng DNA for a putative bacterium with 4M 
genome and four copies of 16S rRNA gene was 9.2×105, 
the determined 16S rRNA gene copy number (only 
9–17,409 copies per ng DNA, Fig.  1B) indicates a low 
bacterial load in the rectums of the wild and farmed indi-
viduals. However, the wild individuals contained more 
gut bacterial inhabitants than the farmed ones (Fig.  1B, 
P = 0.03, Wilcoxon test). The major detected bacterial 
phyla (or classes of Proteobacteria) were Gammapro-
teobacteria, Firmicutes, Fusobacteria, Alphaproteobac-
teria, Betaproteobacteria, Actinobacteria, Bacteroidetes, 
and Deltaproteobacteria. A significant difference (P < 
0.05, Wilcoxon test, false discovery rate (FDR)-corrected 
P value) between the wild and captive individuals was 
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observed for the relative abundance of nearly all of the 
abovementioned high-rank taxa (Fig.  1C). Dominance 
of Gammaproteobacteria was detected in both wild and 
farmed samples (median percentage: 93.9% and 44.0%).

Beta‑diversity indicated batch‑ and source‑associated 
variation of gut microbiota
The findings from the nonmetric multidimensional scal-
ing (NMDS) showed that the wild and farmed groups 
could be distinguished to a great extent with a few excep-
tions (Fig. 2A). The AMOVA results showed a significant 
divergence between the two sources and among most 
batches (Fig. 2A). The beta-diversity divergence followed 

the order: between sources > between batches > within 
batches (Fig. S3). The divergences among farmed batches 
were higher than those among wild batches (Fig. S3). 
Batch, source, and sampling season can explain 0.397, 
0.148, and 0.093 of the microbiota variation (all P < 
0.01), whereas body weight can barely explain the varia-
tion (0.020, P > 0.05). In fact, all of the abovementioned 
explainable variations can be explained by batch since 
source and season have no independent contribution 
(Fig.  2B, individuals in one batch had consistent source 
and season property). The high inter-batch divergence 
suggests the unpredictable overall microbiota variation of 

Fig. 1  Bacterial alpha diversity (A), load (B), and high-rank taxa (C) in the rectum of the wild and farmed croakers. Wilcoxon test was applied to the 
comparisons
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the newly introduced batch, which may have a negative 
impact on reliable host source tracking practice.

The heatmap is shown in Fig. 2C. Twenty-four major 
gut bacterial OTUs that were present in more than 20% 
of the samples with over 0.2% mean relative abundance 
were used in the analysis of the divergence of micro-
biota. These OTUs accounted for 1.4–99.9% (83.4% in 
median value) of the total bacterial community in all 
of the samples. Similar to the NMDS results, although 
most individuals from each source tended to cluster 
together, some samples in the wild batch C (n = 7), F 
(n = 1), and all individuals of batch W (n = 18) were 
clustered with most (> 95%) farmed individuals. After 
clustering based on Pearson correlation, the 24 OTUs 
fell into two clusters, namely Cluster I (9 OTUs, which 
were enriched in the wild individuals) and Cluster II 
(15 OTUs, which were generally enriched in the farmed 
ones). In Cluster I, five Psychrobacter OTUs constituted 
93.0% (median value) of the total bacteria in the wild 

samples, whereas OTUs affiliated with Photobacterium, 
Vibrio, Streptococcus, Fusobacterium, and Clostridium 
were the representative taxa of the farmed individuals.

The NMDS and clustering results indicate that the 
overall profile of the bacterial community of some wild 
samples was close to those of major farmed fishes. 
Thus, we further examined the relative abundance of 
the OTUs of Clusters I and II in these samples (n = 
26, from C, F, and W) and the clustered farmed sam-
ples (n = 76, excluding the other six that were clus-
tered with wild samples). As shown in Fig.  2D, in the 
Cluster I OTUs (sum together), the wild samples have a 
higher abundance than the farmed samples (P < 0.001, 
Wilcoxon test), whereas no difference can be observed 
for the Cluster II OTUs. This result indicates that these 
wild samples still enriched the Cluster I taxa despite 
their similar microbiota with the farmed ones. These 
taxa may serve as indicators for host source tracking.

Fig. 2  Beta-diversity of the gut microbiota of croakers. A NMDS carried out on the weighted Unifrac distance between the farmed and wild groups. 
Only inter-batch pairs without significant differences are marked (AMOVA test, P > 0.01). B The explanation of variance in gut microbiomes by batch, 
source, sampling season, and body weight (*P < 0.05). C Heatmap shows the main OTUs relative abundance in the farmed and wild individuals. 
Only 24 OTUs with the mean abundance of > 0.2% and occurrence of > 20% are shown. Rows are clustered according to Pearson correlation, 
and OTUs are stratified into two clusters. The columns (samples) are clustered according to Euclidean distance. The total relative abundance of 
individuals is shown in the bar plot. Difference of the relative abundance for each taxon between farmed and wild samples was marked aside the 
taxon name (a and b for statistically higher in the wide and farmed samples, respectively; *P < 0.05, **P < 0.001, FDR-corrected Wilcoxon test) (D) 
Relative abundance of OTUs belonging to Clusters I and II in the farmed (n = 76) individuals and wild (n = 26) ones that are clustered with the 
majority of the farmed group
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Distinct functional capability of gut microbiomes in farmed 
and wild fishes and its potential linkage with diet
The underlying mechanism responsible for the diver-
gence of gut microbiota between wild and farmed 
croakers was determined by initially predicting the 
function of the microbiomes by using PICRUSt2. As 
expected, the functional microbiomes of the wild sam-
ples were significantly different from the farmed ones 
(P < 0.001, AMOVA, Fig. S4). The dissimilarity between 
the pathway and microbiota was highly correlated (Fig. 
S4). In the top-level functional catalogue, the relative 
abundance of the degradation/utilization/assimilation-
related pathways corresponds to a significant difference 
between the wild and captive groups (Fig. S5). The rela-
tive abundance of the second-level catalogues in this 
category also exhibited a high divergence between the 
two groups (Fig.  3A). Remarkably, the wild samples 
were enriched by fatty acid and lipid degradation path-
ways, whereas the farmed samples contained higher 
proportions of carbohydrate and polymeric compound 
degradation pathways. The pathway-level profiling indi-
cates that the functions enriched in the farmed samples 

were related to the degradation of starch, glycogen, chi-
tin, mannan, glucose, galactose, etc. (Fig. 3B).

The functional prediction of the microbiomes suggests 
that diet is a potential causation of the divergence of gut 
microbiota between the farmed and wild croakers. The 
farmed croakers are typically fed with formulated food 
containing high proportions and diverse sources of car-
bohydrates (~ 30% in dry weight from starch, soybean 
meal, shrimp meal, and yeast; see Fig. S6 for the typical 
diet content). However, in natural habitats, croakers usu-
ally prey on zooplankton (mostly crustaceans) and small 
fishes [64] that contain few carbohydrates, although 
they may obtain high-level chitin-like materials from 
crustaceans.

To further examine the hypothesis in which diet is a 
deterministic factor of the microbiota divergence of the 
wild and farmed croakers, we analyzed the genomes 
of 14 representative isolates affiliated with Photobac-
terium (Ph1 to Ph7) and Psychrobacter (Ps1 to Ps7) 
that were obtained from the farmed and wild samples, 
respectively. The quantification of linking 16S rRNA 
genes from the isolates and the V4 OTUs (requiring > 
97% similarity) showed that Photobacterium isolates 

Fig. 3  The functional prediction of the gut microbiome and representative isolates belonging to Photobacterium and Psycrobacter. A Significantly 
differentiated MetaCyc pathways in farmed or wild individuals and only the top 10 pathways with the largest differences are shown. B Heatmap 
shows the relative abundance of MetaCyc pathways (top 20 pathways based on average relative abundance) in farmed and wild samples. C The 
pH of rectum contents in the farmed (n = 15) and wild (n = 27) individuals. D The distribution of CAZyme families and genes in the representative 
isolates. E The ratio of predicted acidic and alkaline glycoside hydrolases and glycosyltransferases in the genome. F Biofilm formation capability of 
Photobacterium and Psycrobacter isolates. The Welch’s t-test (Benjamini–Hochberg-corrected P values, *P < 0.05, **P < 0.01, ***P < 0.001) was used in 
(A) and (B). Wilcoxon test was used in (C), (D), (E), and (F)
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account for 7.7% and 0.3% (median values) of the total 
bacteria in the farmed and wild samples, respectively, 
whereas Psychrobacter isolates represent 93.3% and < 
0.1% (median value) of the total bacteria in the wild 
and farmed samples, respectively. The corresponding 
phylogenetic information is shown in Fig. S7. First, we 
compared the CAZymes in the isolates of Photobacte-
rium and Psychrobacter. As expected, Photobacterium 
genomes encoded more CAZyme families and genes 
than each of the Psychrobacter genomes (Fig.  3C). 
However, chitinases are widely detected in the Photo-
bacterium strains but are absent in the Psychrobacter 
strains (Fig. S8). Notably, the genome of croaker can 
encode three chitinases [65], which may minimize the 
niche selection for chitin-utilizing microorganisms. 
Second, fatty acid production was also predicted in 
the genomes of all of the isolates (Fig. S8). A reason-
able assumption is that a high-carbohydrate diet may 
decrease the pH in the rectum by producing short-
chain fatty acids [48]. Thus, we tested the pH values 
of the rectum contents obtained from the farmed and 
wild individuals and found that the assumption can be 
positively supported (Fig. 3D). Third, the prediction of 
optimal pH for the CAZymes indicates higher propor-
tions of acidic glycoside hydrolases (GHs) in Photobac-
terium than in Psychrobacter (Fig. 3E). The difference 
in the proportions is consistent with the dominant 
distributions in the guts of the farmed and wild croak-
ers, respectively, although glycosyltransferases (GTs), 
which are usually involved in polysaccharide biosyn-
thesis, have no such signal (Fig.  3E). Meanwhile, sig-
nal peptides were predicted in 50 to 64.8% of the acidic 
CAZymes of Photobacterium genomes, suggesting that 
most of these enzymes are secreted or bound to the 
cell surface and may partially function in extracellular 
environments.

In addition, we tested the biofilm formation capa-
bility of 14 isolates. The results indicate that Psychro-
bacter isolates usually form denser biofilms than the 
Photobacterium strains (Fig. 3F), as confirmed micro-
scopically (Fig. S9). Although the experiment was per-
formed in vitro, the result could reasonably explain the 
higher gut bacterial load of wild croakers than that of 
the farmed ones (Fig. 1B).

Major and core taxa follow non‑stochastic pattern 
in farmed and wild croakers
Although high beta-diversity among batches and sources 
was detected, this may mainly result from neutral pro-
cesses other than the deterministic factors. To evaluate 
the influence of the non-stochastic process on the assem-
bly of gut microbiota in the farmed and wild croakers, 
we first determined the core taxa that were defined and 
detected in at least 70% of the samples. Among the C, F, 
N, and H batches with sufficient individuals, no shared 
core taxa can be found (Fig.  4A), indicating the high 
dynamics between sources and among batches as pre-
sented previously. After combining the batches, seven 
and five core OTUs passed the frequency criterion for the 
wild and farmed sources, respectively (Fig. 4B). Psychro-
bacter OTUs, as the major differential taxa between the 
farmed and wild samples (Fig. 2C), were the major core 
taxa for the wild group. By contrast, the core taxa for the 
farmed fishes were affiliated with Vibrio, Streptococcus, 
Photobacterium, etc., without any Psychrobacter OTU.

Then, all OTUs were examined for their goodness-of-
fit to the neutral model for the farmed and wild individ-
uals (Fig.  4C and D, respectively). The values indicate a 
low goodness-of-fit to the model for both groups (R2 = 
0.378 and 0.259 for the farmed and wild groups, respec-
tively). For the OTUs with a high relative abundance (> 
0.1%, mean value), 41.7% for the farmed group fell into 
the 99% confidence interval, whereas only 8.2% in the 
wild groups were within this region. Moreover, most 
core OTUs deviated from the 99% confidence interval 
except one in the farmed group and one in the wild group 
(Fig. 4C and D, respectively). The mean NTIs were higher 
than zero in the farmed and wild individuals (P < 0.05), 
indicating that the phylogenetic relatedness of the micro-
bial taxa in the two communities is more related than 
expected by chance (Fig. 4E). The βNTI values of 79.8% 
and 46.1% of the samples were lower than − 2 in the wild 
and farmed groups, respectively. This finding indicates 
that deterministic processes (homogeneous selection) are 
important in the gut microbiome assembly of both wild 
and farmed croakers [66], although stochastic processes 
may also play a major role in the community assembly of 
farmed individuals (Fig. 4E). The results further indicate 
that non-stochastic processes dominate the assembly of 
the major and core taxa in the guts of croaker, especially 

(See figure on next page.)
Fig. 4  Distribution of the core OTUs and the goodness-of-fit to neutral model for the gut microbiota. The OTUs presented in > 70% samples were 
defined as core taxa. Core taxa were determined in each of four batches (A) and all individuals from each source (B). The boxplot shows the relative 
abundance (left axis) and diamonds are represented detected frequency (right axis) in farmed and wild samples (B). The goodness-of-fit to the 
neutral model for the farmed (C) and wild samples (D). The dashed curve (in C and D) represents 99% confidence intervals of the model prediction. 
R2 indicates the goodness-of-fit to the neutral model. Pie charts show the proportion of within, above, and below the prediction of high-abundance 
OTUs (relative abundance > 10−3 as separated by the vertical dash line). E Violin plot of nearest taxon index (NTI) and beta nearest taxon index 
(βNTI). Horizontal dashed lines (NTI or βNTI values at − 2 and 2) indicate thresholds for determining the assembly pattern [66].
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Fig. 4  (See legend on previous page.)
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the wild ones. This aspect is fundamental in the applica-
tion of microbiota-based host source tracking because 
stochastically assembled communities may introduce 
more unpredictable noise for newly introduced samples.

Robust microbiota‑based host source tracking based 
on random forest classification
Although the gut microbiota of the wild and farmed 
croakers showed a high inter-batch variation, the over-
all divergence and non-stochastic distribution of most 
abundant OTUs suggest distinguishable and major deter-
ministic microbial assembly patterns. We then tested the 
performance of the random forest classification under 
different ratios for the training and test sets. As shown 
in Fig.  5A, the average area-under-curve (AUC) value 

increases from 0.898 in the 5:5 sets to 0.943 in the 9:1 
sets. From the 5:5 set to the 8:2 set, the accuracy of the 
farmed group is consistently lower than that of the wild 
group, which may be related to the higher inter-batch 
divergence and stronger stochastic assembly pattern in 
the farmed group.

To validate whether the stochastic assembly has a 
negative effect on the random forest classification, we 
calculated the average probability (> 50% for a correct 
assignment) of each sample via bootstrapping (n = 100, 
designating 5:5 of training: test for each batch). The 
accumulated relative abundance of the neutral OTUs 
and below-prediction OTUs were also determined for 
the farmed and wild samples, respectively (see Fig. 4C 
and D for the definition of the OTUs). As shown in 

Fig. 5  Performance of the random forest classifier. A The AUC and predicted accuracy of the farmed and wild groups under different dataset 
stratifications with 10 replications. B Effect of the abundances of OTUs within and below prediction (see Fig. 4C and D for the definition of the OTUs) 
on host source tracking. The training set: test set is 5:5 and the bootstrapping number is 100. The dashed line indicates the upper boundary of 90% 
confidence interval. Fisher’s exact test is applied to compare the samples above and within the confidence interval. C The predicted accuracy of 
random forest classifier based on leave-one-out validation for each batch (splitting training set: test set = 8:2, bootstrapping n = 20). D The top 
15 most important OTUs identified by the random forest classifier. E The detected frequency of the top 15 most important OTUs in the four main 
batches, two-tailed Student’s t-test, FDR-corrected, *P < 0.05, **P < 0.01, ***P < 0.001. F The predicted probabilities of samples from batch S based 
on the optimized classifier established using the top 15 most important OTUs (top panel). Heatmap shows the relative abundance of these OTUs in 
batch S (bottom panel)
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Fig.  5B, the samples with high relative abundance of 
neutral OTUs and below-prediction OTUs (higher 
than the upper boundary of 90% confidence interval) 
are more likely to be poorly assigned (average probabil-
ity < 50%) compared with the other samples (P < 0.05, 
Fisher’s exact test). Reasonably, the samples with a high 
abundance of below-prediction OTUs are likely domi-
nated by few taxa, and processing a simple microbiota 
also may not sufficiently support the classification. The 
poor assignment of samples with a high abundance of 
stochastic OTUs supports the finding regarding the 
negative effect of stochastic microbial assembly on the 
random forest classification.

Then, we selected the 8:2 set in which all AUC values 
were higher than 0.9 (in ten replications). The results of 
the leave-one-out validation suggest that some batches 
(e.g., T and W) were likely assigned incorrectly (Fig. 5C), 
further indicating that good sample representability is a 
prerequisite for the good performance of the machine 
learning classifier. Moreover, as batch W was obtained 
from a remote geographical location with respect to most 
other batches, the low classification performance may be 
partially attributed to biogeography.

As suggested by the k-fold cross-validation (Fig. S10), 
15 OTUs could generate the lowest error rate of predic-
tion. Thus, the top 15 classifier OTUs that contributed 
to accurate classification were listed (Fig.  5D). A large 
proportion of the classifiers were core OTUs from the 
wild and farmed groups. Psychrobacter spp. were highly 
weighted in the algorithm, and its relative abundance was 
considered to be the strongest factor related positively 
to the predicted probabilities for the wild individuals. 
The optimized classifier was kept for downstream analy-
sis. A wild batch S (n = 15), which was collected in the 
same bay as most of the farmed batches, was addition-
ally tested. Notably, the frequency of the top 15 clas-
sifier OTUs was significantly lower in this batch than 
in the other wild batches (all P < 0.001, two-tailed Stu-
dent’s t-test, Fig.  5E). Batch S was enriched with only 
two Psychrobacter OTUs, while most other OTUs were 
extremely low or missing (Fig.  5F). Interestingly, all of 
the predicting results were correct, although the prob-
abilities were low (0.70 ± 0.09, Fig. 5F). To further vali-
date the superiority of the machine learning algorithm, 
we clustered all samples based on Bray–Curtis distance 
for all, core, and 15 classifier OTUs (Fig. S11). Approxi-
mately 10% of the wild samples (23–24 in total, includ-
ing 1–3 from batch S) were clustered with most farmed 
individuals (> 95%) for each of the samples regardless of 
the referring dataset. Surprisingly, the high proportion of 
these wild samples (> 90%) could be correctly assigned by 
the machine learning approach. These results indicate the 
robustness of the random forest classifier.

Discussion
The machine learning classification of gut microbiota 
has been extensively used to predict host phenotypes in 
humans [67, 68]. A recent study reported the first attempt 
to apply the gut microbiome in fish host tracking in terms 
of habitat and taxonomy, and they found that habitat is a 
major factor for shaping the gut microbiome of various 
fish species [8]. However, the prediction accuracy of the 
machine learning algorithm was low for habitat at AUC 
< 0.8. For the first time, our study has validated the fea-
sibility of utilizing gut microbiome for the robust host 
source tracking in fish. Meanwhile, the insufficient rep-
resentativeness of training datasets leads to an overfitting 
and a failure of prediction of newly introduced samples 
[69]. In determining the divergence between wild and 
farmed fishes, most previous researchers collected a few 
or even single-batch samples, overlooking the potential 
high inter-batch divergence that has been observed by 
our study and potentially causing biases in profiling the 
taxonomic and functional features. In particular, our 
study found highly divergent core-taxa can for the sam-
ples from different batches and sources (Fig. 4A and B).

Obvious divergences between the gut microbiomes of 
the wild and farmed croakers were determined in terms 
of their alpha- and beta-diversity. An unexpected phe-
nomenon is that the rectum bacterial diversity was lower 
for the wild individuals compared with the farmed sam-
ples (Fig.  2A). An apparent reason is the domination of 
the single genus Psychrobacter in wild individuals. Higher 
alpha diversity of gut microbiota triggered by simplified 
diets has been reported in fish [70–72]. For the beta-
diversity, our results, which included those from NMDS 
and cluster analysis, did not support a clear cut between 
the gut microbiota of the wild and farmed fishes (Fig. 2A 
and C). It indicates that the common beta-diversity anal-
ysis cannot be directly applied to host source tracking. 
Also, determining the presence of certain marker taxa 
of microbiome (an approach adopted by a few previous 
studies in animal host tracking [73, 74]), would be insuf-
ficient because almost all major OTUs were shared by 
wild and farmed fishes, although they were divergently 
distributed (Fig.  2C). Therefore, the machine learning 
approach, which is essentially a supervised analysis to 
seek undefined and complex features related to a cer-
tain phenotype [75], was chosen for the objective of host 
source tracking.

Stochastic processes play a key role in shaping micro-
bial assemblies in many environments [76, 77]. However, 
previous studies and our research indicate that deter-
ministic processes usually play an important role in gut 
microbial assemblies in fishes, suggesting the presence 
of high niche selection stress on community structures 
[15, 17]. In the present study, despite the highly variable 
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microbiota among the different batches, we found that 
almost all major or core OTUs deviated from the neutral 
model, indicating their underlying deterministic assem-
bly pattern. A recent study revealed the lower contribu-
tion of neutral processes in the gut microbial assembly 
of wild Atlantic salmon compared with those in farmed 
individuals [10]. Our study also discovered a higher 
goodness-of-fit to the neutral model in farmed individu-
als than wild ones, suggesting a potential disconnection 
of host–microbe interaction in farming circumstances. 
As our results suggest, the functional capacity of the 
gut microbiome and isolates differ between the farmed 
and wild croakers. Thus, it is interesting to investigate 
whether the increase in goodness-of-fit to the neutral 
model for the farmed fishes is related to diet variation or 
other factors. More importantly, stochastic systems are 
intrinsically unfavorable for machine learning classifica-
tion as they can generate classifiers established by false 
signals, e.g., p-hacking [64]. Despite the overall poor 
goodness-of-fit of the gut microbial assembly and major 
OTUs in both wild and farmed croakers, the results sup-
port the linking of a high proportion of stochastic OTUs 
to the errors in host source tracking (Fig.  5B). The suc-
cessful host source tracking of the newly introduced 
batch S has verified the robustness of the classifier build-
ing based on the non-stochastic assembly pattern of the 
gut microbiota. Therefore, we recommend the evalua-
tion and exclusion of the effect of stochastic events when 
applying machine learning to host source tracking based 
on microbiota.

Despite the good performance in discriminating 
between wild and farmed individuals, the microbiota-
based classifier may have other untested problems in the 
practice of wild resource assessment, such as when dis-
criminating the true wild fishes from those escaping from 
farming cages and artificial release of fry. The dynam-
ics and profile of gut microbiota of the escaping fishes 
or the released fry have not been examined in the pre-
sent study. The rapid shift (from days to a few months) 
of gut microbiota during domestication and diet change 
has been revealed in African cichlid, European seabass, 
grass carp, perch, etc. [78–81]. In carnivorous European 
seabass, mucosa-associated microbiota was found to be 
more stable than the corresponding digesta microbiota 
when shifting to plant-based diet [80]. Investigations per-
taining to the effect of diet shift on the dynamics of gut 
microbiota in different intestinal locations may provide 
more basis for the practice of wild resource assessment 
of croaker.

Finally, although not the major aim of the present 
study, understanding the underlying mechanisms respon-
sible for the divergence of gut microbiomes between the 
wild and farmed fishes can provide key information on 

improving aquaculture production [22]. Dysbiosis has 
been widely reported in aquaculture fishes fed with for-
mulated feed [82]. Our study revealed possible dysbiosis 
in farmed croaker because potential pathogenic bacte-
rial taxa, such as Vibrio spp., Photobacterium spp., etc., 
can be the core taxa, whereas they were less frequently 
and abundantly detected in the wild individuals. By con-
trast, the wild samples were dominated by Psychrobacter 
spp., which is widely detected in the gut of marine fish 
[5]. A few strains of this genus have been tested for their 
probiotic applications in fish diets [83, 84]. Whether the 
Psychrobacter strains from croakers can serve as pro-
biotics for various applications, including improving 
stock enhancement (e.g., domestication by specialized 
diet before the release of fry) and diet-based gut micro-
biota regulation for farmed croakers, is worthy of further 
examination.

Conclusions
The gut microbiome is not only closely related to the 
health and metabolism of hosts but also contains key 
information on the physiological and ecological circum-
stances of the hosts. Our study revealed the divergence 
of the gut microbiota and relevant functional profiles 
between wild and farmed croakers. With less biased 
datasets and non-stochastic patterns, we have verified for 
the first time that gut microbiota can be robustly applied 
to the tracking of host source even in carnivorous fish. 
A similar strategy can be applied to other fish species in 
need of discriminating source-unknown individuals.
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under the JTT+G model. The 14 isolates are marked in bold, the brackets 
indicate the number of chitinase. The heatmaps show the average 
nucleotide identity (ANI) values among genome pairs. Figure S8. The 
predicted capability of carbohydrates utilization and organic acid produc-
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